Sample records for surface cxcr4 expression

  1. β-Arrestin1 and Distinct CXCR4 Structures Are Required for Stromal Derived Factor-1 to Downregulate CXCR4 Cell-Surface Levels in Neuroblastoma

    PubMed Central

    Clift, Ian C.; Bamidele, Adebowale O.; Rodriguez-Ramirez, Christie; Kremer, Kimberly N.

    2014-01-01

    CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472

  2. Hepatic Stellate Cells Express Functional CXCR4: Role in Stromal Cell–Derived Factor-1α–Mediated Stellate Cell Activation

    PubMed Central

    Hong, Feng; Tuyama, Ana; Lee, Ting Fang; Loke, Johnny; Agarwal, Ritu; Cheng, Xin; Garg, Anita; Fiel, M. Isabel; Schwartz, Myron; Walewski, Jose; Branch, Andrea; Schecter, Alison D.; Bansal, Meena B.

    2010-01-01

    Chemokine interactions with their receptors have been implicated in hepatic stellate cell (HSC) activation. The hepatic expression of CXCR4 messenger RNA is increased in hepatitis C cirrhotic livers and plasma levels of its endogenous ligand, stromal cell–derived factor-1α (SDF-1α), correlate with increased fibrosis in these patients. The expression of CXCR4 by HSCs has not been reported. We therefore examined whether HSCs express CXCR4 in vivo and in vitro and explored whether SDF-1α/CXCR4 receptor engagement promotes HSC activation, fibrogenesis, and proliferation. The hepatic protein expression of both CXCR4 and SDF-1α is increased in hepatitis C cirrhotic livers and immunoflourescent and immunohistochemical staining confirms that HSCs express CXCR4 in vivo. Immortalized human stellate cells as well as primary human HSCs express CXCR4, and cell surface receptor expression increases with progressive culture-induced activation. Treatment of stellate cells with recombinant SDF-1α increases expression of α-smooth muscle actin and collagen I and stimulates a dose-dependent increase in HSC proliferation. Inhibitor studies suggest that SDF-1α/CXCR4-dependent extracellular signal-regulated kinase 1/2 and Akt phosphorylation mediate effects on collagen I expression and stellate cell proliferation. Conclusion HSCs express CXCR4 receptor in vivo and in vitro. CXCR4 receptor activation by SDF-1α is profibrogenic through its effects on HSC activation, fibrogenesis, and proliferation. Extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase pathways mediate SDF-1α–induced effects on HSC expression of collagen I and proliferation. The availability of small molecule inhibitors of CXCR4 make this receptor an appealing target for antifibrotic approaches. PMID:19434726

  3. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  4. Defective CXCR4 expression in aged bone marrow cells impairs vascular regeneration

    PubMed Central

    Shao, Hongwei; Xu, Qiyuan; Wu, Qiuling; Ma, Qi; Salgueiro, Luis; Wang, Jian’An; Eton, Darwin; Webster, Keith A; Yu, Hong

    2011-01-01

    The chemokine stromal cell-derived factor-1 (SDF-1) plays a critical role in mobilizing precursor cells in the bone marrow and is essential for efficient vascular regeneration and repair. We recently reported that calcium augments the expression of chemokine receptor CXCR4 and enhances the angiogenic potential of bone marrow derived cells (BMCs). Neovascularization is impaired by aging therefore we suggested that aging may cause defects of CXCR4 expression and cellular responses to calcium. Indeed we found that both the basal and calcium-induced surface expression of CXCR4 on BMCs was significantly reduced in 25-month-old mice compared with 2-month-old mice. Reduced Ca-induced CXCR4 expression in BMC from aged mice was associated with defective calcium influx. Diminished CXCR4 surface expression in BMC from aged mice correlated with diminished neovascularization in an ischemic hindlimb model with less accumulation of CD34+ progenitor cells in the ischemic muscle with or without local overexpression of SDF-1. Intravenous injection of BMCs from old mice homed less efficiently to ischemic muscle and stimulated significantly less neovascularization compared with the BMCs from young mice. Transplantation of old BMCs into young mice did not reconstitute CXCR4 functions suggesting that the defects were not reversible by changing the environment. We conclude that defects of basal and calcium-regulated functions of the CXCR4/SDF-1 axis in BMCs contribute significantly to the age-related loss of vasculogenic responses. PMID:21143386

  5. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells.

    PubMed

    Patel, Devang N; Bailey, Steven R; Gresham, John K; Schuchman, David B; Shelhamer, James H; Goldstein, Barry J; Foxwell, Brian M; Stemerman, Michael B; Maranchie, Jodi K; Valente, Anthony J; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-kappaB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  6. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate thatmore » LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.« less

  7. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    PubMed

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  8. High CD4(+) T-cell surface CXCR4 density as a risk factor for R5 to X4 switch in the course of HIV-1 infection.

    PubMed

    Fiser, Anne-Laure; Vincent, Thierry; Brieu, Natalie; Lin, Yea-Lih; Portalès, Pierre; Mettling, Clément; Reynes, Jacques; Corbeau, Pierre

    2010-12-15

    For unclear reasons, about 50% of HIV-infected subjects harbour CXCR4-using (X4) viral strains in addition of CCR5-using (R5) viral strains at late stages of the disease. One hypothesis is that a low CD4(+) T-cell surface CCR5 density could facilitate the emergence of X4 strains. Alternatively, one could argue that a high CD4(+) T-cell surface CXCR4 density that is observed in individuals presenting with X4 strains, could favour R5 to X4 switch. Here, we tested both hypotheses. In vivo, we observed by quantitative flow cytometry no difference in CD4(+) T-cell surface CCR5 densities between patients with or without X4 strains. In the course of an in vitro R5 infection, the delay of emergence of X4 mutants was similar between cells expressing 2 distinct cell surface CCR5 densities, but shorter (12 ± 0 days and 21 ± 0 days, respectively, P = 0.01) in cells expressing a high surface CXCR4 density as compared with cells with a low surface CXCR4 density. These data argue for a role of CXCR4 density, but not of CCR5 density, in the emergence of X4 strains. They are reassuring concerning the risk of inducing an R5 to X4 switch using CCR5 antagonists to treat HIV infection.

  9. Interactions between CXCR4 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma.

    PubMed

    Im, K S; Graef, A J; Breen, M; Lindblad-Toh, K; Modiano, J F; Kim, J-H

    2017-06-01

    The CXCR4/CXCL12 axis plays an important role in cell locomotion and metastasis in many cancers. In this study, we hypothesized that the CXCR4/CXCL12 axis promotes migration and invasion of canine hemangiosarcoma (HSA) cells. Transcriptomic analysis across 12 HSA cell lines and 58 HSA whole tumour tissues identified heterogeneous expression of CXCR4 and CXCL12, which was associated with cell movement. In vitro, CXCL12 promoted calcium mobilization, cell migration and invasion that were directly proportional to surface expression of CXCR4; furthermore, these responses proved sensitive to the CXCR4 antagonist, AMD3100, in HSA cell lines. These results indicate that CXCL12 potentiates migration and invasion of canine HSA cells through CXCR4 signalling. The direct relationship between these responses in HSA cells suggests that the CXCR4/CXCL12 axis contributes to HSA progression. © 2015 John Wiley & Sons Ltd.

  10. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.

    PubMed

    Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.

  12. Distinct Roles for CXCR6+ and CXCR6− CD4+ T Cells in the Pathogenesis of Chronic Colitis

    PubMed Central

    Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334

  13. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells

    PubMed Central

    Alfano, Daniela; Gorrasi, Anna; Li Santi, Anna; Ricci, Patrizia; Montuori, Nunzia; Selleri, Carmine; Ragno, Pia

    2015-01-01

    The urokinase-type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR-bound uPA and VN induce proteolysis-independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross-talks with CXCR4, the receptor for the stroma-derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)-mediated co-regulation of uPAR and CXCR4 expression, which could allow their cross-talk at the cell surface. We identified three miRs, miR-146a, miR-335 and miR-622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3′untranslated region of both uPAR- and CXCR4-mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR-146a and miR-335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo. PMID:26082201

  14. CXCR4 expression is associated with time-course permanent and temporary myocardial infarction in rats.

    PubMed

    Kiani, Ali Asghar; Babaei, Fereshteh; Sedighi, Mehrnoosh; Soleimani, Azam; Ahmadi, Kolsum; Shahrokhi, Somayeh; Anbari, Khatereh; Nazari, Afshin

    2017-06-01

    Experimental myocardial infarction triggers secretion of Stromal cell-derived factor1 and lead to increase in the expression of its receptor "CXCR4" on the surface of various cells. The aim of this study was to evaluate the expression pattern of CXCR4 in peripheral blood cells following time-course permanent and temporary ischemia in rats. Fourteen male Wistar rats were divided into two groups of seven and were placed under permanent and transient ischemia. Peripheral blood mononuclear cells were isolated at different time points, RNAs extracted and applied to qRT-PCR analysis of the CXCR4 gene. Based on repeated measures analysis of variance, the differences in the expression levels of the gene in each of the groups were statistically significant over time (the effect of time) ( P <0.001). Additionally, the difference in gene expression between the two groups was statistically significant (the effect of group), such that at all times, the expression levels of the gene were significantly higher in the permanent ischemia than in the transient ischemia group ( P <0.001). Moreover, the interactive effect of time-group on gene expression was statistically significant ( P <0.001). CXCR4 is modulated in an induced ischemia context implying a possible association with myocardial infarction. Checking of CXCR4 expression in the ischemic changes shows that damage to the heart tissue trigger the secretion of inflammatory chemokine SDF, Followed by it CXCR4 expression in blood cells. These observations suggest that changes in the expression of CXCR4 may be considered a valuable marker for monitoring myocardial infarction.

  15. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  16. Targeting CXCR4 with [68Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma?

    PubMed

    Lapa, Constantin; Kircher, Stefan; Schirbel, Andreas; Rosenwald, Andreas; Kropf, Saskia; Pelzer, Theo; Walles, Thorsten; Buck, Andreas K; Weber, Wolfgang A; Wester, Hans-Juergen; Herrmann, Ken; Lückerath, Katharina

    2017-11-14

    C-X-C motif chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using [ 68 Ga]Pentixafor in malignant pleural mesothelioma. Six patients with pleural mesothelioma underwent [ 68 Ga]Pentixafor-PET/CT. 2'-[ 18 F]fluoro-2'-deoxy-D-glucose ([ 18 F]FDG)-PET/CT (4/6 patients) and immunohistochemistry obtained from biopsy or surgery (all) served as standards of reference. Additionally, 9 surgical mesothelioma samples were available for histological work-up. Whereas [ 18 F]FDG-PET depicted active lesions in all patients, [ 68 Ga]Pentixafor-PET/CT recorded physiologic tracer distribution and none of the 6 patients presented [ 68 Ga]Pentixafor-positive lesions. This finding paralleled results of immunohistochemistry which also could not identify relevant CXCR4 surface expression in the samples analyzed. In contrast to past reports, our data suggest widely absence of CXCR4 expression in pleural mesothelioma. Hence, robust cell surface expression should be confirmed prior to targeting this chemokine receptor for diagnosis and/or therapy.

  17. Impaired CXCR4 Expression and Cell Engraftment of Bone Marrow-derived Cells from Aged Atherogenic Mice

    PubMed Central

    Xu, Qiyuan; Wang, Jian’An; He, Jinlin; Zhou, Mingsheng; Adi, Jennipher; Webster, Keith A; Yu, Hong

    2011-01-01

    Objectives Reduced numbers and activity of circulating progenitor cells are associated with aging and have been linked with coronary artery disease. To determine the impact of aging and atherosclerotic disease on the chemotaxic activity of bone marrow derived cells (BMCs), we examined CXCR4 surface expression on BMCs from aged and atherosclerotic mice. Methods CXCR4 expression and cellular mobility were compared between BMCs of young (6-week old) ApoE null mice (ApoE−/−) and aged ApoE−/− mice that had been fed with a high-fat, high-cholesterol diet for 6-months. Results Age and atherosclerosis correlated with significantly lower surface expression of CXCR4 that was less inducible by calcium. The impaired calcium response was associated with defective calcium influx and was partially recovered by treatment with the calcium ionophore ionomycin. ApoE−/− mice fed high fat diet for 6-months had defective CXCR4 expression and SDF-1 regulation that is equivalent to that of 24-month old wild type mice. BMCs from aged, atherogenic ApoE−/− mice also displayed defective homing to SDF-1, and the animals had lower serum and bone marrow levels of SDF-1. Conclusion Evolution of atherosclerosis in ApoE−/− mice is paralleled by progressive loss of mobility of BMCs with reductions of CXCR4 expression, and reduced levels of SDF-1 in both serum and bone marrow. These changes mute the homing capability of BMCs and may contribute to the progression of atherosclerosis in this model. PMID:21855069

  18. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration.

    PubMed

    Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed

    2007-01-15

    Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.

  19. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  20. High expression of CXCR4, CXCR7 and SDF-1 predicts poor survival in renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Chemokines and their receptors are known to play important roles in the tumorigenesis of many malignancies. The aim of this study was to evaluate the prognostic impact of the expression of the chemokine SDF-1 and its receptors CXCR4 and CXCR7 in patients with renal cell carcinoma. Methods The expression of CXCR4, CXCR7 and SDF-1 in specimens from 97 renal cell carcinoma patients was evaluated by immunohistochemistry on a tissue microarray. These results were correlated with the clinicopathological parameters and survival of the patients. Results CXCR4 and CXCR7 were expressed in all patients, whereas SDF-1 was expressed in 61 patients (62.9%). No association was observed between the expression of CXCR4, CXCR7 or SDF-1 and the clinical or pathological data except between SDF-1 expression and Fuhrman’s grade (P = 0.015). Patients with high expression of CXCR4, CXCR7 and SDF-1 had shorter overall survival and recurrence-free survival than those with low expression. In a multivariate analysis, the high expression of CXCR4, CXCR7 and SDF-1 correlated with poor overall survival and recurrence-free survival independent of gender, age, AJCC stage, lymph node status, metastasis, histologic variant and Fuhrman’s grade. Conclusions High levels of CXCR4, CXCR7 and SDF-1 were associated with poor overall survival and recurrence-free survival in renal cell carcinoma patients. CXCR4, CXCR7 and SDF-1 may serve as useful prognostic markers and therapeutic targets for renal cell carcinoma. PMID:23039915

  1. Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes.

    PubMed

    Korniejewska, Anna; McKnight, Andrew J; Johnson, Zoë; Watson, Malcolm L; Ward, Stephen G

    2011-04-01

    The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 are involved in variety of inflammatory disorders including multiple sclerosis, rheumatoid arthritis, psoriasis and sarcoidosis. Two alternatively spliced variants of the human CXCR3-A receptor have been described, termed CXCR3-B and CXCR3-alt. Human CXCR3-B binds CXCL9, CXCL10, CXCL11 as well as an additional ligand CXCL4. In contrast, CXCR3-alt only binds CXCL11. We report that CXCL4 induces intracellular calcium mobilization as well as Akt and p44/p42 extracellular signal-regulated kinase phosphorylation, in activated human T lymphocytes. These responses have similar concentration dependence and time-courses to those induced by established CXCR3 agonists. Moreover, phosphorylation of Akt and p44/p42 is inhibited by pertussis toxin, suggesting coupling to Gα(i) protein. Surprisingly, and in contrast with the other CXCR3 agonists, stimulation of T lymphocytes with CXCL4 failed to elicit migratory responses and did not lead to loss of surface CXCR3 expression. Taken together, our findings show that, although CXCL4 is coupled to downstream biochemical machinery, its role in T cells is probably distinct from that of CXCR3-A agonists. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  2. Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes

    PubMed Central

    Korniejewska, Anna; McKnight, Andrew J; Johnson, Zoë; Watson, Malcolm L; Ward, Stephen G

    2011-01-01

    The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 are involved in variety of inflammatory disorders including multiple sclerosis, rheumatoid arthritis, psoriasis and sarcoidosis. Two alternatively spliced variants of the human CXCR3-A receptor have been described, termed CXCR3-B and CXCR3-alt. Human CXCR3-B binds CXCL9, CXCL10, CXCL11 as well as an additional ligand CXCL4. In contrast, CXCR3-alt only binds CXCL11. We report that CXCL4 induces intracellular calcium mobilization as well as Akt and p44/p42 extracellular signal-regulated kinase phosphorylation, in activated human T lymphocytes. These responses have similar concentration dependence and time–courses to those induced by established CXCR3 agonists. Moreover, phosphorylation of Akt and p44/p42 is inhibited by pertussis toxin, suggesting coupling to Gαi protein. Surprisingly, and in contrast with the other CXCR3 agonists, stimulation of T lymphocytes with CXCL4 failed to elicit migratory responses and did not lead to loss of surface CXCR3 expression. Taken together, our findings show that, although CXCL4 is coupled to downstream biochemical machinery, its role in T cells is probably distinct from that of CXCR3-A agonists. PMID:21255008

  3. Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: Pathogenetic implications.

    PubMed

    Cipriani, Paola; Franca Milia, Anna; Liakouli, Vasiliki; Pacini, Alessandra; Manetti, Mirko; Marrelli, Alessandra; Toscano, Annarita; Pingiotti, Elisa; Fulminis, Antonietta; Guiducci, Serena; Perricone, Roberto; Kahaleh, Bashar; Matucci-Cerinic, Marco; Ibba-Manneschi, Lidia; Giacomelli, Roberto

    2006-09-01

    Systemic sclerosis (SSc) is characterized by early endothelial damage evolving to vascular desertification. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 regulate specific steps in new vessel formation. We undertook this study to determine whether an alteration of the SDF-1/CXCR4 axis might be involved in the pathogenetic mechanisms following ischemic damage during SSc. We enrolled 36 SSc patients and 15 controls. Skin biopsy samples were obtained from each subject, and the expression of SDF-1 and CXCR4 was assessed by immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. Furthermore, isolated microvascular endothelial cells (MVECs) from 4 patients with diffuse cutaneous SSc (dcSSc) and 3 controls were analyzed for SDF-1 and CXCR4 by confocal laser scanning microscopy, RT-PCR, and Western blotting. SDF-1 and CXCR4 were up-regulated in the skin of patients with early (edematous) SSc, both in the diffuse and limited cutaneous forms, and progressively decreased, with the lowest expression in the latest phases of both SSc subsets. MVECs from patients with dcSSc expressed significantly higher amounts of both isoforms of SDF-1 in the early stage of disease, with a progressive reduction of SDF-1 and CXCR4 in later stages. On the surface of cultured MVECs from patients with dcSSc, SDF-1 and CXCR4 colocalized in polarized areas, suggesting that they are activated in vivo and that they are under strict genetic control to retain capping function. Due to its transient expression, SDF-1 could be considered a future therapeutic target to induce new vessel formation in SSc.

  4. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    PubMed

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  5. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET.

    PubMed

    Weiss, Ido D; Huff, Lyn M; Evbuomwan, Moses O; Xu, Xin; Dang, Hong Duc; Velez, Daniel S; Singh, Satya P; Zhang, Hongwei H; Gardina, Paul J; Lee, Jae-Ho; Lindenberg, Liza; Myers, Timothy G; Paik, Chang H; Schrump, David S; Pittaluga, Stefania; Choyke, Peter L; Fojo, Tito; Farber, Joshua M

    2017-09-26

    Expression of the chemokine receptor CXCR4 by many cancers correlates with aggressive clinical behavior. As part of the initial studies in a project whose goal was to quantify CXCR4 expression on cancers non-invasively, we examined CXCR4 expression in cancer samples by immunohistochemistry using a validated anti-CXCR4 antibody. Among solid tumors, we found expression of CXCR4 on significant percentages of major types of kidney, lung, and pancreatic adenocarcinomas, and, notably, on metastases of clear cell renal cell carcinoma and squamous cell carcinoma of the lung. We found particularly high expression of CXCR4 on adrenocortical cancer (ACC) metastases. Microarrays of ACC metastases revealed correlations between expression of CXCR4 and other chemokine system genes, particularly CXCR7/ACKR3 , which encodes an atypical chemokine receptor that shares a ligand, CXCL12, with CXCR4. A first-in-human study using 64 Cu-plerixafor for PET in an ACC patient prior to resection of metastases showed heterogeneity among metastatic nodules and good correlations among PET SUVs, CXCR4 staining, and CXCR4 mRNA. Additionally, we were able to show that CXCR4 expression correlated with the rates of growth of the pulmonary lesions in this patient. Further studies are needed to understand better the role of CXCR4 in ACC and whether targeting it may be beneficial. In this regard, non-invasive methods for assessing CXCR4 expression, such as PET using 64 Cu-plerixafor, should be important investigative tools.

  6. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  7. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  8. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis.

    PubMed

    Yasuoka, Hironao; Kodama, Rieko; Hirokawa, Mitsuyoshi; Takamura, Yuuki; Miyauchi, Akira; Sanke, Tokio; Nakamura, Yasushi

    2008-09-30

    Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma.

  9. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis

    PubMed Central

    Yasuoka, Hironao; Kodama, Rieko; Hirokawa, Mitsuyoshi; Takamura, Yuuki; Miyauchi, Akira; Sanke, Tokio; Nakamura, Yasushi

    2008-01-01

    Background Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Methods Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Results Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Conclusion Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma. PMID:18826577

  10. Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α

    PubMed Central

    Lopez-Haber, Cynthia; Barrio-Real, Laura; Casado-Medrano, Victoria

    2016-01-01

    The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions −1376 to −1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4. PMID:27185877

  11. CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not

    PubMed Central

    Neve Polimeno, Maria; Ierano, Caterina; D'Alterio, Crescenzo; Simona Losito, Nunzia; Napolitano, Maria; Portella, Luigi; Scognamiglio, Giosuè; Tatangelo, Fabiana; Maria Trotta, Anna; Curley, Steven; Costantini, Susan; Liuzzi, Raffaele; Izzo, Francesco; Scala, Stefania

    2015-01-01

    Hepatocellular carcinoma (HCC) is a heterogeneous disease with a poor prognosis and limited markers for predicting patient survival. Because chemokines and chemokine receptors play numerous and integral roles in HCC disease progression, the CXCR4–CXCL12–CXCR7 axis was studied in HCC patients. CXCR4 and CXCR7 expression was analyzed by immunohistochemistry in 86 HCC patients (training cohort) and validated in 42 unrelated HCC patients (validation cohort). CXCR4 levels were low in 22.1% of patients, intermediate in 30.2%, and high in 47.7%, whereas CXCR7 levels were low in 9.3% of patients, intermediate in 44.2% and high in 46.5% of the patients in the training cohort. When correlated to patient outcome, only CXCR4 affected overall survival (P=0.03). CXCR4–CXCL12–CXCR7 mRNA levels were examined in 33/86 patients. Interestingly, the common CXCR4–CXCR7 ligand CXCL12 was expressed at significantly lower levels in tumor tissues compared to adjacent normal liver (P=0.032). The expression and function of CXCR4 and CXCR7 was also analyzed in several human HCC cell lines. CXCR4 was expressed in Huh7, Hep3B, SNU398, SNU449 and SNU475 cells, whereas CXCR7 was expressed in HepG2, Huh7, SNU449 and SNU475 cells. Huh7, SNU449 and SNU475 cells migrated toward CXCL12, and this migration was inhibited by AMD3100/anti-CXCR4 and by CCX771/anti-CXCR7. Moreover, SNU449 and Huh7 cells exhibited matrix invasion in the presence of CXCL12 and CXCL11, a ligand exclusive to CXCR7. In conclusion, CXCR4 affects the prognosis of HCC patients but CXCR7 does not. Therefore, the CXCR4–CXCL12–CXCR7 axis plays a role in the interaction of HCC with the surrounding normal tissue and represents a suitable therapeutic target. PMID:25363530

  12. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma

    PubMed Central

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-01-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (χ2 = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (χ2 = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (χ2 = 7.43, P < 0.05) and histological type (χ2 = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (χ2 = 4.67, P < 0.05; χ2 = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma. PMID:21527066

  13. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma.

    PubMed

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-05-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (Χ² = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (Χ(2) = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (Χ² = 7.43, P < 0.05) and histological type (Χ² = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (Χ² = 4.67, P < 0.05; Χ² = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma.

  14. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    PubMed

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  15. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    PubMed Central

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  16. Isolation and characterization of human CXCR4-positive pancreatic cells.

    PubMed

    Koblas, T; Zacharovová, K; Berková, Z; Mindlová, M; Girman, P; Dovolilová, E; Karasová, L; Saudek, F

    2007-01-01

    The existence of an adult PSC that may be used in the treatment of diabetes is still a matter of scientific debate as conclusive evidence of such a stem cell in the adult pancreas has not yet been presented. The main reason why putative PSC has not yet been identified is the lack of specific markers that may be used to isolate and purify them. In order to increase the list of potential PSC markers we have focused on the human pancreatic cells that express cell surface receptor CXCR4, a marker of stem cells derived from different adult tissues. Here we report that CXCR4-positive pancreatic cells express markers of pancreatic endocrine progenitors (neurogenin-3, nestin) and markers of pluripotent stem cells (Oct-4, Nanog, ABCG2, CD133, CD117). Upon in vitro differentiation, these cells form ILCC and produce key islet hormones including insulin. Based on our results, we assume that CXCR4 marks pancreatic endocrine progenitors and in combination with other cell surface markers may be used in the attempt to identify and isolate PSC.

  17. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors.

    PubMed

    Lange, Franziska; Kaemmerer, Daniel; Behnke-Mursch, Julianne; Brück, Wolfgang; Schulz, Stefan; Lupp, Amelie

    2018-04-25

    Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory. SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I-IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies. Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome. Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.

  18. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging.

    PubMed

    Sano, Kohei; Masuda, Ryo; Hisada, Hayato; Oishi, Shinya; Shimokawa, Kenta; Ono, Masahiro; Fujii, Nobutaka; Saji, Hideo; Mukai, Takahiro

    2014-03-01

    We have developed a novel radiogallium (Ga)-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga-DOTA core, Ga-DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga-DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga-DOTA-TZ1. (67)Ga-DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with (67)Ga-DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga-DOTA could be effective in detecting CXCR4-expressing tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Expressions of CXCL16/CXCR6 and CXCL12/CXCR4 in first-trimester human trophoblast cells].

    PubMed

    Huang, Yu; Li, Da-jin; Wang, Ming-yan; Cheng, Hai-dong

    2006-06-01

    To investigate the transcription and protein expressions of chemokines CXCL16, CXCL12 and their receptors CXCR6, CXCR4 in first-trimester human cytotrophoblast cells and human choriocarcinoma cell line JAR. Transcriptions of CXCR6, CXCL16, CXCR4, CXCL12 in purified first-trimester human trophoblast cells and JAR line were assessed by semi-quantitative RT-PCR, and protein expressions of CXCR6, CXCL16, CXCR4, CXCL12 were analyzed in primary cultured villous cytotrophoblasts (VCT), extravillous cytotrophoblasts (EVCT), JAR line and placentas by immunostaining. CXCR6 and CXCR4 were highly transcribed in primary cultured trophoblast cells with mRNA relative level of 1.12 +/- 0.25 and 1.08 +/- 0.11 respectively, and their ligands CXCL16 and CXCL12 were transcribed moderately with mRNA relative level of 0.89 +/- 0.11 and 0.78 +/- 0.10 respectively. It was demonstrated that CXCL16, CXCL12, CXCR6 and CXCR4 were expressed in primary cultured VCT, EVCT, JAR line and placentas by immunostaining. The co-expression of CXCL16/CXCR6 and CXCL12/CXCR4 in trophoblast cells may play a role in the proliferation and differentiation of first-trimester trophoblast cells in a manner of autocrine.

  20. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.

    PubMed

    Kucia, Magda; Jankowski, Kacper; Reca, Ryan; Wysoczynski, Marcin; Bandura, Laura; Allendorf, Daniel J; Zhang, Jin; Ratajczak, Janina; Ratajczak, Mariusz Z

    2004-03-01

    Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential to this process.

  1. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    PubMed

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration.

    PubMed

    Décaillot, Fabien M; Kazmi, Manija A; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P; Sachdev, Pallavi

    2011-09-16

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7.

  3. CXCR7/CXCR4 Heterodimer Constitutively Recruits β-Arrestin to Enhance Cell Migration*

    PubMed Central

    Décaillot, Fabien M.; Kazmi, Manija A.; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P.; Sachdev, Pallavi

    2011-01-01

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of Gi-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7. PMID:21730065

  4. Emodin Suppresses Migration and Invasion through the Modulation of CXCR4 Expression in an Orthotopic Model of Human Hepatocellular Carcinoma

    PubMed Central

    Ong, Tina H.; Subramaniam, Aruljothi; Siveen, Kodappully Sivaraman; Perumal, Ekambaram; Samy, Ramar Perumal; Bist, Pradeep; Lim, Lina H. K.; Kumar, Alan Prem; Hui, Kam M.; Sethi, Gautam

    2013-01-01

    Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC. PMID:23472074

  5. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow.

    PubMed

    Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria

    2004-11-01

    Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.

  6. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    PubMed

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  7. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    PubMed

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  8. Persistent CXCR4 expression after preoperative chemoradiotherapy predicts early recurrence and poor prognosis in esophageal cancer

    PubMed Central

    Koishi, Kenji; Yoshikawa, Reigetsu; Tsujimura, Tohru; Hashimoto-Tamaoki, Tomoko; Kojima, Syoudou; Yanagi, Hidenori; Yamamura, Takehira; Fujiwara, Yoshinori

    2006-01-01

    AIM: To study the effect of CXC chemokine receptor-4 (CXCR4) expression on disease progression and prognosis in esophageal cancer. METHODS: CXCR4 expression was evaluated in 37 patients with histologically confirmed esophageal squamous carcinomas (ESCC) undergoing preoperative chemoradiotherapy (CRT) by immunohistochemical staining. RESULTS: Eleven out of 37 ESCC patients showed a pathological complete response (CR) after CRT. CXCR4 protein expression was observed in cell cytoplasms of 13 tumors, and null expression was seen in 13 tumors. Distant recurrence was significantly more common in patients with positive CXCR4 expression (P = 0.0318). After a median follow-up time of 31.6 mo, 19 patients progressed (12 of 19 expressed positive CXCR4) and 11 died (10 of 11 expressed positive CXCR4). Overall survival was significantly correlated with lymph node metastasis (952.1 ± 53.8 d in negative group vs 475.1 ± 56.2 d in positive group, P = 0.023), distant metastasis (874.0 ± 60.4 d in negative group vs 434.9 ± 75.2 d in positive group, P = 0.014) and CRT (811.5 ± 51.2 d in responder group vs 459.6 ± 94.0 d in non-responder group, P = 0.00038) and further with an absence of CXCR4 expression or no residual tumor (959.8 ± 51.0 d in null expression or no tumor group vs 412.0 ± 57.1 d in positive expression group, P = 0.0001). CONCLUSION: Persistent positive CXCR4 expression is implicated in tumor aggressiveness and poor prognosis in ESCC after CRT, and preoperative CRT may improve the prognosis of ESCC via CXCL12-CXCR4 signaling pathway. PMID:17171785

  9. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms.

    PubMed

    Kaemmerer, Daniel; Reimann, Christiane; Specht, Elisa; Wirtz, Ralph M; Sayeg, Manal; Baum, Richard P; Schulz, Stefan; Lupp, Amelie

    2015-02-20

    For many tumors, the overexpression of the chemokine receptor CXCR4 is associated with increased malignancy and poor patient outcomes. However, comprehensive data for neuroendocrine neoplasms of the lung are still lacking. CXCR4 expression was evaluated in a panel of bronchopulmonary neuroendocrine neoplasms (BP-NEN) comprising typical carcinoids (n = 26), atypical carcinoids (n = 30), and small cell lung cancers (SCLC, n = 34). Samples were analyzed by immunohistochemistry using the novel monoclonal rabbit anti-human CXCR4 antibody UMB-2 and by qRT-PCR. The expression was correlated with clinical data and overall patient survival. CXCR4 was predominantly localized at the plasma membrane of the tumor cells. CXCR4 was expressed with a high intensity in almost all of the 30 SCLC samples. In contrast, it was detected infrequently and with low intensity in the typical carcinoid and atypical carcinoid samples. There was a significant correlation between the immunohistochemistry and qRT-PCR data. Additionally, there was a significant negative relationship between CXCR4 expression and overall survival. With increasing malignancy, BP-NEN clearly differ in the extent of CXCR4 expression. As in other tumor entities, CXCR4 overexpression significantly correlates with negative patient outcome. Due to its particular high expression rate in SCLC, CXCR4 may serve as a promising new target for diagnostic and pharmacological intervention as well as for peptide receptor-based radionuclide therapy.

  10. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer

    PubMed Central

    Huang, Yu; Zhang, Jia; Cui, Zhu-Mei; Zhao, Jing; Zheng, Ye

    2013-01-01

    The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread. Recent evidence suggests that CXCL16, a novel chemokine, is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer. We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN) and cervical cancer and further assessed their association with clinicopathologic features and outcomes. Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12, CXCR4, CXCL16, and CXCR6 in healthy cervical tissue (21 cases), CIN (65 cases), and cervical carcinoma (60 cases). The association of protein expression with clinicopathologic features and overall survival was analyzed. These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells, and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1, CIN2, and CIN3 to invasive cancer. Furthermore, the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma, whereas the expression of CXCR6 was associated significantly with lymph node metastasis. In Kaplan-Meier analysis, patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression. The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development. Moreover, CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer. PMID:22958742

  11. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer.

    PubMed

    Huang, Yu; Zhang, Jia; Cui, Zhu-Mei; Zhao, Jing; Zheng, Ye

    2013-05-01

    The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread. Recent evidence suggests that CXCL16, a novel chemokine, is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer. We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN) and cervical cancer and further assessed their association with clinicopathologic features and outcomes. Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12, CXCR4, CXCL16, and CXCR6 in healthy cervical tissue (21 cases), CIN (65 cases), and cervical carcinoma (60 cases). The association of protein expression with clinicopathologic features and overall survival was analyzed. These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells, and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1, CIN2, and CIN3 to invasive cancer. Furthermore, the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma, whereas the expression of CXCR6 was associated significantly with lymph node metastasis. In Kaplan-Meier analysis, patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression. The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development. Moreover, CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer.

  12. A novel biphenyl urea derivate inhibits the invasion of breast cancer through the modulation of CXCR4

    PubMed Central

    Zhan, Yingzhuan; Zhang, Han; Li, Jing; Zhang, Yanmin; Zhang, Jie; He, Langchong

    2015-01-01

    The increased migration and invasion of breast carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis and invasion. In this study, we investigated a novel biphenyl urea derivate, TPD7 for its ability to affect CXCR4 expression as well as function in breast cancer cells. We demonstrated that TPD7 inhibited the breast cancer proliferation and down-regulated the CXCR4 expression on breast cancer cells both over-expressing and low-expressing HER2, an oncogene known to induce the chemokine receptor. Treatments with pharmacological proteasome inhibitors partial suppressed TPD7-induced decrease in CXCR4 expression. Real-time PCR analysis revealed that down-regulation of CXCR4 by TPD7 also occurred at the translational level. Inhibition of CXCR4 expression by TPD7 further correlated with the suppression of SDF-1α-induced migration and invasion in breast tumour cells, knockdown of CXCR4 attenuated TPD7-inhibitory effects. In addition, TPD7 treatment significantly suppressed matrix metalloproteinase (MMP)-2 and MMP-9 expression, the downstream targets of CXCR4, perhaps via inactivation of the ERK signaling pathway. Overall, our results showed that TPD7 exerted its anti-invasive effect through the down-regulation of CXCR4 expression and thus had the potential for the treatment of breast cancer. PMID:25753200

  13. CXCR4 expression varies significantly among different subtypes of glioblastoma multiforme (GBM) and its low expression or hypermethylation might predict favorable overall survival.

    PubMed

    Ma, Xinlong; Shang, Feng; Zhu, Weidong; Lin, Qingtang

    2017-09-01

    CXCR4 is an oncogene in glioblastoma multiforme (GBM) but the mechanism of its dysregulation and its prognostic value in GBM have not been fully understood. Bioinformatic analysis was performed by using R2 and the UCSC Xena browser based on data from GSE16011 in GEO datasets and in GBM cohort in TCGA database (TCGA-GBM). Kaplan Meier curves of overall survival (OS) were generated to assess the association between CXCR4 expression/methylation and OS in patients with GBM. GBM patients with high CXCR4 expression had significantly worse 5 and 10 yrs OS (p < 0.05). Across different GBM subtypes, there was an inverse relationship between overall DNA methylation and CXCR4 expression. CXCR4 expression was significantly lower in CpG island methylation phenotype (CIMP) group than in non CIMP group. Log rank test results showed that patients with high CXCR4 methylation (first tertile) had significantly better 5 yrs OS (p = 0.038). CXCR4 expression is regulated by DNA methylation in GBM and its low expression or hypermethylation might indicate favorable OS in GBM patients.

  14. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    PubMed Central

    Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; Vitiello, Glauco Akelinghton Freire; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara

    2015-01-01

    CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337

  15. Silencing of CXCR4 Inhibits Tumor Cell Proliferation and Neural Invasion in Human Hilar Cholangiocarcinoma

    PubMed Central

    Tan, Xin-Yu; Chang, Shi; Liu, Wei

    2014-01-01

    Background/Aims To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. Methods An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. Results The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. Conclusions CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA. PMID:24672662

  16. Two distinct CXC chemokine receptors (CXCR3 and CXCR4) from the big-belly seahorse Hippocampus abdominalis: Molecular perspectives and immune defensive role upon pathogenic stress.

    PubMed

    Priyathilaka, Thanthrige Thiunuwan; Oh, Minyoung; Bathige, S D N K; De Zoysa, Mahanama; Lee, Jehee

    2017-06-01

    CXC chemokine receptor 3 (CXCR3) and 4 (CXCR4) are members of the seven transmembrane G protein coupled receptor family, involved in pivotal physiological functions. In this study, seahorse CXCR3 and CXCR4 (designated as HaCXCR3 and HaCXCR4) cDNA sequences were identified from the transcriptome library and subsequently molecularly characterized. HaCXCR3 and HaCXCR4 encoded 363 and 373 amino acid long polypeptides, respectively. The HaCXCR3 and HaCXCR4 deduced proteins have typical structural features of chemokine receptors, including seven transmembrane domains and a G protein coupled receptors family 1 profile with characteristic DRY motifs. Amino acid sequence comparison and phylogenetic analysis of these two CXC chemokine receptors revealed a close relationship to their corresponding teleost counterparts. Quantitative real time PCR analysis revealed that HaCXCR3 and HaCXCR4 were ubiquitously expressed in all the tested tissues, with highest expression levels in blood cells. The seahorse blood cells and kidney HaCXCR3 and HaCXCR4 mRNA expressions were differently modulated when challenged with Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid, confirming their involvement in post immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Influence of Tumor-Host Interactions in the Stromal Cell-Derived Factor-1/CXCR4 Ligand/Receptor Axis in Determining Metastatic Risk in Breast Cancer

    PubMed Central

    Hassan, Saima; Ferrario, Cristiano; Saragovi, Uri; Quenneville, Louise; Gaboury, Louis; Baccarelli, Andrea; Salvucci, Ombretta; Basik, Mark

    2009-01-01

    The chemokine stromal cell-derived factor-1 (SDF-1) may function to attract CXCR4-expressing cancer cells to metastatic organs. We have previously demonstrated that low plasma SDF-1, a host-derived marker, increases distant metastatic risk in breast cancer. We therefore hypothesized that tumors overexpressing the SDF-1 receptor CXCR4 have an enhanced ability to metastasize in patients with low plasma SDF-1 levels. In this study, we determined the prognostic significance of activated CXCR4, or phosphorylated CXCR4 (p-CXCR4), and CXCR7, another receptor for SDF-1. Immunohistochemistry was performed on a tissue microarray built using 237 samples from the same cohort of patients for which we measured plasma SDF-1 levels. We found that the prognostic value of p-CXCR4 expression (hazard ratio or HR, 3.95; P = 0.004) was superior to total CXCR4 expression (HR, 3.20; P = 0.03). The rate of breast cancer-specific mortality was much higher in patients with both high p-CXCR4 expression and low plasma SDF-1 levels (HR, 5.96; P < 0.001) than either low plasma SDF-1 (HR, 3.59; P = 0.01) or high p-CXCR4 expression (HR, 3.83; P = 0.005) alone. The added prognostic value of low plasma SDF-1 was only effective in patients with high p-CXCR4 expression, and as such, provides clinical validation for modulation of the metastatic potential of tumor cells by an inherent host-derived metastatic risk factor. PMID:19497995

  18. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms

    PubMed Central

    Specht, Elisa; Wirtz, Ralph M.; Sayeg, Manal; Baum, Richard P.; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction For many tumors, the overexpression of the chemokine receptor CXCR4 is associated with increased malignancy and poor patient outcomes. However, comprehensive data for neuroendocrine neoplasms of the lung are still lacking. Methods CXCR4 expression was evaluated in a panel of bronchopulmonary neuroendocrine neoplasms (BP-NEN) comprising typical carcinoids (n = 26), atypical carcinoids (n = 30), and small cell lung cancers (SCLC, n = 34). Samples were analyzed by immunohistochemistry using the novel monoclonal rabbit anti-human CXCR4 antibody UMB-2 and by qRT-PCR. The expression was correlated with clinical data and overall patient survival. Results CXCR4 was predominantly localized at the plasma membrane of the tumor cells. CXCR4 was expressed with a high intensity in almost all of the 30 SCLC samples. In contrast, it was detected infrequently and with low intensity in the typical carcinoid and atypical carcinoid samples. There was a significant correlation between the immunohistochemistry and qRT-PCR data. Additionally, there was a significant negative relationship between CXCR4 expression and overall survival. Conclusions With increasing malignancy, BP-NEN clearly differ in the extent of CXCR4 expression. As in other tumor entities, CXCR4 overexpression significantly correlates with negative patient outcome. Due to its particular high expression rate in SCLC, CXCR4 may serve as a promising new target for diagnostic and pharmacological intervention as well as for peptide receptor-based radionuclide therapy. PMID:25671300

  19. Induction of IL-17 production from human peripheral blood CD4+ cells by asbestos exposure.

    PubMed

    Maeda, Megumi; Chen, Ying; Lee, Suni; Kumagai-Takei, Naoko; Yoshitome, Kei; Matsuzaki, Hidenori; Yamamoto, Shoko; Hatayama, Tamayo; Ikeda, Miho; Nishimura, Yasumitsu; Otsuki, Takemi

    2017-06-01

    We have previously reported that chronic, recurrent and low-dose exposure to asbestos fibers causes a reduction in antitumor immunity. Investigation of natural killer (NK) cells using an in vitro cell line model and comprising in vitro activation using freshly isolated NK cells co-cultured with chrysotile fibers, as well as NK cells derived from asbestos-exposed patients with pleural plaque (PP) or malignant mesothelioma (MM), revealed decreased expression of NK cell activating receptors such as NKG2D, 2B4 and NKp46. An in vitro differentiation and clonal expansion model for CD8+ cytotoxic T lymphocytes (CTLs) showed reduced cytotoxicity with decreased levels of cytotoxic molecules such as granzyme B and perforin, as well as suppressed proliferation of CTLs. Additionally, analysis of T helper cells showed that surface CXCR3, chemokine receptor, and the productive potential of interferon (IFN)γ were reduced following asbestos exposure in an in vitro cell line model and in peripheral CD4+ cells of asbestos-exposed patients. Moreover, experiments revealed that asbestos exposure enhanced regulatory T cell (Treg) function. This study also focused on CXCR3 expression and the Th-17 cell fraction. Following activation with T-cell receptor and co-culture with various concentrations of chrysotile fibers using freshly isolated CD4+ surface CXCR3 positive and negative fractions, the intracellular expression of CXCR3, IFNγ and IL-17 remained unchanged when co-cultured with chrysotile. However, subsequent re-stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin resulted in enhanced IL-17 production and expression, particularly in CD4+ surface CXCR3 positive cells. These results indicated that the balance and polarization between Treg and Th-17 fractions play an important role with respect to the immunological effects of asbestos and the associated reduction in antitumor immunity.

  20. The expression of CXCR4 is induced by the luteinizing hormone surge and mediated by progesterone receptors in human preovulatory granulosa cells.

    PubMed

    Choi, Yohan; Park, Ji Yeon; Wilson, Kalin; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E; Jo, Misung

    2017-06-01

    The chemokine CXC motif ligand 12 (CXCL12) and its cognate receptor, CXCR4, have been implicated in the ovulatory process in various animal models. However, little is known about the expression and regulation of CXCL12 and CXCR4 and their functions during the ovulatory period in the human ovary. In this study, we characterized the expression patterns of CXCL12 and CXCR4 in preovulatory follicles collected before the luteinizing hormone (LH) surge and at defined hours after hCG administration in women with the regular menstrual cycle. The levels of mRNA and protein for CXCR4 were increased in granulosa cells of late ovulatory follicles, whereas CXCL12 expression was constant in follicles throughout the ovulatory period. Both CXCR4 and CXCL12 were localized to a subset of leukocytes around and inside the vasculature of human preovulatory follicles. Using a human granulosa cell culture model, the regulatory mechanisms and functions of CXCL12 and CXCR4 expression were investigated. Human chorionic gonadotropin (hCG) stimulated CXCR4 expression, whereas CXCL12 expression was not affected, mimicking in vivo expression patterns. Both RU486 (progesterone receptor antagonist) and CoCl2 (HIFs activator) blocked the hCG-induced increase in CXCR4 expression, whereas AG1478 (EGFR inhibitor) had no effect. The treatment with CXCL12 had no effect on granulosa cell viability but decreased hCG-stimulated CXCR4 expression. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Chemokine Receptor CXCR4 Expression in Patients With Melanoma and Colorectal Cancer Liver Metastases and the Association With Disease Outcome

    PubMed Central

    Kim, Joseph; Mori, Takuji; Chen, Steven L.; Amersi, Farin F.; Martinez, Steve R.; Kuo, Christine; Turner, Roderick R.; Ye, Xing; Bilchik, Anton J.; Morton, Donald L.; Hoon, Dave S. B.

    2006-01-01

    Objective: To determine the role of chemokine receptor (CR) expression in patients with melanoma and colorectal cancer (CRC) liver metastases. Summary Background Data: Murine and in vitro models have identified CR as potential factors in organ-specific metastasis of multiple cancers. Chemokines via their respective receptors have been shown to promote cell migration to distant organs. Methods: Patients who underwent hepatic surgery for melanoma or CRC liver metastases were assessed. Screening cDNA microarrays of melanoma/CRC cell lines and tumor specimens were analyzed to identify CR. Microarray data were validated by quantitative real-time RT-PCR (qRT) in paraffin-embedded liver metastases. Migration assays and immunohistochemistry were performed to verify CR function and confirm CR expression, respectively. Results: Microarray analysis identified CXCR4 as the most common CR expressed by both cancers. qRT demonstrated CXCR4 expression in 24 of 27 (89%) melanoma and 28 of 29 (97%) CRC liver metastases. In vitro treatment of melanoma or CRC cells with CXCL12, the ligand for CXCR4, significantly increased cell migration (P < 0.001). Low versus high CXCR4 expression in CRC liver metastases correlated with a significant difference in overall survival (median 27 months vs. 10 months, respectively; P = 0.036). In melanoma, low versus high CXCR4 expression in liver metastases demonstrated no difference in overall survival (median 11 months vs. 8 months, respectively; P = not significant). Conclusions: CXCR4 is expressed and functional on melanoma and CRC cells. The ligand for CXCR4 is highly expressed in liver and may specifically attract melanoma and CRC CXCR4 (+) cells. Quantitative analysis of CXCR4 gene expression in patients with liver metastases has prognostic significance for disease outcome. PMID:16794396

  2. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia.

    PubMed

    Chen, S-S; Chang, B Y; Chang, S; Tong, T; Ham, S; Sherry, B; Burger, J A; Rai, K R; Chiorazzi, N

    2016-04-01

    Bruton's tyrosine kinase (BTK) is involved in the regulation of B-cell growth, migration and adhesion. The importance of BTK in cell trafficking is emphasized by the clonal contraction proceeded by lymphocytosis typical for the enzyme inhibitor, ibrutinib, in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Here, we investigated BTK regulation of leukemic B-cell trafficking in a mouse model of aggressive TCL1 CLL-like disease. Inhibiting BTK by ibrutinib reduced surface membrane (sm) levels of CXCR4 but not CXCR5, CD49d and other adhesion/homing receptors. Decreased smCXCR4 levels resulted from blocking receptor signal transduction, which in turn aborted cycling from and to the membrane. This resulted in rapid re-distribution of CLL cells from spleens and lymph nodes into the circulation. CLL cells with impaired smCXCR4 from BTK inhibition failed to home to spleens. These functional changes mainly resulted from inhibition of CXCR4 phosphorylation at Ser339, mediated directly by blocking BTK enzymatic activity and indirectly by affecting the function of downstream targets PLCγ2 and PKCμ, and eventually synthesis of PIM-1 and BTK itself. Our data identify CXCR4 as a key regulator in BTK-mediated CLL-cell retention and have elucidated a complex set of not previously described mechanisms responsible for these effects.

  3. Clinical and biological significance of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma.

    PubMed

    Lu, Chunlai; Xu, Fengkai; Gu, Jie; Yuan, Yunfeng; Zhao, Guangyin; Yu, Xiaofang; Ge, Di

    2015-08-01

    Esophageal squamous cell carcinoma is one of the most frequent malignant tumors. Cancer stem cells are considered to be responsible for tumor growth, metastasis, and recurrence. Cluster of differentiation 133 (CD133) and C-X-C chemokine receptor type 4 (CXCR4) are frequently applied markers for the identification and isolation of cancer stem cells. However, few studies have investigated the coexpression of CD133 and CXCR4 in esophageal squamous cell carcinoma. This study aims to explore the clinical and biological role of stem-like CD133(+)CXCR4(+) cells in esophageal squamous cell carcinoma. Immunohistochemical staining was performed to detect the expression of CD133 and CXCR4 in esophageal squamous cell carcinoma tissues of patients. Flow cytometry and fluorescence-activated cell sorting were applied to analyze and isolate each subgroup in esophageal squamous cell carcinoma cell line TE-1. The characteristic differences between each subgroup were assayed in vitro. The association between CD133/CXCR4 expression and patients' prognosis was analyzed by Kaplan-Meier and Cox regression. Among 154 patient tissues, concomitant high CD133-CXCR4 expression accounts for 20.78% (32/154). In vitro, CXCR4(+) cells (CD133(+)CXCR4(+) and CD133(-)CXCR4(+)) showed high invasive potential and CD133(+)CXCR4(+) cells showed high proliferative capacity. Clinically, patients with concomitant high CD133-CXCR4 expression had decreased disease-free survival and overall survival (P < .01). Esophageal squamous cell carcinoma cells coexpressing CD133 and CXCR4 possess the characteristics of cancer stem cells. The concomitant high CD133-CXCR4 expression might be a novel marker for predicting the poor prognosis of patients with esophageal squamous cell carcinoma, and CD133 and CXCR4 may serve as potential therapeutic targets. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia.

    PubMed

    Patrussi, Laura; Capitani, Nagaja; Martini, Veronica; Pizzi, Marco; Trimarco, Valentina; Frezzato, Federica; Marino, Filippo; Semenzato, Gianpietro; Trentin, Livio; Baldari, Cosima T

    2015-10-01

    Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome. ©2015 American Association for Cancer Research.

  5. O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression.

    PubMed

    Ali, Akhtar; Kim, Sung Hwan; Kim, Min Jun; Choi, Mee Young; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Jun-Young; Choi, Wan Sung

    2017-07-31

    C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-κB regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-κB promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-κB in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-κB p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.

  6. Expression of CXCR7 chemokine receptor in human meningioma cells and in intratumoral microvasculature.

    PubMed

    Würth, Roberto; Barbieri, Federica; Bajetto, Adriana; Pattarozzi, Alessandra; Gatti, Monica; Porcile, Carola; Zona, Gianluigi; Ravetti, Jean-Louis; Spaziante, Renato; Florio, Tullio

    2011-05-01

    CXCR4 and CXCR7 chemokine receptors, and their ligands CXCL11 and CXCL12, have been often involved in tumor cell proliferation and survival. We report the expression pattern of these ligand/receptor pairs in 22 human meningiomas. High CXCR7 and CXCL12 expression was associated with high-proliferative tumors. CXCR7 levels were correlated to the content of both ligands, suggesting a possible autocrine regulation. CXCR4 and CXCL12 were homogeneously expressed within tumor cells, while CXCR7 was mainly detected in tumor endothelial cells and CXCL11 in pericytes. Our results highlight the preferential CXCR7 and CXCL12 expression within more aggressive tumors and the possible role of CXCR7 in meningioma vascularization. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    PubMed Central

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  8. CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney.

    PubMed

    Haege, Sammy; Einer, Claudia; Thiele, Stefanie; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.

  9. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility.

    PubMed

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Wang, Jiahui; Jasavala, Rohini J; Martinez, Harryl D; Lee, Jinhee; Alston, Jhullian J; Misonou, Hiroaki; Trimmer, James S; Wright, Michael E

    2015-03-31

    Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein. Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers.

  10. Deletion of the COOH-Terminal Domain of CXC Chemokine Receptor 4 Leads to the Down-regulation of Cell-to-Cell Contact, Enhanced Motility and Proliferation in Breast Carcinoma Cells

    PubMed Central

    Ueda, Yukiko; Neel, Nicole F.; Schutyser, Evemie; Raman, Dayanidhi; Richmond, Ann

    2009-01-01

    The CXC chemokine receptor 4 (CXCR4) contributes to the metastasis of human breast cancer cells. The CXCR4 COOH-terminal domain (CTD) seems to play a major role in regulating receptor desensitization and down-regulation. We expressed either wild-type CXCR4 (CXCR4-WT) or CTD-truncated CXCR4 (CXCR4-ΔCTD) in MCF-7 human mammary carcinoma cells to determine whether the CTD is involved in CXCR4-modulated proliferation of mammary carcinoma cells. CXCR4-WT-transduced MCF-7 cells (MCF-7/CXCR4-WT cells) do not differ from vector-transduced MCF-7 control cells in morphology or growth rate. However, CXCR4-ΔCTD-transduced MCF-7 cells (MCF-7/CXCR4-ΔCTD cells) exhibit a higher growth rate and altered morphology, potentially indicating an epithelial-to-mesenchymal transition. Furthermore, extracellular signal-regulated kinase (ERK) activation and cell motility are increased in these cells. Ligand induces receptor association with β-arrestin for both CXCR4-WT and CXCR4-ΔCTD in these MCF-7 cells. Overexpressed CXCR4-WT localizes predominantly to the cell surface in unstimulated cells, whereas a significant portion of overexpressed CXCR4-ΔCTD resides intracellularly in recycling endosomes. Analysis with human oligomicroarray, Western blot, and immunohistochemistry showed that E-cadherin and Zonula occludens are down-regulated in MCF-7/CXCR4-ΔCTD cells. The array analysis also indicates that mesenchymal marker proteins and certain growth factor receptors are up-regulated in MCF-7/CXCR4-ΔCTD cells. These observations suggest that (a) the overexpression of CXCR4-ΔCTD leads to a gain-of-function of CXCR4-mediated signaling and (b) the CTD of CXCR4-WT may perform a feedback repressor function in this signaling pathway. These data will contribute to our understanding of how CXCR4-ΔCTD may promote progression of breast tumors to metastatic lesions. PMID:16740704

  11. Enhanced Inhibition of Human Immunodeficiency Virus Type 1 by Met-Stromal-Derived Factor 1β Correlates with Down-Modulation of CXCR4

    PubMed Central

    Yang, Otto O.; Swanberg, Stephen L.; Lu, Zhijian; Dziejman, Michelle; McCoy, John; Luster, Andrew D.; Walker, Bruce D.; Herrmann, Steven H.

    1999-01-01

    CXCR4 is a chemokine receptor used by some strains of HIV-1 as an entry coreceptor in association with cell surface CD4 on human cells. In human immunodeficiency virus type 1 (HIV-1)-infected individuals, the appearance of viral isolates with a tropism for CXCR4 (T tropic) has been correlated with late disease progression. The presumed natural ligands for CXCR4 are SDF-1α and SDF-1β, which are proposed to play a role in blocking T-tropic HIV-1 cell entry. Here, we demonstrate that addition of an N-terminal methionine residue to SDF-1β (Met-SDF-1β) results in a dramatically enhanced functional activity compared to that of native SDF-1β. Equivalent concentrations of Met-SDF-1β are markedly more inhibitory for T-tropic HIV-1 replication than SDF-1β. A comparison of the biological activities of these two forms of SDF-1β reveals that Met-SDF-1β induces a more pronounced intracellular calcium flux yet binds with slightly lower affinity to CXCR4 than SDF-1β. Down-modulation of CXCR4 is similar after exposure of cells to either chemokine form for 2 h. However, after a 48-h incubation, the surface expression of CXCR4 is much lower for cells treated with Met-SDF-1β. The enhanced blocking of T-tropic HIV-1 by Met-SDF-1β appears to be related to prolonged CXCR4 down-modulation. PMID:10233917

  12. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, Stephan; Dambacher, Julia; Beigel, Florian

    2005-10-15

    Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting inmore » increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.« less

  13. Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3.

    PubMed

    de Jong, Eiko K; de Haas, Alexander H; Brouwer, Nieske; van Weering, Hilmar R J; Hensens, Marjolein; Bechmann, Ingo; Pratley, Pierre; Wesseling, Evelyn; Boddeke, Hendrikus W G M; Biber, Knut

    2008-06-01

    Signaling through chemokine receptor CXCR3 in the brain has been implicated in various brain diseases, as CXCR3 and its ligands are found under these conditions. Recently, a new chemokine ligand for CXCR3 was reported. In humans, an alternatively spliced variant of CXCR3 expressed on microvascular endothelial cells, named CXCR3b, was shown to bind CXCL4. In the periphery, the cellular expression and functions of CXCL4 are well described but in the brain its expression and function are unknown. Here, we show that brain microglia are a cellular source of CXCL4 in vitro and in vivo under neurodegenerating conditions. Microglial migration induced by CXCL4 is absent in CXCR3-deficient microglia, indicating a role of CXCR3. CXCL4 furthermore attenuates lipopolysaccharide-induced microglial phagocytosis and nitric oxide production in microglia and BV-2 cells. Based on these findings, it is proposed that locally released CXCL4 may control microglia responses.

  14. Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Stumm, Ralf; Pattarozzi, Alessandra; Porcile, Carola; Zona, Gianluigi; Dorcaratto, Alessandra; Ravetti, Jean-Louis; Minuto, Francesco; Spaziante, Renato; Schettini, Gennaro; Ferone, Diego; Florio, Tullio

    2008-08-15

    Hypothalamic or locally produced growth factors and cytokines control pituitary development, functioning, and cell division. We evaluated the expression of the chemokine stromal cell-derived factor 1 (SDF1) and its receptor CXCR4 in human pituitary adenomas and normal pituitary tissues and their role in cell proliferation. The expression of SDF1 and CXCR4 in 65 human pituitary adenomas and 4 human normal pituitaries was determined by reverse transcription-PCR, immunohistochemistry, and confocal immunofluorescence. The proliferative effect of SDF1 was evaluated in eight fibroblast-free human pituitary adenoma cell cultures. CXCR4 mRNA was expressed in 92% of growth hormone (GH)-secreting pituitary adenomas (GHoma) and 81% of nonfunctioning pituitary adenomas (NFPA), whereas SDF1 was identified in 63% and 78% of GHomas and NFPAs, respectively. Immunostaining for CXCR4 and SDF1 showed a strong homogenous labeling in all tumoral cells in both GHomas and NFPAs. In normal tissues, CXCR4 and SDF1 were expressed only in a subset of anterior pituitary cells, with a lower expression of SDF1 compared with its cognate receptor. CXCR4 and SDF1 were not confined to a specific cell population in the anterior pituitary but colocalized with discrete subpopulations of GH-, prolactin-, and adrenocorticorticotropic hormone-secreting cells. Conversely, most of the SDF1-containing cells expressed CXCR4. In six of eight pituitary adenoma primary cultures, SDF1 induced a statistically significant increase in DNA synthesis that was prevented by the treatment with the CXCR4 antagonist AMD3100 or somatostatin. CXCR4 and SDF1 are overexpressed in human pituitary adenomas and CXCR4 activation may contribute to pituitary cell proliferation and, possibly, to adenoma development in humans.

  15. CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous Expression of Feline Immunodeficiency Virus in Human, Rodent, and Feline Cells

    PubMed Central

    Poeschla, Eric M.; Looney, David J.

    1998-01-01

    A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors. PMID:9658135

  16. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies.

    PubMed

    Döring, Yvonne; Noels, Heidi; van der Vorst, Emiel P C; Neideck, Carlos; Egea, Virginia; Drechsler, Maik; Mandl, Manuela; Pawig, Lukas; Jansen, Yvonne; Schröder, Katrin; Bidzhekov, Kiril; Megens, Remco T A; Theelen, Wendy; Klinkhammer, Barbara M; Boor, Peter; Schurgers, Leon; van Gorp, Rick; Ries, Christian; Kusters, Pascal J H; van der Wal, Allard; Hackeng, Tilman M; Gäbel, Gabor; Brandes, Ralf P; Soehnlein, Oliver; Lutgens, Esther; Vestweber, Dietmar; Teupser, Daniel; Holdt, Lesca M; Rader, Daniel J; Saleheen, Danish; Weber, Christian

    2017-07-25

    The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreER T2 -driven)-specific or smooth muscle cell (SMC, SmmhcCreER T2 - or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/β-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/β-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis. © 2017 American Heart Association, Inc.

  17. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets.

    PubMed

    Kaemmerer, Daniel; Schindler, Robin; Mußbach, Franziska; Dahmen, Uta; Altendorf-Hofmann, Annelore; Dirsch, Olaf; Sänger, Jörg; Schulz, Stefan; Lupp, Amelie

    2017-12-28

    Hepatocellular (HCC) and cholangiocellular carcinomas (CCC) display an exceptionally poor prognosis. Especially for advanced disease no efficient standard therapy is currently available. Recently, somatostatin analogs have been evaluated for the treatment of HCC, however, with contradictory results. Besides, for both malignancies the chemokine receptor CXCR4 has been discussed as a possible new target structure. Expression of somatostatin receptor (SSTR) subtypes 1, 2A, 3, 4, and 5, and of CXCR4 was evaluated in a total of 71 HCCs and 27 CCCs by immunohistochemistry using well-characterized novel monoclonal antibodies. In HCC tumor cells, frequency and intensity of expression of SSTRs and CXCR4 were only low. CXCR4 was present in about 40% of the HCCs, although at a low intensity. SSTR5, SSTR2, and SSTR3 were detected in about 15%, 8%, and 5% of the HCC tumors, respectively. SSTR and CXCR4 expression was much higher in CCC than in HCC. CXCR4 and SSTR1 were present in 60% and 67% of the CCC samples, respectively, followed by SSTR2 and SSTR5, which were detected in 30% and 11% of the tumors, respectively. Most notably, CXCR4 was intensely expressed on the tumor capillaries in about 50% of the HCCs and CCCs. CXCR4 expression on tumor vessels was associated with poor patient outcomes. CCC, but not HCC, may be suitable for SSTR-based treatments. Because of the predominant expression of SSTR1, pan-somatostatin analogs should be preferred. In both HCC and CCC, indirect targeting of tumors via the CXCR4-positive tumor capillaries may represent a promising additional therapeutic strategy.

  18. Associations of Circulating CXCR3-PD-1+CD4+T cells with Disease Activity of Systemic Lupus Erythematosus.

    PubMed

    Lei, Han; Xue, Yang; Yiyun, Yu; Weiguo, Wan; Ling, Lv; Zou, Hejian

    2018-04-25

    Which helper CD4 + T cell subset contributes to autoantibodies generation and severity of end-organ involvement in lupus patients remains to be explored. Our research aims to investigate the roles of circulating Tfh (cTfh) cell subsets and corresponding CXCR5 - Th cells in lupus patients and their correlation with SLEDAI. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of SLE patients as well as healthy donors. The proportion of Th cell Subsets classified from cell surface markers (CD45RO, CXCR5, CXCR3, CCR6, PD-1, ICOS, and CCR7) is detected by flow cytometry. We found no difference in the frequency of CD45RO + CXCR5 + CD4 + T cells between SLE patients and health controls. As previous reported, SLE patients showed an increase in the percentage of CXCR5 + PD-1 + , CXCR5 + ICOS + PD-1 + and CXCR5 + CCR7 lo PD-1 hi cTfh subset, however, none of these populations had correlation with SLEDAI. Therefore, we further investigated the CXCR5 - subsets, and surprisingly we found that the frequency of CXCR3 - PD-1 + subset was correlated with SLEDAI, ds-DNA IgG, anti-nucleosome antibody, C3, and C4 independent of CXCR5. Consistently, CXCR3 - PD-1 + CD45RO + CD4 + T cells expressed factors associated with B-cell-help for the autoantibody production. CXCR3 - PD-1 + CD4 + T cells are a sensitive indicator to assess SLE disease activity and might contribute B cell help and the generation of autoantibodies in patients.

  19. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    PubMed

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  20. Relevance of P-glycoprotein on CXCR4+ B cells to organ manifestation in highly active rheumatoid arthritis.

    PubMed

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya

    2018-03-01

    In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.

  1. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients.

    PubMed

    D'Alterio, Crescenzo; Nasti, Guglielmo; Polimeno, Marianeve; Ottaiano, Alessandro; Conson, Manuel; Circelli, Luisa; Botti, Giovanni; Scognamiglio, Giosuè; Santagata, Sara; De Divitiis, Chiara; Nappi, Anna; Napolitano, Maria; Tatangelo, Fabiana; Pacelli, Roberto; Izzo, Francesco; Vuttariello, Emilia; Botti, Gerardo; Scala, Stefania

    2016-01-01

    A neoadjuvant clinical trial was previously conducted in patients with resectable colorectal cancer liver metastases (CRLM). At a median follow up of 28 months, 20/33 patients were dead of disease, 8 were alive with disease and 5 were alive with no evidence of disease. To shed further insight into biological features accounting for different outcomes, the expression of CXCR4-CXCL12-CXCR7, TLR2-TLR4, and the programmed death receptor-1 (PD-1)/programmed death-1 ligand (PD-L1) was evaluated in excised liver metastases. Expression profiles were assessed through qPCR in metastatic and unaffected liver tissue of 33 CRLM neoadjuvant-treated patients. CXCR4 and CXCR7, TLR2/TLR4, and PD-1/PD-L1 mRNA were significantly overexpressed in metastatic compared to unaffected liver tissues. CXCR4 protein was negative/low in 10/31, and high in 21/31, CXCR7 was negative/low in 16/31 and high in 15/31, CXCL12 was negative/low in 14/31 and high in 17/31 CRLM. PD-1 was negative in 19/30 and positive in 11/30, PD-L1 was negative/low in 24/30 and high in 6/30 CRLM. Stromal PD-L1 expression, affected the progression-free survival (PFS) in the CRLM population. Patients overexpressing CXCR4 experienced a worse PFS and cancer specific survival (CSS) ( p = 0.001 and p = 0.0008); in these patients, KRAS mutation identified a subgroup with a significantly worse CSS ( p < 0.01). Thus, CXCR4 and PD-L1 expression discriminate patients with the worse PFS within the CRLM evaluated patients. Within the CXCR4 high expressing patients carrying Mut-KRAS in CRLM identifies the worst prognostic group. Thus, CXCR4 targeting plus anti-PD-1 therapy should be explored to improve the prognosis of Mut-KRAS-high CXCR4-CRLMs.

  2. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis.

    PubMed

    Ferrari, Angelo; Petterino, Claudio; Ratto, Alessandra; Campanella, Chiara; Wurth, Roberto; Thellung, Stefano; Vito, Guendalina; Barbieri, Federica; Florio, Tullio

    2012-03-14

    Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score was statistically significantly associated with the histological features of the samples, showing an increase accordingly with the degree of neoplastic transformation (from normal tissue to metastatic lesions). Finally, in the primary cultures obtained from 6 primary feline mammary carcinomas CXCR4 expression was detected in all cells and its activation by SDF-1 in vitro treatment caused a significant increase in the proliferation rate in 5 out of 6 tumours. These results indicate that malignant feline mammary tumours commonly express CXCR4, with a higher level in malignant tumours, and, in most of the cases analysed, metastatic cells display stronger immunoreactivity for CXCR4 than the corresponding primary tumours. Moreover, CXCR4 activation in primary cultures of feline mammary carcinomas causes increase in the proliferative rate. Thus, SDF-1/CXCR4 system seems to play a tumorigenic in feline mammary gland malignancy and in vitro cultures from these tumour samples may represent an experimental model to investigate the biological and pharmacological role of this chemokinergic axis.

  3. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    PubMed Central

    2012-01-01

    Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score was statistically significantly associated with the histological features of the samples, showing an increase accordingly with the degree of neoplastic transformation (from normal tissue to metastatic lesions). Finally, in the primary cultures obtained from 6 primary feline mammary carcinomas CXCR4 expression was detected in all cells and its activation by SDF-1 in vitro treatment caused a significant increase in the proliferation rate in 5 out of 6 tumours. Conclusions These results indicate that malignant feline mammary tumours commonly express CXCR4, with a higher level in malignant tumours, and, in most of the cases analysed, metastatic cells display stronger immunoreactivity for CXCR4 than the corresponding primary tumours. Moreover, CXCR4 activation in primary cultures of feline mammary carcinomas causes increase in the proliferative rate. Thus, SDF-1/CXCR4 system seems to play a tumorigenic in feline mammary gland malignancy and in vitro cultures from these tumour samples may represent an experimental model to investigate the biological and pharmacological role of this chemokinergic axis. PMID:22417013

  4. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma

    PubMed Central

    Zeelenberg, Ingrid S.; Stalle, Lisette Ruuls-Van; Roos, Ed

    2001-01-01

    The dissemination of T cell hybridomas to multiple nonhematopoietic tissues is blocked by pertussis toxin, suggesting the involvement of a chemokine. To study whether this chemokine is SDF-1, we employed a strategy proposed previously for gene therapy of AIDS, whereby the SDF-1 receptor CXCR4 (also a coreceptor for HIV) is retained in the endoplasmic reticulum (ER) and fails to reach the cell surface. We transfected SDF-1, carrying an ER retention sequence, into a T cell hybridoma. This altered chemokine is retained in the ER, where it binds CXCR4 and prevents the latter protein from reaching the surface. These cells failed to migrate toward SDF-1 or to invade fibroblast monolayers, although they could still migrate toward thymus and activation-regulated chemokine (TARC) and invade TARC-treated monolayers. Furthermore, the ability of the transfected cells to disseminate to multiple organs upon intravenous injection into mice was abolished. This dissemination reflects the in vivo migration patterns of activated and memory T cells into nonhematopoietic tissues, which is thus likely to depend on CXCR4. Attempts to block CXCR4 function as a therapy for AIDS may affect this migration with consequences for T cell function. Our results also suggest a decisive role for CXCR4 in the dissemination of hematopoietic malignancies expressing this receptor. PMID:11457880

  5. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma.

    PubMed

    Zeelenberg, I S; Ruuls-Van Stalle, L; Roos, E

    2001-07-01

    The dissemination of T cell hybridomas to multiple nonhematopoietic tissues is blocked by pertussis toxin, suggesting the involvement of a chemokine. To study whether this chemokine is SDF-1, we employed a strategy proposed previously for gene therapy of AIDS, whereby the SDF-1 receptor CXCR4 (also a coreceptor for HIV) is retained in the endoplasmic reticulum (ER) and fails to reach the cell surface. We transfected SDF-1, carrying an ER retention sequence, into a T cell hybridoma. This altered chemokine is retained in the ER, where it binds CXCR4 and prevents the latter protein from reaching the surface. These cells failed to migrate toward SDF-1 or to invade fibroblast monolayers, although they could still migrate toward thymus and activation-regulated chemokine (TARC) and invade TARC-treated monolayers. Furthermore, the ability of the transfected cells to disseminate to multiple organs upon intravenous injection into mice was abolished. This dissemination reflects the in vivo migration patterns of activated and memory T cells into nonhematopoietic tissues, which is thus likely to depend on CXCR4. Attempts to block CXCR4 function as a therapy for AIDS may affect this migration with consequences for T cell function. Our results also suggest a decisive role for CXCR4 in the dissemination of hematopoietic malignancies expressing this receptor.

  6. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Yun; Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37208; Zhang Li

    2008-02-01

    The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, therebymore » suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.« less

  7. CXCR4 blockade induces atherosclerosis by affecting neutrophil function

    PubMed Central

    Bot, Ilze; Daissormont, Isabelle T.M.N.; Zernecke, Alma; van Puijvelde, Gijs H.M.; Kramp, Birgit; de Jager, Saskia C.A.; Sluimer, Judith C.; Manca, Marco; Hérias, Veronica; Westra, Marijke M.; Bot, Martine; van Santbrink, Peter J.; van Berkel, Theo J.C.; Su, Lishan; Skjelland, Mona; Gullestad, Lars; Kuiper, Johan; Halvorsen, Bente; Aukrust, Paul; Koenen, Rory R.; Weber, Christian; Biessen, Erik A.L.

    2015-01-01

    Aims The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man. Methods and results Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4+ cells during plaque progression. To address causal involvement of CXCR4 in advanced stages of atherosclerosis we reconstituted LDLr−/− mice with autologous bone marrow infected with lentivirus encoding SDF-1α antagonist or CXCR4 degrakine, which effects proteasomal degradation of CXCR4. Functional CXCR4 blockade led to progressive plaque expansion with disease progression, while also promoting intraplaque haemorrhage. Moreover, CXCR4 knockdown was seen to augment endothelial adhesion of neutrophils. Concordant with this finding, inhibition of CXCR4 function increased adhesive capacity and reduced apoptosis of neutrophils and resulted in hyperactivation of circulating neutrophils. Compatible with a role of the neutrophil CXCR4 in end-stage atherosclerosis, CXCR4 expression by circulating neutrophils was lowered in patients with acute cardiovascular syndromes. Conclusion In conclusion, CXCR4 contributes to later stages of plaque progression by perturbing neutrophil function. PMID:24816217

  8. Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo.

    PubMed

    Wang, Jian; Zhang, Wei; He, Guang-Hui; Wu, Bin; Chen, Song

    2018-01-01

    To investigate the effect of the overexpression of C-X-C chemokine receptor type 4 (CXCR4) on homing of mesenchymal stem cells (MSCs) in vitro and therapeutic effects of diabetic retinopathy (DR) in vivo . MSCs were infected by lentivirus constructed with CXCR4. The expression of CXCR4 was examined by immunofluorescence, Western blot, and quantitative polymerase chain reaction. CXCR4-overexpressing MSCs were cultured in vitro to evaluate their chemotaxis, migration, and apoptotic activities. CXCR4-overexpressing MSCs were intravitreally injected to observe and compare their effects in a mouse model of DR. The histological structure of DR in rats was inspected by hematoxylin and eosin staining. The expression of rhodopsin, neuron-specific enolase (NSE), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α was examined by Western blot and immunohistochemical analyses. The transduction of MSCs by lentivirus was effective, and the transduced MSCs had high expression levels of CXCR4 gene and protein. Improved migration activities were observed in CXCR4-overexpressing MSCs. Further, reduced retinal damage, upregulation of rhodopsin and NSE protein, and downregulation of inflammatory cytokines IL-6 and TNF-α were observed in CXCR4-overexpressing MSCs in vivo . The homing of MSCs can be enhanced by upregulating CXCR4 levels, possibly improving histological structures of DR. CXCR4-overexpressing MSCs can be a novel strategy for treating DR.

  9. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  10. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3.

    PubMed

    Mueller, Anja; Meiser, Andrea; McDonagh, Ellen M; Fox, James M; Petit, Sarah J; Xanthou, Georgina; Williams, Timothy J; Pease, James E

    2008-04-01

    The chemokine CXCL4/platelet factor-4 is released by activated platelets in micromolar concentrations and is a chemoattractant for leukocytes via an unidentified receptor. Recently, a variant of the human chemokine receptor CXCR3 (CXCR3-B) was described, which transduced apoptotic but not chemotactic signals in microvascular endothelial cells following exposure to high concentrations of CXCL4. Here, we show that CXCL4 can induce intracellular calcium release and the migration of activated human T lymphocytes. CXCL4-induced chemotaxis of T lymphocytes was inhibited by a CXCR3 antagonist and pretreatment of cells with pertussis toxin (PTX), suggestive of CXCR3-mediated G-protein signaling via Galphai-sensitive subunits. Specific binding by T lymphocytes of the CXCR3 ligand CXCL10 was not effectively competed by CXCL4, suggesting that the two are allotopic ligands. We subsequently used expression systems to dissect the potential roles of each CXCR3 isoform in mediating CXCL4 function. Transient expression of the CXCR3-A and CXCR3-B isoforms in the murine pre-B cell L1.2 produced cells that migrated in response to CXCL4 in a manner sensitive to PTX and a CXCR3 antagonist. Binding of radiolabeled CXCL4 to L1.2 CXCR3 transfectants was of low affinity and appeared to be mediated chiefly by glycosaminoglycans (GAGs), as no specific CXCL4 binding was observed in GAG-deficient 745-Chinese hamster ovary cells stably expressing CXCR3. We suggest that following platelet activation, the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the subsequent amplification of inflammation observed in diseases such as atherosclerosis. In such a setting, antagonism of the CXCR3/CXCL4 axis may represent a useful, therapeutic intervention.

  11. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy

    PubMed Central

    Kaemmerer, Daniel; Träger, Tina; Hoffmeister, Maike; Sipos, Bence; Hommann, Merten; Sänger, Järg; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction Somatostatin receptors (SSTR) are widely distributed in well-differentiated neuroendocrine neoplasms (NEN) and serve as primary targets for diagnostics and treatment. An overexpression of the chemokine receptor CXCR4, in contrast, is considered to be present mainly in highly proliferative and advanced tumors. Comparative data are still lacking, however, for neuroendocrine carcinomas (NEC). Methods SSTR subtype (1, 2A, 3, 5) and CXCR4 expression was evaluated in G1 (n = 31), G2 (n = 47), and low (G3a; Ki-67: 21–49%; n = 21) and highly proliferative (G3b; Ki-67: >50%, n = 22) G3 (total n = 43) gastroenteropancreatic NEN samples by performing immunohistochemistry with monoclonal rabbit anti-human anti-SSTR and anti-CXCR4 antibodies, respectively, and was correlated with clinical data. Results Both CXCR4 and SSTR were widely expressed in all tumors investigated. CXCR4 expression differed significantly between the G1 and G3 specimens and within the G3 group (G3a to G3b), and was positively correlated with Ki-67 expression. SSTR2A, in contrast, exhibited an inverse association with Ki-67. SSTR2A was highly expressed in G1 and G2 tumors, but was significantly less abundant in G3 carcinomas. Additionally, SSTR1 expression was higher in G3a than in G3b tumors. Conclusion We observed an elevation in CXCR4 and a decrease in SSTR2A expression with increasing malignancy. Interestingly, 23% of the G3 specimens had strong SSTR2A expression. Because CXCR4 was strongly expressed in highly proliferative G3 carcinomas, it is an interesting new target and needs to be validated in larger studies. PMID:26259237

  12. MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer.

    PubMed

    Shen, Peng-fei; Chen, Xue-qin; Liao, Yong-chuan; Chen, Ni; Zhou, Qiao; Wei, Qiang; Li, Xiang; Wang, Jia; Zeng, Hao

    2014-05-01

    Although SDF-1/CXCR4 pathway is a potential mechanism of tumor proliferation and progression, the mechanism of controlling CXCR4 expression is not fully understood. This study was to confirm that miR-494-3p might be a potentially post-transcriptional regulator of CXCR4 and over-expression of miR-494 might suppress prostate cancer progression and metastasis. We firstly postulated the post-transcriptional regulation of CXCR4 by miR-494-3p through bioinformatics analysis, and then it was demonstrated that miR-494-3p could regulate the CXCR4 mRNA post-transcriptionally by binding to the predicted site by dual reporter gene assays. The biological effect of miR-494-3p on prostate cancer cells proliferation, apoptosis, migration, and invasion was measured by MTT, TUNEL, flow cytometry, migration, and invasion assays. It was shown that the mRNA and protein expression levels of CXCR4 were significantly up-regulated in PC-3 and DU145, whereas barely detected in LNCaP and RWPE-1. However, the CXCR4 protein levels were inversely related to the mature miR-494-3p expression levels in RWPE-1 and prostate cancer cells. The constitutive over-expression of miR-494-3p could down-regulate the protein level of CXCR4 in PC-3 and DU145. MiR-494-3p also could bind to the seed sequences in the 3'-UTR of the CXCR4 gene. Artificial over-expression of miR-494-3p could inhibit the growth, promote the apoptosis, and inhibit the migration and invasion of PC-3 and DU145 cells in vivo. Our results suggested that miR-494-3p might play crucial role in prostate cancer by post-transcriptional regulation to CXCR4 mRNA. MiR-494-3p/CXCR4 pathway may be a potential therapeutic target to prevent prostate cancer progression and metastasis. © 2014 Wiley Periodicals, Inc.

  13. Functional characterization of CXCR4 in mediating the expression of protein C system in experimental ulcerative colitis

    PubMed Central

    Lin, Xuhong; Wang, Huichao; Li, Yuxia; Yang, Jingnan; Yang, Ruilin; Wei, Dandan; Zhang, Junjie; Yang, Desheng; Wang, Bin; Ren, Xuequn; Cheng, Guanchang

    2017-01-01

    The present study aimed to explore the role of CXCR4 and protein C system (PCS) in the experimental ulcerative colitis (UC). The expression of CXCR3, CCR10, and CXCR4 in dextran sulfate sodium (DSS)-induced colitis mouse model was measured by immunohistochemistry and western blot analysis. In vitro studies with microvascular endothelial cells (MVECs) were performed. The expression of endothelial protein C receptor (EPCR) and thrombomodulin (TM) were detected by RT-PCR and western blot analysis. Activities of protein C (PC), protein S (PS), activated PC (APC) were evaluated in cells pre-treated with JNK inhibitor SP600125 and c-Jun silencing. DSS mice showed up-regulated expression of CXCR4, higher macroscopic score and histological score (P<0.05), as well as elevated levels of SDF-1α (P<0.05) compared with wild type, CXCR4-/-, or CXCR4-/- +DSS mice. In DSS mice, EPCR expression was down-regulated (P<0.05), accompanied by decreased activity of PC and PS (P<0.05 or P<0.01) with an up-regulated expression of pJNK MAPK and pc-Jun (P<0.05). Moreover, the macroscopic score and histological score index, SDF-1α levels, EPCR expression, PC activity, pJNK, and pc-Jun were reversed in CXCR4-/- +DSS mice (P<0.05). In vitro, SDF-1α-induced inhibition of the PCS was blunted by SP600125 (P<0.05). Meanwhile, down-regulation of c-Jun rescued the inhibition of PCS (P<0.05). MVECs with retrovirus-mediated transfection of c-Jun demonstrated a strong trans-inactivation effect on the EPCR promoter (P<0.05). These findings suggest that CXCR4 is involved in UC pathogenesis and could be a promising therapeutic target for UC treatment. PMID:29218082

  14. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressedmore » CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.« less

  15. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    PubMed Central

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  16. CXCL14 Blockade of CXCL12/CXCR4 Signaling in Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2017-10-01

    the CXCR4 gene was deleted with Crispr /Cas9 gene editing (KO). KO cells with re-expressed CXCR4 (Add- Back) were also generated. The three cell...Nano-Glo Live Cell Assay, Promega) diluted into media or PBS. Crispr /Cas9 deletion of CXCR4 from SUM159 cells CXCR4 was knocked out in SUM-159...cells by CRISPR /Cas9 gene editing using the pGuide-it CRISPR /Cas9 system from Takara Bio USA (Mountain View, CA), expressing Cas9, a fluorescent protein

  17. CXCR4–CXCL12–CXCR7, TLR2–TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients

    PubMed Central

    D'Alterio, Crescenzo; Nasti, Guglielmo; Polimeno, Marianeve; Ottaiano, Alessandro; Conson, Manuel; Circelli, Luisa; Botti, Giovanni; Scognamiglio, Giosuè; Santagata, Sara; De Divitiis, Chiara; Nappi, Anna; Napolitano, Maria; Tatangelo, Fabiana; Pacelli, Roberto; Izzo, Francesco; Vuttariello, Emilia; Botti, Gerardo; Scala, Stefania

    2016-01-01

    ABSTRACT A neoadjuvant clinical trial was previously conducted in patients with resectable colorectal cancer liver metastases (CRLM). At a median follow up of 28 months, 20/33 patients were dead of disease, 8 were alive with disease and 5 were alive with no evidence of disease. To shed further insight into biological features accounting for different outcomes, the expression of CXCR4–CXCL12–CXCR7, TLR2–TLR4, and the programmed death receptor-1 (PD-1)/programmed death-1 ligand (PD-L1) was evaluated in excised liver metastases. Expression profiles were assessed through qPCR in metastatic and unaffected liver tissue of 33 CRLM neoadjuvant-treated patients. CXCR4 and CXCR7, TLR2/TLR4, and PD-1/PD-L1 mRNA were significantly overexpressed in metastatic compared to unaffected liver tissues. CXCR4 protein was negative/low in 10/31, and high in 21/31, CXCR7 was negative/low in 16/31 and high in 15/31, CXCL12 was negative/low in 14/31 and high in 17/31 CRLM. PD-1 was negative in 19/30 and positive in 11/30, PD-L1 was negative/low in 24/30 and high in 6/30 CRLM. Stromal PD-L1 expression, affected the progression-free survival (PFS) in the CRLM population. Patients overexpressing CXCR4 experienced a worse PFS and cancer specific survival (CSS) (p = 0.001 and p = 0.0008); in these patients, KRAS mutation identified a subgroup with a significantly worse CSS (p < 0.01). Thus, CXCR4 and PD-L1 expression discriminate patients with the worse PFS within the CRLM evaluated patients. Within the CXCR4 high expressing patients carrying Mut-KRAS in CRLM identifies the worst prognostic group. Thus, CXCR4 targeting plus anti-PD-1 therapy should be explored to improve the prognosis of Mut-KRAS-high CXCR4-CRLMs. PMID:28123896

  18. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    PubMed

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  19. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue.

    PubMed

    Albert, Sébastien; Hourseau, Muriel; Halimi, Caroline; Serova, Maria; Descatoire, Véronique; Barry, Béatrix; Couvelard, Anne; Riveiro, Maria Eugenia; Tijeras-Raballand, Annemilaï; de Gramont, Armand; Raymond, Eric; Faivre, Sandrine

    2012-12-01

    The aim of this study was to evaluate the expression and the prognostic value of chemokine receptor 4 (CXCR4), its cognate ligand the CXCL12, and markers of epithelial-to-mesenchymal transition (EMT) in squamous cell carcinoma (SCC) of the mobile tongue. Patients with primary SCC of the mobile tongue who underwent surgery in our center were screened retrospectively. Patients without prior treatment, who had pre-surgery TNM staging and available tumor samples, were eligible. Protein expression of CXCL12, CXCR4, CA9, E-cadherin, and vimentin was determined by immunohistochemical staining, scored, and correlated with clinical and pathological parameters and overall survival. Multivariate and Cox proportional hazards analyses were performed. Among 160 patients treated and screened, 47 were analyzed. CXCR4 and CXCL12 expression was high in tumor cells. CXCR4 expression in primary tumor samples was significantly higher in patients with high-grade tumors, lymph node metastases, and microscopic nerve invasion (p ≤ 0.05). There was a non-significant trend towards a correlation between high CXCL12 expression and pathologic tumor stage (p=0.07). Tumors with high CXCR4 expression correlated with poor overall survival (hazard ratio=3.6, 95% confidence interval 1.3-9.7; p=0.011), notably in the CXCR4(high)/vimentin-positive subgroup. Vimentin-positive tumors, characterizing EMT, were associated with lower survival (hazard ratio=4.5, 95% confidence interval 1.6-12.3; p=0.0086). Multivariate analysis confirmed vimentin (but not CXCR4) expression as an independent prognostic factor of poor overall survival (p=0.016). Our results suggest that CXCR4 is a marker of tumor aggressiveness and vimentin is an important and independent prognostic factor in patients with SCC of the mobile tongue. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases.

    PubMed

    Zeelenberg, Ingrid S; Ruuls-Van Stalle, Lisette; Roos, Ed

    2003-07-01

    CXCR4, the receptor for the chemokine stromal cell-derived factor (SDF)-1 (CXCL12), is involved in lymphocyte trafficking. We have demonstrated previously that it is required for invasion of lymphoma cells into tissues and therefore essential for lymphoma metastasis. CXCR4 is also expressed by carcinoma cells, and CXCR4 antibodies were recently shown to reduce metastasis of a mammary carcinoma cell line. This was also ascribed to impaired invasion. We have blocked CXCR4 function in CT-26 colon carcinoma cells by transfection of SDF-1, extended with a KDEL sequence. The SDF-KDEL protein is retained in the endoplasmic reticulum by the KDEL-receptor and binds CXCR4, which is thus prevented from reaching the cell surface. We found that metastasis of these cells to liver and lungs was greatly reduced and often completely blocked. Surprisingly, however, our observations indicate that this was not attributable to inhibition of invasion but rather to impairment of outgrowth of micrometastases: (a) in contrast to the lymphoma cells, metastasis was not affected by the transfected S1 subunit of pertussis toxin. S1 completely inhibited Gi protein signaling, which is required for SDF-1-induced invasion; (b) CXCR4 levels were very low in CT-26 cells grown in vitro but strongly up-regulated in vivo. Strong up-regulation was not seen in the lungs until 7 days after tail vein injection. CXCR4 can thus have no role in initial invasion in the lungs; and (c) CXCR4-deficient cells did colonize the lungs to the same extent as control cells and survived. However, they did not expand, whereas control cells proliferated rapidly after a lag period of > or = 7 days. We conclude that CXCR4 is up-regulated by the microenvironment and that isolated metastatic cells are likely to require CXCR4 signals to initiate proliferation. Our results suggest that CXCR4 inhibitors have potential as anticancer agents to suppress outgrowth of micrometastases.

  1. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling

    PubMed Central

    Masuda, Tetsuro; Endo, Motoyoshi; Yamamoto, Yutaka; Odagiri, Haruki; Kadomatsu, Tsuyoshi; Nakamura, Takayuki; Tanoue, Hironori; Ito, Hitoshi; Yugami, Masaki; Miyata, Keishi; Morinaga, Jun; Horiguchi, Haruki; Motokawa, Ikuyo; Terada, Kazutoyo; Morioka, Masaki Suimye; Manabe, Ichiro; Iwase, Hirotaka; Mizuta, Hiroshi; Oike, Yuichi

    2015-01-01

    Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer. PMID:25773070

  2. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients.

    PubMed

    Patry, Christian; Stamm, Daniela; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A; Beck, Grietje Ch; Rafat, Neysan

    2018-01-01

    Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Peripheral blood mononuclear cells from septic patients ( n  = 30), ICU control patients ( n  = 11) and healthy volunteers ( n  = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and - 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis.

  3. Detection of CD34/CXCR4+ stem cells in peripheral blood of patients following acute myocardial infarction.

    PubMed

    Abdallah, Khaled Omar; Saleh, Rasha Mamdouh; Al-Shawarby, Laila Abd Al-Aala; Amer, Hanaa Ahmed; Mostafa, Sara

    2014-01-01

    Bone marrow harbors a population of tissue-committed stem cells that are CD34+/CXCR4+. These potential cardiac progenitors which express cardiac and endothelial markers may contribute to cardiac regeneration. The ability of injured myocardium to recruit extracardiac stem cells after injury would be beneficial to aid in myocardial repair and regeneration. The aim of this study was to answer the question whether acute myocardial infarction (AMI) related stress may trigger the increase of CD34/CXCR4+ stem cells number in peripheral blood in response to myocardial ischemic injury which might be accompanied with increased release of this population of stem cells in peripheral blood as well as to correlate this phenomenon with other clinical and laboratory parameters such as diabetes, chest pain, smoking, streptokinase administration and elevated cardiac enzymes. The study was conducted on 25 newly diagnosed AMI patients who attended the emergency department of National Heart Institute. They were compared to a control group of 25 apparently healthy sex and age matched individuals. The percentage of CD34+ cells as well as percentage of cells coexpressing CD34/CXCR4+ and their expression intensity were assessed by Flowcytometery. These parameters were correlated to other laboratory and clinical data. The absolute CD34+ as well as the CD34/CXCR4+ cell counts were significantly higher in patients upon admission in comparison to control group (P < 0.01). While CD34 expression was significantly higher in patients compared to control group, CXCR4 expression on CD34+ cells was significantly lower in patients than control group (P < 0.05). Diabetes, duration of chest pain and streptokinase administration had no significant effect on CD34/CXCR4+ number or the expression intensity of both markers (p > 0.05). Otherwise, CXCR4 intensity was lower in non-smoker than smoker patients (P < 0.05). Patients admitted with normal cardiac enzymes, including Creatine Kinase (CK) and Creatine Kinase MB fraction (CK-MB) activity, showed no significant difference in CD34/CXCR4+ number or the expression intensity of CD34 marker in comparison to those admitted with high levels of enzymes (P > 0.05). However, the expression intensity of CXCR4 was significantly low in patients admitted with elevated cardiac enzymes (P < 0.05). In conclusion, there is a pool of CD34/CXCR4+ stem cells circulating in large number in peripheral blood of AMI patients post infarction together with low CXCR4 expression on these cells which are likely to contribute to myocardial repair following the acute ischemic injury.

  4. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    PubMed

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  5. Lymphoid Follicle Cells in Chronic Obstructive Pulmonary Disease Overexpress the Chemokine Receptor CXCR3

    PubMed Central

    Kelsen, Steven G.; Aksoy, Mark O.; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, XiuXia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-01-01

    Rationale: The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. Objectives: We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. Methods: CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1–4) by immunohistochemistry. Measurements and Main Results: CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3–4 (P < 0.01 for GOLD 3–4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV1 (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. Conclusions: These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells. PMID:19218194

  6. Expression of SNCG, MAP2, SDF-1 and CXCR4 in gastric adenocarcinoma and their clinical significance

    PubMed Central

    Zheng, Shufang; Shi, Lifang; Zhang, Yi; He, Tao

    2014-01-01

    Objectives: The purpose of the study was to detect the expression of SNCG, MAP2, SDF-1 and CXCR4 in gastric adenocarcinoma, and to evaluate their roles in the carcinogenesis of gastric adenocarcinoma, development, invasion and metastasis as well as their clinical significance. Methods: The expression of SNCG, MAP2, SDF-1 and CXCR4 was detected by SP immunohistochemical method in 225 cases of gastric adenocarcinoma and 105 cases of nonneoplastic adjacent gastric tissue. The expression of SNCG, MAP2, SDF-1 and CXCR4 mRNA was also detected by RT-PCR method in 50 cases of gastric adenocarcinoma and 30 cases of nonneoplastic adjacent gastric tissue. Results: The expression of SNCG, MAP2, SDF-1 and CXCR4 in the gastric adenocarcinoma was remarkably higher than those in the nonneoplastic adjacent gastric tissue (P < 0.01); The positive expression of SNCG and MAP2 was correlated with the depth of tumor invasion and the metastasis of lymph nodes (P < 0.05), and that of SDF-1 and CXCR4 was correlated with the metastasis of lymph nodes (P < 0.05). Conclusions: SNCG, MAP2, SDF-1 and CXCR4 may play an important role in the carcinogenesis, progression, invasion and metastasis of gastric adenocarcinoma. However, it still needs more exploration whether they can serve as promising therapeutic targets of gastric adenocarcinoma. PMID:25400739

  7. Silibinin, a novel chemokine receptor type 4 antagonist, inhibits chemokine ligand 12-induced migration in breast cancer cells.

    PubMed

    Wang, Yan; Liang, Wei-Cheng; Pan, Wen-Liang; Law, Wai-Kit; Hu, Jian-Shu; Ip, Denis Tsz-Ming; Waye, Mary Miu-Yee; Ng, Tzi-Bun; Wan, David Chi-Cheong

    2014-09-25

    C-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products. According to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4. Our work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. CXCR4 engagement promotes dendritic cell survival and maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabashima, Kenji; Sugita, Kazunari; Shiraishi, Noriko

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important formore » not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.« less

  9. CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice.

    PubMed

    Wang, Jianping; Liu, Xi; Lu, Hong; Jiang, Chao; Cui, Xiaobing; Yu, Lie; Fu, Xiaojie; Li, Qian; Wang, Jian

    2015-03-01

    Cell-based therapy is considered to be a promising therapeutic strategy for stroke treatment. Although unfractionated bone marrow mononuclear cells (BMMNCs) have been tried in both preclinical and clinical trials, the effective subpopulations need to be identified. In this study, we used fluorescence-activated cell sorting to harvest the CXCR4(+)CD45(+) and CXCR4(+)CD45(-) BMMNC subpopulations from transgenic mice that express enhanced green fluorescent protein. We then allogeneically grafted unfractionated BMMNCs or a subpopulation into mice subjected to transient middle cerebral artery occlusion (tMCAO) and compared the effects on stroke outcomes. We found that CXCR4(+)CD45(-) BMMNCs, but not CXCR4(+)CD45(+) BMMNCs, more effectively reduced infarction volume and neurologic deficits than did unfractionated BMMNCs. Brain tissue from the ischemic hemisphere of mice treated with CXCR4(+)CD45(-) BMMNCs had higher levels of vascular endothelial growth factor and lower levels of TNF-α than did tissue from mice treated with unfractionated BMMNCs. In contrast, CXCR4(+)CD45(+) BMMNCs showed an increase in TNF-α. Additionally, CXCR4(+)CD45(+) and CXCR4(+)CD45(-) populations exhibited more robust migration into the lesion areas and were better able to express cell-specific markers of different linages than were the unfractionated BMMNCs. Endothelial and astrocyte cell markers did not colocalize with eGFP(+) cells in the brains of tMCAO mice that received CXCR4(+)CD45(+) BMMNCs. In vitro, the CXCR4(+)CD45(-) BMMNCs expressed significantly more Oct-4 and Nanog mRNA than did the unfractionated BMMNCs. However, we did not detect gene expression of these two pluripotent markers in CXCR4(+)CD45(+) BMMNCs. Taken together, our study shows for the first time that the CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs in ameliorating cerebral damage in a mouse model of tMCAO and could represent a new therapeutic approach for stroke treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells.

    PubMed

    Hu, Weidong; Zhen, Xinming; Xiong, Bin; Wang, Bicheng; Zhang, Weibing; Zhou, Wenhui

    2008-07-01

    In spite of the clinical importance of prostate cancer (PCa) bone metastasis, the precise mechanisms for the directed migration of malignant cells remain unclear. In the present study, the expression of CXCR6 in human PCa and benign prostatic hyperplasia samples, and the expression of CXCL16 in human osseous tissues were determined by immunohistochemistry. It was found that the level of CXCR6 protein expression was elevated in human malignant prostate tumors, and CXCL16 was expressed positively by human osteocytes in vivo. The in vitro experiments further confirmed that the PCa cell lines PC3 and LNCap expressed CXCR6 at both the mRNA and protein levels, and exogenous CXCL16 has the potential to stimulate the invasion of PC3 and LNCap. To further elucidate the role of the CXCL16-CXCR6 axis in PCa progression, we compared the expression of CXCR6 and CXCR4 in human PCa tissues and the effects of CXCL16 and CXCL12 on the in vitro invasion of PC3 and LNCap cells. It was shown that CXCR6 and CXCR4 proteins were coexpressed and elevated in human PCa samples, and CXCL16 and CXCL12 promoted the invasion of PC3 and LNCap via their respective receptors. Furthermore, in contrast to CXCL12, which enhanced the activity of matrix metalloproteinase (MMP) 9 and MMP2 in PC3 and LNCap, CXCL16 ligation resulted in stronger MMP9 and MMP2 activity in LNCap but not in PC3. Our results suggest that besides CXCL12/CXCR4, CXCL16/CXCR6 might be another important factor involved in PCa bone metastasis.

  11. Control of humoral immunity and auto-immunity by the CXCR4/CXCL12 axis in lupus patients following influenza vaccine.

    PubMed

    Launay, Odile; Paul, Stéphane; Servettaz, Amélie; Roguet, Gwénaëlle; Rozenberg, Flore; Lucht, Frédéric; Lambert, Claude; Presles, Emilie; Goulvestre, Claire; Méritet, Jean-François; Galtier, Florence; Dubray, Claude; Lebon, Pierre; Weill, Bernard; Batteux, Frédéric

    2013-08-02

    CXCR4 is a chemokine receptor with multiple effects on the immune system, upregulated in patients with SLE, and correlated with disease severity. This study has investigated whether the levels of CXCR4 expressed on leucocyte subsets in lupus patients are correlated with the efficacy and the safety of the influenza vaccine. Twenty-seven patients were vaccinated and vaccine immunogenicity and tolerance were evaluated. CXCR4 was assayed on leucocyte subsets and correlated with clinical and immunological signs of diseases activity. A significant increase in the titres of antibodies to the three viral strains was observed along with trends towards an increased vaccine efficacy in patients with quiescent disease vs patients with active disease. Recent flu vaccine history and, to a lesser extent, immunosuppressive treatment may influence vaccine immunogenicity. Influenza immunization was not associated with clinical side-effects or clinical lupus flare but with an increase in rheumatoid factor levels. Our study also confirms the correlation of CXCR4 expression with biological autoimmunity as shown by the correlation between the percentage of CXCR4-positive T cells and the ANA titres at D0, and the reverse correlation between CXCR4 expression and vaccine immunogenicity as demonstrated by the higher percentage of CXCR4-positive T cells at D0 and D30 in non-responders vs responders. Altogether, our study confirms the efficacy and the safety of flu vaccine in SLE patients, highlights the role of CXCR4 as a surrogate marker for autoimmunity in lupus and shows that CXCR4 expression on T cells is predictive of vaccine efficacy in SLE patients. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Exploration of labeling by near infrared dyes of the polyproline linker for bivalent-type CXCR4 ligands.

    PubMed

    Nomura, Wataru; Aikawa, Haruo; Taketomi, Shohei; Tanabe, Miho; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2015-11-01

    We have previously used poly-L-proline linkers for the development of bivalent-type ligands for the chemokine receptor, CXCR4. The bivalent ligands with optimum linkers showed specific binding to CXCR4, suggesting the existence of CXCR4 possibly as a dimer on the cell membrane, and enabled definition of the amount of CXCR4 expressed. This paper reports the synthesis by a copper-catalyzed azide-alkyne cycloaddition reaction as the key reaction, of bivalent CXCR4 ligands with near infrared (NIR) dyes at the terminus or the center of the poly-L-proline linker. Some of the NIR-labeled ligands, which would be valuable probes useful in studies of the behavior of cells expressing CXCR4, have been obtained. The information concerning the effects of the labeling positions of NIR dyes on their binding properties is useful for the design of modified bivalent-type CXCR4 ligands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Aberrant expression of CXCR4 significantly contributes to metastasis and predicts poor clinical outcome in breast cancer.

    PubMed

    Yang, P; Liang, S-X; Huang, W-H; Zhang, H-W; Li, X-L; Xie, L-H; Du, C-W; Zhang, G-J

    2014-01-01

    Triple negative breast cancer is known for its visceral metastasis. We have found that CXCR4 is overexpressed in triple negative breast cancer and is associated with visceral metastasis. We further investigated whether CXCR4 is a prognostic factor affecting survival following visceral metastasis in breast cancer patients. Our results indicate that increased CXCR4 expression among breast cancer patients with visceral metastasis was positively correlated with poor overall survival (P<0.001). Silencing of CXCR4 was associated with a decrease in the tumorigenic properties of MDA-MB-231 breast cancer cells, caused reversion of EMT and suppression of MMP-9, increased apoptosis, and caused a reduced incidence of tumor lung metastasis in mice. These results are indicative of CXCR4 having a predictive role in patients with visceral metastasis and indicate that shRNA knock down of CXCR4 might be a novel therapeutic strategy to prevent breast cancer metastasis when CXCR4 is overexpressed.

  14. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils.

    PubMed

    Bakele, Martina; Lotz-Havla, Amelie S; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C; Gersting, Soeren W; Hartl, Dominik

    2014-07-25

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.

  15. An Interactive Network of Elastase, Secretases, and PAR-2 Protein Regulates CXCR1 Receptor Surface Expression on Neutrophils*

    PubMed Central

    Bakele, Martina; Lotz-Havla, Amelie S.; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C.; Gersting, Soeren W.; Hartl, Dominik

    2014-01-01

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis. PMID:24914212

  16. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    PubMed

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  17. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice.

    PubMed

    Noels, Heidi; Zhou, Baixue; Tilstam, Pathricia V; Theelen, Wendy; Li, Xiaofeng; Pawig, Lukas; Schmitz, Corinna; Akhtar, Shamima; Simsekyilmaz, Sakine; Shagdarsuren, Erdenechimeg; Schober, Andreas; Adams, Ralf H; Bernhagen, Jürgen; Liehn, Elisa A; Döring, Yvonne; Weber, Christian

    2014-06-01

    The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. β-Galactosidase staining using bone marrow x kinase (Bmx)-CreER(T2) reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreER(T2+) compared with Bmx-CreER(T2-) Cxcr4-floxed apolipoprotein E-deficient (Apoe(-/-)) mice (referred to as Cxcr4(EC-KO)ApoE(-/-) and Cxcr4(EC-WT) ApoE(-/-), respectively). Endothelial Cxcr4 deficiency significantly increased wire injury-induced neointima formation in carotid arteries from Cxcr4(EC-KO)ApoE(-/-) mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4(EC-KO)ApoE(-/-) carotids compared with Cxcr4(EC-WT)ApoE(-/-) controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1(+)Flk1(+)Cd31(+) and of Lin(-)Sca1(+) progenitors in Cxcr4(EC-KO) ApoE(-/-) mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4(EC-KO)ApoE(-/-) mice. Endothelial Cxcr4 is crucial for efficient reendothelialization after vascular injury through endothelial wound healing and proliferation, and through the mobilization of Sca1(+)Flk1(+)Cd31(+) cells, often referred to as circulating endothelial progenitor cells. © 2014 American Heart Association, Inc.

  18. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    PubMed

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  19. Expression of the CXCR6 on polymorphonuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections.

    PubMed

    Gaida, M M; Günther, F; Wagner, C; Friess, H; Giese, N A; Schmidt, J; Hänsch, G M; Wente, M N

    2008-11-01

    The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFalpha) was seen: brief exposure with low-dose TNFalpha induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN.

  20. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    PubMed

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    PubMed

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  2. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas.

    PubMed

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D'Haese, Jan G; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-10-27

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy.

  3. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas

    PubMed Central

    Kaemmerer, Daniel; Sänger, Jörg; Arsenic, Ruza; D’Haese, Jan G.; Neumann, Jens; Schmitt-Graeff, Annette; Wirtz, Ralph Markus; Schulz, Stefan; Lupp, Amelie

    2017-01-01

    Paragangliomas are predominantly benign tumors, but in some cases invasive growth and also metastasis are observed. Given the limited number of nonsurgical treatment options, novel target structures for diagnostics and therapy of this tumor entity are urgently needed. In the present study, expression of all five somatostatin receptor (SST) subtypes, chemokine receptor CXCR4 and endothelin receptor type A (ETA) was assessed by means of immunohistochemistry in a total of 66 paraffin-embedded paraganglioma samples from 55 patients. The stainings were rated by means of the Immunoreactive Score and correlated to clinical data and to succinate dehydrogenase subunit B (SDHB) expression. SST2A was by far the most prominent receptor in the paragangliomas investigated. It was present in 89% of the tumors at a high intensity, followed by SST5, SST3, SST1 and SST4, which were detected in 47%, 35%, 35% and 13% of the samples, respectively. SDHB positive tumors exhibited significantly higher SST2A and SST3 expression as compared to SDHB negative cases. There was no correlation between SST and Ki-67 expression or grading of the tumors and no difference in SST expression between primary tumors and metastases. Cell surface expression of CXCR4 and ETA was detected only in few samples. On tumor capillaries, however, exceptionally strong staining for these two receptors was noticed in the vast majority of the tumors. In conclusion, paragangliomas are well suited for SST2A-based diagnostics and treatment modalities. An indirect targeting of these highly vascularized tumors via CXCR4 or ETA may also represent a promising future strategy. PMID:29163802

  4. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival

    PubMed Central

    Desurmont, Thibault; Skrypek, Nicolas; Duhamel, Alain; Jonckheere, Nicolas; Millet, Guillaume; Leteurtre, Emmanuelle; Gosset, Pierre; Duchene, Belinda; Ramdane, Nassima; Hebbar, Mohamed; Van Seuningen, Isabelle; Pruvot, François-René; Huet, Guillemette; Truant, Stéphanie

    2015-01-01

    Our aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen. Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients’ outcome. CXCR2 and CXCL7 overexpression are correlated to shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2: treated group 1.89 (0.02–50.92) vs 0.55 (0.07–3.22), P = 0.016. CXCL7 was overexpressed close to significance, 0.40 (0.00–7.85) vs 0.15 (0.01–7.88), P = 0.12. We show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities. PMID:25580640

  5. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    PubMed Central

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  6. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    NASA Astrophysics Data System (ADS)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06335c

  7. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  8. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    PubMed Central

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  9. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia.

    PubMed

    Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua

    2018-02-13

    Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    PubMed

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  11. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  12. Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin.

    PubMed

    Stollberg, Susann; Kämmerer, Daniel; Neubauer, Elisa; Schulz, Stefan; Simonitsch-Klupp, Ingrid; Kiesewetter, Barbara; Raderer, Markus; Lupp, Amelie

    2016-11-01

    Whereas the different somatostatin receptor (SSTR) subtypes and the chemokine receptor CXCR4 are known to be expressed in a wide variety of human malignancies, comprehensive data are still lacking for MALT-type lymphomas. Overall, 55 cases of MALT-type lymphoma of both gastric and extragastric origin were evaluated for the SSTR subtype and CXCR4 expression by means of immunohistochemistry using novel monoclonal rabbit antibodies. The stainings were rated by means of the immunoreactive score and correlated with clinical data. While the CXCR4 was detected in 92 % of the cases investigated, the SSTR subtypes were much less frequently present. The SSTR5 was expressed in about 50 % of the cases, followed by the SSTR3, the SSTR2A, the SSTR4 and the SSTR1, which were present in 35, 27, 18 or 2 %, respectively, of the tumors only. Gastric lymphomas displayed a significantly higher SSTR3, SSTR4 and SSTR5 expression than extragastric tumors. A correlation between CXCR4 and Ki-67 expression was seen in gastric lymphomas, whereas primarily in extragastric tumors SSTR5 negativity was associated with poor patient outcome. The CXCR4 may serve as a promising target for diagnostics and therapy of MALT-type lymphomas, while the SSTRs appear not suitable in this respect.

  13. Expression of the CXCR6 on polymorphonuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections

    PubMed Central

    Gaida, M M; Günther, F; Wagner, C; Friess, H; Giese, N A; Schmidt, J; Hänsch, G M; Wente, M N

    2008-01-01

    The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFα) was seen: brief exposure with low-dose TNFα induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN. PMID:18778363

  14. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival.

    PubMed

    Desurmont, Thibault; Skrypek, Nicolas; Duhamel, Alain; Jonckheere, Nicolas; Millet, Guillaume; Leteurtre, Emmanuelle; Gosset, Pierre; Duchene, Belinda; Ramdane, Nassima; Hebbar, Mohamed; Van Seuningen, Isabelle; Pruvot, François-René; Huet, Guillemette; Truant, Stéphanie

    2015-03-01

    Our aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen. Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients' outcome. CXCR2 and CXCL7 overexpression are correlated to shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2: treated group 1.89 (0.02-50.92) vs 0.55 (0.07-3.22), P = 0.016. CXCL7 was overexpressed close to significance, 0.40 (0.00-7.85) vs 0.15 (0.01-7.88), P = 0.12. We show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    PubMed

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  16. The expression of chemokine receptors CCR6, CXCR2 and CXCR4 is not organ-specific for distant metastasis in colorectal cancer: a comparative study.

    PubMed

    Hu, Dongzhi; Du, Changzheng; Xue, Weicheng; Dou, Fangyuan; Yao, Yunfeng; Gu, Jin

    2013-08-01

    The liver and lung are the organs most commonly affected by metastasis in colorectal cancer (CRC), and the interaction of chemokines and chemokine receptors (CKRs) plays an important role in the metastatic process. The aim of this study was to investigate the organ specificity of CKRs in CRC distant metastasis. Surgical specimens of primary tumours from 46 patients with metachronous distant metastases were retrieved retrospectively (20 lung metastases; 26 liver metastases). As a control, the records of 29 patients without distant metastases were randomly retrieved from our database, and their specimens were reassessed. The expression rates of CKRs, including CCR6, CXCR2, and CXCR4, were determined by immunohistochemistry, and were compared among the groups. The expression rates of CCR6 and CXCR2 were both significantly higher in the metastasis group than in the non-metastasis group (P < 0.05), but there was no statistical difference between the lung metastasis and liver metastasis subgroups. The expression of CXCR4 was not significantly different between the metastasis and non-metastasis groups. Multivariable analysis suggested that preoperative serum carcinoembryonic antigen level, CCR6 and CXCR2 were independent factors associated with distant metastasis. The expression of CCR6 and CXCR2 in CRC could predict metachronous distant metastasis, but they have no organ specificity for metastasis. © 2013 John Wiley & Sons Ltd.

  17. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats.

    PubMed

    Li, Lin; Chu, Lisheng; Fang, Yan; Yang, Yan; Qu, Tiebing; Zhang, Jianping; Yin, Yuanjun; Gu, Jingjing

    2017-05-12

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is one of the new therapeutic strategies for treating ischemic stroke. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limited the therapeutic potential of this approach. Pharmacological preconditioning can increase the expression of CXC chemokine receptor 4 (CXCR4) in BMSCs and enhance cell migration toward the injury site. In the present study, we investigated whether tetramethylpyrazine (TMP) preconditioning could enhance BMSCs migration to the ischemic brain and improve functional recovery through upregulating CXCR4 expression. BMSCs were identified by flow cytometry analysis. BMSCs migration was evaluated in vitro by transwell migration assay, and CXCR4 expression was measured by quantitative reverse transcription-polymerase chain reaction and western blot analysis. In rats with focal cerebral ischemia, the neurological function was evaluated by the modified neurological severity score, the adhesive removal test and the corner test. The homing BMSCs and angiogenesis were detected by immunofluorescence, and expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 was measured by western blot analysis. Flow cytometry analysis demonstrated that BMSCs expressed CD29 and CD90, but not CD34 and CD45. TMP pretreatment dose-dependently induced BMSCs migration and CXCR4 expression in vitro, which was significantly inhibited by AMD3100, a CXCR4 antagonist. In rat stroke models, we found more TMP-preconditioned BMSCs homing toward the infarcted regions than nonpreconditioned cells, leading to improved neurological performance and enhanced angiogenesis. Moreover, TMP-preconditioned BMSCs significantly upregulated the protein expression of SDF-1 and CXCR4 in the ischemic boundary regions. These beneficial effects of TMP preconditioning were blocked by AMD3100. TMP preconditioning enhances the migration and homing ability of BMSCs, increases CXCR4 expression, promotes angiogenesis, and improves neurological performance. Therefore, TMP preconditioning may be an effective strategy to improve the therapeutic potency of BMSCs for ischemic stroke due to enhanced BMSCs migration to ischemic regions.

  18. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production.

    PubMed

    Romagnani, Paola; Maggi, Laura; Mazzinghi, Benedetta; Cosmi, Lorenzo; Lasagni, Laura; Liotta, Francesco; Lazzeri, Elena; Angeli, Roberta; Rotondi, Mario; Filì, Lucia; Parronchi, Paola; Serio, Mario; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco

    2005-12-01

    Two variants of the CXCR3 receptor exist, one (CXCR3-A) reactive with CXCL9, CXCL10, and CXCL11 and the other (CXCR3-B) also reactive with CXCL4. Both variants are contemporarily expressed by human T cells. We sought to investigate the in vitro effects of CXCL10 and CXCL4 on the production of TH1 or TH2 cytokines. The cytokine profile of antigen-specific human CD4+ T-cell lines obtained in the absence or presence of CXCL10 or CXCL4 was evaluated by means of quantitative RT-PCR, flow cytometry, and ELISA. CXCL10 upregulated IFN-gamma and downregulated IL-4, IL-5, and IL-13 production, whereas CXCL4 downregulated IFN-gamma and upregulated TH2 cytokines. Similar effects were also observed on polyclonally activated pure naive CD4+ T cells. The opposite effects of CXCL10 and CXCL4 on TH1 and TH2 cytokine production were inhibited by an anti-CXCR3 antibody able to neutralize both CXCR3-A and CXCR3-B and were apparently related to the activation of distinct signal transduction pathways. Moreover, CXCL10 upregulated mRNA levels of T-box expressed in T cells and downregulated GATA-3 expression, whereas CXCL4 downregulated T-box expressed in T cells and upregulated GATA-3. Finally, CXCL4, but not CXCL10, induced direct activation of IL-5 and IL-13 promoters. CXCL10 and CXCL4 exert opposite effects on the production of human TH1 and TH2 cytokines, likely through their respective interaction with CXCR3-A or CXCR3-B and the consequent activation of different signal transduction pathways. This might represent an internal regulatory pathway of TH cell responses and might contribute to the modulation of chronic inflammatory reactions, including allergy.

  19. Histomorphologic parameters and CXCR4 mRNA and protein expression in sentinel node melanoma metastasis are correlated to clinical outcome.

    PubMed

    Franco, Renato; Cantile, Monica; Scala, Stefania; Catalano, Elisabetta; Cerrone, Margherita; Scognamiglio, Giosuè; Pinto, Antonio; Chiofalo, Maria Grazia; Caracò, Corrado; Anniciello, Anna Maria; Abbruzzese, Alberto; Caraglia, Michele; Botti, Gerardo

    2010-03-15

    Sentinel lymph node (SLN) biopsy is an important independent prognostic factor for invasive cutaneuos melanoma, although its role is strongly debated. In clinical practice SLN leads to complete lymph node dissection of basin draining melanoma site. However only 7-30% of positive sentinel node patients present additional non SLN metastasis. Melanoma cells diffusion through SLN and extranodal spreading depends upon biological features, such as cell chemokine receptors and adhesion molecules. CXCR4 has been proposed in melanoma patients as prognostic marker. Therefore we have analyzed both histopathological parameters and CXCR4 expression in melanoma infiltrate of SLN, in order to evaluate its potential prognostic role. Micrometastases were detected in 23 cases (48.93%); metastases >2 mm in 23 cases (48.93%) and isolated metastatic cells in one case (2.01%). High CXCR4 expression was observed in 21 nodal metastases. Node metastases in complete dissection were associated to >10% relative tumor area (RTA) in all lymph nodes (p = 0.006). Extranodal invasion (p = 0.006) and >2 mm centripetal metastasis thickness (p = 0.01), while shorter Disease Free Survival (DFS) was significantly associated to high CXCR4 expression (p = 0.02). Forty-seven positive lymph node metastases were collected and analysed for both histopathological parameters and CXCR4 expression. More than 10% RTA in SLN, extranodal invasion and centripetal metastasis thickness all predict additional lymph node metastases in melanoma site draining basins. Moreover, high CXCR4 expression is correlated to shorter DFS and could be used as a prognostic marker in order to stratify melanoma patients at higher progression risk.

  20. Human gingival fibroblasts express functional chemokine receptor CXCR6.

    PubMed

    Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T

    2009-06-01

    We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.

  1. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis.

    PubMed

    McDermott, David H; De Ravin, Suk See; Jun, Hyun Sik; Liu, Qian; Priel, Debra A Long; Noel, Pierre; Takemoto, Clifford M; Ojode, Teresa; Paul, Scott M; Dunsmore, Kimberly P; Hilligoss, Dianne; Marquesen, Martha; Ulrick, Jean; Kuhns, Douglas B; Chou, Janice Y; Malech, Harry L; Murphy, Philip M

    2010-10-14

    Mutations in more than 15 genes are now known to cause severe congenital neutropenia (SCN); however, the pathologic mechanisms of most genetic defects are not fully defined. Deficiency of G6PC3, a glucose-6-phosphatase, causes a rare multisystem syndrome with SCN first described in 2009. We identified a family with 2 children with homozygous G6PC3 G260R mutations, a loss of enzymatic function, and typical syndrome features with the exception that their bone marrow biopsy pathology revealed abundant neutrophils consistent with myelokathexis. This pathologic finding is a hallmark of another type of SCN, WHIM syndrome, which is caused by gain-of-function mutations in CXCR4, a chemokine receptor and known neutrophil bone marrow retention factor. We found markedly increased CXCR4 expression on neutrophils from both our G6PC3-deficient patients and G6pc3(-/-) mice. In both patients, granulocyte colony-stimulating factor treatment normalized CXCR4 expression and neutrophil counts. In G6pc3(-/-) mice, the specific CXCR4 antagonist AMD3100 rapidly reversed neutropenia. Thus, myelokathexis associated with abnormally high neutrophil CXCR4 expression may contribute to neutropenia in G6PC3 deficiency and responds well to granulocyte colony-stimulating factor.

  2. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    PubMed

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  3. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    PubMed

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-04-14

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.

  4. BAG3 promotes stem cell-like phenotype in breast cancer by upregulation of CXCR4 via interaction with its transcript.

    PubMed

    Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin

    2017-07-13

    BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44 + /CD24 - CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3'-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer.

  5. Antitumor effect of CXCR4 antagonist AMD3100 on the tumorigenic cell line of BHP10-3 papillary thyroid cancer cells.

    PubMed

    Jung, Young Ho; Lee, Doh Young; Cha, Wonjae; Kim, Bo Hae; Sung, Myung-Whun; Kim, Kwang Hyun; Ahn, Soon-Hyun

    2016-10-01

    A tumorigenic cell line (BHP10-3M) derived from nontumorigenic papillary thyroid carcinoma (PTC) cells (BHP10-3) having rearranged during transfection (RET)/PTC1 gene rearrangement might have a higher expression of CXCR4, either quantitatively or functionally. The authors also postulated that CXCR4-mediated invasion or tumorigenesis could be blocked by CXCR4 antagonists, including AMD3100. The expression of CXCR4 in BHP10-3 and BHP10-3M cells was assessed using immunoblot analysis, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). The effect of AMD3100 on BHP10-3 and BHP10-3M cell lines was evaluated using cell proliferation assay, invasion assay, and tumor growth experiment in nude mice. Immunoblotting, flow cytometry, and quantitative RT-PCR proved that BHP10-3M cells expressed a higher level of CXCR4 than BHP10-3 cells. Although blocking CXCR4 with AMD3100 did not suppress cell proliferation in both cell lines from 1 ng/mL to 100 ng/mL concentration, AMD3100 suppressed invasion of BHP10-3M cells in vitro in a dose-dependent manner. At higher concentrations from 10(3) ng/mL to 10(5) ng/mL, the proliferation of BHP10-3M cells was inhibited more strongly by AMD3100 than that of BHP10-3 cells. Intraperitoneal injection of AMD3100 inhibited tumor formation by BHP10-3M cells in the thyroid of nude mice. A tumorigenic cell line (BHP10-3M) of PTC showed higher expression of CXCR4 quantitatively and functionally than a nontumorigenic cell line (BHP10-3). The CXCR4 antagonist (AMD3100) showed a significant antitumor effect on the tumorigenic cell line of PTC BHP10-3 cells both in vitro and in vivo. CXCR4 antagonist can be expected to have an adjuvant role in the management of PTC. © 2016 Wiley Periodicals, Inc. Head Neck, 2016 © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1486, 2016. © 2016 Wiley Periodicals, Inc.

  6. CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver

    PubMed Central

    Stegmann, Kerstin A.; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J.; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R.; Kennedy, Patrick; Maini, Mala K.

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56brightCD16−CD57−), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6− fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bethiEomeslo(CXCR6−) and T-betloEomeshi(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bethiEomeslo, suggesting its lineage was closer to CXCR6− peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-betloEomeshi NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  7. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  8. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure.

    PubMed

    Gong, Qiaoqiao; Zhu, Yuejie; Pang, Nannan; Ai, Haiquan; Gong, Xiaoyun; La, Xiaolin; Ding, Jianbing

    2017-12-01

    In vitro fertilization-embryo transfer (IVF-ET) can be used by infertile couples to assist with reproduction; however, failure of the embryo to implant into the endometrial lining results in failure of the IVF treatment. The present study investigated the expression of chemokine receptor 7 (CCR7)(lo) programmed death-1(PD-1)(hi) chemokine receptor type 5 (CXCR5) + cluster of differentiation 4 (CD4) + T cells and associated factors in patients with repeated implantation failure (RIF). A total of 30 females with RIF and 30 healthy females were enrolled in the current study. Flow cytometry was used to detect the proportion of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells in the peripheral blood. Cytokine bead arrays were performed to detect the levels of interleukin (IL)-6, -4 and -2 in the serum. ELISAs were used to detect the level of IL-21 in the serum. Quantitative real time polymerase chain reaction analysis and immunohistochemistry were used to investigate the expression of B-cell lymphoma 6 (Bcl-6), chemokine receptor type 5 (CXCR5) and IL-21 in the endometrium. The results revealed that the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells was increased in the RIF group compared with the control group during the mid luteal phase. The mRNA and protein levels of Bcl-6, IL-21 and CXCR5 in the endometrium and the concentrations of IL-21 and IL-6 in the serum were significantly increased in the RIF group; however, no significant difference was observed between the two groups in regards to the expression of IL-4 and IL-2. Furthermore, a significant positive correlation was identified between the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and IL-21 and IL-6 levels. The expression of IL-21 also had a positive correlation with Bcl-6 and CXCR5 expression in the RIF group. These results suggest that increased levels of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and associated factors contribute to RIF and could therefore be a potential therapeutic target.

  9. Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling.

    PubMed

    Roggero, R; Robert-Hebmann, V; Harrington, S; Roland, J; Vergne, L; Jaleco, S; Devaux, C; Biard-Piechaczyk, M

    2001-08-01

    Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.

  10. Binding of Human Immunodeficiency Virus Type 1 gp120 to CXCR4 Induces Mitochondrial Transmembrane Depolarization and Cytochrome c-Mediated Apoptosis Independently of Fas Signaling

    PubMed Central

    Roggero, Rodolphe; Robert-Hebmann, Véronique; Harrington, Steve; Roland, Joachim; Vergne, Laurence; Jaleco, Sara; Devaux, Christian; Biard-Piechaczyk, Martine

    2001-01-01

    Apoptosis of CD4+ T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4+ T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4+ T-cell depletion in AIDS. PMID:11462036

  11. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model.

    PubMed

    Hartimath, S V; van Waarde, A; Dierckx, R A J O; de Vries, E F J

    2014-11-03

    The chemokine receptor CXCR4 and its ligand CXCL12 play an important role in tumor progression and metastasis. CXCR4 receptors are expressed by many cancer types and provide a potential target for treatment. Noninvasive detection of CXCR4 may aid diagnosis and improve therapy selection. It has been demonstrated in preclinical studies that positron emission tomography (PET) with a radiolabeled small molecule could enable noninvasive monitoring of CXCR4 expression. Here, we prepared N-[(11)C]methyl-AMD3465 as a new PET tracer for CXCR4. N-[(11)C]Methyl-AMD3465 was readily prepared by N-methylation with [(11)C]CH3OTf. The tracer was obtained in a 60 ± 2% yield (decay corrected), the purity of the tracer was >99%, and specific activity was 47 ± 14 GBq/μmol. Tracer stability was tested in vitro using liver microsomes and rat plasma; excellent stability was observed. The tracer was evaluated in rat C6 glioma and human PC-3 cell lines. In vitro cellular uptake of N-[(11)C]methyl-AMD3465 was receptor mediated. The effect of transition metal ions (Cu(2+), Ni(2+), and Zn(2+)) on cellular binding was examined in C6 cells, and the presence of these ions increased the cellular binding of the tracer 9-, 7-, and 3-fold, respectively. Ex vivo biodistribution and PET imaging of N-[(11)C]methyl-AMD3465 were performed in rats with C6 tumor xenografts. Both PET and biodistribution studies demonstrated specific accumulation of the tracer in the tumor (SUV 0.6 ± 0.2) and other CXCR4 expressing organs, such as lymph node (1.5 ± 0.2), liver (8.9 ± 1.0), bone marrow (1.0 ± 0.3), and spleen (1.0 ± 0.1). Tumor uptake was significantly reduced (66%, p < 0.01) after pretreatment with Plerixafor (AMD3100). Biodistribution data indicates a tumor-to-muscle ratio of 7.85 and tumor-to-plasma ratio of 1.14, at 60 min after tracer injection. Our data demonstrated that N-[(11)C]methyl-AMD3465 is capable of detecting physiologic CXCR4 expression in tumors and other CXCR4 expressing tissues. These results warrant further evaluation of N-[(11)C]methyl-AMD3465 as a potential PET tracer for CXCR4 receptor imaging.

  12. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenström macroglobulinaemia cells.

    PubMed

    Cao, Yang; Hunter, Zachary R; Liu, Xia; Xu, Lian; Yang, Guang; Chen, Jie; Tsakmaklis, Nickolas; Kanan, Sandra; Castillo, Jorge J; Treon, Steven P

    2015-03-01

    CXCR4(WHIM) frameshift and nonsense mutations follow MYD88(L265P) as the most common somatic variants in Waldenström Macroglobulinaemia (WM), and impact clinical presentation and ibrutinib response. While the nonsense (CXCR4(S338X) ) mutation has been investigated, little is known about CXCR4 frameshift (CXCR4(FS) ) mutations. We engineered WM cells to express CXCR4(FS) mutations present in patients, and compared their CXCL12 (SDF-1a) induced signalling and ibrutinib sensitivity to CXCR4(wild-type (WT)) and CXCR4(S338X) cells. Following CXCL12 stimulation, CXCR4(FS) and CXCR4(S338X) WM cells showed impaired CXCR4 receptor internalization, and enhanced AKT1 (also termed AKT) and MAPK1 (also termed ERK) activation versus CXCR(WT) cells (P < 0·05), though MAPK1 activation was more prolonged in CXCR4(S338X) cells (P < 0·05). CXCR4(FS) and CXCR4(S338X) cells, but not CXCR4(WT) cells, were rescued from ibrutinib-triggered apoptosis by CXCL12 that was reversed by AKT1, MAPK1 or CXCR4 antagonists. Treatment with an inhibitor that blocks MYD88(L265P) signalling triggered similar levels of apoptosis that was not abrogated by CXCL12 treatment in CXCR4(WT) and CXCR4(WHIM) cells. These studies show a functional role for CXCR4(FS) mutations in WM, and provide a framework for the investigation of CXCR4 antagonists with ibrutinib in CXCR4(WHIM) -mutated WM patients. Direct inhibition of MYD88(L265P) signalling overcomes CXCL12 triggered survival effects in CXCR4(WHIM) -mutated cells supporting a primary role for this survival pathway in WM. © 2014 John Wiley & Sons Ltd.

  13. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis.

    PubMed

    Armas-González, Estefanía; Domínguez-Luis, María Jesús; Díaz-Martín, Ana; Arce-Franco, Mayte; Castro-Hernández, Javier; Danelon, Gabriela; Hernández-Hernández, Vanesa; Bustabad-Reyes, Sagrario; Cantabrana, Alberto; Uguccioni, Mariagrazia; Díaz-González, Federico

    2018-06-07

    B cells exert their pathogenic action in rheumatoid arthritis (RA) locally in the synovium. This study was undertaken to elucidate the chemokines responsible for the recruitment of B cells in the inflamed synovium, taking into account that the rich chemokine milieu present in the synovial tissue can fine-tune modulate discrete chemokine receptors. Expression levels of chemokine receptors from the CC and CXC family, as well as CD27, were assessed by flow cytometry in CD20 + mononuclear cells isolated from the peripheral blood (PB) and synovial fluid (SF) of RA and psoriatic arthritis patients. Transwell experiments were used to study migration of B cells in response to a chemokine or in the presence of multiple chemokines. B cells from the SF of arthritis patients showed a significant increase in the surface expression of CCR1, CCR2, CCR4, CCR5 and CXCR4 with respect to PB. Conversely, SF B cells expressed consistently lower amounts of CXCR5, CXCR7 and CCR6, independent of CD27 expression. Analysis of permeabilized B cells suggested internalization of CXCR5 and CCR6 in SF B cells. In Transwell experiments, CCL20 and CXCL13, ligands of CCR6 and CXCR5, respectively, caused a significantly higher migration of B cells from PB than of those from SF of RA patients. Together, these two chemokines synergistically increased B-cell migration from PB, but not from SF. These results suggest that CXCL13 and CCL20 might play major roles in RA pathogenesis by acting singly on their selective receptors and synergistically in the accumulation of B cells within the inflamed synovium.

  14. The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis

    PubMed Central

    Meuris, Floriane; Carthagena, Laetitia; Cutolo, Pasquale; Xue, Yuezhen; Thierry, Françoise; Doorbar, John; Bachelerie, Françoise

    2016-01-01

    The productive human papillomavirus (HPV) life cycle is tightly linked to the differentiation and cycling of keratinocytes. Deregulation of these processes and stimulation of cell proliferation by the action of viral oncoproteins and host cell factors underlies HPV-mediated carcinogenesis. Severe HPV infections characterize the wart, hypogammaglobulinemia, infection, and myelokathexis (WHIM) immunodeficiency syndrome, which is caused by gain-of-function mutations in the CXCR4 receptor for the CXCL12 chemokine, one of which is CXCR41013. We investigated whether CXCR41013 interferes in the HPV18 life cycle in epithelial organotypic cultures. Expression of CXCR41013 promoted stabilization of HPV oncoproteins, thus disturbing cell cycle progression and proliferation at the expense of the ordered expression of the viral genes required for virus production. Conversely, blocking CXCR41013 function restored virus production and limited HPV-induced carcinogenesis. Thus, CXCR4 and its potential activation by genetic alterations in the course of the carcinogenic process can be considered as an important host factor for HPV carcinogenesis. PMID:27918748

  15. Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1 alpha-directed invasion of human basal cell carcinoma cells.

    PubMed

    Chu, C-Y; Cha, S-T; Chang, C-C; Hsiao, C-H; Tan, C-T; Lu, Y-C; Jee, S-H; Kuo, M-L

    2007-04-12

    Basal cell carcinoma (BCC) is one of the most common skin neoplasms in humans and is usually characterized by local aggressiveness with little metastatic potential, although deep invasion, recurrence, and regional and distant metastases may occur. Here, we studied the mechanism of BCC invasion. We found that human BCC tissues and a BCC cell line had significant expression of CXCR4, which was higher in invasive than non-invasive BCC types. Further, of 19 recurrent tumors among 390 BCCs diagnosed during the past 12 years, 17/19 (89.5%) had high CXCR4 expression. We found that the CXCR4 ligand, stromal-cell-derived factor 1alpha (SDF-1alpha), directed BCC invasion and that this was mediated by time-dependent upregulation of mRNA expression and gelatinase activity of matrix metalloproteinase-13 (MMP-13). The transcriptional regulation of MMP-13 by SDF-1alpha was mediated by phosphorylation of extracellular signal-related kinase 1/2 and activation of the AP-1 component c-Jun. Finally, CXCR4-transfected BCC cells injected into nude mice induced aggressive BCCs that co-expressed CXCR4 and MMP-13. The identification of SDF-1alpha/CXCR4 as an important factor in BCC invasiveness may contribute insight into mechanisms involved in the aggressive potential of human BCC and may improve therapy for invasive BCCs.

  16. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity.

    PubMed

    Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B

    2014-02-15

    C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.

  17. Consequences of ChemR23 Heteromerization with the Chemokine Receptors CXCR4 and CCR7

    PubMed Central

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed. PMID:23469143

  18. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    PubMed

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  19. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses

    PubMed Central

    Wetzel, Katherine S.; Yi, Yanjie; Bauer, Anya M.; Bibollet-Ruche, Frederic; Hahn, Beatrice H.; Paiardini, Mirko; Silvestri, Guido; Peeters, Martine; Collman, Ronald G.

    2018-01-01

    Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells with pathogenic consequences. PMID:29659623

  20. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses.

    PubMed

    Wetzel, Katherine S; Yi, Yanjie; Yadav, Anjana; Bauer, Anya M; Bello, Ezekiel A; Romero, Dino C; Bibollet-Ruche, Frederic; Hahn, Beatrice H; Paiardini, Mirko; Silvestri, Guido; Peeters, Martine; Collman, Ronald G

    2018-04-01

    Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells with pathogenic consequences.

  1. Role of Bruton's tyrosine kinase (BTK) in growth and metastasis of INA6 myeloma cells

    PubMed Central

    Bam, R; Venkateshaiah, S U; Khan, S; Ling, W; Randal, S S; Li, X; Zhang, Q; van Rhee, F; Barlogie, B; Epstein, J; Yaccoby, S

    2014-01-01

    Bruton's tyrosine kinase (BTK) and the chemokine receptor CXCR4 are linked in various hematologic malignancies. The aim of the study was to understand the role of BTK in myeloma cell growth and metastasis using the stably BTK knockdown luciferase-expressing INA6 myeloma line. BTK knockdown had reduced adhesion to stroma and migration of myeloma cells toward stromal cell-derived factor-1. BTK knockdown had no effect on short-term in vitro growth of myeloma cells, although clonogenicity was inhibited and myeloma cell growth was promoted in coculture with osteoclasts. In severe combined immunodeficient-rab mice with contralaterally implanted pieces of bones, BTK knockdown in myeloma cells promoted their proliferation and growth in the primary bone but suppressed metastasis to the contralateral bone. BTK knockdown myeloma cells had altered the expression of genes associated with adhesion and proliferation and increased mammalian target of rapamycin signaling. In 176 paired clinical samples, BTK and CXCR4 expression was lower in myeloma cells purified from a focal lesion than from a random site. BTK expression in random-site samples was correlated with proportions of myeloma cells expressing cell surface CXCR4. Our findings highlight intratumoral heterogeneity of myeloma cells in the bone marrow microenvironment and suggest that BTK is involved in determining proliferative, quiescent or metastatic phenotypes of myeloma cells. PMID:25083818

  2. A role for the CXCR4-CXCL12 axis in the little skate, Leucoraja erinacea.

    PubMed

    Hersh, Taylor A; Dimond, Alexandria L; Ruth, Brittany A; Lupica, Noah V; Bruce, Jacob C; Kelley, John M; King, Benjamin L; Lutton, Bram V

    2018-04-11

    The interaction between C-X-C chemokine receptor type 4 (CXCR4) and its cognate ligand, C-X-C motif chemokine ligand 12 (CXCL12), plays a critical role in regulating hematopoietic stem cell activation and subsequent cellular mobilization. Extensive studies of these genes have been conducted in mammals, but much less is known about the expression and function of CXCR4 and CXCL12 in non-mammalian vertebrates. In the present study, we identify simultaneous expression of CXCR4 and CXCL12 orthologues in the epigonal organ (the primary hematopoietic tissue) of the little skate, Leucoraja erinacea. Genetic and phylogenetic analyses were functionally supported by significant mobilization of leukocytes following administration of Plerixafor: a CXCR4 antagonist and clinically important drug. Our results provide evidence that, as in humans, Plerixafor disrupts CXCR4/CXCL12 binding in the little skate, facilitating release of leukocytes into the bloodstream. Our study illustrates the value of the little skate as a model organism, particularly in studies of hematopoiesis, and potentially for pre-clinical research on hematological and vascular disorders.

  3. microRNA-150 Regulates Mobilization and Migration of Bone Marrow-Derived Mononuclear Cells by Targeting Cxcr4

    PubMed Central

    Tano, Nobuko; Kim, Ha Won; Ashraf, Muhammad

    2011-01-01

    The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair. PMID:22039399

  4. BAG3 promotes stem cell-like phenotype in breast cancer by upregulation of CXCR4 via interaction with its transcript

    PubMed Central

    Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin

    2017-01-01

    BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44+/CD24− CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3′-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer. PMID:28703799

  5. Downregulation of CXCR6 and CXCR3 in lymphocytes from birch-allergic patients.

    PubMed

    Casas, R; Lindau, C; Zetterström, O; Duchén, K

    2008-09-01

    Preferential expression of chemokine receptors on Th1 or Th2 T-helper cells has mostly been studied in cell lines generated in vitro or in animal models; however, results are less well characterized in humans. We determined T-cell responses through chemokine receptor expression on lymphocytes, and cytokine secretion in plasma from birch-allergic and healthy subjects. The expression of CCR2, CCR3, CCR4, CCR5, CCR7, CXCR3, CXCR4, CXCR6, IL-12 and IL-18R receptors was studied on CD4(+) and CD8(+) cells from birch-allergic (n = 14) and healthy (n = 14) subjects by flow cytometry. The concentration of IL-4, IL-5, IL-10, IL-12, IFN-gamma and TNF-alpha cytokines was measured in plasma from the same individuals using a cytometric bead array human cytokines kit. The similar expression of CCR4 in T cells from atopic and healthy individuals argues against the use of the receptor as an in vivo marker of Th2 immune responses. Reduced percentages of CD4(+) cells expressing IL-18R, CXCR6 and CXCR3 were found in the same group of samples. TNF-alpha, IFN-gamma, IL-10, IL-5, IL-4 and IL-12 cytokines were elevated in samples from allergic individuals. Reduced expression of Th1-associated chemokine receptors together with higher levels of Th1, Th2 and anti-inflammatory cytokines in samples from allergic patients indicate that immune responses in peripheral blood in atopic diseases are complex and cannot be simplified to the Th1/Th2 paradigm. Not only the clinical picture of atopic diseases but also the clinical state at different time points of the disease might influence the results of studies including immunological markers associated with Th1- or Th2-type immune responses.

  6. The puzzling role of CXCR4 in human immunodeficiency virus infection.

    PubMed

    Vicenzi, Elisa; Liò, Pietro; Poli, Guido

    2013-01-01

    The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4(+) cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from some rare cases, two chemokine receptors have been evolutionarily selected to accomplish this need for HIV-1: CCR5 and CXCR4. Yet, usage of these two receptors appears to be neither casual nor simply explained by their levels of cell surface expression. While CCR5 use is the universal rule at the start of every infection regardless of the transmission route (blood-related, sexual or mother to child), CXCR4 utilization emerges later in disease coinciding with the immunological deficient phase of infection. Moreover, in most instances CXCR4 use as viral entry co-receptor is associated with maintenance of CCR5 use. Since antiviral agents preventing CCR5 utilization by the virus are already in use, while others targeting either CCR5 or CXCR4 (or both) are under investigation, understanding the biological correlates of this "asymmetrical" utilization of HIV entry co-receptors bears relevance for the clinical choice of which therapeutics should be administered to infected individuals. We will here summarize the basic knowledge and the hypotheses underlying the puzzling and yet unequivocal role of CXCR4 in HIV-1 infection.

  7. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia.

    PubMed

    Randhawa, Shubhchintan; Cho, Byung S; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E; Konopleva, Marina; Burger, Jan A

    2016-08-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. © 2016 John Wiley & Sons Ltd.

  8. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity.

    PubMed

    Vitale, Rosa Maria; Gatti, Monica; Carbone, Marianna; Barbieri, Federica; Felicità, Vera; Gavagnin, Margherita; Florio, Tullio; Amodeo, Pietro

    2013-12-20

    Here, we present a minimal hybrid ligand/receptor-based pharmacophore model (PM) for CXCR4, a chemokine receptor deeply involved in several pathologies, such as HIV infection, rheumatoid arthritis, cancer development/progression, and metastasization. This model, considerably simpler than those thus far proposed for this receptor, has been used to search for new CXCR4 inhibitors in a small marine natural product library available at ICB-CNR Institute (Pozzuoli, NA, Italy), since natural products, with their naturally selected chemical and functional diversity, represent a rich source of bioactive scaffolds; computational approaches allow searching for new scaffolds with a minimal waste of possibly precious natural product samples; and our "stripped-down" model substantially increases the probabilities of identifying potential hits even in small-sized libraries. This search, also validated by a systematic virtual screening of the same library, has led to the identification of a new CXCR4 ligand, phidianidine A (PHIA). Docking studies supported PHIA activity and suggested its possible binding modes to CXCR4. Using the CXCR4-expressing/CXCR7-negative GH4C1 cell line we show that PHIA inhibits CXCL12-induced DNA synthesis, cell migration, and ERK1/2 activation. The specificity of these effects was confirmed by the lack of PHIA activity in GH4C1 cells, in which siRNA highly reduces CXCR4 expression and the lack of cytoxicity of PHIA was also verified. Thus, PHIA represents a promising lead for a new family of CXCR4 modulators with wide margins of improvement in potency and specificity offered by the small and very simple underlying PM.

  9. CXCR4 and SDF1 expression in human meningiomas: a proliferative role in tumoral meningothelial cells in vitro.

    PubMed

    Bajetto, Adriana; Barbieri, Federica; Pattarozzi, Alessandra; Dorcaratto, Alessandra; Porcile, Carola; Ravetti, Jean Louis; Zona, Gianluigi; Spaziante, Renato; Schettini, Gennaro; Florio, Tullio

    2007-01-01

    Chemokines participate in cellular processes associated with tumor proliferation, migration, and angiogenesis. We previously demonstrated that stromal cell-derived factor 1 (SDF1) exerts a mitogenic activity in glioblastomas through the activation of its receptor CXCR4. Here we studied the expression of this chemokine in human meningiomas and its possible role in cell proliferation. Reverse transcriptase-PCR analysis for CXCR4 and SDF1 was performed on 55 human meningiomas (47 WHO grade I, 5 WHO II, and 3 WHO III). Immunolabeling for CXCR4 and SDF1 was performed on paraffin-embedded sections of these tumors. [(3)H]Thymidine uptake and Western blot analyses were performed on primary meningeal cell cultures of tumors to evaluate the proliferative activity of human SDF1alpha (hSDF1alpha) in vitro and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) activation in this process. CXCR4 mRNA was expressed by 78% of the tumor specimens and SDF1 mRNA by 53%. CXCR4 and SDF1 were often detected in the same tumor tissues and colocalized with epithelial membrane antigen immunostaining. In 9 of 12 primary cultures from meningiomas, hSDF1alpha induced significant cell proliferation that was strongly reduced by the mitogen-activated protein kinase kinase inhibitor PD98059, involving ERK1/2 activation in the proliferative signal of hSDF1alpha. In fact, CXCR4 stimulation led to ERK1/2 phosphorylation/activation. In addition, the hSDF1alpha-induced cell proliferation was significantly correlated with the MIB1 staining index in the corresponding surgical specimen. In conclusion, we found that human meningiomas express CXCR4 and SDF1 and that hSDF1alpha induces proliferation in primary meningioma cell cultures through the activation of ERK1/2.

  10. Expression of CXCR6 on CD8(+) T cells was up-regulated in allograft rejection.

    PubMed

    Jiang, Xiaofeng; Sun, Wenyu; Zhu, Lei; Guo, Dawei; Jiang, Honglei; Ma, Dongyan; Jin, Junzhe; Zhao, Yu; Liang, Jian

    2010-02-01

    CXCL16/SR-PSOX is a novel transmembrane-type chemokine, which was also identified as a novel scavenger receptor for oxidized low density lipoprotein. Its receptor CXCR6 expresses on activated CD8(+) T cells, type 1-polarized CD4(+), and constitutively expresses on NKT cells. Moreover, it has been shown that CXCL16 accumulated activated CD8(+) T cells to sites of inflammation. To date, the effect of CXCL16 (SR-PSOX)/CXCR6 on CD8(+) T cells and its role in allograft rejection/acceptance are not well understood. In the current study, we show that rejected allografts showed higher expressions of CXCR6 and CXCL16. More importantly, expression of CXCR6 on CD8(+) T cells was also up-regulated by rejection. However, the blockade of CXCL16(SR-PSOX)/CXCR6 interaction could not inhibit cytotoxic activity of CD8(+) T cells, and therefore, could not prolong the cardiac graft survival time. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation.

    PubMed

    Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M

    2016-01-01

    Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased susceptibility to infection in these patients.

  12. Chemokine Receptor Expression on Normal Blood CD56+ NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population

    PubMed Central

    Queirós, Maria Luís; Gonçalves, Marta; Fonseca, Sónia; Moura, João

    2015-01-01

    Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56+low CD16+ and CD56+high  CD16−/+low NK-cells. Conventional CD56+low and CD56+high NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56+low NK-cells are mainly CXCR1/CXCR2+ and CXCR3/CCR5−/+, whereas mostly CD56+high NK-cells are CXCR1/CXCR2− and CXCR3/CCR5+. Both NK-cell subsets have variable CXCR4 expression and are CCR4− and CCR6−. The CKR repertoire of the CD56+low NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56+high NK-cells mimics that of Th1+ T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56+int NK-cells. These NK-cells are CXCR3/CCR5+, they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57− and CD158a−. In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56+high and CD56+low NK-cells populations. PMID:26543875

  13. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis

    PubMed Central

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-01-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4–6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6+ T cells to 35–50% and anti-T-cell receptor (TCR) activation to 60–80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6+ T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6+ in virus-induced peritoneal exudates (∼47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6+, whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6+, but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge. PMID:17437534

  14. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis.

    PubMed

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-08-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.

  15. Preferential Use of CXCR4 by R5X4 Human Immunodeficiency Virus Type 1 Isolates for Infection of Primary Lymphocytes

    PubMed Central

    Yi, Yanjie; Shaheen, Farida; Collman, Ronald G.

    2005-01-01

    Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo. PMID:15650174

  16. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    PubMed

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  18. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes

    PubMed Central

    de Hoog, Hans-Peter M.; Lin JieRong, Esther M.; Banerjee, Sourabh; Décaillot, Fabien M.; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4. PMID:25329156

  19. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia.

    PubMed

    Cao, Y; Hunter, Z R; Liu, X; Xu, L; Yang, G; Chen, J; Patterson, C J; Tsakmaklis, N; Kanan, S; Rodig, S; Castillo, J J; Treon, S P

    2015-01-01

    CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

  20. CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2

    PubMed Central

    Bedognetti, D; Spivey, T L; Zhao, Y; Uccellini, L; Tomei, S; Dudley, M E; Ascierto, M L; De Giorgi, V; Liu, Q; Delogu, L G; Sommariva, M; Sertoli, M R; Simon, R; Wang, E; Rosenberg, S A; Marincola, F M

    2013-01-01

    Background: Adoptive therapy with tumour-infiltrating lymphocytes (TILs) induces durable complete responses (CR) in ∼20% of patients with metastatic melanoma. The recruitment of T cells through CXCR3/CCR5 chemokine ligands is critical for immune-mediated rejection. We postulated that polymorphisms and/or expression of CXCR3/CCR5 in TILs and the expression of their ligands in tumour influence the migration of TILs to tumours and tumour regression. Methods: Tumour-infiltrating lymphocytes from 142 metastatic melanoma patients enrolled in adoptive therapy trials were genotyped for CXCR3 rs2280964 and CCR5-Δ32 deletion, which encodes a protein not expressed on the cell surface. Expression of CXCR3/CCR5 in TILs and CXCR3/CCR5 and ligand genes in 113 available parental tumours was also assessed. Tumour-infiltrating lymphocyte data were validated by flow cytometry (N=50). Results: The full gene expression/polymorphism model, which includes CXCR3 and CCR5 expression data, CCR5-Δ32 polymorphism data and their interaction, was significantly associated with both CR and overall response (OR; P=0.0009, and P=0.007, respectively). More in detail, the predicted underexpression of both CXCR3 and CCR5 according to gene expression and polymorphism data (protein prediction model, PPM) was associated with response to therapy (odds ratio=6.16 and 2.32, for CR and OR, respectively). Flow cytometric analysis confirmed the PPM. Coordinate upregulation of CXCL9, CXCL10, CXCL11, and CCL5 in pretreatment tumour biopsies was associated with OR. Conclusion: Coordinate overexpression of CXCL9, CXCL10, CXCL11, and CCL5 in pretreatment tumours was associated with responsiveness to treatment. Conversely, CCR5-Δ32 polymorphism and CXCR3/CCR5 underexpression influence downregulation of the corresponding receptors in TILs and were associated with likelihood and degree of response. PMID:24129241

  1. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Zhang, Aijun; Tao, Changbo

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study wasmore » designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.« less

  2. Characterization of human immunodeficiency virus type 1 populations containing CXCR4-using variants from recently infected individuals.

    PubMed

    Huang, Wei; Toma, Jonathan; Stawiski, Eric; Fransen, Signe; Wrin, Terri; Parkin, Neil; Whitcomb, Jeannette M; Coakley, Eoin; Hecht, Frederick M; Deeks, Steven G; Gandhi, Rajesh T; Eshleman, Susan H; Petropoulos, Christos J

    2009-08-01

    We screened 150 individuals from two recent seroconverter cohorts and found that six (4%) had CXCR4-using viruses. Clonal analysis of these six individuals, along with a seventh individual identified during clinical care as a recent seroconverter, revealed the presence of both X4- and dual-tropic variants in these recently infected adults. The ability of individual CXCR4-using variants to infect cells expressing CD4/CXCR4 or CD4/CCR5 varied dramatically. These data demonstrate that virus populations in some newly infected individuals can consist of either heterogeneous populations containing both CXCR4-using and CCR5-tropic viruses, or homogeneous populations containing only CXCR4-using viruses. The presence of CXCR4-using viruses at early stages of infection suggests that testing for viral tropism before using CCR5 antagonists may be important even in persons with known recent infection. The presence of CXCR4-using viruses in a subset of newly infected individuals could impact the efficacies of vaccine and microbicide strategies that target CCR5-tropic viruses.

  3. Characterization of Human Immunodeficiency Virus Type 1 Populations Containing CXCR4-Using Variants from Recently Infected Individuals

    PubMed Central

    Toma, Jonathan; Stawiski, Eric; Fransen, Signe; Wrin, Terri; Parkin, Neil; Whitcomb, Jeannette M.; Coakley, Eoin; Hecht, Frederick M.; Deeks, Steven G.; Gandhi, Rajesh T.; Eshleman, Susan H.; Petropoulos, Christos J.

    2009-01-01

    Abstract We screened 150 individuals from two recent seroconverter cohorts and found that six (4%) had CXCR4-using viruses. Clonal analysis of these six individuals, along with a seventh individual identified during clinical care as a recent seroconverter, revealed the presence of both X4- and dual-tropic variants in these recently infected adults. The ability of individual CXCR4-using variants to infect cells expressing CD4/CXCR4 or CD4/CCR5 varied dramatically. These data demonstrate that virus populations in some newly infected individuals can consist of either heterogeneous populations containing both CXCR4-using and CCR5-tropic viruses, or homogeneous populations containing only CXCR4-using viruses. The presence of CXCR4-using viruses at early stages of infection suggests that testing for viral tropism before using CCR5 antagonists may be important even in persons with known recent infection. The presence of CXCR4-using viruses in a subset of newly infected individuals could impact the efficacies of vaccine and microbicide strategies that target CCR5-tropic viruses. PMID:19678765

  4. Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction.

    PubMed

    Saini, Vikas; Marchese, Adriano; Tang, Wei-Jen; Majetschak, Matthias

    2011-12-23

    Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.

  5. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values.

    PubMed

    Lapa, Constantin; Schreder, Martin; Schirbel, Andreas; Samnick, Samuel; Kortüm, Klaus Martin; Herrmann, Ken; Kropf, Saskia; Einsele, Herrmann; Buck, Andreas K; Wester, Hans-Jürgen; Knop, Stefan; Lückerath, Katharina

    2017-01-01

    Chemokine (C-X-C motif) receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer including multiple myeloma (MM). Proof-of-concept of CXCR4-directed radionuclide therapy in MM has recently been reported. This study assessed the diagnostic performance of the CXCR4-directed radiotracer [ 68 Ga]Pentixafor in MM and a potential role for stratifying patients to CXCR4-directed therapies. Thirty-five patients with MM underwent [ 68 Ga]Pentixafor-PET/CT for evaluation of eligibility for endoradiotherapy. In 19/35 cases, [ 18 F]FDG-PET/CT for correlation was available. Scans were compared on a patient and on a lesion basis. Tracer uptake was correlated with standard clinical parameters of disease activity. [ 68 Ga]Pentixafor-PET detected CXCR4-positive disease in 23/35 subjects (66%). CXCR4-positivity at PET was independent from myeloma subtypes, cytogenetics or any serological parameters and turned out as a negative prognostic factor. In the 19 patients in whom a comparison to [ 18 F]FDG was available, [ 68 Ga]Pentixafor-PET detected more lesions in 4/19 (21%) subjects, [ 18 F]FDG proved superior in 7/19 (37%). In the remaining 8/19 (42%) patients, both tracers detected an equal number of lesions. [ 18 F]FDG-PET positivity correlated with [ 68 Ga]Pentixafor-PET positivity (p=0.018). [ 68 Ga]Pentixafor-PET provides further evidence that CXCR4 expression frequently occurs in advanced multiple myeloma, representing a negative prognostic factor and a potential target for myeloma specific treatment. However, selecting patients for CXCR4 directed therapies and prognostic stratification seem to be more relevant clinical applications for this novel imaging modality, rather than diagnostic imaging of myeloma.

  6. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis?

    PubMed Central

    Urra, Soledad; Fischer, Martin C.; Martínez, José R.; Véliz, Loreto; Orellana, Paulina; Solar, Antonieta; Bohmwald, Karen; Kalergis, Alexis; Riedel, Claudia; Corvalán, Alejandro H.; Roa, Juan C.; Fuentealba, Rodrigo; Cáceres, C. Joaquin; López-Lastra, Marcelo; León, Augusto; Droppelmann, Nicolás; González, Hernán E.

    2018-01-01

    Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies. PMID:29416784

  7. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway.

    PubMed

    Wang, Jianhua; Lu, Yi; Wang, Jingchen; Koch, Alisa E; Zhang, Jian; Taichman, Russell S

    2008-12-15

    Previous studies show that the chemokine CXCL16 and its receptor CXCR6 are likely to contribute to prostate cancer (PCa). In this investigation, the role of the CXCR6 receptor in PCa was further explored. CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 showed strong epithelial staining that correlated with Gleason score. In vitro and in vivo studies in PCa cell lines suggested that alterations in CXCR6 expression were associated with invasive activities and tumor growth. In addition, CXCR6 expression was able to regulate expression of the proangiogenic factors interleukin (IL)-8 or vascular endothelial growth factor (VEGF), which are likely to participate in the regulation of tumor angiogenesis. Finally, we found that CXCL16 signaling induced the activation of Akt, p70S6K, and eukaryotic initiation factor 4E binding protein 1 included in mammalian target of rapamycin (mTOR) pathways, which are located downstream of Akt. Furthermore, rapamycin not only drastically inhibited CXCL16-induced PCa cell invasion and growth but reduced secretion of IL-8 or VEGF levels and inhibited expression of other CXCR6 targets including CD44 and matrix metalloproteinase 3 in PCa cells. Together, our data shows for the first time that the CXCR6/AKT/mTOR pathway plays a central role in the development of PCa. Blocking the CXCR6/AKT/mTOR signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for PCa.

  8. CCR7 and CXCR4 Expression in Primary Head and Neck Squamous Cell Carcinomas and Nodal Metastases – a Clinical and Immunohistochemical Study

    PubMed Central

    Al-Jokhadar, Maya; Al-Mandily, Ahmad; Zaid, Khaled; Maalouf, Elie Azar

    2017-01-01

    Background: Squamous cell carcinomas (SCCs) are common head and neck malignancies demonstrating lymph node LN involvement. Recently chemokine receptor overxpression has been reported in many cancers. Of particular interest, CCR7 appears to be a strong mediator of LN metastases, while CXCR4 may mediate distant metastases. Any relations between their expression in primary HNSCCs and metastatic lymph nodes need to be clarified. Aims: To investigate CCR7 andCXCR4 expression in primary HNSCCs of all tumor sizes, clinical stages and histological grades, as well as involved lymph nodes, then make comparisons, also with control normal oral epithelium. Materials and Methods: The sample consisted of 60 formalin-fixed, paraffin-embedded specimens of primary HNSCCs, 77 others of metastasi-positive lymph nodes, and 10 of control normal oral epithelial tissues. Sections were conventionally stained with H&E and immunohistochemically with monoclonal anti-CCR7 and monoclonal anti-CXCR4 antibodies. Positive cells were counted under microscopic assessment in four fields (X40) per case. Results: There was no variation among primary HNSCC tumors staining positive for CCR7 and CXCR4 with tumor size of for CCR7 with lymph node involvement. However, a difference was noted between primary HNSCC tumors stained by CXCR4 with a single as compared to more numerous node involvement. CXCR4 appear to vary with the clinical stagebut no links were noted with histological grades. Staining for primary HNSCC tumors and metastatic lymph nodes correlated. PMID:28547946

  9. [Role of CXCL16/CXCR6 axis in the metastasis of human prostate cancer].

    PubMed

    Zhou, Wen-hui; Hu, Wei-dong; Wu, Zhou-qing; Zheng, Xin-min; Wang, Bi-cheng

    2010-04-13

    To explore the roles of chemokine CXCL16 and its receptor CXCR6 in the directional invasion of human prostate cancer (PCa). The expression of CXCL16/CXCR6 in PCa samples and osseous tissues was determined by immunohistochemistry. The expression of CXCR6 in PC3 and LNCap cells was determined by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. Then the effects of CXCL16 upon the migration and invasion of human PC3 and LNCap cells were examined by Matrigel invasion assay. The expression of CXCR6 protein was detected in all clinical PCa samples. But no CXCL16 protein was detected. Positive CXCL16 expression was observed in human osseous tissues. Both PC3 and LNCap cells expressed CXCR6 mRNA (0.38+/-0.054 vs 0.41+/-0.019 respectively) and protein. In addition, CXCL16 could promote the in vitro migration and invasion of PC3 and LNCap cell lines (invading cells 211.50+/-5.60 vs 89.25+/-3.31 respectively). Such a promoting effect of CXCL16 could not be blocked influenced by antiCXCL12 or antiCXCR4. CXCL16/CXCR6 axis may be another independent chemokine factor playing a significant role in the metastasis of prostate cancer.

  10. Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression.

    PubMed

    Liang, Zhongxing; Bian, Xuehai; Shim, Hyunsuk

    2014-08-01

    Metastasis remains a main cause of mortality from breast cancer and an unresolved issue. The purpose of this study is to investigate the role of miR-302a in the development of breast cancer metastasis mediated by CXCR4, a critical regulator of metastasis, and to identify miR-302a as an effective therapeutic agent for therapy and prevention of breast cancer metastasis. Our studies show that miR-302a expression levels were downregulated in metastatic breast cancer cells and tumor tissues. Additionally, the expression levels of miR-302a were inversely correlated with CXCR4 levels. More promisingly, miR-302a inhibited the invasion and metastasis of breast cancer cells in vitro and in vivo and reduced the expression of CXCR4. Our findings demonstrated that the repression of miR-302a levels contributes to breast cancer metastasis and restoration of miR-302a baseline expression inhibits the invasion and metastasis of breast cancer cells. These data suggest that miR-302a mimics are potential therapeutic agents for breast cancer metastasis.

  11. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors.

    PubMed

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2(-/-) Cxcr6(Gfp/+) reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow.

  12. Mechanisms regulating cell membrane localization of the chemokine receptor CXCR4 in human hepatocarcinoma cells.

    PubMed

    Cepeda, Edgar B; Dediulia, Tatjana; Fernando, Joan; Bertran, Esther; Egea, Gustavo; Navarro, Estanislao; Fabregat, Isabel

    2015-05-01

    Hepatocellular carcinoma (HCC) cells with a mesenchymal phenotype show an asymmetric subcellular distribution of the chemokine receptor CXCR4, which is required for cell migration and invasion. In this work we examine the mechanisms that regulate the intracellular trafficking of CXCR4 in HCC cells. Results indicate that HCC cells present CXCR4 at the cell surface, but most of this protein is in endomembranes colocalizing with markers of the Golgi apparatus and recycling endosomes. The presence of high protein levels of CXCR4 present at the cell surface correlates with a mesenchymal-like phenotype and a high autocrine activation of the Transforming Growth Factor-beta (TGF-β) pathway. CXCR4 traffics along the Golgi/exocyst/plasma membrane pathway and requires EXOC4 (Sec8) component of the exocyst complex. HCC cells use distinct mechanisms for the CXCR4 internalization such as dynamin-dependent endocytosis and macropinocytosis. Regardless of the endocytic mechanisms, colocalization of CXCR4 and Rab11 is observed, which could be involved not only in receptor recycling but also in its post-Golgi transport. In summary, this work highlights membrane trafficking pathways whose pharmacological targeting could subsequently result in the inactivation of one of the main guiding mechanisms used by metastatic cells to colonize secondary organs and tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity.

    PubMed

    Nagafuchi, Yasuo; Shoda, Hirofumi; Sumitomo, Shuji; Nakachi, Shinichiro; Kato, Rika; Tsuchida, Yumi; Tsuchiya, Haruka; Sakurai, Keiichi; Hanata, Norio; Tateishi, Shoko; Kanda, Hiroko; Ishigaki, Kazuyoshi; Okada, Yukinori; Suzuki, Akari; Kochi, Yuta; Fujio, Keishi; Yamamoto, Kazuhiko

    2016-07-07

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to destructive arthritis. Although the HLA class II locus is the strongest genetic risk factor for rheumatoid arthritis, the relationship between HLA class II alleles and lymphocyte activation remains unclear. We performed immunophenotyping of peripheral blood mononuclear cells on 91 HLA-DRB1-genotyped RA patients and 110 healthy donors. The frequency of memory CXCR4(+)CD4(+) T cells, and not Th1 and Th17 cells, was significantly associated with disease severity by multiple linear regression analysis. RA patients with one or more susceptible HLA-DR haplotypes (shared epitope: SE) displayed a significantly higher frequency of memory CXCR4(+)CD4(+) T cells. Moreover, the frequency of memory CXCR4(+)CD4(+) T cells significantly correlated with the expression level of HLA-DR on B cells, which was elevated in RA patients with SE. In vitro analysis and transcriptomic pathway analysis suggested that the interaction between HLA-DR and T cell receptors is an important regulator of memory CXCR4(+)CD4(+) T cells. Clinically, a higher frequency of memory CXCR4(+)CD4(+) T cells predicted a better response to CTLA4-Ig. Memory CXCR4(+)CD4(+) T cells may serve as a powerful biomarker for unraveling the linkage between HLA-DRB1 genotype and disease activity in RA.

  14. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment.

    PubMed

    Scala, Stefania

    2015-10-01

    Evidence suggests that the CXC-chemokine receptor-4 pathway plays a role in cancer cell homing and metastasis, and thus represents a potential target for cancer therapy. The homeostatic microenvironment chemokine CXCL12 binds the CXCR4 and CXCR7 receptors, activating divergent signals on multiple pathways, such as ERK1/2, p38, SAPK/JNK, AKT, mTOR, and the Bruton tyrosine kinase (BTK). An activating mutation in CXCR4 is responsible for a rare disease, WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis), and dominant CXCR4 mutations have also been reported in Waldenstrom macroglobulinemia. The CXCR4-CXCL12 axis regulates the hematopoietic stem cell niche--a property that has led to the approval of the CXCR4 antagonist plerixafor (AMD3100) for mobilization of hematopoietic precursors. In preclinical models, plerixafor has shown antimetastatic potential in vivo, offering proof of concept. Other antagonists are in preclinical and clinical development. Recent evidence demonstrates that inhibiting CXCR4 signaling restores sensitivity to CTLA-4 and PD-1 checkpoint inhibitors, creating a new line for investigation. Targeting the CXCR4-CXCL12 axis thus offers the possibility of affecting CXCR4-expressing primary tumor cells, modulating the immune response, or synergizing with other targeted anticancer therapies. ©2015 American Association for Cancer Research.

  15. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis

    PubMed Central

    Marquez-Curtis, Leah A.

    2013-01-01

    Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair. PMID:24381939

  16. Transmembrane tumor necrosis factor-α promotes the recruitment of MDSCs to tumor tissue by upregulating CXCR4 expression via TNFR2.

    PubMed

    Ba, Hongping; Li, Baihua; Li, Xiaoyan; Li, Cheng; Feng, Anlin; Zhu, Yazhen; Wang, Jing; Li, Zhuoya; Yin, Bingjiao

    2017-03-01

    Myeloid-derived suppressor cells (MDSCs) accumulated in tumor sites promote immune evasion. We found that TNFR deficiency-induced rejection of transplanted tumor was accompanied with markedly decreased accumulation of MDSCs. However, the mechanism(s) behind this phenomenon is not completely understood. Here, we demonstrated that TNFR deficiency did not affect the amount of MDSCs in bone marrow (BM), but decreased accumulation of Gr-1 + CD11b + MDSCs in the spleen and tumor tissues. The chemotaxis of Tnfr -/- MDSCs was prominently decreased in response to both tumor cell culture supernatants and tumor tissue homogenates from Tnfr -/- and wild-type mice, indicating an effect of TNFR signaling on chemokine receptor expression in MDSCs. We used real-time PCR to detect gene expression for several chemokine receptors in MDSCs from BM and found that CXCR4 was the most affected molecule at the transcriptional level in Tnfr -/- MDSCs. Neutralizing CXCR4 in wild-type MDSCs by a specific antibody blocked their chemotactic migration. Interestingly, it was tmTNF-α, but not sTNF-α, that induced CXCR4 expression in MDSCs. This effect of tmTNF-α was totally blocked in TNFR2 -/- but not in TNFR1 -/- MDSCs, and partially inhibited by PDTC or SB203580, an inhibitor of NF-κB or p38 MAPK pathway, respectively. Adoptive transfer of wild-type MDSCs restored MDSCs accumulation in tumors of Tnfr -/- mice, but this could be partially blocked by treatment with a CXCR4 inhibitor AMD3100. Our data suggest that tmTNF-α upregulates CXCR4 expression that promotes chemotaxis of MDSCs to tumor, and give a new insight into a novel mechanism by which tmTNF-α facilitates tumor immune evasion. Copyright © 2016. Published by Elsevier B.V.

  17. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis.

    PubMed

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui; Huang, Jiansheng; Liu, Xiangyuan

    2012-12-14

    The receptor activator of nuclear factor-κB ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions

    PubMed Central

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-01-01

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  19. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    PubMed Central

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  20. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity. © 2012 Wiley Periodicals, Inc.

  1. CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner

    PubMed Central

    Abdelouahab, Hadjer; Zhang, Yanyan; Wittner, Monika; Oishi, Shinya; Fujii, Nobutaka; Besancenot, Rodolphe; Plo, Isabelle; Ribrag, Vincent; Solary, Eric; Vainchenker, William; Barosi, Giovanni; Louache, Fawzia

    2017-01-01

    JAK2 activation is the driver mechanism in BCR-ABL-negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites. The present study explores the crosstalk between JAK2 and CXCL12/CXCR4 signaling pathways in MPN. We show that JAK2, activated by either MPL-W515L expression or cytokine stimulation, cooperates with CXCL12/CXCR4 signaling to increase the chemotactic response of human cell lines and primary CD34+ cells through an increased phosphatidylinositol-3-kinase (PI3K) signaling. Accordingly, primary myelofibrosis (MF) patient cells demonstrate an increased CXCL12-induced chemotaxis when compared to controls. JAK2 inhibition by knock down or chemical inhibitors decreases this effect in MPL-W515L expressing cell lines and reduces the CXCL12/CXCR4 signaling in some patient primary cells. Taken together, these data indicate that CXCL12/CXCR4 pathway is overactivated in MF patients by oncogenic JAK2 that maintains high PI3K signaling over the threshold required for CXCR4 activation. These results suggest that inhibition of this crosstalk may contribute to the therapeutic effects of JAK2 inhibitors. PMID:28903325

  2. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4.

    PubMed

    Ward, Stacey A; Warrington, Nicole M; Taylor, Sara; Kfoury, Najla; Luo, Jingqin; Rubin, Joshua B

    2017-03-15

    The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR . ©2016 American Association for Cancer Research.

  3. Targeting the CXCR4-CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via PD-L1

    PubMed Central

    Fiorina, Paolo; Jurewicz, Mollie; Vergani, Andrea; Petrelli, Alessandra; Carvello, Michele; D’Addio, Francesca; Godwin, Jonathan G.; Law, Kenneth; Wu, Erxi; Tian, Ze; Thoma, Gebhard; Kovarik, Jiri; La Rosa, Stefano; Capella, Carlo; Rodig, Scott; Zerwes, Hans-Guenter; Sayegh, Mohamed H.; Abdi, Reza

    2012-01-01

    Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on HSCs and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of hematopoietic stem cells (HSCs) to the periphery. Due to their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of Rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative co-stimulatory molecule PD-L1, and HSCs extracted from WT mice, but not from PD-L1 KO, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 KO mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism. PMID:21131428

  4. Microenvironmental regulation of chemokine (C-X-C-motif) receptor 4 in ovarian carcinoma.

    PubMed

    Barbolina, Maria V; Kim, Mijung; Liu, Yueying; Shepard, Jaclyn; Belmadani, Abdelhak; Miller, Richard J; Shea, Lonnie D; Stack, M Sharon

    2010-05-01

    The majority of women diagnosed with epithelial ovarian carcinoma (EOC) succumb due to complications of metastatic disease, suggesting that antimetastatic therapies may improve patient survival. EOC metastasis involves intraperitoneal shedding of cells from the primary tumor, followed by adhesion and localized penetration of the submesothelial matrix to anchor metastatic implants. Accumulation of malignant ascites is also common. Thus, a unique microenvironmental niche is established, which includes malignant cells and a plethora of soluble factors secreted by-or in response to-tumor cells. As cells penetrating the submesothelial surface encounter an interstitial collagen-rich extracellular matrix, we have used three-dimensional type I collagen gels to model early events resulting from intraperitoneal anchoring. In this study, we show a novel pathway of CXCR4 upregulation through beta1 integrin - and NFkappaB-dependent signaling pathways in response to three-dimensional type I collagen. We also show the involvement of CXCR4-SDF1 axis in collagen invasion and proliferation, relevant to the metastatic EOC. Our data show that CXCR4 expression in human EOCs, as well as SDF1 presence in the ascites, is correlated with disease progression and metastasis. These data emphasize the importance of the CXCR4-SDF1 axis in EOC metastasis and suggest that this mechanism should be accounted for when targeting EOC metastasis.

  5. Dimethyl Sulfoxide (DMSO) Increases Percentage of CXCR4(+) Hematopoietic Stem/Progenitor Cells, Their Responsiveness to an SDF-1 Gradient, Homing Capacities, and Survival.

    PubMed

    Jarocha, Danuta; Zuba-Surma, Ewa; Majka, Marcin

    2016-01-01

    Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.

  6. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors

    PubMed Central

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2 −/− Cxcr6 Gfp/+ reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow. PMID:26494947

  7. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    PubMed

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  8. Plerixafor Improves Primary Tumor Response and Reduces Metastases in Cervical Cancer Treated with Radio-Chemotherapy.

    PubMed

    Chaudary, Naz; Pintilie, Melania; Jelveh, Salomeh; Lindsay, Patricia; Hill, Richard P; Milosevic, Michael

    2017-03-01

    Purpose: There is an important need to improve the effectiveness of radio-chemotherapy (RTCT) for cervical cancer. The CXCL12/CXCR4 pathway can influence RT response by recruiting normal myeloid cells to the tumor microenvironment that in turn can exert radioprotective effects, and may promote metastases. The objective of this study was to explore the efficacy and toxicity of combining RTCT with CXCL12/CXCR4 inhibition in cervical cancer. Experimental Design: CXCR4 expression was measured in 115 patients with cervical cancer. Two primary orthotopic cervical cancer xenografts (OCICx) with different levels of CXCR4 expression were treated with RT (30 Gy: 15 daily fractions) and weekly cisplatin (4 mg/kg), with or without the CXCR4 inhibitor Plerixafor (5 mg/kg/day). The endpoints were tumor growth delay and lymph node metastases. Acute intestinal toxicity was assessed using a crypt cell assay. Results: There was a fivefold variation in CXCR4 mRNA expression in the patient samples, and good correlation between the expression in patients and in the xenografts. The combination of RTCT and Plerixafor produced substantial tumor growth delay and reduced lymph node metastases compared with RTCT alone in both of the xenograft models. There was a trend toward reduced acute intestinal toxicity with the addition of Plerixafor to RTCT. There were no changes in normal organ morphology to suggest increased late toxicity. Conclusions: This study demonstrates that the addition of Plerixafor to standard RTCT improves primary tumor response and reduces metastases in cervical cancer with no increase in toxicity. This combination warrants further investigation in phase I/II clinical trials. Clin Cancer Res; 23(5); 1242-9. ©2016 AACR . ©2016 American Association for Cancer Research.

  9. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  10. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  11. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    PubMed

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  12. The Chemokine Receptor CXCR6 Is Required for the Maintenance of Liver Memory CD8+ T Cells Specific for Infectious Pathogens

    PubMed Central

    Tse, Sze-Wah; Radtke, Andrea J.; Espinosa, Diego A.; Cockburn, Ian A.; Zavala, Fidel

    2014-01-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8+ T cells that eliminate parasite-infected hepatocytes. Liver memory CD8+ T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8+ T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8+ T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8+ T cells in the liver. PMID:24823625

  13. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    PubMed

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changhong; Zhao, Jinxia; Sun, Lin

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which maymore » be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.« less

  15. Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4.

    PubMed

    Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu

    2010-09-01

    We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.

  16. Repopulating hematopoietic stem cells from steady-state blood before and after ex vivo culture are enriched in CD34+CD133+CXCR4low fraction.

    PubMed

    Lapostolle, Véronique; Chevaleyre, Jean; Duchez, Pascale; Rodriguez, Laura; Vlaski-Lafarge, Marija; Sandvig, Ioanna; Brunet de la Grange, Philippe; Ivanovic, Zoran

    2018-06-01

    Feasibility of ex vivo expansion allows us to consider the steady-state peripheral blood as an alternative source of hematopoietic stem progenitor cells for transplantation when growth factor-induced cell mobilization is contraindicated or inapplicable. Ex vivo expansion dramatically enhances the in vivo reconstituting cell population from steady-state blood. In order to investigate phenotype and the expression of homing molecules, CD34, CD133, CD90, CD45RA, CD26 and CD9 expression was determined on sorted CD34+ cells according to CXCR4 (neg, low, bright) and CD133 expression before and after ex vivo expansion. Hematopoietic stem cell activity was determined in vivo on the basis of hematopoietic repopulation of primary and secondary recipients - NSG immuno-deficient mice. In vivo reconstituting cells in steady-state blood CD34+ cell fraction before expansion belong to the CD133+ population and are CXCR4low or, to a lesser extent, CXCR4neg, while after ex vivo expansion they are contained in only the CD133+CXCR4low cells. The failure of CXCR4bright population to engraft is probably due to the exclusive expression of CD26 by these cells. The limiting-dilution analysis showed that both repopulating cell number and individual proliferative capacity were enhanced by ex vivo expansion. Thus, steady-state peripheral blood cells exhibit a different phenotype compared to mobilized and cord blood ones, as well as to those issued from the bone marrow. This data represent the first phenotypic characterization of steady-state blood cells exhibiting short and long term hematopoietic reconstituting potential, which can be expanded ex vivo, a sine qua non for their subsequent use for transplantation. Copyright © 2018, Ferrata Storti Foundation.

  17. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    PubMed

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  18. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    PubMed

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  19. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  20. CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model.

    PubMed

    Kim, MiJung; Kim, Dong-Ik; Kim, Eun Key; Kim, Chan-Wha

    2017-02-16

    We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.

  1. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells.

    PubMed

    Günther, Claudia; Carballido-Perrig, Nicole; Kaesler, Susanne; Carballido, José M; Biedermann, Tilo

    2012-03-01

    Psoriatic skin lesions are characterized by an inflammatory infiltrate, consisting of dendritic cells, monocytes, and both CD4(+) and CD8(+) T lymphocytes. Although the chemokines involved in the migration of CD4(+) T cells into psoriatic skin are well characterized, those regulating CD8(+) T-cell recruitment are less understood. We found that the percentages of peripheral blood CD8(+) T cells expressing CXCR6 were higher in psoriatic patients than in healthy or atopic individuals. In addition, CXCR6 expression in psoriatic patients was more abundant in the CD8(+) than in the CD4(+) T-cell compartment. CXCR6 mRNA expression was also stronger in skin CD8(+) T cells than in the corresponding blood-derived counterparts. Immunofluorescence analysis revealed profound upregulation of the CXCR6 ligand CXCL16 by monocytes, keratinocytes, and dendritic cells in psoriatic skin compared with healthy or atopic dermatitis skin. In line with this, CXCR6(+) CD8(+) T cells also were most prevalent in psoriatic skin. Furthermore, CXCL16 induced Ca(2+) influx and chemotactic migration of psoriatic skin-derived CD8(+) T cells in vitro. Most importantly, CXCL16 potently recruited human CD8(+) T cells to human skin grafts previously transplanted onto SCID mice in vivo. These investigations indicate that CXCL16-CXCR6 interactions mediate homing of CD8(+) T cells into human skin, and thereby contribute to psoriasis pathogenesis.

  2. Visualizing High-Efficiency HIV Transfer | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV), the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infects and eventually kills CD4 receptor-expressing T cells, which are critical for proper immune system function. The gp120 protein on the surface of HIV particles is known to bind CD4 and a co-receptor, either CCR5 or CXCR4, leading to fusion of the virus and T cell

  3. Curcumin inhibits tumor epithelial‑mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells.

    PubMed

    Zhang, Zewei; Chen, Haitao; Xu, Chao; Song, Lu; Huang, Lulu; Lai, Yuebiao; Wang, Yuqi; Chen, Hanlu; Gu, Danlin; Ren, Lili; Yao, Qinghua

    2016-05-01

    Tumor invasion and metastasis are closely associated with epithelial‑mesenchymal transition (EMT). EMT refers to epithelial cells under physiological and pathological conditions that are specific to mesenchymal transition. Curcumin inhibits EMT progression via Wnt signaling. The Wnt signaling pathway is a conservative EMT‑related signaling pathway that is involved in the development of various tumors. In the present study, MTS assays were employed to analyze the proliferation of curcumin‑treated cells. Naked cuticle homolog 2 (NKD2), chemokine receptor 4 (CXCR4) and antibodies associated with EMT were examined in SW620 colorectal cancer cell lines using western blot analysis and real‑time qPCR. NKD2 small‑interfering RNA (siRNA) and CXCR4 expression plasmid was synthesized and transfected into the colorectal cancer cell lines, and NKD2 and CXCR4 expression levels were detected. The results showed that curcumin significantly inhibited the proliferation of colorectal cancer cells and upregulated the expression of NKD2 in SW620 colorectal cancer cells and in the xenograft, resulting in the downregulation of key markers in the Wnt signaling. In addition, the progression of ETM was inhibited due to the overexpression of E‑cadherin as well as the downregulation of vimentin. Curcumin also inhibited tumor metastasis by downregulating the expression of CXCR4 significantly. The results suggested involvement of the NKD2‑Wnt‑CXCR4 signaling pathway in colorectal cancer cells. In addition, curcumin is inhibit this signaling and the development of colorectal cancer.

  4. Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells

    PubMed Central

    ZHANG, ZEWEI; CHEN, HAITAO; XU, CHAO; SONG, LU; HUANG, LULU; LAI, YUEBIAO; WANG, YUQI; CHEN, HANLU; GU, DANLIN; REN, LILI; YAO, QINGHUA

    2016-01-01

    Tumor invasion and metastasis are closely associated with epithelial-mesenchymal transition (EMT). EMT refers to epithelial cells under physiological and pathological conditions that are specific to mesenchymal transition. Curcumin inhibits EMT progression via Wnt signaling. The Wnt signaling pathway is a conservative EMT-related signaling pathway that is involved in the development of various tumors. In the present study, MTS assays were employed to analyze the proliferation of curcumin-treated cells. Naked cuticle homolog 2 (NKD2), chemokine receptor 4 (CXCR4) and antibodies associated with EMT were examined in SW620 colorectal cancer cell lines using western blot analysis and real-time qPCR. NKD2 small-interfering RNA (siRNA) and CXCR4 expression plasmid was synthesized and transfected into the colorectal cancer cell lines, and NKD2 and CXCR4 expression levels were detected. The results showed that curcumin significantly inhibited the proliferation of colorectal cancer cells and upregulated the expression of NKD2 in SW620 colorectal cancer cells and in the xenograft, resulting in the downregulation of key markers in the Wnt signaling. In addition, the progression of ETM was inhibited due to the overexpression of E-cadherin as well as the downregulation of vimentin. Curcumin also inhibited tumor metastasis by downregulating the expression of CXCR4 significantly. The results suggested involvement of the NKD2-Wnt-CXCR4 signaling pathway in colorectal cancer cells. In addition, curcumin is inhibit this signaling and the development of colorectal cancer. PMID:26985708

  5. The Chemokine CXCL16 and Its Receptor, CXCR6, as Markers and Promoters of Inflammation-Associated Cancers

    PubMed Central

    Darash-Yahana, Merav; Gillespie, John W.; Hewitt, Stephen M.; Chen, Yun-Yun K.; Maeda, Shin; Stein, Ilan; Singh, Satya P.; Bedolla, Roble B.; Peled, Amnon; Troyer, Dean A.; Pikarsky, Eli; Karin, Michael; Farber, Joshua M.

    2009-01-01

    Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes. PMID:19690611

  6. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers.

    PubMed

    Darash-Yahana, Merav; Gillespie, John W; Hewitt, Stephen M; Chen, Yun-Yun K; Maeda, Shin; Stein, Ilan; Singh, Satya P; Bedolla, Roble B; Peled, Amnon; Troyer, Dean A; Pikarsky, Eli; Karin, Michael; Farber, Joshua M

    2009-08-19

    Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.

  7. CXCR4 regulates growth of both primary and metastatic breast cancer.

    PubMed

    Smith, Matthew C P; Luker, Kathryn E; Garbow, Joel R; Prior, Julie L; Jackson, Erin; Piwnica-Worms, David; Luker, Gary D

    2004-12-01

    The chemokine receptor CXCR4 and its cognate ligand CXCL12 recently have been proposed to regulate the directional trafficking and invasion of breast cancer cells to sites of metastases. However, effects of CXCR4 on the growth of primary breast cancer tumors and established metastases and survival have not been determined. We used stable RNAi to reduce expression of CXCR4 in murine 4T1 cells, a highly metastatic mammary cancer cell line that is a model for stage IV human breast cancer. Using noninvasive bioluminescence and magnetic resonance imaging, we showed that knockdown of CXCR4 significantly limited the growth of orthotopically transplanted breast cancer cells. Mice in which parental 4T1 cells were implanted had progressively enlarging tumors that spontaneously metastasized, and these animals all died from metastatic disease. Remarkably, RNAi of CXCR4 prevented primary tumor formation in some mice, and all mice transplanted with CXCR RNAi cells survived without developing macroscopic metastases. To analyze effects of CXCR4 on metastases to the lung, an organ commonly affected by metastatic breast cancer, we injected tumor cells intravenously and monitored cell growth with bioluminescence imaging. Inhibiting CXCR4 with RNAi, or the specific antagonist AMD3100, substantially delayed the growth of 4T1 cells in the lung, although neither RNAi nor AMD3100 prolonged overall survival in mice with experimental lung metastases. These data indicate that CXCR4 is required to initiate proliferation and/or promote survival of breast cancer cells in vivo and suggest that CXCR4 inhibitors will improve treatment of patients with primary and metastatic breast cancer.

  8. IL‐12 and IL‐15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells

    PubMed Central

    Hydes, Theresa; Noll, Angela; Salinas‐Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz

    2017-01-01

    Abstract Introduction Murine hepatic NK cells exhibit adaptive features, with liver‐specific adhesion molecules CXCR6 and CD49a acting as surface markers. Methods We investigated human liver‐resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Results Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver‐resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver‐resident double‐positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single‐positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL‐12 and IL‐15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver‐resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. Conclusion IL‐12 and IL‐15 may be key for generating NK cells with a tissue‐homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue‐homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. PMID:28952190

  9. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells.

    PubMed

    Hydes, Theresa; Noll, Angela; Salinas-Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz; Khakoo, Salim I

    2018-03-01

    Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  10. Effects of interleukin-8 on estradiol and progesterone production by bovine granulosa cells from large follicles and progesterone production by luteinizing granulosa cells in culture.

    PubMed

    Shimizu, Takashi; Kaji, Ayami; Murayama, Chiaki; Magata, Fumie; Shirasuna, Koumei; Wakamiya, Kaori; Okuda, Kiyoshi; Miyamoto, Akio

    2012-01-01

    Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Role ERG and CXCR4 in Prostate Cancer Progression

    DTIC Science & Technology

    2011-06-01

    axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG...interaction between ERG factor and CXCR4 gene promoter and link these activities with TMPRSS2-ERG translocations and enhanced metastasis of tumor cells via...and increased VCaP nuclear extract protein in assay enhanced the intensity of bands (Figure 1D). Inclusion of anti-ERG antibodies super shifted

  12. miR-192 suppresses T follicular helper cell differentiation by targeting CXCR5 in childhood asthma.

    PubMed

    Zhang, Defeng; Wu, Yuanbo; Sun, Gengyun

    2018-05-01

    The aim of this study was to investigate the role of miR-192 in differentiation of T follicular helper cells in childhood asthma. Blood samples were taken from eighteen children with acute asthma attacks and fifteen healthy children (HC). Quantitative real-time PCR and Western blotting were used to detect the expression levels of miR-192, C-X-C chemokine receptor type 5 (CXCR5), B-cell lymphoma 6 (BCL-6) and inducible T-cell costimulator (ICOS). The flow cytometry was performed to detect the proportion of CD4 + CXCR5+ Tfh cells on CD4 + T lymphocytes. The enzyme-linked immunosorbent assay (ELISA) was carried out to determine the plasma concentrations of total IgE and IL-21. The effect of miR-192 on the T follicular helper cells differentiation by targeting CXCR5 was determined by dual-luciferase reporter assay. Children with asthma had lower levels of miR-192 than HC. The proportion of CD4 + CXCR + Tfh cells was significantly higher in the acute asthma group than HC. Similarly, the plasma concentration of total IgE and IL-21 in the acute group markedly increased compared with the HC, and IgE concentration was positively correlated with the proportion of CD4 + CXCR5 + Tfh cells. Furthermore, the expression levels of CXCR5, Bcl-6 and ICOS were significantly higher in the acute group than in the HC. While the proportion of CD4 + CXCR5 + Tfh cells, IL-21, CXCR5, Bcl-6 and ICOS were obviously lower in the CD4 + T cells transfected with miR-192 plasmid than that in miR-192 + CXCR5 group and control group. In conclusion, miR-192 blocks the activation pathway of Tfh cells by targeting CXCR5, which is a reasonable cellular target for therapeutic intervention.

  13. The CXCL16-CXCR6 chemokine axis in glial tumors.

    PubMed

    Hattermann, Kirsten; Held-Feindt, Janka; Ludwig, Andreas; Mentlein, Rolf

    2013-07-15

    Since chemokines and their receptors play a pivotal role in tumors, we investigated the CXCL16-CXCR6-axis in human astroglial tumors. The transmembrane chemokine CXCL16 is heavily expressed by tumor, microglial and endothelial cells in situ and in vitro. In contrast, the receptor CXCR6 is restricted in glioblastomas to a small subset of proliferating cells positive for the stem-cell markers Musashi, Nanog, Sox2 and Oct4. In particular, the vast majority (about 90%) of Musashi-positive cells stained also for CXCR6. Thus, CXCL16 is highly expressed by glial tumor and stroma cells whereas CXCR6 defines a subset of cells with stem cell character. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The function of the chemokine receptor CXCR6 in the T cell response of mice against Listeria monocytogenes.

    PubMed

    Heesch, Kira; Raczkowski, Friederike; Schumacher, Valéa; Hünemörder, Stefanie; Panzer, Ulf; Mittrücker, Hans-Willi

    2014-01-01

    The chemokine receptor CXCR6 is expressed on different T cell subsets and up-regulated following T cell activation. CXCR6 has been implicated in the localization of cells to the liver due to the constitutive expression of its ligand CXCL16 on liver sinusoidal endothelial cells. Here, we analyzed the role of CXCR6 in CD8+ T cell responses to infection of mice with Listeria monocytogenes. CD8+ T cells responding to listerial antigens acquired high expression levels of CXCR6. However, deficiency of mice in CXCR6 did not impair control of the L. monocytogenes infection. CXCR6-deficient mice were able to generate listeria-specific CD4+ and CD8+ T cell responses and showed accumulation of T cells in the infected liver. In transfer assays, we detected reduced accumulation of listeria-specific CXCR6-deficient CD8+ T cells in the liver at early time points post infection. Though, CXCR6 was dispensable at later time points of the CD8+ T cell response. When transferred CD8+ T cells were followed for extended time periods, we observed a decline in CXCR6-deficient CD8+ T cells. The manifestation of this cell loss depended on the tissue analyzed. In conclusion, our results demonstrate that CXCR6 is not required for the formation of a T cell response to L. monocytogenes and for the accumulation of T cells in the infected liver but CXCR6 appears to influence long-term survival and tissue distribution of activated cells.

  15. The Function of the Chemokine Receptor CXCR6 in the T Cell Response of Mice against Listeria monocytogenes

    PubMed Central

    Heesch, Kira; Raczkowski, Friederike; Schumacher, Valéa; Hünemörder, Stefanie; Panzer, Ulf; Mittrücker, Hans-Willi

    2014-01-01

    The chemokine receptor CXCR6 is expressed on different T cell subsets and up-regulated following T cell activation. CXCR6 has been implicated in the localization of cells to the liver due to the constitutive expression of its ligand CXCL16 on liver sinusoidal endothelial cells. Here, we analyzed the role of CXCR6 in CD8+ T cell responses to infection of mice with Listeria monocytogenes. CD8+ T cells responding to listerial antigens acquired high expression levels of CXCR6. However, deficiency of mice in CXCR6 did not impair control of the L. monocytogenes infection. CXCR6-deficient mice were able to generate listeria-specific CD4+ and CD8+ T cell responses and showed accumulation of T cells in the infected liver. In transfer assays, we detected reduced accumulation of listeria-specific CXCR6-deficient CD8+ T cells in the liver at early time points post infection. Though, CXCR6 was dispensable at later time points of the CD8+ T cell response. When transferred CD8+ T cells were followed for extended time periods, we observed a decline in CXCR6-deficient CD8+ T cells. The manifestation of this cell loss depended on the tissue analyzed. In conclusion, our results demonstrate that CXCR6 is not required for the formation of a T cell response to L. monocytogenes and for the accumulation of T cells in the infected liver but CXCR6 appears to influence long-term survival and tissue distribution of activated cells. PMID:24832098

  16. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells

    PubMed Central

    Ricci, Alessandro; Pacella, Aurora; Cigliana, Giovanni; Bozzuto, Giuseppina; Podo, Franca; Carpinelli, Giulia

    2017-01-01

    Background The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM), the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC), a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells. Methods Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH) activity were analyzed by colorimetric assay. Results Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity. Conclusions Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression. PMID:28423060

  17. Follicular helper T cells in peripheral blood of patients with rheumatoid arthritis.

    PubMed

    Costantino, Alicia Beatriz; Acosta, Cristina Del Valle; Onetti, Laura; Mussano, Eduardo; Cadile, Ignacio Isaac; Ferrero, Paola Virginia

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by the presence of different autoantibodies such as rheumatoid factor (RF) and anti-citrullinated protein antibodies. CD4T cells expressing CXCR5, referred as follicular helper T cells (Tfh), collaborate with B cells to produce antibodies. Differential expression of CXCR3 and CCR6 within CD4 + CXCR5 + T cells defines three mayor subsets: CXCR3 + CCR6 - (Tfh1), CXCR3 - CCR6 - (Tfh2) and CXCR3 - CCR6 + (Tfh17). The aim of the study was to assess whether there is an association between the percentage of these cells and RA and whether there is a correlation with disease activity. Twenty-four RA patients, 22 healthy controls (HC) and 16 undifferentiated arthritis (UA) patients were included. Percentage of CD4 + CXCR5 + T cells and their subsets were analyzed by flow cytometry. No differences were found in the percentages of CD4 + CXCR5 + T cells in the comparison of RA vs HC or RA vs UA patients. Tfh1, Tfh2 and Tfh17 subsets showed no differences either. There was no correlation between CD4 + CXCR5 + T cells, Tfh1, Tfh2 and Tfh17, and Disease Activity Score in twenty-eight joints (DAS28) or erythrocyte sedimentation rate. Surprisingly, there was a positive correlation between Tfh17 cells and C-reactive protein. Finally, there was no correlation between CD4 + CXCR5 + T cells, or their subsets, and anti-mutated citrullinated vimentin, or between the cells and RF. There were no differences between the percentages of CD4 + CXCR5 + T cells and their subsets in peripheral blood of RA patients and the percentages of cells in the control groups. This finding does not rule out a pathogenic role of these cells in the development and activity of RA. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  18. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function

    PubMed Central

    Hajishengallis, George; Wang, Min; Liang, Shuang; Triantafilou, Martha; Triantafilou, Kathy

    2008-01-01

    We report a mechanism of microbial evasion of Toll-like receptor (TLR)-mediated immunity that depends on CXCR4 exploitation. Specifically, the oral/systemic pathogen Porphyromonas gingivalis induces cross-talk between CXCR4 and TLR2 in human monocytes or mouse macrophages and undermines host defense. This is accomplished through its surface fimbriae, which induce CXCR4/TLR2 co-association in lipid rafts and interact with both receptors: Binding to CXCR4 induces cAMP-dependent protein kinase A (PKA) signaling, which in turn inhibits TLR2-mediated proinflammatory and antimicrobial responses to the pathogen. This outcome enables P. gingivalis to resist clearance in vitro and in vivo and thus to promote its adaptive fitness. However, a specific CXCR4 antagonist abrogates this immune evasion mechanism and offers a promising counterstrategy for the control of P. gingivalis periodontal or systemic infections. PMID:18765807

  19. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    DOE PAGES

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; ...

    2015-07-27

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4 + T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs).more » Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 ( PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less

  20. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Kathrin; Lin, Steven; Boyer, Eric

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4 + T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs).more » Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 ( PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less

  1. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals

    PubMed Central

    Banga, Riddhima; Procopio, Francesco A.; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A.; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1+/T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1+ CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1+ CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals. PMID:29459864

  2. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals.

    PubMed

    Banga, Riddhima; Procopio, Francesco A; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1 + /T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1 + CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1 + CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.

  3. Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Higuchi, Masashi; Yoshida, Saishu; Tsukada, Takehiro; Ueharu, Hiroki; Chen, Mo; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2014-09-01

    Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

  4. Dual Targeting of the Chemokine Receptors CXCR4 and ACKR3 with Novel Engineered Chemokines*

    PubMed Central

    Hanes, Melinda S.; Salanga, Catherina L.; Chowdry, Arnab B.; Comerford, Iain; McColl, Shaun R.; Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  5. CXCR5+CD8+ T cells infiltrate the colorectal tumors and nearby lymph nodes, and are associated with enhanced IgG response in B cells.

    PubMed

    Xing, Junjie; Zhang, Chenxin; Yang, Xiaohong; Wang, Shaoxuan; Wang, Zhongchuan; Li, Xu; Yu, Enda

    2017-07-01

    Colorectal cancer is the third most prevalent cancer type worldwide and contributes to a significant percentage of cancer-related mortality. Recent studies have shown that the CXCR5 + CD8 + T cells present more potent proinflammatory function than CXCR5 - CD8 + T cells in chronic virus infections and in follicular lymphoma, but the role of CXCR5 + CD8 + T cells in colorectal cancer is yet unclear. In this study, we demonstrated that CXCR5 + CD8 + T cells were very rare in peripheral blood mononuclear cells from healthy and colorectal cancer individuals, but were significantly enriched in resected tumors and tumor-associated lymph nodes. Compared to CXCR5 - CD8 + T cells, the CXCR5 + CD8 + T cells demonstrated significantly higher Bcl-6 expression and lower Blimp1 expression, suggesting that CXCR5 + CD8 + T cells might represent a memory CD8 + T cell subset. CXCR5 + CD8 + T cells also enhanced the IgG expression by autologous B cells. Under ex vivo condition, the CXCR5 + CD8 + T cells demonstrated lower degranulation, TNFα expression and IFNγ expression than CXCR5 - CD8 + T cells. However, after PMA + ionomycin stimulation, the degranulation and TNFα expression by CXCR5 + CD8 + T cells were significantly elevated to a level comparable with CXCR5 - CD8 + T cells, whereas the IFNγ expression by PMA + ionomycin-stimulated CXCR5 + CD8 + T cells were significantly higher than that by CXCR5 - CD8 + T cells. Following long-term TCR-stimulation, CXCR5 + CD8 + T cells demonstrated significantly more potent proliferation capacity and higher IFNγ expression than CXCR5 - CD8 + T cells. TCR-stimulated CXCR5 + CD8 + T cells also showed a gradual downregulation in CXCR5 expression. We further found that TCR-stimulated CXCR5 + CD8 + T cells demonstrated higher granzyme B production and induced more specific lysis of autologous tumor cells than CXCR5 - CD8 + T cells. Together, these data demonstrate that CXCR5 + CD8 + T cells represent a significant CD8 + T cell subset in colorectal tumors and have the potential to contribute to antitumor immunity, but their specific roles require further studies in vivo. Copyright © 2017. Published by Elsevier Inc.

  6. Microenvironmental Regulation of Chemokine (C-X-C-motif) Receptor 4 in Ovarian Carcinoma

    PubMed Central

    Barbolina, Maria V.; Kim, Mijung; Liu, Yueying; Shepard, Jaclyn; Belmadani, Abdelhak; Miller, Richard J.; Shea, Lonnie D.; Stack, M. Sharon

    2010-01-01

    The majority of women diagnosed with epithelial ovarian carcinoma (EOC) succumb due to complications of metastatic disease, suggesting that anti-metastatic therapies may improve patient survival. EOC metastasis involves intra-peritoneal shedding of cells from the primary tumor, followed by adhesion and localized penetration of the submesothelial matrix to anchor metastatic implants. Accumulation of malignant ascites is also common. Thus, a unique microenvironmental niche is established, which includes malignant cells and a plethora of soluble factors secreted by – or in response to – tumor cells. As cells penetrating the sub-mesothelial surface encounter an interstitial collagen-rich ECM, we have used 3-dimensional type I collagen (3DCI) gels to model early events resulting from intra-peritoneal anchoring. In this study we demonstrate a novel pathway of CXCR4 upregulation through β1-integrin- and NFκB- dependent signaling pathways in response to 3DCI. We also demonstrate the involvement of CXCR4-SDF1 axis in collagen invasion and proliferation, relevant to the metastatic EOC. Our data show that CXCR4 expression in human EOCs, as well as SDF1 presence in the ascites, is correlated with disease progression and metastasis. These data emphasize the importance of CXCR4 – SDF1 axis in EOC metastasis and suggest that this mechanism should be accounted for when targeting EOC metastasis. PMID:20460402

  7. Omega-3 Fatty Acids Supplementation Differentially Modulates the SDF-1/CXCR-4 Cell Homing Axis in Hypertensive and Normotensive Rats.

    PubMed

    Halmenschlager, Luiza; Lehnen, Alexandre Machado; Marcadenti, Aline; Markoski, Melissa Medeiros

    2017-08-01

    We assessed the effect of acute and chronic dietary supplementation of ω-3 on lipid metabolism and cardiac regeneration, through its influence on the Stromal Derived Factor-1 (SDF-1) and its receptor (CXCR4) axis in normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were allocated in eight groups (of eight animals each), which received daily orogastric administration of ω-3 (1 g) for 24 h, 72 h or 2 weeks. Blood samples were collected for the analysis of the lipid profile and SDF-1 systemic levels (ELISA). At the end of the treatment period, cardiac tissue was collected for CXCR4 expression analysis (Western blot). The use of ω-3 caused a reduction in total cholesterol levels ( p = 0.044), and acutely activated the SDF-1/CXCR4 axis in normotensive animals ( p = 0.037). In the presence of the ω-3, after 72 h, SDF-1 levels decreased in WKY and increased in SHR ( p = 0.017), and tissue expression of the receptor CXCR4 was higher in WKY than in SHR ( p = 0.001). The ω-3 fatty acid supplementation differentially modulates cell homing mediators in normotensive and hypertensive animals. While WKY rats respond acutely to omega-3 supplementation, showing increased release of SDF-1 and CXCR4, SHR exhibit a weaker, delayed response.

  8. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  9. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8⁺ T cells specific for infectious pathogens.

    PubMed

    Tse, Sze-Wah; Radtke, Andrea J; Espinosa, Diego A; Cockburn, Ian A; Zavala, Fidel

    2014-11-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Glycosaminoglycan-Mediated Downstream Signaling of CXCL8 Binding to Endothelial Cells

    PubMed Central

    Derler, Rupert; Weber, Corinna; Strutzmann, Elisabeth; Miller, Ingrid; Kungl, Andreas

    2017-01-01

    The recruitment of leukocytes, mediated by endothelium bound chemokine gradients, is a vital process in inflammation. The highly negatively charged, unbranched polysaccharide family of glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate mediate chemokine immobilization. Specifically the binding of CXCL8 (interleukin 8) to GAGs on endothelial cell surfaces is known to regulate neutrophil recruitment. Currently, it is not clear if binding of CXCL8 to GAGs leads to endothelial downstream signaling in addition to the typical CXCR1/CXCR2 (C-X-C motif chemokine receptor 1 and 2)-mediated signaling which activates neutrophils. Here we have investigated the changes in protein expression of human microvascular endothelial cells induced by CXCL8. Tumor necrosis factor alpha (TNFα) stimulation was used to mimic an inflammatory state which allowed us to identify syndecan-4 (SDC4) as the potential proteoglycan co-receptor of CXCL8 by gene array, real-time PCR and flow cytometry experiments. Enzymatic GAG depolymerization via heparinase III and chondroitinase ABC was used to emulate the effect of glycocalyx remodeling on CXCL8-induced endothelial downstream signaling. Proteomic analyses showed changes in the expression pattern of a number of endothelial proteins such as Zyxin and Caldesmon involved in cytoskeletal organization, cell adhesion and cell mobility. These results demonstrate for the first time a potential role of GAG-mediated endothelial downstream signaling in addition to the well-known CXCL8-CXCR1/CXCR2 signaling pathways in neutrophils. PMID:29207576

  11. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells.

    PubMed

    Satoh-Takayama, Naoko; Serafini, Nicolas; Verrier, Thomas; Rekiki, Abdessalem; Renauld, Jean-Christophe; Frankel, Gad; Di Santo, James P

    2014-11-20

    Interleukin-22 (IL-22) plays a critical role in mucosal defense, although the molecular mechanisms that ensure IL-22 tissue distribution remain poorly understood. We show that the CXCL16-CXCR6 chemokine-chemokine receptor axis regulated group 3 innate lymphoid cell (ILC3) diversity and function. CXCL16 was constitutively expressed by CX3CR1(+) intestinal dendritic cells (DCs) and coexpressed with IL-23 after Citrobacter rodentium infection. Intestinal ILC3s expressed CXCR6 and its ablation generated a selective loss of the NKp46(+) ILC3 subset, a depletion of intestinal IL-22, and the inability to control C. rodentium infection. CD4(+) ILC3s were unaffected by CXCR6 deficiency and remained clustered within lymphoid follicles. In contrast, the lamina propria of Cxcr6(-/-) mice was devoid of ILC3s. The loss of ILC3-dependent IL-22 epithelial stimulation reduced antimicrobial peptide expression that explained the sensitivity of Cxcr6(-/-) mice to C. rodentium. Our results delineate a critical CXCL16-CXCR6 crosstalk that coordinates the intestinal topography of IL-22 secretion required for mucosal defense. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model.

    PubMed

    Poschenrieder, Andreas; Schottelius, Margret; Osl, Theresa; Schwaiger, Markus; Wester, Hans-Jürgen

    2017-01-01

    The chemokine receptor 4 (CXCR4) is an important molecular target for both visualization and therapy of tumors. The aim of the present study was the synthesis and preclinical evaluation of a 64 Cu-labeled, CXCR4-targeting peptide for positron emission tomography (PET) imaging of CXCR4 expression in vivo. For this purpose, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), or 1,4,7-triazacyclononane-triacetic acid (NOTA) was conjugated to the highly affine CXCR4-targeting pentixather scaffold. Affinities were determined using Jurkat T-lymphocytes in competitive binding assays employing [ 125 I]FC131 as the radioligand. Internalization and efflux studies of [ 64 Cu]NOTA-pentixather were performed in chem-1 cells, stably transfected with hCXCR4. The stability of the tracer was evaluated in vitro and in vivo . Small-animal PET and biodistribution studies at different time points were performed in Daudi lymphoma-bearing severe combined immunodeficiency (SCID) mice. [ 64 Cu]NOTA-pentixather was rapidly radiolabeled at 60 °C with high radiochemical yields ≥90% and purities >99%. [ 64 Cu]NOTA-pentixather offered the highest affinity of the evaluated peptides in this study (IC 50  = 14.9 ± 2.1 nM), showed efficient CXCR4-targeting in vitro and was stable in blood and urine with high resistance to transchelation in ethylenediaminetetraacetic acid (EDTA) challenge studies. Due to the enhanced lipophilicity of [ 64 Cu]NOTA-pentixather (logP = -1.2), biodistribution studies showed some nonspecific accumulation in the liver and intestines. However, tumor accumulation (13.1 ± 1.5% ID/g, 1.5 h p.i.) was CXCR4-specific and higher than in all other organs and resulted in high resolution delineation of Daudi tumors in PET/CT images in vivo. [ 64 Cu]NOTA-pentixather was fast and efficiently radiolabeled, showed effective CXCR4-targeting, high stability in vitro and in vivo and resulted in high resolution PET/CT images accompanied with a suitable biodistribution profile, making [ 64 Cu]NOTA-pentixather a promising tracer for future application in humans.

  13. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    PubMed

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  14. Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter.

    PubMed

    Es-Haghi, Masoumeh; Bassami, Mohammadreza; Dehghani, Hesam

    2016-03-01

    Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from -2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from -2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.

  15. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1α/CXCR4 system in rats.

    PubMed

    Huang, Wan; Zheng, Wenwen; Ouyang, Handong; Yi, Hyun; Liu, Shue; Zeng, Weian; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-03-01

    In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. Neuropathic pain was induced by intraperitoneal administration of 2',3'-dideoxycytidine (ddC, one of the NRTIs). Mechanical threshold was tested using von Frey filament fibers. Nonreplicating herpes simplex virus (HSV) vectors expressing p55 TNF soluble receptor (p55TNFSR) were inoculated into hindpaw of rats. The expression of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG was examined using Western blots. Intrathecal CXCR4 antagonist was administered. The present study demonstrated that (1) systemic ddC induced upregulation of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; (2) p55TNFSR mediated by a nonreplicating HSV vector reversed mechanical allodynia induced by systemic ddC; (3) intrathecal administration of the CXCR4 antagonist AMD3100 increased mechanical threshold; and (4) HSV vector expressing p55TNFSR reversed upregulation of TNF-α, SDF1-α, and CXCR4 induced by ddC in the lumbar spinal dorsal horn and the DRG. Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.

  16. The SDF-1-CXCR4 Axis Functions Through p38-MAPK Signaling to Drive Breast Cancer Progression and Metastasis

    DTIC Science & Technology

    2009-09-01

    line) could induce proliferation and lead to hormone independent tumors in vivo. Upon analysis of these tumors by real-time PCR, it was found that the... analysis we have shown that overexpression of CXCR4 leads to increased levels of ER-mediated gene expression; specifically we found increased levels of...SDF-1 and, the classic ER-mediated gene, Progesterone receptor (PgR). 1.B Determine if CXCR4 activates p38. Western blot analysis of breast

  17. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

    PubMed

    Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V

    2018-04-01

    G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis.

    PubMed

    Zhu, Hong-Yan; Liu, Xuelian; Miao, Xiuhua; Li, Di; Wang, Shusheng; Xu, Guang-Yin

    2017-01-01

    Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12-CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with chronic pancreatitis.

  19. [Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].

    PubMed

    Cheng, Hao; Chen, Nian-yong

    2014-05-01

    To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.

  20. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation.

    PubMed

    Meijer, Joost; Ogink, Janneke; Kreike, Bas; Nuyten, Dimitry; de Visser, Karin E; Roos, Ed

    2008-06-15

    The chemokine receptor CXCR6 and its ligand CXCL16 are involved in inflammation. Thus far, they were known to be expressed mainly by T cells and macrophages, respectively. However, we detected both in all of 170 human primary mammary carcinomas and at similar levels in all 8 human mammary carcinoma cell lines tested by microarray analysis. Expression was confirmed by reverse transcription-PCR and for the cell lines also by fluorescence-activated cell sorting analysis. CXCR6 and CXCL16 were also detected in several mouse and human mammary, colon, and pancreatic carcinoma cell lines. CXCL16 is a transmembrane protein from which the soluble chemokine can be cleaved off. The transmembrane form is present on the surface of the carcinoma cells. Surprisingly, suppression of either CXCR6 or CXCL16 led to greatly enhanced proliferation in vitro as well as in vivo, indicating that their interaction inhibits proliferation. This notion was verified using inhibitory antibodies and by introduction of CXCL16 into a rare CXCL16-negative cell line. The effect was mediated by the G protein-coupled receptor CXCR6 because it was blocked by the G(i) protein inhibitor pertussis toxin. In contrast, the soluble CXCL16 chemokine enhanced proliferation, and this was also mediated by CXCR6 but not via G(i) protein. It is remarkable that both CXCR6 and CXCL16 are expressed by all mammary carcinomas because cells that lose either acquire a growth advantage and should be selected during tumor progression. This suggests an unknown important role in tumor formation. Proteases, possibly macrophage derived, might convert inhibitory transmembrane CXCL16 into the stimulatory chemokine.

  1. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells

    PubMed Central

    Aravindan, Sheeja; Ramraj, Satishkumar; Kandasamy, Kathiresan; Thirugnanasambandan, Somasundaram S.; Somasundaram, Dinesh Babu; Herman, Terence S.; Aravindan, Natarajan

    2017-01-01

    Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells. PMID:27974694

  2. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells.

    PubMed

    Aravindan, Sheeja; Ramraj, Satishkumar; Kandasamy, Kathiresan; Thirugnanasambandan, Somasundaram S; Somasundaram, Dinesh Babu; Herman, Terence S; Aravindan, Natarajan

    2017-01-24

    Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.

  3. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak*

    PubMed Central

    Kremer, Kimberly N.; Peterson, Kevin L.; Schneider, Paula A.; Meng, X. Wei; Dai, Haiming; Hess, Allan D.; Smith, B. Douglas; Rodriguez-Ramirez, Christie; Karp, Judith E.; Kaufmann, Scott H.; Hedin, Karen E.

    2013-01-01

    The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted. PMID:23798675

  4. Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis

    PubMed Central

    Shu, Hui-Kuo G.; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    Background A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. PMID:24244561

  5. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    PubMed

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.

  6. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis

    PubMed Central

    Petit, Isabelle; Jin, David; Rafii, Shahin

    2010-01-01

    Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1–CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169

  7. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  8. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro.more » In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.« less

  9. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    PubMed

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  10. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.

    PubMed

    Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L

    2011-08-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.

  11. CXCR6 Is a Marker for Protective Antigen-Specific Cells in the Lungs after Intranasal Immunization against Mycobacterium tuberculosis▿

    PubMed Central

    Lee, Lian Ni; Ronan, Edward O.; de Lara, Catherine; Franken, Kees L. M. C.; Ottenhoff, Tom H. M.; Tchilian, Elma Z.; Beverley, Peter C. L.

    2011-01-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT61–20 peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment. PMID:21628524

  12. Involvement of chemokine receptors in breast cancer metastasis

    NASA Astrophysics Data System (ADS)

    Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert

    2001-03-01

    Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

  13. CXCR6-CXCL16 interaction in the pathogenesis of Juvenile Idiopathic Arthritis.

    PubMed

    Martini, Giorgia; Cabrelle, Anna; Calabrese, Fiorella; Carraro, Samuela; Scquizzato, Elisa; Teramo, Antonella; Facco, Monica; Zulian, Francesco; Agostini, Carlo

    2008-11-01

    In order to evaluate the role of CXCR6/CXCL16 in driving lymphocyte migration into inflamed joints of children with oligoarticular Juvenile Idiopathic Arthritis (JIA) we analysed CXCR6 expression and functional capability in lymphocytes from synovial fluid (SF) by flow cytometry, by real-time polymerase chain reaction (RT-PCR) and migration assays. Furthermore, CXCR6 and CXCL16 expression in synovial tissue (ST) was analysed by immunohistochemistry. T cells isolated from SF of patients with JIA expressed CXCR6 which was functionally active as shown by chemotactic assays. The same cells expressed CXCR3 and it exerted a migratory activity in response to CXCL10. CXCL16 and CXCR6 were intensively expressed on the synovium cells, respectively on macrophages, synoviocytes and endothelial cells and on lymphocytes, synoviocytes and endothelial cells. Taken together, these data suggest that CXCR6 and CXCR3 act coordinately with respective ligands and are involved in the pathophysiology of JIA-associated inflammatory processes.

  14. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    PubMed

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer.

    PubMed

    Ha, Hong Koo; Lee, Wan; Park, Hyun Jun; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee

    2011-01-01

    We hypothesized that the CXCL16-CXCR6 ligand-receptor system may play an important role in prostate cancer progression. Levels of CXCL16 and CXCR6 expression were evaluated in prostate cancer cell lines (PC-3 and LNCaP) and normal prostate epithelial cells (PrEC), as well as in tissues from 354 patients. The immunohistochemical expression of CXCL16/CXCR6 was greater in the PC-3/LNCaP cells than in the PrEC cell line. The expression of CXCL16/CXCR6 was significantly higher in prostate cancer than in benign prostatic hypertrophy. Using RT-PCR, the expression of CXCL16/CXCR6 was found to be greater in the PC-3/LNCaP cells than in the PrEC cell line. CXCL16/CXCR6 was weakly detected in lung and liver tissues, whereas CXCL16 was highly expressed in specimens of bone metastasis. CXCL16 immunostaining was related to Gleason score, T stage, tumor volume, perineural invasion and lymph node metastasis. However, biochemical PSA recurrence was not related to the expression of CXCL16/CXCR6. High CXCL16/CXCR6 expression may be related to aggressive cancer behavior, and high CXCL16 expression to bone metastases.

  16. Paradoxical Role of DNA Methylation in Activation of FoxA2 Gene Expression during Endoderm Development*

    PubMed Central

    Bahar Halpern, Keren; Vana, Tal; Walker, Michael D.

    2014-01-01

    The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2′-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation. PMID:25016019

  17. High expression of GPER1, EGFR and CXCR1 is associated with lymph node metastasis in papillary thyroid carcinoma.

    PubMed

    Tang, Cui; Yang, Lei; Wang, Ni; Li, Li; Xu, Man; Chen, George G; Liu, Zhi-Min

    2014-01-01

    Clinical and epidemiological studies have shown that estrogen may be involved in the development and progression of papillary thyroid carcinoma (PTC). G protein-coupled estrogen receptor 1 (GPER1) is a novel seven-transmembrane estrogen receptor that functions alongside traditional nuclear estrogen receptors (ERs) to regulate the cellular responses to estrogen. The purpose of this study was to examine GPER1, EGFR and CXCR1 expression in PTC and to assess the association of their expression with clinicopathological indicators. GPER1, EGFR and CXCR1 protein expression in 129 PTCs, 61 nodular hyperplasia and 118 normal thyroid tissue specimens were analyzed using immunohistochemistry. The protein expression levels of these three molecules were up-regulated in PTCs. High protein expression of GPER1, EGFR and CXCR1 was significantly correlated with lymph node metastasis (LNM) (P ≤ 0.001). Furthermore, GPER1, EGFR and CXCR1 protein expression were correlated with one another. Concomitant high expression of these molecules had stronger correlation with LNM than did each alone (P = 0.002 for GPER1/EGFR, P = 0.013 for GPER1/CXCR1, P = 0.018 for EGFR/CXCR1 and P < 0.001 for GPER1/EGFR/CXCR1). Additionally, GPER1, EGFR and CXCR1 mRNA expression was assessed in 30 PTCs, 10 nodular hyperplasia and 10 normal thyroid tissue specimens using real-time RT-PCR. GPER1, EGFR and CXCR1 mRNA expression levels were up-regulated in PTCs, and high mRNA expression of GPER1, EGFR and CXCR1 was significantly correlated with LNM (P < 0.001 for all these three molecules). These results demonstrated that the evaluation of GPER1, EGFR and CXCR1 expression in PTC may be useful in predicting the risk of LNM.

  18. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression

    PubMed Central

    Vaeth, Martin; Müller, Gerd; Stauss, Dennis; Dietz, Lena; Klein-Hessling, Stefan; Serfling, Edgar; Lipp, Martin

    2014-01-01

    Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4+CXCR5+ follicular helper T cells (TFH) and inhibited by CD4+CXCR5+Foxp3+ follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells. PMID:24590764

  19. Search for biomarkers of asbestos exposure and asbestos-induced cancers in investigations of the immunological effects of asbestos.

    PubMed

    Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Lee, Suni; Maeda, Megumi; Sada, Nagisa; Hatayama, Tamayo; Yamamoto, Shoko; Ikeda, Miho; Yoshitome, Kei; Min, Yu; Nishimura, Yasumitsu; Otsuki, Takemi

    2017-06-09

    The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells were investigated. Results show that asbestos exposure impairs antitumor immunity through enhancement of regulatory T cell function and volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated with asbestos exposure and asbestos-induced cancers and suggested the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression NKp46 in NK cells. Although other unexplored cytokines in serum/plasma and molecules in these immunological cells, including Th17, should be investigated by experimental procedures in addition to a comprehensive analysis of screening methods, biomarkers based on immunological alterations may be helpful in clinical situations to screen the high-risk population exposed to asbestos and susceptible to asbestos-related cancers such as mesothelioma.

  20. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A clinicopathological analysis of primary mucosal malignant melanoma.

    PubMed

    Izumi, Daisuke; Ishimoto, Takatsugu; Yoshida, Naoya; Nakamura, Kenichi; Kosumi, Keisuke; Tokunaga, Ryuma; Sugihara, Hidetaka; Sawayama, Hiroshi; Karashima, Ryuichi; Imamura, Yu; Ida, Satoshi; Hiyoshi, Yukiharu; Iwagami, Shiro; Baba, Yoshifumi; Sakamoto, Yasuo; Miyamoto, Yuji; Watanabe, Masayuki; Baba, Hideo

    2015-07-01

    Primary mucosal malignant melanoma (PMMM) is a rare and highly lethal neoplasm associated with a poor prognosis. CXC chemokine receptor 4 (CXCR4) is expressed on various tumor cells, including malignant melanoma. Recent data indicate that CXCL12 and CXCR4 play a critical role in the behavior of cancer cells and in the survival of cancer patients. However, there has been no study that has addressed the expression and function of CXCR4/CXCL12 signaling in PMMM. Immunohistochemical staining for CXCL12 and Ki67 in biopsy tissues from 10 cases of PMMM was performed. We analyzed the correlations between the clinicopathological features and expression levels of CXCL12 and Ki67. Six cases showed a high level of CXCL12 expression, while four cases had a low level of expression. High expression of CXCL12 correlated with a poor prognosis, although statistical significance was not reached (p = 0.054). Ki67 was highly expressed in five cases, while the expression in the other five cases was low. There was no correlation between the Ki67 expression and prognosis. The findings of this study suggest that CXCL12 expression may play an important role in the biological behavior of PMMM and may be associated with a poor prognosis of PMMM patients.

  2. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    PubMed

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System.

    PubMed

    Barbieri, Federica; Thellung, Stefano; Würth, Roberto; Gatto, Federico; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Albertelli, Manuela; Ferone, Diego; Florio, Tullio

    2014-01-01

    Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.

  4. CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric carcinoma

    PubMed Central

    Xin, Qi; Zhang, Na; Yu, Hai-Bo; Zhang, Qin; Cui, Yan-Fen; Zhang, Chuan-Shan; Ma, Zhe; Yang, Yan; Liu, Wei

    2017-01-01

    AIM To investigate the role of CXC chemokine receptor (CXCR)-7 and CXCL12 in lymph node and liver metastasis of gastric carcinoma. METHODS In 160 cases of gastric cancer, the expression of CXCR7 and CXCL12 in tumor and matched tumor-adjacent non-cancer tissues, in the lymph nodes around the stomach and in the liver was detected using immunohistochemistry to analyze the relationship between CXCR7/CXCL12 expression and clinicopathological features and to determine whether CXCR7 and CXCL12 constitute a biological axis to promote lymph node and liver metastasis of gastric cancer. Furthermore, the CXCR7 gene was silenced and overexpressed in human gastric cancer SGC-7901 cells, and cell proliferation, migration and invasiveness were measured by the MTT, wound healing and Transwell assays, respectively. RESULTS CXCR7 expression was up-regulated in gastric cancer tissues (P = 0.011). CXCR7/CXCL12 expression was significantly related to high tumor stage and lymph node (r = 0.338, P = 0.000) and liver metastasis (r = 0.629, P = 0.000). The expression of CXCL12 in lymph node and liver metastasis was higher than that in primary gastric cancer tissues (χ2 = 6.669, P = 0.010; χ2 = 25379, P = 0.000), and the expression of CXCL12 in lymph node and liver metastasis of gastric cancer was consistent with the positive expression of CXCR7 in primary gastric cancer (r = 0.338, P = 0.000; r = 0.629, P = 0.000). Overexpression of the CXCR7 gene promoted cell proliferation, migration and invasion. Silencing of the CXCR7 gene suppressed SGC-7901 cell proliferation, migration and invasion. Human gastric cancer cell lines expressed CXCR7 and showed vigorous proliferation and migratory responses to CXCL12. CONCLUSION The CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric cancer. CXCR7 is considered a potential therapeutic target for the treatment of gastric cancer. PMID:28533662

  5. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis.

    PubMed

    Yu, P F; Huang, Y; Xu, C L; Lin, L Y; Han, Y Y; Sun, W H; Hu, G H; Rabson, A B; Wang, Y; Shi, Y F

    2017-02-09

    Mesenchymal stromal cells (MSCs) are one of major components of the tumour microenvironment. Recent studies have shown that MSC tumour residence and their close interactions with inflammatory factors are important factors that affect tumour progression. Among tumour-associated inflammatory factors, transforming growth factor β (TGFβ) is regarded as a key determinant of malignancy. By employing a lung metastasis model of a murine breast cancer, we show here that the prometastatic effect of MSCs was dependent on their response to TGFβ. Interestingly, we found that MSC-produced CXCL12, an important chemokine in tumour metastasis, was markedly inhibited by TGFβ. Furthermore, silencing of CXCL12 in TGFβ-unresponsive MSCs restored their ability to promote tumour metastasis. We found that 4T1 breast cancer cells expressed high levels of CXCR7, but not of CXCR4, both of which are CXCL12 receptors. In presence of CXCL12, CXCR7 expression on tumour cells was decreased. Indeed, when CXCR7 was silenced in breast cancer cells, their metastatic ability was inhibited. Therefore, our data demonstrated that sustained expression of CXCL12 by MSCs in the primary tumour site inhibits metastasis through reduction of CXCR7, while, in the presence of TGFβ, this CXCL12 effect of MSCs on tumour cells is relieved. Importantly, elevated CXCR7 and depressed CXCL12 expression levels were prominent features of clinical breast cancer lesions and were related significantly with poor survival. Our findings reveal a novel mechanism of MSC effects on malignant cells through which crosstalk between MSCs and TGFβ regulates tumour metastasis.

  7. Roles of hepatocyte and myeloid CXC chemokine receptor-2 in liver recovery and regeneration after ischemia/reperfusion in mice.

    PubMed

    Van Sweringen, Heather L; Sakai, Nozomu; Quillin, Ralph C; Bailey, Jeff; Schuster, Rebecca; Blanchard, John; Goetzman, Holly; Caldwell, Charles C; Edwards, Michael J; Lentsch, Alex B

    2013-01-01

    Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation. Copyright © 2012 American Association for the Study of Liver Diseases.

  8. Stromal-derived factor 1 directly promotes genes expressed within the ovulatory cascade in feline cumulus oocyte complexes.

    PubMed

    Rojo, Julieta L; Linari, Martina; Young, Kelly A; Peluffo, Marina C

    2018-05-01

    We hypothesized that the chemokine SDF1/CXCR4 system was present in feline cumulus-oocyte complexes (COCs) and that COCs cultured with SDF1 would directly upregulate gene expression in the ovulatory cascade. Ovaries (n = 50) were obtained from adult domestic cats during the breeding season and COCs were recovered from antral follicles. Because IVM media triggers cumulus-oocyte expansion, culture conditions needed to be optimized to study periovulatory genes. After optimization, the effects of 25 ng/ml SDF1 and the CXCR4 inhibitor were examined in a COC culture for 3, 12, and 24 h. MEM-hepes with 1% of charcoal stripped-FBS was the optimized culture medium, assessed by the expansion of COCs at 24 h in the gonadotropin (GNT) group but not in the media with serum alone. The mRNA expression of HAS2, TNFAIP6, PTX3, and AREG peaked at 3 h in GNT group as compared to all other groups (p < 0.05). COCs cultured with SDF1 showed increased HAS2 and TNFAIP6 mRNA expression at 3 h compared to negative controls and to the CXCR4 inhibitor group. CXCR4 and SDF1 immunostaining was present in both cumulus cells and the oocyte. These results demonstrate that GNT stimulation upregulates key periovulatory genes and expansion in feline COCs from antral follicles, and support the use of this culture system to examine molecular processes within the COC. In addition, SDF1 directly promotes key periovulatory genes in feline COCs, suggesting that the SDF1-CXCR4 pathway may extend its function beyond a chemoattractant, and may play a direct role within the COC.

  9. Migratory capabilities of human umbilical cord blood-derived neural stem cells (HUCB-NSC) in vitro.

    PubMed

    Janowski, Miroslaw; Lukomska, Barbara; Domanska-Janik, Krystyna

    2011-01-01

    Many types of neural progenitors from various sources have been evaluated for therapy of CNS disorders. Prerequisite for success in cell therapy is the ability for transplanted cells to reach appropriate target such as stroke lesion. We have established neural stem cell line from human umbilical cord blood neural stem (HUCB-NSC). In the present study we evaluated migratory capabilities of cells (HUCB-NSC) and the presence of various migration-related receptors. Immunocytochemical analysis revealed abundant expression of CXCR4, PDGFR-alpha, PDGFR-beta, c-Met, VEGFR, IGF-1R and PSA-NCAM receptors in non-adherent population of HUCB-NSC cultured in serum free (SF) conditions (SF cells). Biological activity of selected receptors was confirmed by HUCB-NSC in vitro migration towards SDF-1 and IGF-1 ligands. Additionally, rat brain-derived homogenates have been assessed for their chemoattractive activity of HUCB-NSC. Our experiments unveiled that brain tissue was more attracted for HUCB-NSC than single ligands with higher potency of injured than intact brain. Moreover, adherent HUCB-NSC cultured in low serum (LS) conditions (LS cells) were employed to investigate an impact of different extracellular matrix (ECM) proteins on cell motility. It turned out that laminin provided most permissive microenvironment for cell migration, followed by fibronectin and gelatin. Unexpected nuclear localization of CXCR4 in SF cells prompted us to characterize intracellular pattern of this expression in relation to developmental stage of cells cultured in different conditions. Continuous culture of LS cells revealed cytoplasmatic pattern of CXCR4 expression while HUCB-NSC cultured in high serum conditions (HS cells) resulted in gradual translocation of CXCR4 from nucleus to cytoplasm and then to arising processes. Terminal differentiation of HUCB-NSC was followed by CXCR4 expression decline.

  10. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  11. Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor.

    PubMed

    Yoon, Mee Sun; Pham, Chanh Tin; Phan, Minh-Trang Thi; Shin, Dong-Jun; Jang, Youn-Young; Park, Min-Ho; Kim, Sang-Ki; Kim, Seokho; Cho, Duck

    2016-12-01

    Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R 2  = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Vag, Tibor; Steiger, Katja; Slotta-Huspenina, Julia; Gerngroß, Carlos; Wiestler, Benedikt; Wester, Hans-Jürgen; Schwaiger, Markus; Keller, Ulrich

    2017-12-01

    CXCR4 belongs to the family of chemokine receptors. Together with its sole known ligand CXCL12 (SDF-1alpha), it has a pivotal role during organogenesis and for homing of hematopoietic stem cells. CXCR4 is overexpressed in various malignancies, and this is often associated with poor prognosis. Therefore, molecular imaging of CXCR4 bears a great potential for diagnostics and selecting patients for CXCR4-directed therapies. The CXCR4-directed positron emission tomography (PET) tracer [ 68 Ga]Pentixafor has been shown to visualize CXCR4 expression in various malignancies in vivo. Whereas this tracer has limitations compared to 18 F-Fluorodeoxyglucose ([ 18 F]FDG) in diagnostic PET imaging in peripheral tumour lesions, it might add valuable information in routine diagnostics and response assessment of tumours in close proximity to the central nervous system (CNS) and malignancies within this organ. As a proof-of-concept, we performed [ 68 Ga]Pentixafor PET imaging in a patient with extranodal marginal zone lymphoma (MZL) of the orbital cavities at diagnosis and for post-therapy response assessment. Compared to routinely conducted [ 18 F]FDG PET, the lymphoma lesions determined by magnetic resonance imaging (MRI) showed high tracer accumulation at diagnosis, which decreased upon treatment. We therefore propose that imaging of CXCR4 with [ 68 Ga]Pentixafor is a potential diagnostic tool for tumours close to or within the CNS and suggest this being studied in clinical trials.

  13. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    PubMed

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  14. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity.

    PubMed

    Gatti, Monica; Pattarozzi, Alessandra; Bajetto, Adriana; Würth, Roberto; Daga, Antonio; Fiaschi, Pietro; Zona, Gianluigi; Florio, Tullio; Barbieri, Federica

    2013-12-15

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Higher Frequency of Circulating PD-1high CXCR5+CD4+ Tfh Cells in Patients with Chronic Schistosomiasis

    PubMed Central

    Zhang, Yumei; Jiang, Yanyan; Wang, Yanjuan; Liu, Hua; Shen, Yujuan; Yuan, Zhongying; Hu, Yuan; Xu, Yuxin; Cao, Jianping

    2015-01-01

    The current knowledge of immunological responses to schistosomiasis is insufficient for the development of vaccine and therapies. The role of T follicular helper (Tfh) cells in schistosome infections is not fully defined. The frequency of circulating Tfh cells and serum cytokine levels were analyzed in 11 patients with chronic schistosomiasis and 10 healthy controls (HC), who reside in an endemic area for Schistosomiasis japonicum. Significantly higher frequencies of circulating CXCR5+ CD4+ Tfh cells and higher expression levels of ICOS and PD-1 in CXCR5+ CD4+ Tfh cells were observed in patients with chronic schistosomiasis compared to HC. The levels of IL-21 in serum and the expression of IL-21 mRNA were higher in chronic schistosomiasis patients than in HC. Moreover, the frequency of circulating PD-1high CXCR5+ CD4+ Tfh cells positively correlated with the levels of IL-21 in serum from patients with chronic schistosomiasis. A positive correlation was also found between the frequency of PD-1high CXCR5+ CD4+ Tfh cells and the levels of soluble egg antigen (SEA)-specific antibodies in serum samples from the patient group. Our study is the first regarding Tfh cells in chronic human schistosomiasis and the finding indicate that PD-1high CXCR5+ CD4+Tfh cells might play an important role in the production of specific antibodies in schistosomiasis. This study contributes to the understanding of immune response to schistosomiasis and may provide helpful support in vaccine development. PMID:26221072

  16. Higher Frequency of Circulating PD-1(high) CXCR5(+)CD4(+) Tfh Cells in Patients with Chronic Schistosomiasis.

    PubMed

    Zhang, Yumei; Jiang, Yanyan; Wang, Yanjuan; Liu, Hua; Shen, Yujuan; Yuan, Zhongying; Hu, Yuan; Xu, Yuxin; Cao, Jianping

    2015-01-01

    The current knowledge of immunological responses to schistosomiasis is insufficient for the development of vaccine and therapies. The role of T follicular helper (Tfh) cells in schistosome infections is not fully defined. The frequency of circulating Tfh cells and serum cytokine levels were analyzed in 11 patients with chronic schistosomiasis and 10 healthy controls (HC), who reside in an endemic area for Schistosomiasis japonicum. Significantly higher frequencies of circulating CXCR5(+) CD4(+) Tfh cells and higher expression levels of ICOS and PD-1 in CXCR5(+) CD4(+) Tfh cells were observed in patients with chronic schistosomiasis compared to HC. The levels of IL-21 in serum and the expression of IL-21 mRNA were higher in chronic schistosomiasis patients than in HC. Moreover, the frequency of circulating PD-1(high) CXCR5(+) CD4(+) Tfh cells positively correlated with the levels of IL-21 in serum from patients with chronic schistosomiasis. A positive correlation was also found between the frequency of PD-1(high) CXCR5(+) CD4(+) Tfh cells and the levels of soluble egg antigen (SEA)-specific antibodies in serum samples from the patient group. Our study is the first regarding Tfh cells in chronic human schistosomiasis and the finding indicate that PD-1(high) CXCR5(+) CD4(+)Tfh cells might play an important role in the production of specific antibodies in schistosomiasis. This study contributes to the understanding of immune response to schistosomiasis and may provide helpful support in vaccine development.

  17. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration.

    PubMed

    Fox, James M; Kausar, Fahima; Day, Amy; Osborne, Michael; Hussain, Khansa; Mueller, Anja; Lin, Jessica; Tsuchiya, Tomoko; Kanegasaki, Shiro; Pease, James E

    2018-06-21

    Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated.

  18. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach.

    PubMed

    Werner, Rudolf A; Weich, Alexander; Higuchi, Takahiro; Schmid, Jan S; Schirbel, Andreas; Lassmann, Michael; Wild, Vanessa; Rudelius, Martina; Kudlich, Theodor; Herrmann, Ken; Scheurlen, Michael; Buck, Andreas K; Kropf, Saskia; Wester, Hans-Jürgen; Lapa, Constantin

    2017-01-01

    C-X-C motif chemokine receptor 4 (CXCR4) and somatostatin receptors (SSTR) are overexpressed in gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). In this study, we aimed to elucidate the feasibility of non-invasive CXCR4 positron emission tomography/computed tomography (PET/CT) imaging in GEP-NET patients using [ 68 Ga]Pentixafor in comparison to 68 Ga-DOTA-D-Phe-Tyr3-octreotide ([ 68 Ga]DOTATOC) and 18 F-fluorodeoxyglucose ([ 18 F]FDG). Twelve patients with histologically proven GEP-NET (3xG1, 4xG2, 5xG3) underwent [ 68 Ga]DOTATOC, [ 18 F]FDG, and [ 68 Ga]Pentixafor PET/CT for staging and planning of the therapeutic management. Scans were analyzed on a patient as well as on a lesion basis and compared to immunohistochemical staining patterns of CXCR4 and somatostatin receptors SSTR2a and SSTR5. [ 68 Ga]Pentixafor visualized tumor lesions in 6/12 subjects, whereas [ 18 F]FDG revealed sites of disease in 10/12 and [ 68 Ga]DOTATOC in 11/12 patients, respectively. Regarding sensitivity, SSTR-directed PET was the superior imaging modality in all G1 and G2 NET. CXCR4-directed PET was negative in all G1 NET. In contrast, 50% of G2 and 80% of G3 patients exhibited [ 68 Ga]Pentixafor-positive tumor lesions. Whereas CXCR4 seems to play only a limited role in detecting well-differentiated NET, increasing receptor expression could be non-invasively observed with increasing tumor grade. Thus, [ 68 Ga]Pentixafor PET/CT might serve as non-invasive read-out for evaluating the possibility of CXCR4-directed endoradiotherapy in advanced dedifferentiated SSTR-negative tumors.

  19. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor.

    PubMed

    Sasai, Ken; Romer, Justyna T; Kimura, Hiromichi; Eberhart, Derek E; Rice, Dennis S; Curran, Tom

    2007-04-15

    The sonic hedgehog (Shh) pathway is activated in approximately 30% of human medulloblastoma resulting in increased expression of downstream target genes. In about half of these cases, this has been shown to be a consequence of mutations in regulatory genes within the pathway, including Ptc1, Smo, and Sufu. However, for some tumors, no mutations have been detected in known pathway genes. This suggests that either mutations in other genes promote tumorigenesis or that epigenetic alterations increase pathway activity in these tumors. Here, we report that 3% to 4% of mice lacking either one or both functional copies of Cxcr6 develop medulloblastoma. Although CXCR6 is not known to be involved in Shh signaling, tumors derived from Cxcr6 mutant mice expressed Shh pathway target genes including Gli1, Gli2, Ptc2, and Sfrp1, indicating elevated pathway activity. Interestingly, the level of Ptc1 expression was decreased in tumor cells although two normal copies of Ptc1 were retained. This implies that reduced CXCR6 function leads to suppression of Ptc1 thereby increasing Smoothened function and promoting tumorigenesis. We used a direct transplant model to test the sensitivity of medulloblastoma arising in Cxcr6 mutant mice to a small-molecule inhibitor of Smoothened (HhAntag). We found that transplanted tumors were dramatically inhibited in mice treated for only 4 days with HhAntag. These findings suggest that HhAntag may be effective against tumors lacking mutations in known Shh pathway genes.

  20. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers.

    PubMed

    Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J

    2008-01-01

    Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.

  1. A role for chemokine signaling in neural crest cell migration and craniofacial development

    PubMed Central

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  2. Expression characteristic of CXCR1 in different breast tissues and the relevance between its expression and efficacy of neo-adjuvant chemotherapy in breast cancer.

    PubMed

    Xue, Miao-Qun; Liu, Jun; Sang, Jian-Feng; Su, Lei; Yao, Yong-Zhong

    2017-07-25

    To investigate chemokine receptor CXCR1 expression characteristic in different breast tissues and analyze the relationship between CXCR1 expression changes in breast cancer tissue and efficacy of neo-adjuvant chemotherapy. Chemokine receptor CXCR1 was lowly expressed in normal breast tissues and breast fibroadenoma, but highly expressed in breast cancer. It was significantly correlated with pathological stage, tumor cell differentiation, and lymph node metastasis (P < 0.05). After neo-adjuvant chemotherapy, CXCR1 expression in breast cancer tissues decreased. Among these 104 breast cancer patients with different molecular subtypes, the survival rate with Luminal A was the highest, followed by the Luminal B breast cancer, TNBC was the worst. 104 cases with breast carcinoma, 20 cases with normal breast and 20 cases with breast fibroadenoma were included and followed up. Immunohistochemistry was used to detect the expression of CXCR1 in the various tissues. The relationship between the CXCR1 expression changes in breast cancer biopsies and surgical specimens, as well as the efficacy of neo-adjuvant chemotherapy, was analyzed. Chemokine receptor CXCR1 could be used as an indicator to predict benign or malignant breast disease, and it can even predict the malignancy degree of breast cancer, as well as its invasive ability and prognosis.

  3. CXCL16 and CXCR6 in Ewing sarcoma family tumor.

    PubMed

    Na, Ki Yong; Kim, Hyun-Sook; Jung, Woon-Won; Sung, Ji-Youn; Kalil, Ricardo Karam; Kim, Youn Wha; Park, Yong-Koo

    2014-04-01

    Chemokines are a family of peptide mediators that play an essential role in cellular migration and intracellular communication in tumor cells as well as immune cells. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in Ewing sarcoma (ES) family tumor (ESFT) progression. Using real-time quantitative reverse transcription-polymerase chain reaction, we investigated the mRNA expression of CXCL16, CXCR6, and ADAM 10 in various cell lines. We also investigated the expression of CXCL16, CXCR6, ADAM 10, and ADAM 17 in tissue samples from 61 ESFT patients using immunohistochemistry. The mRNA expression levels of CXCL16 and CXCR6 in the ES cell line were higher than those in the other cell lines. Immunohistochemical staining revealed that CXCL16 and CXCR6 were highly expressed in tumor cells of ESFT and showed a positive correlation between them. The expression of CXCL16 and CXCR6 was associated with the occurrence of lung metastasis. Univariate analysis revealed that CXCL16 or CXCR6 expression was associated with worse prognosis of ESFT patients. In addition, CXCL16 and CXCR6 expression was associated with shorter overall survival irrespective of other prognostic factors. Our results suggest that the CXCL16/CXCR6 axis appears to be important in the progression of ESFT, resulting in more aggressive clinical behavior. Furthermore, there may be a decrease in the overall survival in ESFT patients who have tumors that stain strongly for CXCL16 and CXCR6. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions.

    PubMed

    He, Jie-Tao; Huang, Hong-Yan; Qu, Dong; Xue, Ye; Zhang, Kai-Kai; Xie, Xiao-Li; Wang, Qi

    2018-06-01

    Detection of the vitality of wounds is one of the most important issues in forensic practice. This study investigated mRNA and protein levels of CXCL1 and CXCR2 in skin wounds in mice and humans. Western blot analysis of CXCL1 and CXCR2 protein levels showed no difference between wounded and intact skin. However, mRNA levels demonstrated higher expression of CXCL1 and CXCR2 in contused mouse and human skin, compared with intact skin. At postmortem there were no remarkable changes in CXCL1 and CXCR2 mRNA levels in contused mouse skin. Increased mRNA expression was observed in contused mouse skin up to 96 h and 72 h after death for CXCL1 and CXCR2 respectively. In human samples of wounded skin, increased CXCL1 mRNA levels were detected up to 48 h after autopsy in all 5 cases, while increased CXCR2 mRNA levels were observed 48 h after autopsy in 4 of 5 cases. These findings suggest that the levels of CXCL1 and CXCR2 mRNA present in contused skin can be used as potential markers for a vital reaction in forensic practice.

  5. Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load.

    PubMed

    Karlsson, Ulf; Antonsson, Liselotte; Ljungberg, Bengt; Medstrand, Patrik; Esbjörnsson, Joakim; Jansson, Marianne; Gisslen, Magnus

    2012-09-10

    To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.

  6. [⁹⁹mTc]O₂-AMD3100 as a SPECT tracer for CXCR4 receptor imaging.

    PubMed

    Hartimath, Siddesh V; Domanska, Urszula M; Walenkamp, Annemiek M E; Rudi A J O, Dierckx; de Vries, Erik F J

    2013-05-01

    CXCR4 plays an important role in HIV infection, tumor progression, neurogenesis, and inflammation. In-vivo imaging of CXCR4 could provide more insight in the role of this receptor in health and disease. The aim of this study was to investigate [(99m)Tc]O₂-AMD3100 as a potential SPECT tracer for imaging of CXCR4. AMD3100 was labelled with [(99m)Tc]pertechnetate. A cysteine challenge assay was performed to test the tracer stability. Heterologous and homologous receptor binding assay and internalization assay were performed in CXCR4 expressing Jurkat-T cells. Ex vivo biodistribution was studied in healthy mice at 30, 60, and 120 min after tracer injection. Tumor uptake of the tracer was determined by microSPECT imaging in nude mice xenografted with human PC-3 prostate tumor. Specificity of tracer uptake was determined by blocking studies using an excess of unlabelled AMD3100. AMD3100 was labelled with technetium-99m with a radiochemical yield of >98%. The tracer was stable in PBS and mouse plasma for at least 6h at 37 °C. Heterologous and homologous binding assays with AMD3100 showed IC50 values of 240 ± 10 μM, and 92 ± 5 μM for [(125)I]SDF-1α and [(99m)Tc]O₂-AMD3100 respectively, with negligible receptor internalisation. The tracer showed high uptake in liver, lungs, spleen, thymus, intestine and bone. Blocking dose of AMD3100.8HCl (20mg/kg) decreased the uptake in these organs (p<0.05). [(99m)Tc]O2-AMD3100 showed specific tumor accumulation in mice bearing PC-3 xenografts model. Time activity curves (TAC) in AMD3100 pre-treated animals tracer showed 1.7 times less tumor uptake as compared to control animals (p<0.05). [(99m)Tc]O2-AMD3100 is readily labelled, is stable in plasma and displays a favourable binding affinity for the CXCR4 receptors. [(99m)Tc O₂-AMD3100 shows specific binding in organs with high CXCR4 expression and in CXCR4 positive tumors. These results justify further evaluation of this radiopharmaceutical as a potential biomarker for the non-invasive imaging of CXCR4 receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Role of SDF‐1:CXCR4 in Impaired Post‐Myocardial Infarction Cardiac Repair in Diabetes

    PubMed Central

    Mayorga, Maritza E.; Kiedrowski, Matthew; McCallinhart, Patricia; Forudi, Farhad; Ockunzzi, Jeremiah; Weber, Kristal; Chilian, William; Penn, Marc S.

    2017-01-01

    Abstract Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stem cells translational medicine 2018;7:115–124 PMID:29119710

  8. Role of CXCR4 in Cell-Cell Fusion and Infection of Monocyte-Derived Macrophages by Primary Human Immunodeficiency Virus Type 1 (HIV-1) Strains: Two Distinct Mechanisms of HIV-1 Dual Tropism

    PubMed Central

    Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.

    1999-01-01

    Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797

  9. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells.

    PubMed

    Guan, Xiao-Feng; Chen, Qing-Jie; Zuo, Xiao-Cong; Guo, Ren; Peng, Xiang-Dong; Wang, Jiang-Lin; Yin, Wen-Jun; Li, Dai-Yang

    2017-01-01

    With the rapid development of imaging diagnosis and interventional therapy, contrast media (CM) are widely used in clinics. However, contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure accounting for 10-12% of all causes of hospital-acquired renal failure. Recent study found that inflammation may participate in the pathogenesis of CIN, but the role of it remains unclear. HK-2 cells were treated with Iohexol, Urografin, and mannitol. Two types of CM increased the release of HMGB1 in cell supernatant accompanied by increased expression of TLR2 and CXCR4. Iohexol and Urografin also caused a significant increase in NF-κB followed by the release of IL-6 and MCP-1. To clarify the role of HMGB1, TLR2, and CXCR4, glycyrrhizin, anti-TLR2-IgG, and AMD3100 were used to inhibit HMGB1, TLR2, and CXCR4, respectively. Significant decrease in the expression of TLR2, CXCR4, nuclear NF-κB, and the release of IL-6 and MCP-1 were observed. These results indicate that TLR2 and CXCR4 signaling are involved in CM-induced HK-2 cell injury model in an HMGB1-dependent pathway, which may provide a new target for the prevention and the treatment of CIN.

  10. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma.

    PubMed

    Gao, Qiang; Zhao, Ying-Jun; Wang, Xiao-Ying; Qiu, Shuang-Jian; Shi, Ying-Hong; Sun, Jian; Yi, Yong; Shi, Jie-Yi; Shi, Guo-Ming; Ding, Zhen-Bin; Xiao, Yong-Sheng; Zhao, Zhong-Hua; Zhou, Jian; He, Xiang-Huo; Fan, Jia

    2012-07-15

    CXC chemokines and their cognate receptors have been implicated widely in cancer pathogenesis. In this study, we report a critical causal relationship between CXCR6 expression and tumorigenesis in the setting of human hepatocellular carcinoma (HCC). Among the CXC chemokine receptors, only CXCR6 was detected in all the hepatoma cell lines studied. Moreover, in HCC tissue, CXCR6 expression was significantly higher than in noncancerous liver tissues. Reduction of CXCR6 or its ligand CXCL16 in cancer cells reduced cell invasion in vitro and tumor growth, angiogenesis, and metastases in vivo. Importantly, loss of CXCR6 led to reduced Gr-1+ neutrophil infiltration and decreased neoangiogenesis in hepatoma xenografts via inhibition of proinflammatory cytokine production. Clinically, high expression of CXCR6 was an independent predictor of increased recurrence and poor survival in HCCs. Human HCC samples expressing high levels of CXCR6 also contained an increased number of CD66b+ neutrophils and microvessels, and the combination of CXCR6 and neutrophils was a superior predictor of recurrence and survival than either marker used alone. Together, our findings suggest that elevated expression of CXCR6 promotes HCC invasiveness and a protumor inflammatory environment and is associated with poor patient outcome. These results support the concept that inhibition of the CXCR6-CXCL16 pathway may improve prognosis after HCC treatment.

  11. CXCR7 functions in colon cancer cell survival and migration

    PubMed Central

    WANG, HONGXIAN; TAO, LINYU; QI, KE; ZHANG, HAOYUN; FENG, DUO; WEI, WENJUN; KONG, HENG; CHEN, TIANWEN; LIN, QIUSHENG; CHEN, DAOJIN

    2015-01-01

    C-X-C chemokine receptor 7 (CXCR7) is a known promoter of tumor progression and metastasis; however, little is known about its role in colon cancer. The aim of the present study was to investigate the function of CXCR7 in human colon cancer cells. CXCR7 mRNA levels were examined in HT-29 and SW-480 human colon cancer cell lines using a quantitative polymerase chain reaction. CXCR7-knockdown was performed with small interfering RNA and lentiviral-mediated gene delivery. Immunofluorescence (IF) was conducted to examine CXCR7 expression and localization in colon cancer cells. Cell survival and migration were evaluated using MTT and migration assays, respectively. HT-29 cells expressed higher levels of CXCR7 mRNA and were therefore used in subsequent experiments. IF staining revealed that the CXCR7 protein was expressed on the cell membrane, and its expression decreased following CXCR7-short hairpin RNA lentiviral transfection. Lentiviral CXCR7-knockdown resulted in decreased cell survival and migration; however, MTT assays revealed that the lentiviral vector itself was cytotoxic. This cytotoxicity was indicated as the cell survival of the negative control group cells was significantly decreased compared with that of the blank control group cells (P<0.05). In conclusion, it is becoming increasingly evident that CXCR7 plays a role in colon cancer promotion, suggesting that CXCR7 is a promising biomarker for chemokine receptor-based drug development. Furthermore, the fact that CXCR7 is expressed on the membrane and not intracellularly makes it a prime target for drug-based intervention. PMID:26640542

  12. LncRNA PRNCR1 regulates osteogenic differentiation in osteolysis after hip replacement by targeting miR-211-5p.

    PubMed

    Gong, Zong-Ming; Tang, Zhen-Yu; Sun, Xiao-Liang

    2018-05-11

    Background Osteogenic differentiation and osteolysis after hip replacement are both associated with bone metabolism. Interaction between the long non-coding RNA (lncRNA) prostate cancer non-coding RNA 1 (PRNCR1) and miR-211-5p was analyzed to illuminate their roles in osteogenic differentiation and osteolysis. Methods The expression of PRNCR1, miR-211-5p and C-X-C chemokine receptor-4 (CXCR4) protein in tissues and mesenchymal stem cells (MSCs) were determined by qRT-PCR and western blot, separately. The osteogenic differentiation was assessed with Alkaline phosphatase (ALP) activity detection and ARS staining. The endogenous expressions of genes were modulated by recombinant plasmid and cell transfection. Combination condition and interaction between RNA and protein were determined with RIP and RNA pull-down assay, respectively. Interaction between miR-211-5p and CXCR4 was examined with Dual luciferase reporter assay. Results PRNCR1 and CXCR4 were up-regulated in wear particles around prosthesis and in MSCs incubated with Polymethylmethacrylate (PMMA), while miR-211-5p was down-regulated. Repression of PRNCR1 weakened the inhibitory effect of wear particles on osteogenic differentiation. PRNCR1 positively regulated CXCR4 through inhibiting miR-211-5p. Wear particles regulated CXCR4 level through miR-211-5p to affect osteogenic differentiation of MSCs. Wear particles regulated the miR-211-5p level through PRNCR1 to affect osteogenic differentiation of MSCs. Conclusion LncRNA PRNCR1 up-regulates CXCR4 through inhibiting miR-211-5p, which inhibits osteogenic differentiation and thereby leading to osteolysis after hip replacement. ©2018 The Author(s).

  13. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    PubMed

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  14. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture.

    PubMed

    Zhou, Panpan; Liu, Zilin; Li, Xue; Zhang, Bing; Wang, Xiaoyuan; Lan, Jing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-09-16

    While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer.

    PubMed

    Lee, Jun Taik; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee; Ha, Hong Koo

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10(-2) and 1.99×10(-2) in benign bladder tissue and 1.39×10(-2) and 2.32×10(-2) in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets.

  16. FLI1 levels impact CXCR3 expression and renal infiltration of T cells and renal glycosphingolipid metabolism in the MRL/lpr lupus mouse strain

    PubMed Central

    Sundararaj, Kamala P.; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W.; Drake, Richard R.; Nowling, Tamara K.

    2015-01-01

    The ETS factor FLI1 is a key modulator of lupus disease expression. Over-expressing FLI1 in healthy mice, results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1+/−) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1+/− lupus mice have reduced activation and IL-4 production, Neuraminidase1 (Neu1) expression, and the levels of the glycosphingolipid (GSL) lactosylceramide (LacCer). Here we demonstrate that MRL/lpr Fli1+/− mice have significantly decreased renal Neu1 and LacCer levels. This corresponds with a significant decrease in the number of total CD3+ cells, as well as CD4+ and CD44+CD62L− T cell subsets in the kidney of MRL/lpr Fli1+/− mice compared to the Fli1+/+ nephritic mice. We further demonstrate that the percentage of CXCR3+ T cells and Cxcr3 message levels in T cells are significantly decreased and corresponds with a decrease in renal CXCR3+ cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1+/− compared to the Fli1+/+ nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through down-regulation of CXCR3, reducing renal T cell infiltration and GSL levels. PMID:26538397

  17. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus.

    PubMed

    Hamed, Saher; Brenner, Benjamin; Abassi, Zaid; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2010-09-01

    Type 2 diabetes mellitus (DM) patients with coronary artery disease (CAD) have elevated plasma oxidized-LDL (OxLDL) levels and impaired neovascularization. Hyperglycemia and hyperlipidemia impair endothelial progenitor cell (EPC) migration, and endothelial nitric oxide (NO) bioavailability and NO synthase (NOS) activity are essential for EPC migration. Stromal-derived factor-1alpha (SDF1alpha) contributes to EPC mobilization and homing by stimulating the CXC receptor-4 (CXCR4) on the EPC plasmalemma to activate the Pi3K/Akt/eNOS signaling pathway. Therefore, we investigated the effect of high glucose (HG) and OxLDL on the migration and NO bioavailability of EPCs from healthy individuals, and then correlated the findings with those of EPCs from type 2 DM patients with and without CAD. EPCs from 15 healthy and 55 patients were exposed to HG, OxLDL, or both before evaluating EPC count, migration and NO production, and expression of CXCR4 and members of Pi3K/Akt/eNOS signaling cascade. Counts, migration, CXCR4 expression, and NO production were significantly reduced in EPCs from DM and CAD patients compared with that obtained in EPCs from healthy, and were further reduced in DM patients with CAD. The expression of CXCR4 and activation of Pi3K/Akt/eNOS signaling cascade were suppressed in OxLDL- and HG-treated EPCs, and this suppression was exacerbated when EPCs were treated simultaneously with HG and OxLDL. Hyperglycemia and elevated circulating OxLDL in DM patients with CAD severely impair EPC migration. These results suggest that the underlying mechanism for this impaired EPC migration is linked to the CXCR4/Pi3K/Akt/eNOS signaling pathway. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Expression of CXCR1 (IL-8 receptor A) in splenic, peritoneal macrophages and resident bone marrow cells after acute live or heat killed Staphylococcus aureus stimulation in mice.

    PubMed

    Bishayi, Biswadev; Nandi, Ajeya; Dey, Rajen; Adhikary, Rana

    2017-08-01

    Literature reveals that interaction with live Staphylococcus aureus (S. aureus) or heat killed S. aureus (HKSA) promotes secretion of CXCL-8 or interleukin-8 (IL-8) from leukocytes, however, the expressions of CXCR1 in murine splenic (SPM), peritoneal macrophages (PM) and resident fresh bone marrow cells (FBMC) have not been identified. Currently, very few studies are available on the functional characterization of CXCR1 in mouse macrophage subtypes and its modulation in relation to acute S. aureus infection. SPM, PM and FBMCs were infected with viable S. aureus or stimulated with HKSA in presence and absence of anti-CXCR1 antibody in this study. We reported here that CXCR1 was not constitutively expressed by macrophage subtypes and the receptor was induced only after S. aureus stimulation. The CXCR1 band was found specific as we compared with human polymorphonuclear neutrophils (PMNs) as a positive control (data not shown). Although, we did not show that secreted IL-8 from S. aureus-infected macrophages promotes migration of PMNs. Blocking of cell surface CXCR1 decreases the macrophage's ability to clear staphylococcal infection, attenuates proinflammatory cytokine production and the increased catalase and decreased superoxide dismutase (SOD) enzymes of the bacteria might indicate their role in scavenging macrophage derived hydrogen peroxide (H 2 O 2 ). The decreased levels of cytokines due to CXCR1 blockade before S. aureus infection appear to regulate the killing of bacteria by destroying H 2 O 2 and nitric oxide (NO). Moreover, functional importance of macrophage subpopulation heterogeneity might be important in designing new effective approaches to limit S. aureus infection induced inflammation and cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases

    PubMed Central

    Lee, Chih-hung; Kakinuma, Takashi; Wang, Julia; Zhang, Hong; Palmer, Douglas C.; Restifo, Nicholas P.; Hwang, Sam T.

    2008-01-01

    Expression of the chemokine receptor CXCR4 by tumor cells promotes metastasis, possibly by activating pro-survival signals that render cancer cells resistant to immune attack. Inhibition of CXCR4 with a peptide antagonist, T22, blocks metastatic implantation of CXCR4-transduced B16 (CXCR4-luc-B16) melanoma cells in lung, but not the outgrowth of established metastases, raising the question of how T22 can best be used in a clinical setting. Herein, whereas the treatment of CXCR4-luc-B16 cells in vitro with the CXCR4 ligand CXCL12 did not reduce killing induced by cisplatin or cyclophosphamide, CXCL12 markedly reduced Fas-dependent killing by gp100-specific (pmel-1) CD8+ T cells. T22 pretreatment restored sensitivity of CXCR4-luc-B16 cells to pmel-1 killing, even in the presence of CXCL12. Two immune-augmenting regimens were used in combination with T22 to treat experimental lung metastases. First, low-dose cyclophosphamide treatment (100 mg/kg) on day 5 in combination with T22 (days 4–7) yielded a ~70% reduction of B16 metastatic tumor burden in the lungs compared with cyclophosphamide treatment alone (P < 0.001). Furthermore, whereas anti–CTL antigen 4 (CTLA4) monoclonal antibody (mAb; or T22 treatment) alone had little effect on established B16 metastases, pretreatment with T22 (in combination with anti-CTLA4 mAb) resulted in a 50% reduction in lung tumor burden (P = 0.02). Thus, in vitro, CXCR4 antagonism with T22 renders B16 cells susceptible to killing by antigen-specific T cells. In vivo, T22 synergizes with cyclophosphamide or anti-CTLA4 mAb in the treatment of established lung metastases, suggesting a novel strategy for augmenting the efficacy of immunotherapy. PMID:17041104

  20. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells

    PubMed Central

    Wang, Xiao; Zhang, Yong-Le; Zhang, Ya-Dong; Xue, Feng

    2017-01-01

    This study aims to explore the role of the SDF-1/CXCR4 axis in mediating BMSCs and SCI recovery. BMSCs were collected and SCI rat models were established. Wistar rats were assigned into the blank control, sham, SCI, SCI + BMSCs, SCI + BMSCs + SDF-1, SCI + BMSCs + AMD3100 (an inhibitor of SDF-1/CXCR4 axis) and SCI + BMSCs + SDF-1 + AMD3100 groups. Hind limb motor function was measured 7, 14, 21 and 28 days after operation. qRT-PCR, western blotting and ELISA was performed to determine the expressions of SDF-1, CXCR4, NGF, BDNF, GFAP and GAP-43, TNF-α, IL-1β, L-6 and IFN-γ. Hind limb motor function scores 7 days after the operation were reduced in the SCI rats of the blank control and sham groups. Hind limb function was found to be better in the SCI + BMSCs and SCI + BMSCs + SDF-1 groups than in the SCI, SCI + BMSCs + AMD3100 and SCI + BMSCs + SDF-1 + AMD3100 groups 14, 21 and 28 days after operation. Furthermore, the SCI group had lower SDF-1, CXCR4, NGF, BDNF and GAP-43 expressions but higher GFAP, TNF-α, IL-1β, IL-6 and IFN-γ than the blank control and sham groups 28 days after operation. While, the SCI + BMSCs, SCI + BMSCs + SDF-1 and SCI + BMSCs + SDF-1 + AMD3100 groups displayed opposite trends to the SCI and SCI + BMSCs + AMD3100 groups. In conclusion, SDF-1/CXCR4 axis promotes recovery after SCI by mediating BMSCs. PMID:28099928

  1. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  2. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins.

    PubMed

    Chadli, Meriem; Rebaud, Samuel; Maniti, Ofelia; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2017-10-03

    Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10 -7 cm 2 /s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP 2 ), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven-transmembrane protein belonging to the large superfamily of G-protein-coupled receptors (GPCRs). We succeeded in reinserting CXCR4 in pep-tBLMs formed on P19-4H by the fusion of tethered proteoliposomes. AFM and FRAP characterization allowed us to show that pep-tBLMs inserting CXCR4 remained fluid, homogeneous, and continuous. The value of the diffusion coefficient determined in the presence of reinserted CXCR4 was 2 × 10 -7 cm 2 /s. Ligand binding assays using a synthetic CXCR4 antagonist, T22 ([Tyr5,12, Lys7]-polyphemusin II), revealed that CXCR4 can be reinserted in pep-tBLMs with functional folding and orientation. This new approach represents a method of choice for investigating membrane protein reincorporation and a promising way of creating a new generation of membrane biochips adapted for screening agonists or antagonists of transmembrane proteins.

  3. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro.

    PubMed

    Guiducci, Serena; Manetti, Mirko; Romano, Eloisa; Mazzanti, Benedetta; Ceccarelli, Claudia; Dal Pozzo, Simone; Milia, Anna Franca; Bellando-Randone, Silvia; Fiori, Ginevra; Conforti, Maria Letizia; Saccardi, Riccardo; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco

    2011-11-01

    To characterise bone marrow-derived mesenchymal stem cells (MSCs) from patients with systemic sclerosis (SSc) for the expression of factors implicated in MSC recruitment at sites of injury, angiogenesis and fibrosis. The study also analysed whether the production/release of bioactive mediators by MSCs were affected by stimulation with cytokines found upregulated in SSc serum and tissues, and whether MSCs could modulate dermal microvascular endothelial cell (MVEC) angiogenesis. MSCs obtained from five patients with early severe diffuse SSc (SSc-MSCs) and five healthy donors (H-MSCs) were stimulated with vascular endothelial growth factor (VEGF), transforming growth factor β (TGFβ) or stromal cell-derived factor-1 (SDF-1). Transcript and protein levels of SDF-1 and its receptor CXCR4, VEGF, TGFβ(1) and receptors TβRI and TβRII were evaluated by quantitative real-time PCR, western blotting and confocal microscopy. VEGF, SDF-1 and TGFβ(1) secretion in culture supernatant was measured by ELISA. MVEC capillary morphogenesis was performed on Matrigel with the addition of MSC-conditioned medium. In SSc-MSCs the basal expression of proangiogenic SDF-1/CXCR4 and VEGF was significantly increased compared with H-MSCs. SSc-MSCs constitutively released higher levels of SDF-1 and VEGF. SDF-1/CXCR4 were upregulated after VEGF stimulation and CXCR4 redistributed from the cytoplasm to the cell surface. VEGF was increased by SDF-1 challenge. VEGF, TGFβ and SDF-1 stimulation upregulated TGFβ(1), TβRI and TβRII in SSc-MSCs. TβRII redistributed from the cytoplasm to focal adhesion contacts. SSc-MSC-conditioned medium showed a greater proangiogenic effect on MVECs than H-MSCs. Experiments with blocking antibodies showed that MSC-derived cytokines were responsible for this potent proangiogenic effect. SSc-MSCs constitutively overexpress and release bioactive mediators/proangiogenic factors and potentiate dermal MVEC angiogenesis.

  4. Blockade of the CXCR6 signaling inhibits growth and invasion of hepatocellular carcinoma cells through inhibition of the VEGF expression.

    PubMed

    Xu, J M; Weng, M Z; Song, F B; Chen, J Y; Zhang, J Y; Wu, J Y; Qin, J; Jin, T; Wang, X L

    2014-01-01

    Chemokines have been shown to play a critical role in tumor development and progression. However, little is known about the function and molecular mechanisms of CXCR6 in multiple malignancies. In the present study, we aimed to investigate the role of CXCR6 in human hepatocellular carcinoma (HCC). The expression of CXCR6 was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was performed to explore the effects of lentivirus-mediated CXCR6 shRNA (shCXCR6) on cell proliferation and invasive potential by MTT and Transwell assays in HCC cell line (SMMC-7721). It was found that the expression of CXCR6 protein was significantly increased in HCC tissues compared with that in adjacent non-cancerous tissues (ANCT) (63.04% vs 36.96%, P=0.019), and correlated with the lymph-vascular space invasion in HCC patients (P=0.038). Knockdown of CXCR6 repressed cell proliferation and invasion of HCC cells followed by the down-regulation of vascular endothelial growth factor (VEGF). Taken together, our findings show that high expression of CXCR6 is positively associated with distant invasion of HCC patients, and blockade of CXCR6 signaling suppresses the growth and invasion of HCC cells through inhibition of the VEGF expression, suggesting that CXCR6 may represent a promising therapeutic target for the treatment of HCC.

  5. Nodal Lymphangiogenesis and Metastasis

    PubMed Central

    Hirakawa, Satoshi; Detmar, Michael; Kerjaschki, Dontscho; Nagamatsu, Shogo; Matsuo, Keitaro; Tanemura, Atsushi; Kamata, Nobuyuki; Higashikawa, Koichiro; Okazaki, Hidenori; Kameda, Kenji; Nishida-Fukuda, Hisayo; Mori, Hideki; Hanakawa, Yasushi; Sayama, Koji; Shirakata, Yuji; Tohyama, Mikiko; Tokumaru, Sho; Katayama, Ichiro; Hashimoto, Koji

    2009-01-01

    Nodal lymphangiogenesis promotes distant lymph node (LN) metastasis in experimental cancer models. However, the role of nodal lymphangiogenesis in distant metastasis and in the overall survival of cancer patients remains unknown. Therefore, we investigated mechanisms that might facilitate regional and distant LN metastasis in extramammary Paget’s disease (EMPD). We retrospectively analyzed the impact of tumor-induced lymphatic vessel activation on the survival of 116 patients, the largest cohort with EMPD studied to date. Nodal lymphangiogenesis was significantly increased in metastatic, compared with tumor-free, LNs (P = 0.022). Increased lymphatic invasion within regional LNs was significantly associated with distant metastasis in LN (P = 0.047) and organs (P = 0.003). Thus, invasion within regional LNs is a powerful indicator of systemic tumor spread and reduced patient survival in EMPD (P = 0.0004). Lymphatic vessels associated with tumors expressed stromal cell-derived factor-1 (SDF-1), whereas CXCR4 was expressed on invasive Paget cells undergoing epithelial-mesenchymal transition (EMT)-like process. A431 cells overexpressing Snail expressed increased levels of CXCR4 in the presence of transforming growth factor-β1. Haptotactic migration assays confirmed that Snail-induced EMT-like process promotes tumor cell motility via the CXCR4-SDF-1 axis. Sinusoidal lymphatic endothelial cells and macrophages expressed SDF-1 in subcapsular sinuses of lymph nodes before Paget cell arrival. Our findings reveal that EMT-related features likely promote lymphatic metastasis of EMPD by activating the CXCR4-SDF-1 axis. PMID:19815713

  6. [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent

    PubMed Central

    Schottelius, Margret; Osl, Theresa; Poschenrieder, Andreas; Hoffmann, Frauke; Beykan, Seval; Hänscheid, Heribert; Schirbel, Andreas; Buck, Andreas K.; Kropf, Saskia; Schwaiger, Markus; Keller, Ulrich; Lassmann, Michael; Wester, Hans-Jürgen

    2017-01-01

    Purpose: Based on the clinical relevance of the chemokine receptor 4 (CXCR4) as a molecular target in cancer and on the success of [68Ga]pentixafor as an imaging probe for high-contrast visualization of CXCR4-expression, the spectrum of clinical CXCR4-targeting was expanded towards peptide receptor radionuclide therapy (PRRT) by the development of [177Lu]pentixather. Experimental design: CXCR4 affinity, binding specificity, hCXCR4 selectivity and internalization efficiency of [177Lu]pentixather were evaluated using different human and murine cancer cell lines. Biodistribution studies (1, 6, 48, 96h and 7d p.i.) and in vivo metabolite analyses were performed using Daudi-lymphoma bearing SCID mice. Extrapolated organ doses were cross-validated with human dosimetry (pre-therapeutic and during [177Lu]pentixather PRRT) in a patient with multiple myeloma (MM). Results: [177Lu]pentixather binds with high affinity, specificity and selectivity to hCXCR4 and shows excellent in vivo stability. Consequently, and supported by >96% plasma protein binding and a logP=-1.76, delaying whole-body clearance of [177Lu]pentixather, tumor accumulation was high and persistent, both in the Daudi model and the MM patient. Tumor/background ratios (7d p.i.) in mice were 499±202, 33±7, 4.0±0.8 and 116±22 for blood, intestine, kidney and muscle, respectively. In the patient, high tumor/kidney and tumor/liver dose ratios of 3.1 and 6.4 were observed during [177Lu]pentixather PRRT (7.8 GBq), with the kidneys being the dose-limiting organs. Conclusions: [177Lu]pentixather shows excellent in vivo CXCR4-targeting characteristics and a suitable pharmacokinetic profile, leading to high tumor uptake and retention and thus high radiation doses to tumor tissue during PRRT, suggesting high clinical potential of this [68Ga]pentixafor/[177Lu]pentixather based CXCR4-targeted theranostic concept. PMID:28744319

  7. Reducing CXCR4-mediated nociceptor hyperexcitability reverses painful diabetic neuropathy.

    PubMed

    Jayaraj, Nirupa D; Bhattacharyya, Bula J; Belmadani, Abdelhak A; Ren, Dongjun; Rathwell, Craig A; Hackelberg, Sandra; Hopkins, Brittany E; Gupta, Herschel R; Miller, Richard J; Menichella, Daniela M

    2018-06-01

    Painful diabetic neuropathy (PDN) is an intractable complication of diabetes that affects 25% of patients. PDN is characterized by neuropathic pain and small-fiber degeneration, accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability and loss of their axons within the skin. The molecular mechanisms underlying DRG nociceptor hyperexcitability and small-fiber degeneration in PDN are unknown. We hypothesize that chemokine CXCL12/CXCR4 signaling is central to this mechanism, as we have shown that CXCL12/CXCR4 signaling is necessary for the development of mechanical allodynia, a pain hypersensitivity behavior common in PDN. Focusing on DRG neurons expressing the sodium channel Nav1.8, we applied transgenic, electrophysiological, imaging, and chemogenetic techniques to test this hypothesis. In the high-fat diet mouse model of PDN, we were able to prevent and reverse mechanical allodynia and small-fiber degeneration by limiting CXCR4 signaling or neuronal excitability. This study reveals that excitatory CXCR4/CXCL12 signaling in Nav1.8-positive DRG neurons plays a critical role in the pathogenesis of mechanical allodynia and small-fiber degeneration in a mouse model of PDN. Hence, we propose that targeting CXCR4-mediated DRG nociceptor hyperexcitability is a promising therapeutic approach for disease-modifying treatments for this currently intractable and widespread affliction.

  8. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis.

    PubMed

    Cipriani, P; Guiducci, S; Miniati, I; Cinelli, M; Urbani, S; Marrelli, A; Dolo, V; Pavan, A; Saccardi, R; Tyndall, A; Giacomelli, R; Cerinic, M Matucci

    2007-06-01

    Systemic sclerosis (SSc) is a disorder characterized by vascular damage and fibrosis of the skin and internal organs. Despite marked tissue hypoxia, there is no evidence of compensatory angiogenesis. The ability of mesenchymal stem cells (MSCs) to differentiate into endothelial cells was recently demonstrated. The aim of this study was to determine whether impaired differentiation of MSCs into endothelial cells in SSc might contribute to disease pathogenesis by decreasing endothelial repair. MSCs obtained from 7 SSc patients and 15 healthy controls were characterized. The number of colony-forming unit-fibroblastoid colonies was determined. After culture in endothelial-specific medium, the endothelial-like MSC (EL-MSC) phenotype was assessed according to the surface expression of vascular endothelial growth factor receptors (VEGFRs). Senescence, chemoinvasion, and capillary morphogenesis studies were also performed. MSCs from SSc patients displayed the same phenotype and clonogenic activity as those from controls. In SSc MSCs, a decreased percentage of VEGFR-2+, CXCR4+, VEGFR-2+/CXCR4+ cells and early senescence was detected. After culturing, SSc EL-MSCs showed increased expression of VEGFR-1, VEGFR-2, and CXCR4, did not express CD31 or annexin V, and showed significantly decreased migration after specific stimuli. Moreover, the addition of VEGF and stromal cell-derived factor 1 to cultured SSc EL-MSCs increased their angiogenic potential less than that in controls. Our data strongly suggest that endothelial repair may be affected in SSc. The possibility that endothelial progenitor cells could be used to increase vessel growth in chronic ischemic tissues may open up new avenues in the treatment of vascular damage caused by SSc.

  9. Distinct mobilization of leukocytes and hematopoietic stem cells by CXCR4 peptide antagonist LY2510924 and monoclonal antibody LY2624587

    PubMed Central

    Peng, Sheng-Bin; Van Horn, Robert D.; Yin, Tinggui; Brown, Robin M.; Roell, William C.; Obungu, Victor H.; Ruegg, Charles; Wroblewski, Victor J.; Raddad, Eyas; Stille, John R.

    2017-01-01

    Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 play a critical role in mobilization and redistribution of immune cells and hematopoietic stem cells (HSCs). We evaluated effects of two CXCR4-targeting agents, peptide antagonist LY2510924 and monoclonal antibody LY2624587, on mobilizing HSCs and white blood cells (WBCs) in humans, monkeys, and mice. Biochemical analysis showed LY2510924 peptide blocked SDF-1/CXCR4 binding in all three species; LY2624587 antibody blocked binding in human and monkey, with minimal activity in mouse. Cellular analysis showed LY2624587 antibody, but not LY2510924 peptide, down-regulated cell surface CXCR4 and induced hematological tumor cell death; both agents have been shown to inhibit SDF-1/CXCR4 interaction and downstream signaling. In animal models, LY2510924 peptide induced robust, prolonged, dose- and time-dependent WBC and HSC increases in mice and monkeys, whereas LY2624587 antibody induced only moderate, transient increases in monkeys. In clinical trials, similar pharmacodynamic effects were observed in patients with advanced cancer: LY2510924 peptide induced sustained WBC and HSC increases, while LY2624587 antibody induced only minimal, transient WBC changes. These distinct pharmacodynamic effects in two different classes of CXCR4 inhibitors are clinically important and should be carefully considered when designing combination studies with immune checkpoint inhibitors or other agents for cancer therapy. PMID:29212254

  10. The RORγt-CCR6-CCL20 axis augments Th17 cells invasion into the synovia of rheumatoid arthritis patients.

    PubMed

    Kaneko, Shunta; Kondo, Yuya; Yokosawa, Masahiro; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Kanamori, Akihiro; Matsumoto, Isao; Yamazaki, Masashi; Sumida, Takayuki

    2018-01-22

    To clarify the pathogenic role of transcription factor expression of CD4 + T helper (Th) cell subsets in the development of rheumatoid arthritis (RA). We collected CD4 + T cells from peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) by magnetic cell sorting. The proportion of Th cell subsets were classified from cell surface markers (CD45RA, CXCR5, CXCR3, CCR6) and the expression of their transcription factors (T-bet, GATA3, RORγt) were analyzed by flow cytometry before and at 24 weeks after anti-rheumatic treatment. Chemotaxis assays quantified migratory ability. The expression of CCR6 and RORγt in Th17 cells from PBMC of RA patients was significantly higher than in healthy control volunteers and osteoarthritis patients. The proportion of Th17 cells in SFMCs of RA patients was significantly higher than that in PBMCs. Chemotaxis assays revealed that the migration index of Th17 cells towards CCL20 was remarkably enhanced in RA patients. The expression of CCR6 and RORγt in Th17 cells at 24 weeks post-therapeutic intervention was significantly decreased compared to before treatment. The high expression of RORγt might facilitate the migration of Th17 cells to inflamed joints via the enhanced expression of CCR6 and contribute to the pathology of RA.

  11. CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC) Pathologic Roles and Therapeutic Potential

    PubMed Central

    Wald, Ori; Shapira, Oz M.; Izhar, Uzi

    2013-01-01

    Lung cancer is the second most common malignancy and the leading cause of cancer-related death in the western world. Moreover, despite advances in surgery, chemotherapy and radiotherapy, the death rate from lung cancer remains high and the reported overall five-year survival rate is only 15%. Thus, novel treatments for this devastating disease are urgently needed. Chemokines, a family of 48 chemotactic cytokines interacts with their 7 transmembrane G-protein-coupled receptors, to guide immune cell trafficking in the body under both physiologic and pathologic conditions. Tumor cells, which express a relatively restricted repertoire of chemokine and chemokine receptors, utilize and manipulate the chemokine system in a manner that benefits both local tumor growth and distant dissemination. Among the 19 chemokine receptors, CXCR4 is the receptor most widely expressed by malignant tumors and whose role in tumor biology is most thoroughly studied. The chemokine CXCL12, which is the sole ligand of CXCR4, is highly expressed in primary lung cancer as well as in the bone marrow, liver, adrenal glands and brain, which are all sites for lung cancer metastasis. This review focuses on the pathologic role of the CXCR4/CXCL12 axis in NSCLC and on the potential therapeutic implication of targeting this axis for the treatment of NSCLC. PMID:23382783

  12. SDF-1 promotes endochondral bone repair during fracture healing at the traumatic brain injury condition.

    PubMed

    Liu, Xiaoqi; Zhou, Changlong; Li, Yanjing; Ji, Ye; Xu, Gongping; Wang, Xintao; Yan, Jinglong

    2013-01-01

    The objective of this study was to investigate the role of stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, on bone healing and whether SDF-1 contributes to accelerating bone repair in traumatic brain injury (TBI)/fracture model. Real-time polymerase chain reaction and immunohistochemical analysis were used to detect the expression of SDF-1 during the repair of femoral bone in TBI/fracture model. The TBI/fracture model was treated with anti-SDF-1 neutralizing antibody or AMD3100, an antagonist for CXCR4, and evaluated by histomorphometry. In vitro and in vivo migration assays were used to evaluate the functional effect of SDF-1 on primary mesenchymal stem cells. The expression of SDF1 and CXCR4 messenger RNA was increased during the bone healing in TBI/fracture model but was less increased in fracture only model. High expression of SDF-1 protein was observed in the surrounding tissue of the damaged bone. Treated with anti-SDF-1 antibody or AMD3100 could inhibit new bone formation. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. The SDF-1/CXCR4 axis plays a crucial role in the accelerating fracture healing under the condition of TBI and contributes to endochondral bone repair.

  13. CXCR4+ granulocytes reflect fungal cystic fibrosis lung disease.

    PubMed

    Carevic, Melanie; Singh, Anurag; Rieber, Nikolaus; Eickmeier, Olaf; Griese, Matthias; Hector, Andreas; Hartl, Dominik

    2015-08-01

    Cystic fibrosis airways are frequently colonised with fungi. However, the interaction of these fungi with immune cells and the clinical relevance in cystic fibrosis lung disease are incompletely understood.We characterised granulocytes in airway fluids and peripheral blood from cystic fibrosis patients with and without fungal colonisation, non-cystic fibrosis disease controls and healthy control subjects cross-sectionally and longitudinally and correlated these findings with lung function parameters.Cystic fibrosis patients with chronic fungal colonisation by Aspergillus fumigatus were characterised by an accumulation of a distinct granulocyte subset, expressing the HIV coreceptor CXCR4. Percentages of airway CXCR4(+) granulocytes correlated with lung disease severity in patients with cystic fibrosis.These studies demonstrate that chronic fungal colonisation with A. fumigatus in cystic fibrosis patients is associated with CXCR4(+) airway granulocytes, which may serve as a potential biomarker and therapeutic target in fungal cystic fibrosis lung disease. Copyright ©ERS 2015.

  14. A cellular, molecular, and pharmacological basis for appendage regeneration in mice

    PubMed Central

    Leung, Thomas H.; Snyder, Emily R.; Liu, Yinghua; Wang, Jing; Kim, Seung K.

    2015-01-01

    Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1–Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. PMID:26494786

  15. Role of GPER1, EGFR and CXCR1 in differentiating between malignant follicular thyroid carcinoma and benign follicular thyroid adenoma

    PubMed Central

    Zhao, Le; Zhu, Xiao-Yun; Jiang, Rong; Xu, Man; Wang, Ni; Chen, George G; Liu, Zhi-Min

    2015-01-01

    It is extremely difficult to discriminate between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) before surgery, because the morphologies of carcinoma cells and adenoma cells obtained by fine needle aspiration biopsy (FNAB) are similar. Molecular markers may be helpful on this issue. The purpose of this study was to assess the role of GPER1, EGFR and CXCR1 in differential diagnosis between FTC and FTA. GPER1, EGFR and CXCR1 mRNA expression levels were examined in 15 FTCs and 10 FTAs using real-time RT-PCR. FTC showed to have significantly increased mRNA levels of the three molecules compared to FTA (P < 0.001 for all the three molecules). GPER1, EGFR and CXCR1 protein expression in 106 FTCs and 128 FTAs were analyzed using immunohistochemistry. The rates of GPER1, EGFR and CXCR1 high expression were 73.6%, 72.6% and 70.8% in FTC and 30.5%, 28.1% and 27.3% in FTA, respectively. Statistical analysis showed that GPER1, EGFR and CXCR1 protein expression were correlated with one another in FTC and concomitant high expression of the three molecules had stronger correlation with the occurrence of FTC than did each alone. The positive predictive values (PPV) for concomitant high expression of the three molecules for discriminating between FTC and FTA were 91.0% for GPER1/EGFR, 93.8% for GPER1/CXCR1, 92.3% for EGFR/CXCR1 and 98.2% for GPER1/EGFR/CXCR1, respectively. These results indicated that the evaluation of GPER1, EGFR and CXCR1 concomitant high expression may be helpful in differential diagnosis between FTC and FTA. PMID:26617848

  16. Role of GPER1, EGFR and CXCR1 in differentiating between malignant follicular thyroid carcinoma and benign follicular thyroid adenoma.

    PubMed

    Zhao, Le; Zhu, Xiao-Yun; Jiang, Rong; Xu, Man; Wang, Ni; Chen, George G; Liu, Zhi-Min

    2015-01-01

    It is extremely difficult to discriminate between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) before surgery, because the morphologies of carcinoma cells and adenoma cells obtained by fine needle aspiration biopsy (FNAB) are similar. Molecular markers may be helpful on this issue. The purpose of this study was to assess the role of GPER1, EGFR and CXCR1 in differential diagnosis between FTC and FTA. GPER1, EGFR and CXCR1 mRNA expression levels were examined in 15 FTCs and 10 FTAs using real-time RT-PCR. FTC showed to have significantly increased mRNA levels of the three molecules compared to FTA (P < 0.001 for all the three molecules). GPER1, EGFR and CXCR1 protein expression in 106 FTCs and 128 FTAs were analyzed using immunohistochemistry. The rates of GPER1, EGFR and CXCR1 high expression were 73.6%, 72.6% and 70.8% in FTC and 30.5%, 28.1% and 27.3% in FTA, respectively. Statistical analysis showed that GPER1, EGFR and CXCR1 protein expression were correlated with one another in FTC and concomitant high expression of the three molecules had stronger correlation with the occurrence of FTC than did each alone. The positive predictive values (PPV) for concomitant high expression of the three molecules for discriminating between FTC and FTA were 91.0% for GPER1/EGFR, 93.8% for GPER1/CXCR1, 92.3% for EGFR/CXCR1 and 98.2% for GPER1/EGFR/CXCR1, respectively. These results indicated that the evaluation of GPER1, EGFR and CXCR1 concomitant high expression may be helpful in differential diagnosis between FTC and FTA.

  17. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    PubMed

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  18. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment.

    PubMed

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine-based drugs.

  19. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer

    PubMed Central

    LEE, JUN TAIK; LEE, SANG DON; LEE, JEONG ZOO; CHUNG, MOON KEE; HA, HONG KOO

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10−2 and 1.99×10−2 in benign bladder tissue and 1.39×10−2 and 2.32×10−2 in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets. PMID:23255926

  20. CD4-CCR5 interaction in intracellular compartments contributes to receptor expression at the cell surface

    PubMed Central

    Achour, Lamia; Scott, Mark G.H.; Shirvani, Hamasseh; Thuret, Alain; Bismuth, Georges; Labbé-Jullié, Catherine; Marullo, Stefano

    2009-01-01

    The association of CD4, a glycoprotein involved in T cell development and antigen recognition, and CCR5, a chemotactic G protein-coupled receptor, which regulates trafficking and effector functions of immune cells, forms the main receptor for the human immunodeficiency virus HIV. We observed that the vast majority of CCR5 is maintained within the intracellular compartments of primary T lymphocytes and in a monocytic cell line, contrasting with its relative low density at the cell surface. The CCR5-CD4 association, which occurs in the endoplasmic reticulum, enhanced CCR5 export to the plasma membrane in a concentration–dependent manner, whereas inhibition of endogenous CD4 with small interfering RNAs decreased cell surface expression of endogenous CCR5. This effect was specific for CCR5, as CD4 did not affect cell distribution of CXCR4, the other HIV co-receptor. These results reveal a previously unappreciated role of CD4, which contributes to regulate CCR5 export to the plasma membrane. PMID:19064722

  1. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro.

    PubMed

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.

  2. CXCL16 and CXCR6 Are Coexpressed in Human Lung Cancer In Vivo and Mediate the Invasion of Lung Cancer Cell Lines In Vitro

    PubMed Central

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301

  3. FLI1 Levels Impact CXCR3 Expression and Renal Infiltration of T Cells and Renal Glycosphingolipid Metabolism in the MRL/lpr Lupus Mouse Strain.

    PubMed

    Sundararaj, Kamala P; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W; Drake, Richard R; Nowling, Tamara K

    2015-12-15

    The ETS factor Friend leukemia virus integration 1 (FLI1) is a key modulator of lupus disease expression. Overexpressing FLI1 in healthy mice results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1(+/-)) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1(+/-) lupus mice have reduced activation and IL-4 production, neuraminidase 1 expression, and the levels of the glycosphingolipid lactosylceramide. In this study, we demonstrate that MRL/lpr Fli1(+/-) mice have significantly decreased renal neuraminidase 1 and lactosylceramide levels. This corresponds with a significant decrease in the number of total CD3(+) cells, as well as CD4(+) and CD44(+)CD62L(-) T cell subsets in the kidney of MRL/lpr Fli1(+/-) mice compared with the Fli1(+/+) nephritic mice. We further demonstrate that the percentage of CXCR3(+) T cells and Cxcr3 message levels in T cells are significantly decreased and correspond with a decrease in renal CXCR3(+) cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1(+/-) compared with the Fli1(+/+) nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through downregulation of CXCR3, reducing renal T cell infiltration and glycosphingolipid levels. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  5. Effects of linagliptin on human immortalized podocytes: a cellular system to study dipeptidyl‐peptidase 4 inhibition

    PubMed Central

    Miglio, Gianluca; Vitarelli, Giovanna; Klein, Thomas

    2017-01-01

    Background and Purpose Dipeptidyl‐peptidase 4 (DPP4) is expressed by resident renal cells, including glomerular cells. DPP4 inhibitors (gliptins) exert albuminuria lowering effects, but the role of renal DPP4 as a pharmacological target has not been elucidated. To better understand the actions of gliptins, the effects of linagliptin on the behaviour of immortalized human podocytes and mesangial cells were evaluated. Experimental Approach The expression of DPP4 was measured at both the mRNA and protein levels. The effects of linagliptin on DPP4 activity, cell growth and cell cycle progression were determined. The contribution of the stromal cell‐derived factor‐1‐ CXCR4/CXCR7 signalling pathways was evaluated by studying the effects of AMD3100 (a CXCR4 antagonist and CXCR7 agonist) alone and in combination with linagliptin. The contribution of ERK1/2 activation was analysed by studying the effects of the MAPK kinase 1/2 inhibitor AZD6244. Key Results DPP4 was highly expressed in podocytes. The activity of DPP4 and podocyte growth were reduced by linagliptin. The effects of sitagliptin on podocyte growth were similar to those of linagliptin, were associated with inhibition of cell proliferation and mimicked by AMD3100. Moreover, linagliptin and AMD3100 were found to have a synergistic interaction, whereas no interaction was seen between linagliptin and AZD6244. Conclusions and Implications Our cultures of human glomerular cells represent a reliable system for investigating the actions of gliptins. Moreover, DPP4 contributes to the regulation of podocyte behaviour. Inhibition of DPP4 in podocytes could underlie the effects of linagliptin on glomerular cells. PMID:28177527

  6. Changes in expression of T-helper (Th) 1- and Th2-associated chemokine receptors on peripheral blood lymphocytes and plasma concentrations of their ligands, interferon-inducible protein-10 and thymus and activation-regulated chemokine, after antithyroid drug administration in hyperthyroid patients with Graves' disease.

    PubMed

    Inukai, Yoshihisa; Momobayashi, Atsushi; Sugawara, Naoto; Aso, Yoshimasa

    2007-06-01

    Although Graves' disease is considered an autoantibody-mediated, T-helper 2 (Th2)-dominant disease, Th1-dominance may prevail in its initial phase. We longitudinally investigated Th1/Th2 balance in untreated hyperthyroid patients with Graves' disease after treatment of methimazole (MMI), an antithyroid drug. University clinic outpatients were studied prospectively. Subjects included 23 untreated hyperthyroid patients with Graves' disease and 17 age-matched control subjects. Before and after treatment, we measured Th1- and Th2-associated chemokine receptors (CXCR)3 and CCR4, on peripheral blood lymphocytes using flow cytometry, as well as plasma concentrations of their ligands, interferon-inducible protein (IP)-10 and thymus and activation-regulated chemokine (TARC). The percentage of CXCR3-expressing cells among CD4+T lymphocytes and plasma IP-10 was significantly higher in hyperthyroid Graves' disease patients than in controls. At 12 and 24 weeks after initiation of MMI, percentage of CXCR3-expressing CD4+T lymphocytes had decreased significantly, while the percentage of CCR4-expressing CD4+T lymphocytes had increased significantly at 24 weeks. The CXCR3/CCR4 ratio had decreased significantly at 24 weeks. Plasma concentrations of IP-10 had decreased significantly at 12 and 24 weeks. Plasma concentrations of TARC also had decreased significantly at 24 weeks. In hyperthyroid patients with Graves' disease in the active phase, Th1 cells rather than Th2 cells predominated among peripheral blood lymphocytes. After initiation of MMI, an ongoing transition from Th1 to Th2 dominance occurred.

  7. [Expression of Id1 and Id3 in endometrial carcinoma and their roles in regulating biological behaviors of endometrial carcinoma cells in vitro].

    PubMed

    Sun, Lili; Li, Xuenong; Liu, Guobing

    2013-06-01

    To investigate the expression of inhibitor of DNA differentiation/DNA binding 1 (Id1) and Id3 in endometrial carcinoma and explore their roles in regulating the proliferation, invasion, migration and adhesion of endometrial carcinoma cells in vitro. Id1 and Id3 expression in 4 fresh endometrial cancer tissue specimens and matched adjacent tissues were detected using Western blotting. Two endometrial cancer cell lines, HEC-1-B and RL-952, were both divided into 4 groups, namely the untreated group, blank virus group, promoter group and Id1/Id3 double-knockdown group, and their expressions of MMP2, CXCR4 and P21 were detected by qRT-PCR and Western blotting. The proliferation, invasion, migration and adhesion of the cells were evaluated with MTT, Transwell, wound-healing, and adhesion assays. Endometrial carcinoma tissues showed significantly higher Id1 and Id3 expression than the adjacent tissues (P<0.05). In the two endometrial carcinoma cell lines, Id1/Id3 double-knockdown significantly decreased MMP2 and CXCR4 expression and increased P21 expression at both mRNA and protein levels (P<0.05), and resulted in suppressed cell proliferation, invasion, migration and adhesion. Id1 and Id3 expressions are up-regulated in endometrial carcinoma to promote the proliferation, invasion, migration and adhesion of the tumor cells by increasing MMP2 and CXCR4 expression and reducing P21 expression. Therapies targeting Id1/Id3 can be a novel strategy for treatment of endometrial carcinoma.

  8. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    PubMed

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK cell-based therapies of solid tumors, it is of great importance to promote their homing to the tumor site. In this study, we show that stable engineering of human primary NK cells to express a chemokine receptor thereby enhancing their migration is a promising strategy to improve anti-tumor responses following adoptive transfer of NK cells.

  9. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer.

    PubMed

    Mansoori, Behzad; Mohammadi, Ali; Hashemzadeh, Shahriar; Shirjang, Solmaz; Baradaran, Ali; Asadi, Milad; Doustvandi, Mohammad Amin; Baradaran, Behzad

    2017-09-01

    Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (P<0.05). Moreover, the results of the MTT assay show that Urtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6.

    PubMed

    Oldham, Kimberley A; Parsonage, Greg; Bhatt, Rupesh I; Wallace, D Michael A; Deshmukh, Nayneeta; Chaudhri, Shalini; Adams, David H; Lee, Steven P

    2012-02-01

    Evidence suggests that some patients with renal cell carcinoma (RCC) respond to immunomodulatory therapies that activate T lymphocytes. A prerequisite for effective T cell therapy is efficient targeting of effector T cells to the tumour site, yet the molecular basis of T cell recruitment to RCC is unknown. Furthermore, some T cells that naturally infiltrate this cancer are regulatory T cells (Tregs) that may suppress antitumour immune responses. Determine the mechanisms of effector and regulatory T cell recruitment to RCC to allow targeted therapy that promotes local anti-tumour immunity. Tumour-infiltrating and peripheral blood T cells were collected from 70 patients undergoing nephrectomy for RCC. T cells were analysed by multicolour flow cytometry for expression of 19 chemokine receptors and 7 adhesion molecules. Receptors that were expressed at higher levels on tumour-infiltrating lymphocytes (TILs) compared with matched peripheral blood lymphocytes (PBLs) were analysed further for their ability to mediate migration responses in TILs and for expression of corresponding ligands in tumour tissue. Three chemokine receptors-CCR5, CXCR3, and CXCR6-were significantly overexpressed on TILs compared with matched PBLs (n=16 cases) and were capable of promoting migration in vitro. Their corresponding ligands CCL4-5, CXCL9-11, and CXCL16 were all detected in RCC tissue. However, since they were present in all cases studied, it was not possible to correlate ligand expression with levels of T cell infiltration. Foxp3(+) Tregs were enriched within TILs compared with matched PBLs and expressed high levels of CCR5, CXCR3, and CXCR6, as well as CCR6, the ligand for which (CCL20) was detectable in RCC tissue. Our data support a role for CCR5, CXCR3, and CXCR6 in the selective recruitment of T cells into RCC tissue and, together with CCR6, in the recruitment of Tregs. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer.

    PubMed

    Wang, Xingwei; Cao, Yan; Zhang, Shirong; Chen, Zhihui; Fan, Ling; Shen, Xiaochun; Zhou, Shiwen; Chen, Dongfeng

    2017-05-30

    Esophageal cancer is one of the most common malignant tumors of the digestive tract. The greatest obstacle to the curing of esophageal cancer is its propensity to spread and metastasize. Esophageal cancer stem cells are considered the source for recurrence and metastasis of the tumors. While clinical evidence suggested that continuous up-regulation of CXCL12/CXCR4 was significantly associated with poor prognosis in patients with esophageal cancer, but the role and mechanism of CXCL12/CXCR4 in the invasion and metastasis of esophageal cancer has not been reported by far. This study found that esophageal cancer stem cells not only autocrine a great amount of CXCL12, but also high expression of its corresponding receptor CXCR4. Most importantly, the ability of esophageal cancer stem cells to spread and metastasize could be inhibited by blockage of CXCR4 with inhibitors or shRNA approaches both in vivo and in vitro studies. The important role of CXCL12 in the invasion and metastasis of esophageal cancer stem cells was also confirmed by loss-of-function and gain-of-function strategies. Mechanistically, we demonstrated that CXCL12/CXCR4 activated the ERK1/2 pathway and thereby ultimately maintained the characteristics of high-level invasion and metastasis of esophageal cancer stem cells. Taken together, our findings suggested that autocrine CXCL12/CXCR4 was one of the major mechanisms underlying the metastatic property of esophageal cancer stem cells through ERK1/2 signaling pathway, and might serve as a therapeutic target for esophageal cancer patients.

  12. Expression and regulation of the chemokine CXCL16 in Crohn’s disease and models of intestinal inflammation

    PubMed Central

    Diegelmann, Julia; Seiderer, Julia; Niess, Jan-Hendrik; Haller, Dirk; Göke, Burkhard; Reinecker, Hans-Christian; Brand, Stephan

    2010-01-01

    Background/Aims CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria and is a strong chemoattractant for CXCR6+ T cells. In this study, we determined the so far unknown expression and signal transduction of the novel CXCL16-CXCR6 chemokine-ligand receptor system in intestinal inflammation in vivo and in vitro. Methods CXCL16 mRNA was measured by quantitative PCR in human colonic biopsies of patients with Crohn’s disease (CD) as well as in the TNFΔARE mouse model of ileitis and in murine cytomegalovirus (MCMV)-induced colitis. CXCL16 serum levels were analyzed by ELISA. CXCL16-induced signal transduction was analyzed in IEC with phospho-specific antibodies for MAP kinases and Akt. Results We found an inverse expression pattern of CXCL16 and CXCR6 with highest CXCL16 mRNA levels in the proximal murine small intestine and highest CXCR6 mRNA expression in the distal colon. CXCL16 and CXCR6 mRNA were expressed in colorectal cancer (CRC)-derived IEC lines. CRC-expressed CXCR6 was functional as demonstrated by CXCL16-induced MAP kinase and Akt activation. Intestinal CXCL16 expression was elevated in the TNFΔARE mouse model of ileitis and in MCMV-induced colitis (p<0.05) and in the sera and colons of patients with CD (p<0.05), where its expression correlated highly with CXCR6 and IL-8 levels (r=0.85 and 0.89, respectively). Conclusion CRC-derived IEC express the functional CXCL16 receptor CXCR6. CXCL16 mRNA and protein expression is up-regulated in intestinal inflammation in vitro and in CD patients, suggesting an important role for this chemokine in intestinal inflammation. PMID:20848509

  13. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo.

    PubMed

    Sebastian, Nadia T; Zaikos, Thomas D; Terry, Valeri; Taschuk, Frances; McNamara, Lucy A; Onafuwa-Nuga, Adewunmi; Yucha, Ryan; Signer, Robert A J; Riddell, James; Bixby, Dale; Markowitz, Norman; Morrison, Sean J; Collins, Kathleen L

    2017-07-01

    Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.

  14. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1α/CXCR4 cascade antagonist, AMD3100, and the PI3K inhibitor, LY-294002. These results indicated that Ex-4 augmented the SDF-1α/CXCR4 cascade by activating the PI3K/Akt pathways in the ADSCs and NRVCs. Furthermore, enhancement of the PI3K/Akt-SDF-1α/CXCR4 pathway may be important in the migratory response of ADSCs to NRVC-CM in vitro. PMID:25625935

  15. Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis.

    PubMed

    Wang, Yan; Kumar, Sushil; Rachagani, Satyanarayana; Sajja, Balasrinivasa R; Xie, Ying; Hang, Yu; Jain, Maneesh; Li, Jing; Boska, Michael D; Batra, Surinder K; Oupický, David

    2016-09-01

    Pancreatic cancer (PC) is one of the most aggressive malignancies due to intense desmoplasia, extreme hypoxia and inherent chemoresistance. Studies have implicated the expression of chemokine receptor CXCR4 and nuclear receptor co-activator-3 (NCOA3) in the development of desmoplasia and metastatic spread of PC. Using a series of polymeric CXCR4 antagonists (PCX), we optimized formulation of PCX/siNCOA3 polyplexes to simultaneously target CXCR4 and NCOA3 in PC. Cholesterol-modified PCX showed maximum CXCR4 antagonism, NCOA3 silencing and inhibition of PC cell migration in vitro. The optimized PCX/siNCOA3 polyplexes were used in evaluating antitumor and antimetastatic activity in orthotopic mouse model of metastatic PC. The polyplexes displayed significant inhibition of primary tumor growth, which was accompanied by a decrease in tumor necrosis and increased tumor perfusion. The polyplexes also showed significant antimetastatic effect and effective suppression of metastasis to distant organs. Overall, dual-function PCX/siNCOA3 polyplexes can effectively regulate tumor microenvironment to decrease progression and dissemination of PC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS.

    PubMed Central

    Vallat, A. V.; De Girolami, U.; He, J.; Mhashilkar, A.; Marasco, W.; Shi, B.; Gray, F.; Bell, J.; Keohane, C.; Smith, T. W.; Gabuzda, D.

    1998-01-01

    The chemokine receptors CCR5 and CXCR4 are co-receptors together with CD4 for human immunodeficiency virus (HIV)-1 entry into target cells. Macrophage-tropic HIV-1 viruses use CCR5 as a co-receptor, whereas T-cell-line tropic viruses use CXCR4. HIV-1 infects the brain and causes a progressive encephalopathy in 20 to 30% of infected children and adults. Most of the HIV-1-infected cells in the brain are macrophages and microglia. We examined expression of CCR5 and CXCR4 in brain tissue from 20 pediatric acquired immune deficiency syndrome (AIDS) patients in relation to neuropathological consequences of HIV-1 infection. The overall frequency of CCR5-positive perivascular mononuclear cells and macrophages was increased in the brains of children with severe HIV-1 encephalitis (HIVE) compared with children with mild HIVE or non-AIDS controls, whereas the frequency of CXCR4-positive perivascular cells did not correlate with disease severity. CCR5- and CXCR4-positive macrophages and microglia were detected in inflammatory lesions in the brain of children with severe HIVE. In addition, CXCR4 was detected in a subpopulation of neurons in autopsy brain tissue and primary human brain cultures. Similar findings were demonstrated in the brain of adult AIDS patients and controls. These findings suggest that CCR5-positive mononuclear cells, macrophages, and microglia contribute to disease progression in the central nervous system of children and adults with AIDS by serving as targets for virus replication. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:9422534

  17. CXCR6 predicts poor prognosis in gastric cancer and promotes tumor metastasis through epithelial-mesenchymal transition.

    PubMed

    Jin, Jie-Jie; Dai, Fa-Xiang; Long, Zi-Wen; Cai, Hong; Liu, Xiao-Wen; Zhou, Ye; Hong, Qi; Dong, Qiong-Zhu; Wang, Ya-Nong; Huang, Hua

    2017-06-01

    Chemokines and their receptors have been confirmed to be involved in several types of cancer. However, little is known concerning the role of CXCL16 and its receptor CXCR6 in gastric cancer (GC) progression and metastasis. In the present study, expression of CXCL16 and CXCR6 in GC tumor and peritumoral tissues was detected by immunohistochemistry (IHC) in a cohort of 352 GC patients who underwent gastrectomy, and the correlation between CXCL16/CXCR6 expression and clinicopathological characteristics was further analyzed. To evaluate the function of CXCR6, we overexpressed and knocked down CXCR6 in GC cell lines. Results showed that expression of CXCR6, but not CXCL16, was significantly upregulated in GC tumor tissues, and was significantly correlated with lymph node and distant metastases, and advanced clinical stage in the GC patients. Survival analysis showed that large tumor size (>5 cm), elevated preoperative serum carcinoembryonic antigen (CEA) level, advanced TNM stage and high CXCR6 expression indicated worse overall survival (OS) and disease-free survival (DFS) in GC, and CXCR6 was an independent predictor for both OS and DFS in GC. In vitro experiments showed that CXCR6 overexpression induced cell migration and invasion ability, and promoted epithelial-mesenchymal transition of GC cells by upregulation of mesenchymal markers and inhibition of epithelial markers. In contrast, knockdown of CXCR6 in GC cells resulted in inhibition of cell proliferation, migration and invasion ability, and reversal of epithelial-mesenchymal transition (EMT) phenomenon. Our results demonstrated that CXCR6 is an independent prognostic factor for poor survival in GC patients, and may promote GC metastasis through EMT.

  18. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells.

    PubMed

    van der Voort, Robbert; Verweij, Viviènne; de Witte, Theo M; Lasonder, Edwin; Adema, Gosse J; Dolstra, Harry

    2010-06-01

    DC are professional APCs that initiate and regulate adaptive immune responses by interacting with naïve and memory T cells. Chemokines released by DC play an essential role in T cell recruitment and in the maintenance of antigen-specific T cell-DC conjugates. Here, we characterized the expression of the T cell-attracting chemokine CXCL16 by murine DC. We demonstrate that through alternative RNA splicing, DC not only express the previously characterized transmembrane CXCL16 isoform, which can be cleaved from the cell surface, but also a novel isoform lacking the transmembrane and cytoplasmic domains. Transfection of HEK293 cells shows that this novel isoform, termed CXCL16v, is not expressed on the cell membrane but is secreted as a protein of approximately 10 kDa. Quantitative PCR demonstrates that CXCL16v is broadly expressed in lymphoid and nonlymphoid tissues resembling the tissue distribution of DC. Indeed, CXCL16v mRNA is expressed significantly by spleen DC and BM-DC. Moreover, we show that mature DC have increased CXCL16v mRNA levels and express transmembrane and soluble CXCL16 proteins. Finally, we show that CXCL16v specifically attracts cells expressing the chemokine receptor CXCR6. Our data demonstrate that mature DC express secreted, transmembrane, and cleaved CXCL16 isoforms to recruit and communicate efficiently with CXCR6(+) lymphoid cells.

  19. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice.

    PubMed

    Nagashima, Hidekazu; Shinoda, Masamichi; Honda, Kuniya; Kamio, Noriaki; Watanabe, Masahiro; Suzuki, Tatsuro; Sugano, Naoyuki; Sato, Shuichi; Iwata, Koichi

    2017-01-01

    Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). Infiltration of inflammatory cells into gingival tissue was not observed following the inoculation. Under light anesthesia, the mechanical head withdrawal threshold (MHWT) on the buccal gingiva was measured using an electronic von Frey anesthesiometer. No significant changes in MHWT were observed in the mice with P. gingivalis-induced periodontitis during the experimental period. Continuous administration of CXCR4 neutralizing antibody to the gingival tissue significantly decreased MHWT and increased the number of gingival CXCR4 immunoreactive macrophages in the periodontitis group. Nitric oxide metabolites in the gingival tissue were significantly increased after the inoculation of P. gingivalis and were reduced by gingival CXCR4 neutralization. Gingival L-arginine administration induced gingival mechanical allodynia in naive animals. Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue in P. gingivalis-induced periodontitis.

  20. Chemokine and Chemokine Receptor Profiles in Metastatic Salivary Adenoid Cystic Carcinoma.

    PubMed

    Mays, Ashley C; Feng, Xin; Browne, James D; Sullivan, Christopher A

    2016-08-01

    To characterize the chemokine pattern in metastatic salivary adenoid cystic carcinoma (SACC). Real-time polymerase chain reaction (RT-PCR) was used to compare chemokine and chemokine receptor gene expression in two SACC cell lines: SACC-83 and SACC-LM (lung metastasis). Chemokines and receptor genes were then screened and their expression pattern characterized in human tissue samples of non-recurrent SACC and recurrent SACC with perineural invasion. Expression of chemokine receptors C5AR1, CCR1, CCR3, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR6, CXCR7, CCRL1 and CCRL2 were higher in SACC-83 compared to SACC-LM. CCRL1, CCBP2, CMKLR1, XCR1 and CXCR2 and 6 chemokine genes (CCL13, CCL27, CXCL14, CMTM1, CMTM2, CKLF) were more highly expressed in tissues of patients without tumor recurrence/perineural invasion compared to those with tumor recurrence. CCRL1 (receptor), CCL27, CMTM1, CMTM2, and CKLF (chemokine) genes were more highly expressed in SACC-83 and human tissues of patients without tumor recurrence/perineural invasion. CCRL1, CCL27, CMTM1, CMTM2 and CKLF may play important roles in the development of tumor metastases in SACC. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Blockade of CXCR6 reduces invasive potential of gastric cancer cells through inhibition of AKT signaling.

    PubMed

    Li, Ya; Fu, Li-Xia; Zhu, Wan-Lin; Shi, Hua; Chen, Li-Jian; Ye, Bin

    2015-06-01

    Chemokines and their receptors have been implicated in cell migration and metastasis of multiple malignant tumors. But the function of CXCR6 signaling in gastric cancer is not comprehensively understood. In the present study, we hypothesized that CXCR6 signaling might play an essential role in the progression of gastric cancer. The expression of CXCR6 was examined by immunohistochemical assay in human gastric cancer, and lentivirus-mediated CXCR6 knockdown by shRNA (Lv-shCXCR6) was used for investigating cell migration and invasion indicated by Wound-healing and Transwell assays. Consequently, the expression level of CXCR6 was increased in gastric cancer compared with the adjacent non-tumor tissues (54.2% vs. 27.1%, P = 0.006), and was closely associated with the metastatic lymph node in gastric cancer (P = 0.021). Furthermore, blockade of the CXCR6 signaling reduced the migration and invasion of gastric cancer cells followed by decreased expression of AKT, MMP-2, and MMP-9. In conclusion, these findings demonstrate that CXCR6 may promote the development of gastric cancer cells through regulation of AKT signaling. © The Author(s) 2015.

  2. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    PubMed Central

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857

  3. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  4. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    PubMed Central

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  5. CXCR6 promotes tumor cell proliferation and metastasis in osteosarcoma through the Akt pathway.

    PubMed

    Ma, Yunsheng; Xu, Xin; Luo, Mei

    2017-01-01

    Chemokine (C-X-C motif) receptor 6 (CXCR6) is up-regulated in many malignancies, indicating that CXCR6 plays an important role in tumor progression. However, the expression and function of CXCR6 in osteosarcoma (OS) remains unclear. This study aimed to explore the expression levels and function of CXCR6 in OS tissues and osteosarcoma cell lines MG-63, HOS and U2OS. The protein expression levels of CXCR6 in OS patient tissues and three osteosarcoma cell lines MG-63, HOS and U2OS were assessed. CXCR6-overexpression MG-63 cell lines were established and then the proliferation, invasion and the epithelial-mesenchymal transition (EMT) in those cells were assessed. CXCR6 mRNA levels in OS tissues were significantly higher than those in normal bone tissues. Consistently, both of the mRNA and protein levels of CXCR6 in OS cell lines MG-63, HOS and U2OS were higher than those in normal bone cells hFOB1.19. CXCR6 overexpression not only promoted cell proliferation, invasion and EMT, but also enhanced the phosphorylation of Akt in MG-63 cells. After inhibition of Akt-phosphorylation by Akt inhibitor, LY2940023, CXCR6-induced cell proliferation and invasion were dramatically attenuated. In conclusion, the present study demonstrated that CXCR6 enhances OS cell proliferation and invasion through the Akt pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis.

    PubMed

    Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin; Entman, Mark L; Wang, Yanlin

    2014-07-01

    Recent studies have shown that angiotensin II (Ang II) plays a critical role in the pathogenesis and progression of hypertensive kidney disease. However, the signaling mechanisms are poorly understood. In this study, we investigated the role of CXCR6 in Ang II-induced renal injury and fibrosis. Wild-type and CXCR6-green fluorescent protein (GFP) knockin mice were treated with Ang II via subcutaneous osmotic minipumps at 1500 ng/kg per minute after unilateral nephrectomy for ≤ 4 weeks. Wild-type and CXCR6-GFP knockin mice had virtually identical blood pressure at baseline. Ang II treatment led to an increase in blood pressure that was similar between wild-type and CXCR6-GFP knockin mice. CXCR6-GFP knockin mice were protected from Ang II-induced renal dysfunction, proteinuria, and fibrosis. CXCR6-GFP knockin mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts and produced less extracellular matrix protein in the kidneys after Ang II treatment. Furthermore, CXCR6-GFP knockin mice exhibited fewer F4/80(+) macrophages and CD3(+) T cells and expressed less proinflammatory cytokines in the kidneys after Ang II treatment. Finally, wild-type mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts, macrophages, and T cells in the kidney after Ang II treatment when compared with wild-type mice engrafted with CXCR6(+/+) bone marrow cells. Our results indicate that CXCR6 plays a pivotal role in the development of Ang II-induced renal injury and fibrosis through regulation of macrophage and T-cell infiltration and bone marrow-derived fibroblast accumulation. © 2014 American Heart Association, Inc.

  7. CXCR6 Plays a Critical Role in Angiotensin II-induced Renal Injury and Fibrosis

    PubMed Central

    Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Objective Recent studies have shown that angiotensin II (Ang II) plays a critical role in the pathogenesis and progression of hypertensive kidney disease. However, the signaling mechanisms are poorly understood. In this study, we investigated the role of CXCR6 in Ang II-induced renal injury and fibrosis. Approach and Results Wild-type and CXCR6-GFP knockin mice were treated with Ang II via subcutaneous osmotic minipumps at 1500 ng/kg/min after unilateral nephrectomy for up to 4 weeks. WT and CXCR6-GFP knockin mice had virtually identical blood pressure at baseline. Ang II treatment led to an increase in blood pressure that was similar between WT and CXCR6-GFP knockin mice. CXCR6-GFP knockin mice were protected from Ang II-induced renal dysfunction, proteinuria, and fibrosis. CXCR6-GFP knockin mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts and produced less extracellular matrix protein in the kidneys following Ang II treatment. Furthermore, CXCR6-GFP knockin mice exhibited fewer F4/80+ macrophages and CD3+ T cells and expressed less proinflammatory cytokines in the kidneys after Ang II treatment. Finally, wild-type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts, macrophages, and T cells in the kidney after Ang II treatment compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Conclusions Our results indicate that CXCR6 plays a pivotal role in the development of Ang II-induced renal injury and fibrosis through regulation of macrophage and T cell infiltration and bone marrow-derived fibroblast accumulation. PMID:24855055

  8. Altered Expression of CXCL13 and CXCR5 in Intractable Temporal Lobe Epilepsy Patients and Pilocarpine-Induced Epileptic Rats.

    PubMed

    Li, Ruohan; Ma, Limin; Huang, Hao; Ou, Shu; Yuan, Jinxian; Xu, Tao; Yu, Xinyuan; Liu, Xi; Yang, Juan; Chen, Yangmei; Peng, Xi

    2017-02-01

    The mechanisms that underlie the pathogenesis of epilepsy are still unclear. Recent studies have indicated that inflammatory processes occurring in the brain are involved in a common and crucial mechanism in epileptogenesis. C-X-C motif chemokine ligand 13 (CXCL13) and its only receptor, C-X-C motif chemokine receptor 5 (CXCR5), are highly expressed in the central nervous system (CNS) and participate in inflammatory responses. The present study aimed to assess the expression of CXCL13 and CXCR5 in the brain tissues of both patients with intractable epilepsy (IE) and a rat model (lithium-pilocarpine) of temporal lobe epilepsy (TLE) to identify possible roles of the CXCL13-CXCR5 signaling pathway in epileptogenesis. Real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemical, double-labeled immunofluorescence and Western blot analyses were performed in this study. CXCL13 and CXCR5 mRNA expression and protein levels were found to be significantly up-regulated in the TLE patients and TLE rats. Further, CXCL13 and CXCR5 protein levels were altered during the different epileptic phases after onset of status epilepticus (SE) in the pilocarpine model rats, including the acute phase (6, 24, and 72 h), latent phase (7 and 14 days) and chronic phase (30 and 60 days groups). Moreover, double-labeled immunofluorescence analysis revealed that CXCL13 was mainly expressed in the cytomembranes and cytoplasm of neurons and astrocytes, while CXCR5 was mainly expressed in the cytomembranes and cytoplasm of neurons. Thus, the CXCL13-CXCR5 signaling pathway may play a possible pathogenic role in IE. CXCL13 and CXCR5 may represent potential biomarkers of brain inflammation in epileptic patients.

  9. A cellular, molecular, and pharmacological basis for appendage regeneration in mice.

    PubMed

    Leung, Thomas H; Snyder, Emily R; Liu, Yinghua; Wang, Jing; Kim, Seung K

    2015-10-15

    Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. © 2015 Leung et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Porcile, Carola; Pattarozzi, Alessandra; Schettini, Gennaro; Florio, Tullio

    2007-03-01

    Chemokines are key factors involved in the regulation of immune response, through the activation and control of leukocyte traffic, lymphopoiesis and immune surveillance. However, a large number of chemokines and their receptors are expressed in central nervous system (CNS) cells, either constitutively or induced by inflammatory stimuli, playing a role in many neuropathological processes. Stromal cell-derived factor 1 (SDF1) is a chemokine whose extra-immunological localization and functions have been extensively studied. SDF1 and its receptor CXCR4 were identified in both neurons and glia of many brain areas, including the hypothalamus, as well as at the pituitary level. Importantly, SDF1 and CXCR4 expression is increased in brain tumors in which their activity induced tumor cell proliferation and brain parenchyma invasion. Despite their localization, to date very few reports addressed the role of CXCR4 and SDF1 in the modulation of the hypothalamus/pituitary axis and their possible involvement in the development of pituitary adenomas. In this review, we discuss previous literature data on the role of chemokines in normal and adenomatous pituitary cells, focusing on recent data from our group showing that CXCR4 activation controls proliferation and both prolactin and GH release in the pituitary adenoma cell line GH4C1 through a complex network of intracellular signals. Thus, the SDF1/CXCR4 system together with other chemokinergic ligand-receptor pairs, may represent a novel regulatory pathway for pituitary function and, possibly, be involved in pituitary adenoma development. These lines of evidence suggest that the inhibition of chemokine receptors may represent a novel pharmacological target for the treatment of pituitary adenomas.

  11. Elevated serum CXCL16 is an independent predictor of poor survival in ovarian cancer and may reflect pro-metastatic ADAM protease activity

    PubMed Central

    Gooden, M J M; Wiersma, V R; Boerma, A; Leffers, N; Boezen, H M; ten Hoor, K A; Hollema, H; Walenkamp, A M E; Daemen, T; Nijman, H W; Bremer, E

    2014-01-01

    Background: In certain cancers, expression of CXCL16 and its receptor CXCR6 associate with lymphocyte infiltration, possibly aiding anti-tumour immune response. In other cancers, CXCL16 and CXCR6 associate with pro-metastatic activity. In the current study, we aimed to characterise the role of CXCL16, sCXCL16, and CXCR6 in ovarian cancer (OC). Methods: CXCL16/CXCR6 expression was analysed on tissue microarray containing 306 OC patient samples. Pre-treatment serum sCXCL16 was determined in 118 patients using ELISA. In vitro, (primary) OC cells were treated with an ADAM-10/ADAM-17 inhibitor (TAPI-2) and an ADAM-10-specific inhibitor (GI254023x), whereupon CXCL16 levels were evaluated on the cell membrane (immunofluorescent analysis, western blots) and in culture supernatants (ELISA). In addition, cell migration was assessed using scratch assays. Results: sCXCL16 independently predicted for poor survival (hazard ratio=2.28, 95% confidence interval=1.29–4.02, P=0.005), whereas neither CXCL16 nor CXCR6 expression correlated with survival. Further, CXCL16/CXCR6 expression and serum sCXCL16 levels did not associate with lymphocyte infiltration. In vitro inhibition of both ADAM-17 and ADAM-10, but especially the latter, decreased CXCL16 membrane shedding and strongly reduced cell migration of A2780 and cultured primary OC-derived malignant cells. Conclusions: High serum sCXCL16 is a prognostic marker for poor survival of OC patients, possibly reflecting ADAM-10 and ADAM-17 pro-metastatic activity. Therefore, serum sCXCL16 levels may be a pseudomarker that identifies patients with highly metastatic tumours. PMID:24518602

  12. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease.

    PubMed

    Bondar, Constanza; Araya, Romina E; Guzman, Luciana; Rua, Eduardo Cueto; Chopita, Nestor; Chirdo, Fernando G

    2014-01-01

    Lymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4(+) Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.

  13. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer.

    PubMed

    Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania

    2017-09-29

    With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4 + CD25 hi FOXP3 hi CD45RA - ). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs ( P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors.

  14. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer

    PubMed Central

    Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania

    2017-01-01

    With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4+CD25hiFOXP3hiCD45RA-). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs (P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors. PMID:29100374

  15. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall.

    PubMed

    Galkina, Elena; Harry, Brian L; Ludwig, Andreas; Liehn, Elisa A; Sanders, John M; Bruce, Anthony; Weber, Christian; Ley, Klaus

    2007-10-16

    T lymphocytes are thought to be important in atherosclerosis, but very little is known about the mechanisms of lymphocyte recruitment into atherosclerosis-prone aortas. In this study we tested the hypothesis that CXCR6, a chemokine receptor that is expressed on a subset of CD4+ T helper 1 cells and natural killer T cells, is involved in lymphocyte homing into the aortic wall and modulates the development and progression of atherosclerosis. To investigate the role of CXCR6 in the development and progression of atherosclerosis, we bred CXCR6-deficient (CXCR6(GFP/GFP)) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. We found that CXCR6(GFP/GFP)/ApoE(-/-) mice fed a Western diet for 17 weeks or a chow diet for 56 weeks had decreased atherosclerosis compared with ApoE(-/-) controls. Flow cytometry analysis of the aortas from CXCR6(GFP/GFP)/ApoE(-/-) mice showed that the reduction of atherosclerosis was accompanied by a decreased percentage of CXCR6+ T cells within the aortas. Short-term homing experiments demonstrated that CXCR6 is involved in the recruitment of CXCR6+ leukocytes into the atherosclerosis-prone aortic wall. The reduced percentage of CXCR6+ T cells within the aortas resulted in significantly diminished production of interferon-gamma and reduction of CD11b+/CD68+ macrophages in the aorta. These data provide evidence for a proatherosclerotic role of CXCR6. Absence of CXCR6 alters the recruitment of CXCR6+ leukocytes and modulates the local immune response within the aortic wall.

  16. Expression of CXCR-1 and CXCR-2 chemokine receptors on synovial neutrophils in inflammatory arthritides: does persistent or increasing expression of CXCR-2 contribute to the chronic inflammation or erosive changes?

    PubMed

    Pay, Salih; Musabak, Ugur; Simşek, Ismail; Pekel, Aysel; Erdem, Hakan; Dinç, Ayhan; Sengül, Ali

    2006-12-01

    To analyze the CXCR-1 and CXCR-2 chemokine receptor expression on peripheral blood neutrophils (PBN) and synovial fluid neutrophils (SFN) of patients with rheumatoid arthritis (RA) and Behçet's disease (BD) (characterized by erosive and non-erosive arthritis, respectively), and to compare them with those of patients with osteoarthritis (OA). We used flow cytometry to investigate the expression of CXCR-1 and CXCR-2 chemokine receptors on PBN and SFN of fifty-five (22 RA, 22 BD and 11 OA) age and sex-matched patients. In respect to chemokine receptor expression on neutrophils isolated from patients with RA, mean fluorescein intensity (MFI) of CXCR-1 chemokine receptors on PBN from active and inactive RA patients, and SFN from patients with RA were 151 (90-395), 129 (81-539) and 136 (64-220), respectively, and there were not statistically significant difference each other. But MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and significantly higher than PBN of active and inactive RA patients (MFI: 10 (6-15) and 12 (7-16), P=0.002 and 0.037, respectively). In respect to chemokine receptor expression on neutrophils isolated from patients with BD, MFI of CXCR-1 chemokine receptors on PBN of active BD patients was 245 (97-844), and higher than PBN of active RA patients and SFN of BD patients (MFI: 151 (90-395) and 134 (61-231), P=0.047 and 0.017, respectively). MFI of CXCR-2 chemokine receptors on PBN of active and inactive BD patients, and SFN of patients BD were 10 (6-14), 10 (2-16), and 12 (8-24), respectively, there were not statistically significant difference each other. MFI of CXCR-1 chemokine receptors on SFN from patients with RA, BD, and OA were 136 (64-220), 134 (61-231), and 114 (60-180), respectively, and there was no difference between the study groups. MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and higher than patients with BD and OA (MFI: 12 (8-24) and 11 (9-18), P=0.037 and 0.005, respectively), though there was no difference between last two groups. Our study points that CXCR-1 and CXCR-2 chemokine receptors of SFN may have diverse functions in the course of inflammatory arthritides. These results indicate that CXCR-2 chemokine receptor might play more critical role in long lasting accumulation of neutrophils within the synovial fluid of patients with RA.

  17. CXCR3 Deficiency Increases Susceptibility to Genital Herpes Simplex Virus Type 2 Infection: Uncoupling of CD8+ T-Cell Effector Function but Not Migration▿

    PubMed Central

    Thapa, Manoj; Carr, Daniel J. J.

    2009-01-01

    CXCR3 is a G-protein-coupled receptor preferentially expressed by activated T cells, NK cells, and dendritic cells. Signaling through gamma interferon-regulated chemokines CXCL9, CXCL10, CXCL11, and CXCR3 plays a critical role in the immune response of many viral pathogens. However, the relevance of CXCR3 for optimal T-cell activation and the induction of regulatory transcription factors (i.e., T-bet and eomesodermin) relative to host immune defense against genital herpes simplex virus type 2 (HSV-2) infection have been poorly defined. In this study, we evaluated the requirement of CXCR3 expression during genital HSV-2 infection using mice deficient in CXCR3 (CXCR3−/−) along with wild-type (WT) controls, assessing the resistance of mice to viral infection and focusing on the cytokine/chemokine response, phenotypic analysis of recruited leukocytes, and functional analysis of CD8+ T cells. CXCR3−/− mice showed a heightened sensitivity to infection compared to WT animals in terms of the viral burden in infected tissues as well as elevated mortality. The poor response of CXCR3−/− mice to viral infection was associated with reduced cytotoxic T-lymphocyte activity through the impairment of T-bet, perforin, and granzyme B expression by CD8+ T cells. Corresponding with the defective cytolytic activity, a reduction in recruitment of plasmacytoid dendritic cells and CD80 expression in CD11c+ dendritic cells in the draining lymph nodes of CXCR3−/− mice were detected. Collectively, the results provide a new perspective to CXCR3 signaling for the appropriate activation of CD8+ T cells required for host defense against genital HSV-2 infection. PMID:19587047

  18. Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10

    PubMed Central

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Ianni, Barbara Maria; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Frade, Amanda; Donadi, Eduardo; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    Background Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC. PMID:23150742

  19. In vivo regulation of Bcl6 and T follicular helper cell development1

    PubMed Central

    Poholek, Amanda C.; Hansen, Kyle; Hernandez, Sairy G.; Eto, Danelle; Chandele, Anmol; Weinstein, Jason S.; Dong, Xuemei; Odegard, Jared M.; Kaech, Susan M.; Dent, Alexander L.; Crotty, Shane; Craft, Joe

    2010-01-01

    Follicular helper T (TFH) cells, defined by expression of the surface markers CXCR5 and PD-1 and synthesis of IL-21, require upregulation of the transcriptional repressor Bcl6 for their development and function in B cell maturation in germinal centers. We have explored the role of B cells, and the cytokines IL-6 and IL-21, in the in vivo regulation of Bcl6 expression and TFH cell development. We found that TFH cells are characterized by a Bcl6-dependent downregulation of P-selectin glycoprotein ligand-1 (PSGL1, a CCL19- and CCL21-binding protein), indicating that, like CXCR5 and PD-1 upregulation, modulation of PSGL1 expression is part of the TFH cell program of differentiation. B cells were neither required for initial upregulation of Bcl6 nor PSGL1 downregulation, suggesting these events preceded T-B cell interactions, although they were required for full development of the TFH cell phenotype, including CXCR5 and PD-1 upregulation, and IL-21 synthesis. Bcl6 upregulation and TFH cell differentiation were independent of IL-6 and IL-21, revealing that either cytokine is not absolutely required for development of Bcl6+ TFH cells in vivo. These data increase our understanding of Bcl6 regulation in TFH cells and their differentiation in vivo, and identifies a new surface marker that may be functionally relevant in this subset. PMID:20519643

  20. CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections

    PubMed Central

    Wetzel, Katherine S.; Yi, Yanjie; Elliott, Sarah T. C.; Romero, Dino; Jacquelin, Beatrice; Hahn, Beatrice H.; Muller-Trutwin, Michaela; Apetrei, Cristian; Pandrea, Ivona

    2016-01-01

    ABSTRACT African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro. Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections. PMID:27903799

  1. CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections.

    PubMed

    Wetzel, Katherine S; Yi, Yanjie; Elliott, Sarah T C; Romero, Dino; Jacquelin, Beatrice; Hahn, Beatrice H; Muller-Trutwin, Michaela; Apetrei, Cristian; Pandrea, Ivona; Collman, Ronald G

    2017-02-15

    African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4 + T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4 + cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4 + T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections. Copyright © 2017 American Society for Microbiology.

  2. Functional heterogeneity of human effector CD8+ T cells.

    PubMed

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  3. Cigarette Smoke–Induced CXCR3 Receptor Up-Regulation Mediates Endothelial Apoptosis

    PubMed Central

    Green, Linden A.; Petrusca, Daniela; Rajashekhar, Gangaraju; Gianaris, Tom; Schweitzer, Kelly S.; Wang, Liang; Justice, Matthew J.; Petrache, Irina

    2012-01-01

    Endothelial monocyte–activating polypeptide II (EMAP II) and interferon-inducible protein (IP)–10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke–exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke–induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II–induced and IP-10–induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II–induced and IP-10–induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II–induced and IP-10–induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II–induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema. PMID:22936405

  4. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes.

    PubMed

    Yousefi, S; Cooper, P R; Potter, S L; Mueck, B; Jarai, G

    2001-06-01

    The migration of neutrophils into sites of acute and chronic inflammation is mediated by chemokines. We used degenerate-primer reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze chemokine receptor expression in neutrophils and identify novel receptors. RNA was isolated from human peripheral blood neutrophils and from neutrophils that had been stimulated for 5 h with granulocyte-macrophage colony-stimulating factor or by coculturing with primary human bronchial epithelial cells. Amplification products were cloned, and clone redundancy was determined. Seven known G-protein-coupled receptors were identified among 38 clones-CCR1, CCR4, CXCR1, CXCR2, CXCR4, HM63, and FPR1-as well as a novel gene, EX33. The full-length EX33 clone was obtained, and an in silico approach was used to identify the putative murine homologue. The EX33 gene encodes a 396-amino-acid protein with limited sequence identity to known receptors. Expression studies of several known chemokine receptors and EX33 revealed that resting neutrophils expressed higher levels of CXCRs and EX33 compared with activated neutrophils. Northern blot experiments revealed that EX33 is expressed mainly in bone marrow, lung, and peripheral blood leukocytes. Using RT-PCR analysis, we showed more abundant expression of EX33 in neutrophils and eosinophils, in comparison with that in T- or B-lymphocytes, indicating cell-specific expression among leukocytes.

  5. Inhibitors of HIF-1α and CXCR4 Mitigate the Development of Radiation Necrosis in Mouse Brain.

    PubMed

    Yang, Ruimeng; Duan, Chong; Yuan, Liya; Engelbach, John A; Tsien, Christina I; Beeman, Scott C; Perez-Torres, Carlos J; Ge, Xia; Rich, Keith M; Ackerman, Joseph J H; Garbow, Joel R

    2018-03-15

    There is mounting evidence that, in addition to angiogenesis, hypoxia-induced inflammation via the hypoxia-inducible factor 1α (HIF-1α)-CXC chemokine receptor 4 (CXCR4) pathway may contribute to the pathogenesis of late-onset, irradiation-induced necrosis. This study investigates the mitigative efficacy of an HIF-1α inhibitor, topotecan, and a CXCR4 antagonist, AMD3100, on the development of radiation necrosis (RN) in an intracranial mouse model. Mice received a single-fraction, 50-Gy dose of hemispheric irradiation from the Leksell Gamma Knife Perfexion and were then treated with either topotecan, an HIF-1α inhibitor, from 1 to 12 weeks after irradiation, or AMD3100, a CXCR4 antagonist, from 4 to 12 weeks after irradiation. The onset and progression of RN were monitored longitudinally via noninvasive, in vivo magnetic resonance imaging (MRI) from 4 to 12 weeks after irradiation. Conventional hematoxylin-eosin staining and immunohistochemistry staining were performed to evaluate the treatment response. The progression of brain RN was significantly mitigated for mice treated with either topotecan or AMD3100 compared with control animals. MRI-derived lesion volumes were significantly smaller for both of the treated groups, and histologic findings correlated well with the MRI data. By hematoxylin-eosin staining, both treated groups demonstrated reduced irradiation-induced tissue damage compared with controls. Furthermore, immunohistochemistry results revealed that expression levels of vascular endothelial growth factor, CXC chemokine ligand 12, CD68, CD3, and tumor necrosis factor α in the lesion area were significantly lower in treated (topotecan or AMD3100) brains versus control brains, while ionized calcium-binding adapter molecule 1 (Iba1) and HIF-1α expression was similar, though somewhat reduced. CXCR4 expression was reduced only in topotecan-treated mice, while interleukin 6 expression was unaffected by either topotecan or AMD3100. By reducing inflammation, both topotecan and AMD3100 can, independently, mitigate the development of RN in the mouse brain. When combined with first-line, antiangiogenic treatment, anti-inflammation therapy may provide an adjuvant therapeutic strategy for clinical, postirradiation management of tumors, with additional benefits in the mitigation of RN development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells.

    PubMed

    Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun

    2017-06-30

    Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

  7. CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma.

    PubMed

    Parsonage, Greg; Machado, Lee Richard; Hui, Jan Wai-Ying; McLarnon, Andrew; Schmaler, Tilo; Balasothy, Meenarani; To, Ka-Fai; Vlantis, Alexander C; van Hasselt, Charles A; Lo, Kwok-Wai; Wong, Wai-Lap; Hui, Edwin Pun; Chan, Anthony Tak Cheung; Lee, Steven P

    2012-03-01

    The substantial T lymphocyte infiltrate found in cases of nasopharyngeal carcinoma (NPC) has been implicated in the promotion of both tumor growth and immune escape. Conversely, because malignant NPC cells harbor the Epstein-Barr virus, this tumor is a candidate for virus-specific T cell-based therapies. Preventing the accumulation of tumor-promoting T cells or enhancing the recruitment of tumor-specific cytotoxic T cells offers therapeutic potential. However, the mechanisms involved in T cell recruitment to this tumor are poorly understood. Comparing memory T cell subsets that have naturally infiltrated NPC tissue with their counterparts from matched blood revealed enrichment of CD8(+), CD4(+), and regulatory T cells expressing the chemokine receptor CXCR6 in tumor tissue. CD8(+) and (nonregulatory) CD4(+) T cells also were more frequently CCR5(+) in tumor than in blood. Ex vivo studies demonstrated that both receptors were functional. CXCL16 and CCL4, unique chemokine ligands for CXCR6 and CCR5, respectively, were expressed by the malignant cells in tumor tissue from the majority of NPC cases, as was another CCR5 ligand, CCL5. The strongest expression of CXCL16 was found on tumor-infiltrating cells. CCL4 was detected on the tumor vasculature in a majority of cases. These findings suggest that CXCR6 and CCR5 play important roles in T cell recruitment and/or retention in NPC and have implications for the pathogenesis and treatment of this tumor. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP9 pathway

    PubMed Central

    Wang, Jia-Hong; Su, Feng; Wang, Shijun; Lu, Xian-Cheng; Zhang, Shao-Heng; Chen, De; Chen, Nan-Nan; Zhong, Jing-Quan

    2014-01-01

    An immerging role of TNF-α in collagen synthesis and cardiac fibrosis implies the significance of TNF-α production in the development of myocardial remodeling. Our previous study showed a reduction of TNF-α and attenuated cardiac remodeling in CXCR6 knockout (KO) mice after ischemia/reperfusion injury. However, the potential mechanism of TNF-α-mediated cardiac fibrosis with pressure overload has not been well elucidated. In the present study, we aim to investigate the role of CXCR6 in TNF-α release and myocardial remodeling in response to pressure overload. Pressure overload was performed by constriction of transverse aorta (TAC) surgery on CXCR6 KO mice and C57 wild-type (WT) counterparts. At 6 weeks after TAC, cardiac remodeling was assessed by echocardiography, cardiac TNF-α release and its type I receptor (TNFRI), were detected by ELISA and western blot, collagen genes Col1a1 (type I) and Col3a1 (type III) were examined by real-time PCR. Compared with CXCR6 WT mice, CXCR6 KO mice exhibited less cardiac dysfunction, reduced expression of TNFRI, Col1a1 and Col3a. In vitro, we confirmed that CXCR6 deficiency led to reduced homing and infiltration of CD11b+ monocytes, which contributed to attenuated TNF-α release in myocardium. Furthermore, TNFRI antagonist pretreatment blocked AT1 receptor signaling and NOX4 expression, reduced collagen synthesis, and blunted the activity of MMP9 in CXCR6 WT mice after TAC, but these were not observed in CXCR6 KO mice. In the present work, we propose a mechanism that CXCR6 is essential for pressure overload-mediated myocardial recruitment of monocytes, which contributes to cardiac fibrosis through TNF-α-dependent MMP9 activation and collagen synthesis. PMID:25400729

  9. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP9 pathway.

    PubMed

    Wang, Jia-Hong; Su, Feng; Wang, Shijun; Lu, Xian-Cheng; Zhang, Shao-Heng; Chen, De; Chen, Nan-Nan; Zhong, Jing-Quan

    2014-01-01

    An immerging role of TNF-α in collagen synthesis and cardiac fibrosis implies the significance of TNF-α production in the development of myocardial remodeling. Our previous study showed a reduction of TNF-α and attenuated cardiac remodeling in CXCR6 knockout (KO) mice after ischemia/reperfusion injury. However, the potential mechanism of TNF-α-mediated cardiac fibrosis with pressure overload has not been well elucidated. In the present study, we aim to investigate the role of CXCR6 in TNF-α release and myocardial remodeling in response to pressure overload. Pressure overload was performed by constriction of transverse aorta (TAC) surgery on CXCR6 KO mice and C57 wild-type (WT) counterparts. At 6 weeks after TAC, cardiac remodeling was assessed by echocardiography, cardiac TNF-α release and its type I receptor (TNFRI), were detected by ELISA and western blot, collagen genes Col1a1 (type I) and Col3a1 (type III) were examined by real-time PCR. Compared with CXCR6 WT mice, CXCR6 KO mice exhibited less cardiac dysfunction, reduced expression of TNFRI, Col1a1 and Col3a. In vitro, we confirmed that CXCR6 deficiency led to reduced homing and infiltration of CD11b(+) monocytes, which contributed to attenuated TNF-α release in myocardium. Furthermore, TNFRI antagonist pretreatment blocked AT1 receptor signaling and NOX4 expression, reduced collagen synthesis, and blunted the activity of MMP9 in CXCR6 WT mice after TAC, but these were not observed in CXCR6 KO mice. In the present work, we propose a mechanism that CXCR6 is essential for pressure overload-mediated myocardial recruitment of monocytes, which contributes to cardiac fibrosis through TNF-α-dependent MMP9 activation and collagen synthesis.

  10. CXCR4 Antagonist as an Adjuvant in Immunotherapy of Epithelial Ovarian Cancer

    DTIC Science & Technology

    2017-07-01

    cancer cell line ID8-T. Using an orthotopic ID8-T tumor model in syngeneic mice, we have demonstrated that intraperitoneal delivery of a CXCR4...infiltration of CD8+ T cells and IL-12 cytokine-expressing tumor associated macrophages with concomitant inhibition of the immunosuppressive network. We...vaccines and adoptively-transferred T cells . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  11. The Role of ERG and CXCR4 in Prostate Cancer Progression

    DTIC Science & Technology

    2012-06-01

    cells. CXCR4 is a chemokine receptor that has been shown to function as a key receptor for homing of circulating tumor cells to secondary sites...T., Cordon -Cardo, C., Gerald, W., and Pandolfi, P. P. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the...be exon 0, which when included in the fusion is found to be associated with less aggressive behavior and therefore more favorab le prognosis

  12. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP. PMID:24970800

  13. Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation.

    PubMed

    Du, Lingqian; Yang, Pishan; Ge, Shaohua

    2012-03-01

    The pivotal role of chemokine stromal cell-derived factor-1 (SDF-1) in bone marrow mesenchymal stem cells recruitment and tissue regeneration has already been reported. However, its roles in human periodontal ligament stem cells (PDLSCs) remain unknown. PDLSCs are regarded as candidates for periodontal tissue regeneration and are used in stem cell-based periodontal tissue engineering. The expression of chemokine receptors on PDLSCs and the migration of these cells induced by chemokines and their subsequent function in tissue repair may be a crucial procedure for periodontal tissue regeneration. PDL tissues were obtained from clinically healthy premolars extracted for orthodontic reasons and used to isolate single-cell colonies by the limited-dilution method. Immunocytochemical staining was used to detect the expression of the mesenchymal stem cell marker STRO-1. Differentiation potentials were assessed by alizarin-red staining and oil-red O staining. The expression of SDF-1 receptor CXCR4 was evaluated by real-time polymerase chain reaction (PCR) and immunocytochemical staining. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine incorporation assay were used to determine the viability and proliferation of the PDLSC subpopulation. Expression of collagen type I and alkaline phosphatase was detected by real-time PCR to determine the effect of SDF-1 on cells differentiation. Twenty percent of PDL single-cell colonies expressed STRO-1 positively, and this specific subpopulation was positive for CXCR4 and formed minerals and lipid vacuoles after 4 weeks induction. SDF-1 significantly increased proliferation and stimulated the migration of this PDLSC subpopulation at concentrations between 100 and 400 ng/mL. CXCR4 neutralizing antibody could block cell proliferation and migration, suggesting that SDF-1 exerted its effects on cells through CXCR4. SDF-1 promoted collagen type I level significantly but had little effect on alkaline phosphatase level. SDF-1 may have the potential of promoting periodontal tissue regeneration by the mechanism of guiding PDLSCs to destructive periodontal tissue, promoting their activation and proliferation and influencing the differentiation of these stem cells.

  14. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.

  15. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than thatmore » of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.« less

  16. Expression and localization of CXCL16 and CXCR6 in ovarian endometriotic tissues.

    PubMed

    Manabe, Shuichi; Iwase, Akira; Goto, Maki; Kobayashi, Hiroharu; Takikawa, Sachiko; Nagatomo, Yoshinari; Nakahara, Tatsuo; Bayasula; Nakamura, Tomoko; Hirokawa, Wakana; Kikkawa, Fumitaka

    2011-12-01

    Inflammatory mediators, including chemokines, may play crucial roles in the development of endometriosis. Therefore, we investigated the expression and localization of CXCL16 and its receptor, CXCR6, in ovarian endometriotic tissues. We also examined whether CXCL16 induces IL-8 production in endometriotic stromal cells. We performed immunohistochemical and Western blotting analyses of in vivo and in vitro samples. IL-8 production was assayed using an ELISA. Both CXCL16 and CXCR6 were expressed by endometriotic epithelial cells and stromal cells, but not normal ovarian stroma. A Western blotting analysis using primary cultured endometriotic stromal cells showed a constant expression of CXCL16 and CXCR6 in the proliferative phase, secretory phase and during gonadotropin-releasing hormone agonist therapy. CXCL16 induced IL-8 production in several endometriotic stromal cells in vitro. CXCL16 and CXCR6 might be involved in the pathophysiology of endometriosis through regulation of the inflammatory response.

  17. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    PubMed

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the T FH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on T FH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus. Copyright © 2017 American Society for Microbiology.

  18. CXCR3+CD4+ T cells mediate innate immune function in the pathophysiology of liver ischemia/reperfusion injury.

    PubMed

    Zhai, Yuan; Shen, Xiu-da; Hancock, Wayne W; Gao, Feng; Qiao, Bo; Lassman, Charles; Belperio, John A; Strieter, Robert M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W

    2006-05-15

    Ischemia-reperfusion injury (IRI), an innate immune-dominated inflammatory response, develops in the absence of exogenous Ags. The recently highlighted role of T cells in IRI raises a question as to how T lymphocytes interact with the innate immune system and function with no Ag stimulation. This study dissected the mechanism of innate immune-induced T cell recruitment and activation in rat syngeneic orthotopic liver transplantation (OLT) model. Liver IRI was induced after cold storage (24-36 h) at 4 degrees C in University of Wisconsin solution. Gene products contributing to IRI were identified by cDNA microarray at 4-h posttransplant. IRI triggered increased intrahepatic expression of CXCL10, along with CXCL9 and 11. The significance of CXCR3 ligand induction was documented by the ability of neutralizing anti-CXCR3 Ab treatment to ameliorate hepatocellular damage and improve 14-day survival of 30-h cold-stored OLTs (95 vs 40% in controls; p < 0.01). Immunohistology analysis confirmed reduced CXCR3+ and CD4+ T cell infiltration in OLTs after treatment. Interestingly, anti-CXCR3 Ab did not suppress innate immune activation in the liver, as evidenced by increased levels of IL-1beta, IL-6, inducible NO synthase, and multiple neutrophil/monokine-targeted chemokine programs. In conclusion, this study demonstrates a novel mechanism of T cell recruitment and function in the absence of exogenous Ag stimulation. By documenting that the execution of innate immune function requires CXCR3+CD4+ T cells, it highlights the critical role of CXCR3 chemokine biology for the continuum of innate to adaptive immunity in the pathophysiology of liver IRI.

  19. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    PubMed Central

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed. PMID:19893208

  20. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.

    PubMed

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  1. Expression and function of macrophage migration inhibitory factor in the pathogenesis of UV-induced cutaneous nonmelanoma skin cancer.

    PubMed

    Heise, Ruth; Vetter-Kauczok, Claudia S; Skazik, Claudia; Czaja, Katharina; Marquardt, Yvonne; Lue, Hongqi; Merk, Hans F; Bernhagen, Jürgen; Baron, Jens M

    2012-01-01

    Chronic skin exposure to ultraviolet light stimulates the production of cytokines known to be involved in the initiation of skin cancer. Recent studies in mouse models suggested a role for macrophage migration inhibitory factor (MIF) in the UVB-induced pathogenesis of nonmelanoma skin cancer (NMSC). Our studies aimed at defining the pathophysiological function of MIF in cutaneous inflammatory reactions and in the development and progression of NMSC. Immunohistochemical analysis revealed a moderate expression of MIF in normal human skin samples but an enhanced expression of this cytokine in lesional skin of patients with actinic keratosis or cutaneous SCC. Enzyme-linked immunosorbent assay studies showed a time-dependent increase in MIF secretion after a moderate single-dose UVB irradiation in NHEKs and SCC tumor cells. MIF is known to interact with CXCR2, CXCR4 and CD74. These receptors are not constitutively expressed in keratinocytes and HaCaT cells and their expression is not induced by UVB irradiation either. However, stimulation with IFNγ upregulated CD74 surface expression in these cells. Affymetrix(®) Gene Chip analysis revealed that only keratinocytes prestimulated with IFNγ are responsive to MIF. These findings indicate that MIF may be an important factor in the pathogenesis of NMSC tumorigenesis and progression in an inflammatory environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  2. CXCR6 expression in non-small cell lung carcinoma supports metastatic process via modulating metalloproteinases.

    PubMed

    Mir, Hina; Singh, Rajesh; Kloecker, Goetz H; Lillard, James W; Singh, Shailesh

    2015-04-30

    Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target.

  3. CXCR6 expression in non-small cell lung carcinoma supports metastatic process via modulating metalloproteinases

    PubMed Central

    Mir, Hina; Singh, Rajesh; Kloecker, Goetz H.; Lillard, James W.; Singh, Shailesh

    2015-01-01

    Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target. PMID:25888629

  4. Red wine consumption improves in vitro migration of endothelial progenitor cells in young, healthy individuals.

    PubMed

    Hamed, Saher; Alshiek, Jonia; Aharon, Anat; Brenner, Benjamin; Roguin, Ariel

    2010-07-01

    Endothelial progenitor cells (EPCs) contribute to the maintenance of vascular endothelial function. The moderate consumption of red wine provides cardiovascular protection. We investigated the underlying molecular mechanism of EPC migration in young, healthy individuals who drank red wine. Fourteen healthy volunteers consumed 250 mL red wine daily for 21 consecutive days. Vascular endothelial function, plasma stromal cell-derived factor 1alpha (SDF1alpha) concentrations, and the number, migration, and nitric oxide production of EPCs were determined before and after the daily consumption of red wine. EPCs were glucose stressed to study the effect of red wine on EPC migration, proliferation, and senescence and to study the expressions of CXC chemokine receptor 4 (CXCR4) and members of the Pi3K/Akt/eNOS (phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase) signaling pathway by Western blotting. Daily red wine consumption for 21 consecutive days significantly enhanced vascular endothelial function. Although plasma SDF1alpha concentrations were unchanged, EPC count and migration were significantly increased after this 21-d consumption period. Red wine increased the migration, proliferation, CXCR4 expression, and activity of the Pi3K/Akt/eNOS signaling pathway and decreased the extent of apoptosis in glucose-stressed EPCs. The results of the present study indicate that red wine exerts its effect through the up-regulation of CXCR4 expression and activation of the SDF1alpha/CXCR4/Pi3K/Akt/eNOS signaling pathway, which results in increased EPC migration and proliferation and decreased extent of apoptosis. Our findings suggest that these effects could be linked to the mechanism of cardiovascular protection that is associated with the regular consumption of red wine.

  5. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis

    PubMed Central

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M.

    2015-01-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis, however its role in chondrosarcoma is undetermined. MicroRNA-181a is overexpressed in high grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine if miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis, however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the anti-angiogenic and anti-metastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. PMID:26013170

  6. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system.

    PubMed

    O'Connor, Richard A; Li, Xujian; Blumerman, Seth; Anderton, Stephen M; Noelle, Randolph J; Dalton, Dyana K

    2012-03-01

    CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.

  7. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke.

    PubMed

    Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael

    2009-01-01

    We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.

  8. Nitric Oxide Donor Upregulation of SDF1/CXCR4 and Ang1/Tie2 Promotes Neuroblast Cell Migration After Stroke

    PubMed Central

    Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael

    2008-01-01

    We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749

  9. Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis

    PubMed Central

    2011-01-01

    Introduction Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum. Methods Immunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining. Results Antiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs). Conclusions These results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin. PMID:21303517

  10. Functional role of endothelial CXCL16/CXCR6-platelet-leukocyte axis in angiotensin II-associated metabolic disorders.

    PubMed

    Collado, Aida; Marques, Patrice; Escudero, Paula; Rius, Cristina; Domingo, Elena; Martinez-Hervás, Sergio; Real, José T; Ascaso, Juan F; Piqueras, Laura; Sanz, Maria-Jesus

    2018-05-23

    Angiotensin-II (Ang-II) is the main effector peptide of the renin-angiotensin system (RAS) and promotes leukocyte adhesion to the stimulated endothelium. Because RAS activation and Ang-II signaling are implicated in metabolic syndrome (MS) and abdominal aortic aneurysm (AAA), we investigated the effect of Ang-II on CXCL16 arterial expression, the underlying mechanisms, and the functional role of the CXCL16/CXCR6 axis in these cardiometabolic disorders. Results from in vitro chamber assays revealed that CXCL16 neutralization significantly inhibited mononuclear leukocyte adhesion to arterial but not to venous endothelial cells. Flow cytometry and immunofluorescence studies confirmed that Ang-II induced enhanced endothelial CXCL16 expression, which was dependent on Nox5 up-regulation and subsequent RhoA/p38-MAPK/NFκB activation. Flow cytometry analysis further showed that MS patients had higher levels of platelet activation and a higher percentage of circulating CXCR6-expressing platelets, CXCR6-expressing-platelet-bound neutrophils, monocytes and CD8+ lymphocytes than age-matched controls, leading to enhanced CXCR6/CXCL16-dependent adhesion to the dysfunctional (Ang-II- and TNFα-stimulated) arterial endothelium. Ang-II-challenged apolipoprotein E-deficient (apoE-/-) mice had a higher incidence of AAA, macrophage, CD3+ and CXCR6+ cell infiltration and neovascularization than unchallenged animals, which was accompanied by greater CCL2, CXCL16 and VEGF mRNA expression within the lesion together with elevated levels of circulating soluble CXCL16. Significant reductions in these parameters were found in animals co-treated with the AT1 receptor antagonist losartan or in apoE-/- mice lacking functional CXCR6 receptor (CXCR6GFP/GFP). CXCR6 expression on platelet-bound monocytes and CD8+ lymphocytes may constitute a new membrane-associated biomarker for adverse cardiovascular events. Moreover, pharmacological modulation of this axis may positively affect cardiovascular outcome in metabolic disorders linked to Ang-II.

  11. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy.

    PubMed

    Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal

    2012-10-01

    Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.

  12. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    PubMed

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  13. [Quantity and function of T follicular helper cells in the bone marrow of patients with immune thrombocytopenia].

    PubMed

    Zhang, Yang; Qu, Wen; Ruan, Er-Bao; Fu, Rong; Wang, Guo-Jin; Liu, Hong; Wang, Xiao-Ming; Wu, Yu-Hong; Song, Jia; Xing, Li-Min; Guan, Jing; Li, Li-Juan; Wang, Hua-Quan; Shao, Zong-Hong

    2014-06-01

    This study was purposed to detect the quantity and function of bone marrow (BM) T follicular helper (Tfh) cells of patients with immune thrombocytopenia, and to explore the role of Tfh cells in the pathogenesis of ITP. Twenty-one newly diagnosed ITP patients, twenty ITP patients in recovery stage and eighteen normal controls were enrolled in this study. The percentages of Tfh cells, Tfh-related molecules ICOS, CD40L, IL-21 in BM were detected by flow cytometry (FCM), and the mRNA expression of BCL-6 in BMMNC was determined by semi-quantitive RT-PCR. Correlation of Tfh cell level with the disease severity of ITP patients was analysed. The results showed that the ratio of CD4(+)CXCR5(+)/CD4(+) cells in newly diagnosed ITP patients [(5.532 ± 2.599)%] was significantly higher than that in ITP patients with recovery stage [(4.064 ± 2.026)%] and controls [(4.048 ± 1.413)%] (P < 0.05). The ratio of CD4(+)CXCR5(+)ICOS(+)/CD4(+) CXCR5(+) cells in newly diagnosed ITP patients [(14.586 ± 8.561)%] was higher than that in recovery stage ITP patients [(12.884 ± 10.161)%] and controls [(7.487 ± 5.176)%]. The differences be-tween newly diagnosed ITP patients and controls were statistically significant (P < 0.05). The ratio of CD4(+)CXCR5(+) CD40L(+)/CD4(+) CXCR5(+) cells in newly diagnosed ITP patients [(15.309 ± 10.756)%] and in ITP patients with recovery stage [(18.242 ± 12.243)%] were significantly higher than that in controls [(8.618 ± 5.719) %] (P < 0.05). The ratio of intracytoplasm CD4(+) CXCR5(+) IL-21(+)/CD4(+)CXCR5(+) cells in newly diagnosed ITP patients [(58.560 ± 26.285)%] and in ITP patients with recovery stage [(57.035 ± 30.936)%] were significantly higher than that in controls [(36.289 ± 24.868)%] (P < 0.05). The relative expression levels of BCL-6 mRNA in BMMNC of three groups were (1.407 ± 0.264), (1.149 ± 0.217) and (0.846 ± 0.157), respectively. The differences between 3 groups were significant(P < 0.05). It is concluded that the quantity and function of Tfh cells in ITP patients increase, which may play an important role in the pathogenesis of ITP.

  14. Role of the frequency of blood CD4{sup +} CXCR5{sup +} CCR6{sup +} T cells in autoimmunity in patients with Sjoegren's syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue-yi; Wu, Zhen-biao; Ding, Jin

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer The frequency of CD4{sup +} CXCR5{sup +} CCR6{sup +} T cells increased in pSS patients and positively correlated with autoantibodies in the blood. Black-Right-Pointing-Pointer CD4{sup +} CXCR5{sup +} CCR6{sup +} T cells in blood invariably coexpressed PD-1, ICOS, CD40L, Bcl-6 and secreted IL-21 after stimulated by PHA. Black-Right-Pointing-Pointer CD4{sup +} CXCR5{sup +} CCR6{sup +} Tfh cells in blood may be suitable biomarkers for the evaluation of the active immune stage of pSS patients. -- Abstract: The blood CD4{sup +} CXCR5{sup +} T cells, known as 'circulating' Tfh, have been shown to efficiently induce naieve B cells to producemore » immunoglobulin. They play an important role in certain autoimmune diseases. In the present study, we show for the first time that the frequency of CD4{sup +} CXCR5{sup +} T cells is increased in pSS patients and positively correlated with autoantibodies in the blood. The concentration of Th17-like subsets (CD4{sup +} CXCR5{sup +} CCR6{sup +}) in pSS patients was found to be significantly higher than in healthy controls. Functional assays showed that activated Th17-like subtypes in the blood display the key features of Tfh cells, including invariably coexpressed PD-1, ICOS, CD40L and IL-21. Th17 subsets were found to highly express Bcl-6 protein and Th1 and Th2 were not. Bcl-6 is believed to be a master transforming factor for Tfh cell differentiation and facilitate B cell proliferation and somatic hypermutation within the germinal center. These data indicate that Th17 subsets of CD4{sup +} CXCR5{sup +} T cells in the blood may participate in the antibody-related immune responses and that high frequency of CD4{sup +} CXCR5{sup +} CCR6{sup +} Tfh cells in blood may be suitable biomarkers for the evaluation of the active immune stage of pSS patients. It might provide insights into the pathogenesis and perhaps help researchers identify novel therapeutic targets for pSS.« less

  15. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15

    PubMed Central

    Oghumu, Steve; Terrazas, Cesar A.; Varikuti, Sanjay; Kimble, Jennifer; Vadia, Stephen; Yu, Lianbo; Seveau, Stephanie; Satoskar, Abhay R.

    2015-01-01

    Innate CD8+ T cells are a heterogeneous population with developmental pathways distinct from conventional CD8+ T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8+ T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3+ innate CD8+ T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ−/− mice compared with similarly activated CXCR3− subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3+ cells. Further, CXCR3+ innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3+ subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3+ populations. Our results demonstrate that CXCR3 expression in innate CD8+ T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3+ innate CD8+ T-cell populations as novel clinical intervention strategies.—Oghumu, S., Terrazas, C. A., Varikuti, S., Kimble, J., Vadia, S., Yu, L., Seveau, S., Satoskar, A. R. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. PMID:25466888

  16. Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans.

    PubMed

    Besedovsky, Luciana; Linz, Barbara; Dimitrov, Stoyan; Groch, Sabine; Born, Jan; Lange, Tanja

    2014-06-01

    Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4(+) and CD8(+) subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3(+) and CD8(+) T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L(+) T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors. Copyright © 2014 the American Physiological Society.

  17. Targeting SDF-1/CXCL12 with a ligand that prevents activation of CXCR4 through structure based drug design

    PubMed Central

    Veldkamp, Christopher T.; Ziarek, Joshua J.; Peterson, Francis C.; Chen, Yu; Volkman, Brian F.

    2010-01-01

    CXCL12 is an attractive target for clinical therapy because of its involvement in autoimmune diseases, cancer growth, metastasis, and neovascularization. Tyrosine sulfation at three positions in the CXCR4 N-terminus is crucial for specific, high-affinity CXCL12 binding. An NMR structure of the complex between the CXCL12 dimer and a sulfotyrosine-containing CXCR4 fragment enabled high-throughput in silico screening for inhibitors of the chemokine-receptor interface. A total of 1.4 million compounds from the ZINC database were docked into a cleft on the CXCL12 surface normally occupied by sulfotyrosine 21 (sY21), and five were selected for experimental screening. NMR titrations with CXCL12 revealed that four compounds occupy the sY21 site, one of which binds with a Kd of 64 µM. This compound selectively inhibits SDF1-induced CXCR4 signaling in THP1 cells. Our results suggest that sulfotyrosine recognition sites can be targeted for the development of novel chemokine inhibitors. PMID:20459090

  18. CD4 T Cell Depletion Exacerbates Acute Mycobacterium tuberculosis While Reactivation of Latent Infection Is Dependent on Severity of Tissue Depletion in Cynomolgus Macaques

    PubMed Central

    Lin, Philana Ling; Rutledge, Tara; Green, Angela M.; Bigbee, Matthew; Fuhrman, Carl; Klein, Edwin

    2012-01-01

    Abstract CD4 T cells are believed to be important in protection against Mycobacterium tuberculosis, but the relative contribution to control of initial or latent infection is not known. Antibody-mediated depletion of CD4 T cells in M. tuberculosis-infected cynomolgus macaques was used to study the role of CD4 T cells during acute and latent infection. Anti-CD4 antibody severely reduced levels of CD4 T cells in blood, airways, and lymph nodes. Increased pathology and bacterial burden were observed in CD4-depleted monkeys during the first 8 weeks of infection compared to controls. CD4-depleted monkeys had greater interferon (IFN)-γ expression and altered expression of CD8 T cell activation markers. During latent infection, CD4 depletion resulted in clinical reactivation in only three of six monkeys. Reactivation was associated with lower CD4 T cells in the hilar lymph nodes. During both acute and latent infection, CD4 depletion was associated with reduced percentages of CXCR3+ expressing CD8 T cells, reported to be involved in T cell recruitment, regulatory function, and effector and memory T cell maturation. CXCR3+ CD8 T cells from hilar lymph nodes had more mycobacteria-specific cytokine expression and greater coexpression of multiple cytokines compared to CXCR3− CD8 T cells. CD4 T cells are required for protection against acute infection but reactivation from latent infection is dependent on the severity of depletion in the draining lymph nodes. CD4 depletion influences CD8 T cell function. This study has important implications for human HIV–M. tuberculosis coinfection. PMID:22480184

  19. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Caveolin-1 Regulates Leukocyte Behaviour in Fibrotic Lung Disease

    PubMed Central

    Tourkina, Elena; Richard, Mathieu; Oates, James; Hofbauer, Ann; Bonner, Michael; Gööz, Pal; Visconti, Richard; Zhang, Jing; Znoyko, Sergei; Hatfield, Corey M.; Silver, Richard M.; Hoffman, Stanley

    2010-01-01

    Objectives Reduced caveolin-1 levels in scleroderma lung fibroblasts and the lungs of bleomycin-treated mice promote collagen overexpression and lung fibrosis. We now evaluate whether caveolin-1 is deficient in leucocytes from bleomycin-treated mice and scleroderma patients and examine the consequences of this deficiency and its reversal. Methods Mice or cells received the caveolin-1 scaffolding domain (CSD) peptide to reverse the pathological effects of reduced caveolin-1 expression. In bleomycin-treated mice, we examined caveolin-1 levels in leucocytes and the effect of CSD peptide on leucocyte accumulation in lung tissue. To validate our results in human disease and identify caveolin-1-regulated molecular mechanisms, we isolated monocytes and neutrophils from scleroderma patients and control subjects and evaluated caveolin-1, ERK, JNK, p38, CXCR4, and MMP-9 expression/activation. We also studied these parameters in monocytes treated with cytokines or CSD peptide. Results Leucocyte caveolin-1 is important in lung fibrosis. In bleomycin-treated mice, caveolin-1 expression is diminished in monocytes and CSD peptide inhibits leucocyte recruitment into the lungs. These observations are relevant to human disease. Scleroderma monocytes and neutrophils contain less caveolin-1 and more activated ERK, JNK, and p38 than their normal counterparts. CSD peptide treatment reverses ERK, JNK, and p38 hyperactivation. Scleroderma monocytes also overexpress CXCR4 and MMP-9. The overexpression of CXCR4 and MMP-9 is inhibited by the CSD peptide. Cytokine treatment of normal monocytes causes adoption of the scleroderma phenotype: low caveolin-1, high CXCR4 and MMP-9, and signaling molecule hyperactivation. Conclusions Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin-1 as a promising therapeutic target in scleroderma. PMID:20410070

  1. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor.

    PubMed

    Lin, Guiting; Yang, Rong; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Li, Long-Cheng; Lue, Tom F; Lin, Ching-Shwun

    2010-07-01

    Obesity is a risk factor for prostate cancer development, but the underlying mechanism is unknown. The present study tested the hypothesis that stromal cells of the adipose tissue might be recruited by cancer cells to help tumor growth. PC3 prostate cancer cells were transplanted into the subcutaneous space of the right flank of athymic mice. One week later, adipose tissue-derived stromal or stem cells (ADSC) or phosphate-buffered saline (PBS, as control) was transplanted similarly to the left flank. Tumor size was monitored for the next 34 days; afterwards, the mice were sacrificed and their tumors harvested for histological examination. The ability of PC3 cells to attract ADSC was tested by migration assay. The involvement of the CXCL12/CXCR4 axis was tested by migration assay in the presence of a specific inhibitor AMD3100. Throughout the entire course, the average size of PC3 tumors in ADSC-treated mice was larger than in PBS-treated mice. ADSC were identified inside the tumors of ADSC-treated mice; CXCR4 expression was also detected. Migration assay indicated the involvement of the CXCL12/CXCR4 axis in the migration of ADSC toward PC3 cells. Capillary density was twice as high in the tumors of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF expression was similar but FGF2 expression was significantly higher in tumors of ADSC-treated mice than in the tumors of PBS-tread mice. Prostate cancer cells recruited ADSC by the CXCL12/CXCR4 axis. ADSC helps tumor growth by increasing tumor vascularity, and which was mediated by FGF2.

  2. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas

    PubMed Central

    Butcher, Matthew J.; Wu, Chih-I; Waseem, Tayab

    2016-01-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A+ cells play a role in this disease. Although elevated number of CD4+ IL-17A+ (Th17) and IL-17A+TCRγδ+ T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A+ T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 GFP/GFP) apolipoprotein E-deficient (Apoe −/−) mice to investigate the involvement of CXCR6 in the recruitment IL-17A+ T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A+TCRγδ+ T cells within aged Cxcr6 GFP/GFP Apoe −/− aortas, in comparison with age-matched Cxcr6 GFP/+ Apoe −/− aortas. Although CXCR6-sufficient IL-17A+ T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A+ T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 GFP/GFP Apoe −/− IL-17A+ T cells into the aortas of Apoe −/− recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A+TCRγδ+ T-cell recruitment into atherosclerotic lesions. PMID:26614640

  3. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas.

    PubMed

    Butcher, Matthew J; Wu, Chih-I; Waseem, Tayab; Galkina, Elena V

    2016-05-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A(+) cells play a role in this disease. Although elevated number of CD4(+) IL-17A(+) (Th17) and IL-17A(+)TCRγδ(+) T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A(+) T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 (GFP/GFP) ) apolipoprotein E-deficient (Apoe (-/-) ) mice to investigate the involvement of CXCR6 in the recruitment IL-17A(+) T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A(+)TCRγδ(+) T cells within aged Cxcr6 (GFP/GFP) Apoe (-/-) aortas, in comparison with age-matched Cxcr6 (GFP/+) Apoe (-/-) aortas. Although CXCR6-sufficient IL-17A(+) T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A(+) T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 (GFP/GFP) Apoe (-/-) IL-17A(+) T cells into the aortas of Apoe (-/-) recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A(+)TCRγδ(+) T-cell recruitment into atherosclerotic lesions. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.

    PubMed

    Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-04-05

    To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.

  5. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR

    PubMed Central

    Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-01-01

    Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant. PMID:26934559

  6. Simian Immunodeficiency Virus Targeting of CXCR3+ CD4+ T Cells in Secondary Lymphoid Organs Is Associated with Robust CXCL10 Expression in Monocyte/Macrophage Subsets.

    PubMed

    Fujino, Masayuki; Sato, Hirotaka; Okamura, Tomotaka; Uda, Akihiko; Takeda, Satoshi; Ahmed, Nursarat; Shichino, Shigeyuki; Shiino, Teiichiro; Saito, Yohei; Watanabe, Satoru; Sugimoto, Chie; Kuroda, Marcelo J; Ato, Manabu; Nagai, Yoshiyuki; Izumo, Shuji; Matsushima, Kouji; Miyazawa, Masaaki; Ansari, Aftab A; Villinger, Francois; Mori, Kazuyasu

    2017-07-01

    Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4 + T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4 + T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3 + CCR5 + CD4 + T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3 + T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14 + CD16 + monocytes and MAC387 + macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387 + macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4 + T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3 + CCR5 + CD4 + T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3 + cells, in CD14 + CD16 + monocytes and MAC387 + macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes. Copyright © 2017 American Society for Microbiology.

  7. Simian Immunodeficiency Virus Targeting of CXCR3+ CD4+ T Cells in Secondary Lymphoid Organs Is Associated with Robust CXCL10 Expression in Monocyte/Macrophage Subsets

    PubMed Central

    Fujino, Masayuki; Sato, Hirotaka; Okamura, Tomotaka; Uda, Akihiko; Takeda, Satoshi; Ahmed, Nursarat; Shichino, Shigeyuki; Shiino, Teiichiro; Saito, Yohei; Watanabe, Satoru; Sugimoto, Chie; Kuroda, Marcelo J.; Ato, Manabu; Nagai, Yoshiyuki; Izumo, Shuji; Matsushima, Kouji; Miyazawa, Masaaki; Ansari, Aftab A.; Villinger, Francois

    2017-01-01

    ABSTRACT Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4+ T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4+ T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3+ CCR5+ CD4+ T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3+ T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14+ CD16+ monocytes and MAC387+ macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387+ macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4+ T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3+ CCR5+ CD4+ T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3+ cells, in CD14+ CD16+ monocytes and MAC387+ macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes. PMID:28424283

  8. Macrophage migration inhibitory factor (MIF) supports homing of osteoclast precursors to peripheral osteolytic lesions

    PubMed Central

    Movila, Alexandru; Ishii, Takenobu; Albassam, Abdullah; Wisitrasameewong, Wichaya; Howait, Mohammed; Yamaguchi, Tsuguno; Ruiz-Torruella, Montserrat; Bahammam, Laila; Nishimura, Kazuaki; Van Dyke, Thomas; Kawai, Toshihisa

    2016-01-01

    By binding to its chemokine receptor CXCR4 on osteoclast precursor cells (OCPs), it is well known that SDF-1 promotes the chemotactic recruitment of circulating OCPs to the homeostatic bone remodeling site. However, the engagement of circulating OCPs in pathogenic bone resorption remains to be elucidated. The present study investigated a possible chemoattractant role of MIF, another ligand for CXCR4, in the recruitment of circulating OCPs to the bone lytic lesion. To accomplish this, we used Csf1r-eGFP-KI mice to establish an animal model of Polymethyl methacrylate (PMMA) particle-induced calvarial osteolysis. In the circulating Csf1r-eGFP+ cells of healthy Csf1r-eGFP-KI mice, Csf1r+/CD11b+ cells showed a greater degree of RANKL-induced osteoclastogenesis compared to a subset of Csf1r+/RANK+ cells in vitro. Therefore, Csf1r-eGFP+/CD11b+ cells were targeted as functionally relevant OCPs in the present study. While expression of the two cognate receptors for MIF, CXCR2 and CXCR4, was elevated on Csf1r+/CD11b+ cells, transmigration of OCPs toward recombinant MIF in vitro was facilitated by ligation with CXCR4, but not CXCR2. Meanwhile, the level of PMMA-induced bone resorption in calvaria was markedly greater in wild-type mice compared to that detected in MIF-KO mice. Interestingly, in contrast to the elevated MIF, diminished SDF-1 was detected in a particle-induced bone lytic lesion of wild-type mice in conjunction with an increased number of infiltrating CXCR4+ OCPs. However, such diminished SDF-1 was not found in the PMMA-injected calvaria of MIF-KO mice. Furthermore, stimulation of osteoblasts with MIF in vitro suppressed their production of SDF-1, suggesting that MIF can down-modulate SDF-1 production in bone tissue. Systemically administered anti-MIF neutralizing mAb inhibited the homing of CXCR4+ OCPs, as well as bone resorption, in the PMMA-injected calvaria, while increasing locally produced SDF-1. Collectively, these data suggest that locally produced MIF in the inflammatory bone lytic site is engaged in the chemoattraction of circulating CXCR4+ OCPs. PMID:27082509

  9. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms.

    PubMed

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-06-10

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC.

  10. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms

    PubMed Central

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-01-01

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC. PMID:25909173

  11. Influence of a dual-injection regimen, plerixafor and CXCR4 on in utero hematopoietic stem cell transplantation and engraftment with use of the sheep model.

    PubMed

    Goodrich, A Daisy; Varain, Nicole M; Jeanblanc, Christine M; Colon, Donna M; Kim, Jaehyup; Zanjani, Esmail D; Hematti, Peiman

    2014-09-01

    Inadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis. We used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4(+) fraction of CD34(+) HSCs, we could improve engraftment. Human cord blood-derived CD34(+) cells and human bone marrow-derived MSCs were used for these studies. When MSCs were transplanted 1 week before CD34(+) cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34(+) cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4(+) cells in the CD34(+) population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages. Prior MSC and HSC cotransplantation followed by manipulation of the CXCR4-SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway.

    PubMed

    Yang, L; Wang, M; Guo, Y Y; Sun, T; Li, Y J; Yang, Q; Zhang, K; Liu, S B; Zhao, M G; Wu, Y M

    2016-08-01

    It is evidenced that inflammation is involved in the pathogenesis of anxiety disorder, as well as the dysfunction of glutamate neurotransmission in the central nervous system (CNS). Chemokine CXCL12 has been reported taking part in the regulation of neurotransmitter release, however, the roles of CXCL12 in the development of anxiety are still unclear. In this study, we found that intraperitoneal (i.p) injection of lipopolysaccharide (LPS) induced anxiety-like behaviors in adult mice as measured by elevated plus-maze test (EPM) and open field test (OFT). Astrocytes were responsible for CXCL12 induction upon LPS challenge in hippocampus and amygdala, and microinjection of CXCL12 into amygdala induced mice anxiety-like behaviors. AMD3100, which is an antagonist for CXCL12 receptor CXCR4, prevented the anxiety behaviors induced by microinjection of CXCL12 into amygdala as well as injection i.p of LPS. Knockdown of CXCR4 expression in neurons using short hairpin RNAs (shRNAs) significantly blocked anxiety behaviors mediated by CXCL12 i.c injection. Furthermore, AMD3100 or shCXCR4 prevented the impairment of nesting ability induced by CXCL12 in mice. Whole-cell patch-clamp recordings in the neurons of basolateral amygdala (BLA) revealed that CXCL12 enhanced glutamatergic transmission by increasing sEPSC frequency in the amygdala. AMD3100 inhibited the excitatory glutamatergic neural transmission and involved in the development of anxiety through CXCR4. These findings provide direct evidence that alterations of CXCL12 in BLA play critical roles in the development of anxiety induced by systemic inflammation and that CXCR4 may be a potential therapeutic target for inflammation-induced anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Specific interaction of CXCR4 with CD4 and CD8{alpha}: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115

    2006-09-15

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1more » to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8{alpha} in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8{alpha}/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8{alpha} molecules.« less

  14. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil.

    PubMed

    Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei

    2014-08-01

    Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.

  15. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil

    PubMed Central

    Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei

    2014-01-01

    Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract. PMID:24800927

  16. The Antitumor Mechanism of Paeonol on CXCL4/CXCR3-B Signals in Breast Cancer Through Induction of Tumor Cell Apoptosis.

    PubMed

    Saahene, Roland O; Wang, Jianjie; Wang, Mo-Lin; Agbo, Elvis; Pang, Dezhi

    2018-05-30

    Paeonol, a phenolic component from the root bark of Paeonia moutan, has been identified to possess antitumor effects. However, the effect of paeonol and the mechanism of CXCL4/CXCR3-B signals in paeonol-induced breast cancer cell remain unknown. After MDA-MB-231 cells were pretreated with paeonol or DMSO, the proliferation activity was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Hoechst, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Annexin-V/propidium iodide staining flow cytometry. Western blot and immunohistochemistry of human breast cancer and noncancerous tissues were performed to determine the molecular alteration of CXCL4/CXCR3-B signals. Compared with the control, paeonol-treated breast cancer cells had low proliferation activity and high apoptotic index, indicating that paeonol induces breast cancer cell apoptosis. Western blot and immunohistochemistry showed that paeonol increased CXCR3-B signal, downregulated CXCL4, heme oxygenase (HO-1) with a corresponding increased BACH1, and decreased nuclear factor E2-related factor 2 (Nrf2). Thus, CXCL4/CXCR3-B may be involved in the mechanism of apoptosis induced by paeonol in breast cancer cells by regulating the expression of BACH1 and Nrf2 to downregulating HO-1 and promote apoptosis. Therefore, the authors suggest paeonol has a significant growth inhibitory effect on breast cancer cells, which may be related to the induction of apoptosis.

  17. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Marques, Patrice; Collado, Aida; Escudero, Paula; Rius, Cristina; González, Cruz; Servera, Emilio; Piqueras, Laura; Sanz, Maria-Jesus

    2017-01-01

    Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet–leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients (n = 35) presented greater numbers of activated circulating platelets (PAC-1+ and P-selectin+) expressing CXCL16 and CXCR6 as compared with age-matched controls (n = 17), with a higher number of CXCR6+-platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6+-platelet–leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet–leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte–arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients. PMID:29326688

  18. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease.

    PubMed

    Marques, Patrice; Collado, Aida; Escudero, Paula; Rius, Cristina; González, Cruz; Servera, Emilio; Piqueras, Laura; Sanz, Maria-Jesus

    2017-01-01

    Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet-leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients ( n  = 35) presented greater numbers of activated circulating platelets (PAC-1 + and P-selectin + ) expressing CXCL16 and CXCR6 as compared with age-matched controls ( n  = 17), with a higher number of CXCR6 + -platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6 + -platelet-leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet-leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte-arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients.

  19. Toxoplasma gondii Is Dependent on Glutamine and Alters Migratory Profile of Infected Host Bone Marrow Derived Immune Cells through SNAT2 and CXCR4 Pathways

    PubMed Central

    Lee, I-Ping; Works, Melissa G.; Kumar, Vineet; De Miguel, Zurine; Manley, Nathan C.; Sapolsky, Robert M.

    2014-01-01

    The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both “hypermotility” and “enhanced migration” to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility. PMID:25299045

  20. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    PubMed

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis

    PubMed Central

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. PMID:27828999

  2. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis.

    PubMed

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.

  3. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV.

    PubMed

    Sadir, Rabia; Imberty, Anne; Baleux, Françoise; Lortat-Jacob, Hugues

    2004-10-15

    Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that is constitutively expressed in most tissues and displayed on the cell surface in association with heparan sulfate (HS). Its numerous biological effects are mediated by a specific G protein-coupled receptor, CXCR4. A number of cells inactivate SDF-1 by specific processing of the N-terminal domain of the chemokine. In particular, CD26/dipeptidyl peptidase IV (DPP IV), a serine protease that co-distributes with CXCR4 at the cell surface, mediates the selective removal of the N-terminal dipeptide of SDF-1. We report here that heparin and HS specifically prevent the processing of SDF-1 by DPP IV expressed by Caco-2 cells. The level of processing increases with the level of differentiation of these cells, which correlates with an increase of DPP IV activity. A mutant SDF-1 that does not interact with HS is readily cleaved by DPP IV, a process that is not inhibited by HS, demonstrating that a productive interaction between HS and SDF-1 is required for the protection to take place. Moreover, we found that protection depends on the degree of polymerization of the HS sulfated S-domains. Finally a structural model of SDF-1, in complex with HS oligosaccharides of defined length, rationalizes the experimental data. The mechanisms by which HS regulates SDF-1 may thus include, in addition to its ability to locally concentrate the chemokine at the cell surface, a control of selective protease cleavage events that directly affect the chemokine activity.

  4. The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis.

    PubMed

    Jin, Un-Ho; Lee, Syng-Ook; Pfent, Catherine; Safe, Stephen

    2014-07-09

    Patients with ER-negative breast tumors are among the most difficult to treat and exhibit low survival rates due, in part, to metastasis from the breast to various distal sites. Aryl hydrocarbon receptor (AHR) ligands show promise as antimetastatic drugs for estrogen receptor (ER)-negative breast cancer. Triple negative MDA-MB-231 breast cancer cells were treated with eight AHR-active pharmaceuticals including 4-hydroxtamoxifen, flutamide leflunomide, mexiletine, nimodipine, omeprazole, sulindac and tranilast, and the effects of these compounds on cell proliferation (MTT assay) and cell migration (Boyden chamber assay) were examined. The role of the AHR in mediating inhibition of MDA-MB-231 cell invasion was investigated by RNA interference (RNAi) and knockdown of AHR or cotreatment with AHR agonists. Lung metastasis of MDA-MB-231 cells was evaluated in mice administered cells by tail vein injection and prometastatic gene expression was examined by immunohistochemistry. We showed that only the proton pump inhibitor omeprazole decreased MDA-MB-231 breast cancer cell invasion in vitro. Omeprazole also significantly decreased MDA-MB-231 cancer cell metastasis to the lung in a mouse model (tail vein injection), and in vitro studies showed that omeprazole decreased expression of at least two prometastatic genes, namely matrix metalloproteinase-9 (MMP-9) and C-X-C chemokine receptor 4 (CXCR4). Results of RNA interference studies confirmed that omeprazole-mediated downregulation of CXCR4 (but not MMP-9) was AHR-dependent. Chromatin immunoprecipitation assays demonstrated that omeprazole recruited the AHR to regions in the CXCR4 promoter that contain dioxin response elements (DREs) and this was accompanied by the loss of pol II on the promoter and decreased expression of CXCR4. AHR-active pharmaceuticals such as omeprazole that decrease breast cancer cell invasion and metastasis may have important clinical applications for late stage breast cancer chemotherapy.

  5. Activation of the CXCL16/CXCR6 Axis by TNF-α Contributes to Ectopic Endometrial Stromal Cells Migration and Invasion.

    PubMed

    Peng, Yaoming; Ma, Junyan; Lin, Jun

    2018-01-01

    The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.

  6. Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis.

    PubMed

    Shen, Zongshan; Wang, Jiancheng; Huang, Qiting; Shi, Yue; Wei, Zhewei; Zhang, Xiaoran; Qiu, Yuan; Zhang, Min; Wang, Yi; Qin, Wei; Huang, Shuheng; Huang, Yinong; Liu, Xin; Xia, Kai; Zhang, Xinchun; Lin, Zhengmei

    2018-02-14

    Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR 2 -overexpressing MSCs (MSCs CXCR2 ) for mucositis treatment. Indeed, MSCs CXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSC CXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.

  7. CXCR5+CD8+ T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    PubMed

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  8. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway.

    PubMed

    Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin

    2017-06-01

    Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis. KEY MESSAGES: miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4 signaling. miR-221-3p is identified as a novel potential therapeutic target for osteoarthritis.

  9. The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model.

    PubMed

    Xu, Tao; Yu, Xinyuan; Wang, Teng; Liu, Ying; Liu, Xi; Ou, Shu; Chen, Yangmei

    2017-09-01

    C-X-C motif chemokine receptor 2 (CXCR2) is one of the most well characterized chemokine receptors and is a potential target for treating brain pathologies involving inflammatory processes, including epilepsy. However, the role of CXCR2 in epilepsy has not been investigated, and whether CXCR2 modulates seizure activity in temporal lobe epilepsy (TLE) remains unknown. In this study, we aimed to determine the potential role of CXCR2 in intractable TLE patients and in pilocarpine-induced epileptic mice. Here, through Western blotting and semi-quantitative immunohistochemistry, we detected that CXCR2 protein expression was up-regulated (by nearly 50%) in the temporal neocortex of TLE patients and in the hippocampus and adjacent temporal cortex of pilocarpine mice model. Double-label immunofluorescence and immunohistochemical analysis indicated that CXCR2 was expressed in neurons. To investigate the effect of the CXCR2 selective antagonist SB225002 on seizure activity, SB225002 was i.p. administered during the latency window of spontaneous recurrent seizures (SRSs). This treatment increased (by nearly 40%) the latency of SRSs and reduced (by nearly 50%) the frequency of SRSs during the chronic period of epilepsy. This study suggests that CXCR2 plays a critical role in modifying epileptic seizure activity and that CXCR2 blockade could be a potential molecular therapeutic target for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children.

    PubMed

    Grissell, Terry V; Chang, Anne B; Gibson, Peter G

    2007-04-01

    Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.

  11. Snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles induce apoptosis and growth arrest in human prostate cancer cells.

    PubMed

    Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M; Sayed, Douaa

    2013-03-01

    Prostate cancer (PCa) is the most commonly diagnosed cancer in men. The progression and invasion of PCa are normally mediated by the overexpression of chemokine receptors (CKRs) and the interaction between CKRs and their cognate ligands. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV) either alone or in combination with silica nanoparticles (WEV+NP) mediated the growth arrest and apoptosis of breast cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on the migration, invasion, proliferation and apoptosis of prostate cancer cells. We found that WEV alone and WEV+NP decreased the viability of all cell types tested (PCa cells isolated from patient samples, PC3 cells and LNCaP cells) using an MTT assay. The IC(50) values were determined to be 10 and 5 μg/mL for WEV alone and WEV+NP, respectively. WEV+NP decreased the surface expression of the CKRs CXCR3, CXCR4, CXCR5 and CXCR6 to a greater extent than WEV alone and subsequently reduced migration and the invasion response of the cells to the cognate ligands of the CKRs (CXCL10, CXCL12, CXCL13 and CXCL16, respectively). Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited epidermal growth factor-mediated PCa cell proliferation. Furthermore, analysis of the cell cycle indicated that WEV+NP strongly altered the cell cycle of PCa cells and enhanced the induction of apoptosis. Finally, we demonstrated that WEV+NP robustly decreased the expression of anti-apoptotic effectors, such as B cell Lymphoma-2 (Bcl-2), B cell Lymphoma-extra large (Bcl-(XL)) and myeloid cell leukemia sequence-1 (Mcl-1), and increased the expression of pro-apoptotic effectors, such as Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax) and Bcl-2-interacting mediator of cell death (Bim). WEV+NP also altered the membrane potential of mitochondria in the PCa cells. Our data reveal the potential of nanoparticle-sustained delivery of snake venom as effective treatments for prostate cancer.

  12. CXCR4/Let-7a Axis Regulates Metastasis and Chemoresistance of Pancreatic Cancer Cells Through Targeting HMGA2.

    PubMed

    Xiao, Guangfa; Wang, Xitao; Yu, Yaqun

    2017-01-01

    Pancreatic cancer cells (PCC) is one of the most risky cancers and gemcitabine (GEM) is the standard first-line drug for treating PCC. The PCC will develop drug resistance to GEM after a period of treatment. However, the detailed molecular mechanism of pathogenesis and drug resistance remains unresolved. we employed qRT-PCR and western blot to examine the expression level of CXCR4, let-7a and HMGA2. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The expression level of epithelial marker E-cadherin and mesenthymal marker N-cadherin was detected by western blot. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. we first proved that CXCR4 negatively regulated let-7a in PCC. Next, let-7a was confirmed to play crucial role in tumorigenesis, metastasis and drug resistance of pancreatic cancer cells Bxpc-3 and Panc-1 in vitro and in vivo. Finally, we identified HMGA2 as important downsteam target of let-7a in PCC and overexpression of HMGA2 restores cell proliferation, metastasis and chemosensitivity of GEM inhibited by let-7a. Conlusion: Taken together, we show an important signaling pathway involved in pathogenesis and drug resistance of PCC, thereby providing deeper insight into molecular mechanism by which CXCR4/let-7a regulates tumorigenesis and drug resistance of PCC. These findings will help us develop new strategies for diagnosis and treatment of PCC. The Author(s). Published by S. Karger AG, Basel.

  13. Association between CXCL16/CXCR6 expression and the clinicopathological features of patients with non-small cell lung cancer

    PubMed Central

    Ke, Chuangwu; Ren, Yanchen; Lv, Lu; Hu, Weidong; Zhou, Wenhui

    2017-01-01

    Lung cancer is a major cause of morbidity and mortality worldwide, therefore identifying biomarkers for the early detection, grading or postoperative follow-up of lung cancer is of clinical significance. In the present study, expression of lung tissue (t)-CXCL16 and t-CXCR6 was examined in 58 patients with non-small cell lung cancer (NSCLC) using immunohistochemical staining, and serum (s)-CXCL16 levels were detected in 58 patients with NSCLC and in 32 normal volunteers using an ELISA. A follow-up was performed every 4 months between January 2014 and January 2015. Compared with the normal volunteers, the s-CXCL16 concentration in patients with NSCLC significantly increased (329.47±135.38 vs. 572.82±116.05 pg/ml, respectively; P<0.001). When grouped according to TNM stage, the expression of t-CXCL16 (60 vs. 85.71%; P=0.029), t-CXCR6 (53.33 vs. 78.57%; P=0.043) and s-CXCL16 (26.67 vs. 57.14%, P=0.019) in the stage I–II subgroup was significantly lower compared with that of the stage III–IV subgroup. The positive expression rate of t-CXCL16 (91.18%) and t-CXCR6 (79.41%) in the lymph node metastasis subgroup was significantly higher compared with that of the corresponding non-lymph node metastasis subgroup (50 and 45.83%, respectively; P<0.01). Additionally, the positive expression rate of t-CXCL16 in the smoking subgroup was 100%, which was significantly higher compared with that of the non-smoking subgroup (23.81%) (P<0.001). The follow-up and mortality rates were 100% (58/58) and 13.79% (8/58), respectively. Within the time period of the present study, the survival time was 4–18 months, and the mean survival time was 16.6 months. In conclusion, the expression of t-CXCL16 and t-CXCR6 is positively correlated with the TNM stage and lymph node metastasis in patients with NSCLC. Additionally, there was a significant increase in s-CXCL16 levels in patients with NSCLC, suggesting that CXCL16 could be used as a supplementary biomarker for the early detection of NSCLC. PMID:28599467

  14. Association between CXCL16/CXCR6 expression and the clinicopathological features of patients with non-small cell lung cancer.

    PubMed

    Ke, Chuangwu; Ren, Yanchen; Lv, Lu; Hu, Weidong; Zhou, Wenhui

    2017-06-01

    Lung cancer is a major cause of morbidity and mortality worldwide, therefore identifying biomarkers for the early detection, grading or postoperative follow-up of lung cancer is of clinical significance. In the present study, expression of lung tissue (t)-CXCL16 and t-CXCR6 was examined in 58 patients with non-small cell lung cancer (NSCLC) using immunohistochemical staining, and serum (s)-CXCL16 levels were detected in 58 patients with NSCLC and in 32 normal volunteers using an ELISA. A follow-up was performed every 4 months between January 2014 and January 2015. Compared with the normal volunteers, the s-CXCL16 concentration in patients with NSCLC significantly increased (329.47±135.38 vs. 572.82±116.05 pg/ml, respectively; P<0.001). When grouped according to TNM stage, the expression of t-CXCL16 (60 vs. 85.71%; P=0.029), t-CXCR6 (53.33 vs. 78.57%; P=0.043) and s-CXCL16 (26.67 vs. 57.14%, P=0.019) in the stage I-II subgroup was significantly lower compared with that of the stage III-IV subgroup. The positive expression rate of t-CXCL16 (91.18%) and t-CXCR6 (79.41%) in the lymph node metastasis subgroup was significantly higher compared with that of the corresponding non-lymph node metastasis subgroup (50 and 45.83%, respectively; P<0.01). Additionally, the positive expression rate of t-CXCL16 in the smoking subgroup was 100%, which was significantly higher compared with that of the non-smoking subgroup (23.81%) (P<0.001). The follow-up and mortality rates were 100% (58/58) and 13.79% (8/58), respectively. Within the time period of the present study, the survival time was 4-18 months, and the mean survival time was 16.6 months. In conclusion, the expression of t-CXCL16 and t-CXCR6 is positively correlated with the TNM stage and lymph node metastasis in patients with NSCLC. Additionally, there was a significant increase in s-CXCL16 levels in patients with NSCLC, suggesting that CXCL16 could be used as a supplementary biomarker for the early detection of NSCLC.

  15. A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators' Consortium study (POE 10-03).

    PubMed

    Cooper, Todd M; Sison, Edward Allan Racela; Baker, Sharyn D; Li, Lie; Ahmed, Amina; Trippett, Tanya; Gore, Lia; Macy, Margaret E; Narendran, Aru; August, Keith; Absalon, Michael J; Boklan, Jessica; Pollard, Jessica; Magoon, Daniel; Brown, Patrick A

    2017-08-01

    Plerixafor, a reversible CXCR4 antagonist, inhibits interactions between leukemic blasts and the bone marrow stromal microenvironment and may enhance chemosensitivity. A phase 1 trial of plerixafor in combination with intensive chemotherapy in children and young adults with relapsed or refractory acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS) was performed to determine a tolerable and biologically active dose. Plerixafor was administered daily for 5 days at four dose levels (6, 9, 12, and 15 mg/m 2 /dose) followed 4 hr later by high-dose cytarabine (every 12 hr) and etoposide (daily). Nineteen patients (13 with AML, 5 with ALL, 1 with MDS) were treated. The most common grade 3 or greater nonhematologic toxicities attributable to plerixafor were febrile neutropenia and hypokalemia. There were no dose-limiting toxicities (DLTs). Plerixafor exposure increased with increasing dose levels and clearance was similar on days 1 and 5. Eighteen patients were evaluable for response. Two patients achieved complete remission (CR) and one patient achieved CR with incomplete hematologic recovery (CRi): all three had AML. No responses were seen in patients with ALL or MDS. Plerixafor mobilized leukemic blasts into the peripheral blood in 14 of 16 evaluable patients (median 3.4-fold increase), and the degree of mobilization correlated with surface CXCR4 expression. Plerixafor, in combination with high-dose cytarabine and etoposide, was well tolerated in children and young adults with relapsed/refractory acute leukemias and MDS. While biologic responses were observed, clinical responses in this heavily pretreated cohort were modest. © 2017 Wiley Periodicals, Inc.

  16. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction.

    PubMed

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-21

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI.

  17. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis.

    PubMed

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M

    2015-09-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis; however, its role in chondrosarcoma is undetermined. miR-181a is overexpressed in high-grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine whether miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is a regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis; however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the antiangiogenic and antimetastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. Targeting miR-181a can inhibit tumor angiogenesis, growth, and metastasis, thus suggesting the possibility of antagomir-based therapy in chondrosarcoma. ©2015 American Association for Cancer Research.

  18. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1

    PubMed Central

    Bier, Ariel; Giladi, Nis; Kronfeld, Noam; Lee, Hae Kyung; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Poisson, Laila; deCarvalho, Ana C.; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Mikkelsen, Tom; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive malignant astrocytic tumors, contain a small subpopulation of cancer stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Here, we study the expression and function of miR-137, a putative suppressor miRNA, in GBM and GSCs. We found that the expression of miR-137 was significantly lower in GBM and GSCs compared to normal brains and neural stem cells (NSCs) and that the miR-137 promoter was hypermethylated in the GBM specimens. The expression of miR-137 was increased in differentiated NSCs and GSCs and overexpression of miR-137 promoted the neural differentiation of both cell types. Moreover, pre-miR-137 significantly decreased the self-renewal of GSCs and the stem cell markers Oct4, Nanog, Sox2 and Shh. We identified RTVP-1 as a novel target of miR-137 in GSCs; transfection of the cells with miR-137 decreased the expression of RTVP-1 and the luciferase activity of RTVP-1 3'-UTR reporter plasmid. Furthermore, overexpression of RTVP-1 plasmid lacking its 3'-UTR abrogated the inhibitory effect of miR-137 on the self-renewal of GSCs. Silencing of RTVP-1 decreased the self-renewal of GSCs and the expression of CXCR4 and overexpression of CXCR4 abrogated the inhibitory effect of RTVP-1 silencing on GSC self-renewal. These results demonstrate that miR-137 is downregulated in GBM probably due to promoter hypermethylation. miR-137 inhibits GSC self-renewal and promotes their differentiation by targeting RTVP-1 which downregulates CXCR4. Thus, miR-137 and RTVP-1 are attractive therapeutic targets for the eradication of GSCs and for the treatment of GBM. PMID:23714687

  19. Generation and Characterization of Inhibitory Antibodies Specific to Guinea Pig CXCR1 and CXCR2.

    PubMed

    Tanaka, Kento; Yoshimura, Chigusa; Shiina, Tetsuo; Terauchi, Tomoko; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-04-01

    CXCR1 and CXCR2 are chemokine receptors that have different selectivity of chemokine ligands, but the distinct role of each receptor is not clearly understood. This is due to the absence of specific inhibitors in guinea pigs, which are the appropriate species for investigation of CXCR1 and CXCR2 because of their functional similarity to humans. In this study, we generated and evaluated monoclonal antibodies that specifically bound to guinea pig CXCR1 (gpCXCR1) and guinea pig CXCR2 (gpCXCR2) for acquisition of specific inhibitors. To assess the activity of antibodies, we established CHO-K1 cells stably expressing either gpCXCR1 or gpCXCR2 (CHO/gpCXCR1 or CHO/gpCXCR2). CHO/gpCXCR1 showed migration in response to guinea pig interleukin (IL)-8, and CHO/gpCXCR2 showed migration in response to both guinea pig IL-8 and guinea pig growth-regulated oncogene α. The receptor selectivities of the chemokines of guinea pigs were the same as the human orthologs. The inhibitory activities of the anti-gpCXCR1 and anti-gpCXCR2 monoclonal antibodies on cell migration were observed in a concentration-dependent manner. In conclusion, we successfully obtained inhibitory antibodies specific to gpCXCR1 and gpCXCR2. These inhibitory antibodies will be useful to clarify the physiological roles of CXCR1 and CXCR2 in guinea pigs.

  20. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer.

    PubMed

    Deng, Ling; Chen, Nianyong; Li, Yan; Zheng, Hong; Lei, Qianqian

    2010-08-01

    Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    PubMed

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  2. Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16.

    PubMed

    Petit, Sarah J; Chayen, Naomi E; Pease, James E

    2008-08-01

    Chemokine receptor CXCR6 mediates the chemotaxis and adhesion of leukocytes to soluble and membrane-anchored forms of CXCL16, and is an HIV-1 co-receptor. Here, we describe the effects of mutation of acidic extracellular CXCR6 residues on receptor function. Although most CXCR6 mutants examined were expressed at levels similar to wild-type (WT) CXCR6, an N-terminal E3Q mutant was poorly expressed, which may explain previously reported protective effects of a similar single nucleotide polymorphism, with respect to late-stage HIV-1 infection. In contrast to several other chemokine receptors, mutation of the CXCR6 N terminus and inhibition of post-translational modifications of this region were without effect on receptor function. Likewise, N-terminal extension of CXCL16 resulted in a protein with decent potency and efficacy in chemotaxis and not, as anticipated, a CXCR6 antagonist. D176N and E274Q CXCR6 mutants were unable to interact with soluble CXCL16, suggesting a critical role for D176 and E274 in ligand binding. Intriguingly, although unable to interact with soluble CXCL16, the E274Q mutant could promote robust adhesion to membrane-anchored CXCL16, suggesting that soluble and membrane-bound forms of CXCL16 possess distinct conformations. Collectively, our data suggest a novel paradigm for the CXCR6:CXCL16 interaction, a finding which may impact the discovery of small-molecule antagonists of CXCR6.

  3. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway.

    PubMed

    Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling

    2018-05-15

    The present study aimed to investigate the ability of hesperidin to suppress the migration and invasion of A549 cells, and to investigate the role of the SDF-1/CXCR-4 cascade in this suppression. We performed a Transwell migration assay to measure the migratory capability of A549 cells treated with 0.5% DMSO, SDF-1α, AMD3100 or hesperidin. The SDF-1 level in the culture medium was determined by an enzyme-linked immunosorbent assay (ELISA) to detect whether different concentrations of hesperidin affected SDF-1 secretion. A wound-healing assay was performed to determine the effects of different concentrations of hesperidin on the migration inhibition of A549, H460 and H1975 cells. Additionally, the effect of various hesperidin concentrations on the rate of A549 cell invasion and migration was examined with and without Matrigel in Transwell assays, respectively. Western blot analysis was used to evaluate the protein levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, p-p65, p-IκB, IκB, p-Akt and Akt. RT-qPCR was used to detect the mRNA levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, IκB, SDF-1 and Akt. The Transwell migration assay indicated that SDF-1α promoted A549 cell migration, while AMD3100 and hesperidin significantly inhibited the migratory capability. The wound-healing assay demonstrated that hesperidin treatment significantly reduced the rate of wound closure compared with the control group in a dose-dependent manner. Similarly, the migration and invasive abilities of A549 cells, H460 and H1975 cells treated with hesperidin were significantly decreased compared with the control group. The ELISA data suggested that hesperidin attenuated the secretion of SDF-1 from A549 cells in a dose-dependent manner. Furthermore, western blot analysis indicated that SDF-1α treatment significantly increased the levels of CXCR-4, p-p65, p-IκB and p-Akt in A549 cells. In contrast, AMD3100 or hesperidin reversed the effect induced by SDF-1α through decreasing the expression of CXCR-4. Subsequent RT-qPCR and western blot analyses also confirmed that hesperidin had a significant effect on the expression of EMT-related proteins, including MMP-9, CK-19 and Vimentin, in A549 cells. In summary, we demonstrated that hesperidin inhibited the migratory and invasive capabilities of A549 human non-small cell lung cancer cells by the mediation of the SDF-1/CXCR-4 signaling cascade, thus providing the foundation for the development of hesperidin as a safer and more effective anticancer drug for non-small cell lung cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The brain-penetrating CXCR4 antagonist, PRX177561, increases the antitumor effects of bevacizumab and sunitinib in preclinical models of human glioblastoma.

    PubMed

    Gravina, Giovanni Luca; Mancini, Andrea; Marampon, Francesco; Colapietro, Alessandro; Delle Monache, Simona; Sferra, Roberta; Vitale, Flora; Richardson, Peter J; Patient, Lee; Burbidge, Stephen; Festuccia, Claudio

    2017-01-05

    Glioblastoma recurrence after treatment with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. It has been demonstrated that anti-VEGF/VEGFR therapies control the invasive phenotype and that relapse occurs through the increased activity of CXCR4. We therefore hypothesized that combining bevacizumab or sunitinib with the novel CXCR4 antagonist, PRX177561, would have superior antitumor activity. The effects of bevacizumab, sunitinib, and PRX177561 were tested alone or in combination in subcutaneous xenografts of U87MG, U251, and T98G cells as well as on intracranial xenografts of luciferase tagged U87MG cells injected in CD1-nu/nu mice. Animals were randomized to receive vehicle, bevacizumab (4 mg/kg iv every 4 days), sunitinib (40 mg/kg po qd), or PRX177561 (50 mg/kg po qd). The in vivo experiments demonstrated that bevacizumab and sunitinib increase the in vivo expression of CXCR4, SDF-1α, and TGFβ1. In addition, we demonstrate that the co-administration of the novel brain-penetrating CXCR4 antagonist, PRX177561, with bevacizumab or sunitinib inhibited tumor growth and reduced the inflammation. The combination of PRX177561 with bevacizumab resulted in a synergistic reduction of tumor growth with an increase of disease-free survival (DSF) and overall survival (OS), whereas the combination of PRX177561 with sunitinib showed a mild additive effect. The CXC4 antagonist PRX177561 may be a valid therapeutic complement to anti-angiogenic therapy, particularly when used in combination with VEGF/VEGFR inhibitors. Therefore, this compound deserves to be considered for future clinical evaluation.

  5. T-lymphocyte and cytokine expression in human inflammatory periapical lesions.

    PubMed

    de Brito, Luciana Carla Neves; Teles, Flávia Rocha Fonseca; Teles, Ricardo Palmier; Totola, Antônio Helvécio; Vieira, Leda Quércia; Sobrinho, Antônio Paulino Ribeiro

    2012-04-01

    Lymphocytes, among many cells, express different sets of cytokines, chemokines, and receptors, which are considered important mediators of periapical immune response to infection. The aim of this study was to evaluate the mRNA expression of CD4(+)CD28(+) and CD8(+) T genes and the gene expression of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-17A, IL-10, CCL2/MCP-1, CCL4, CCL5, CXCR4, CCR5, and receptor activator for nuclear factor kappa B ligand (RANKL) in periapical interstitial fluid from human root canal infections. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions. Real-time polymerase chain reaction demonstrated significantly higher levels of CD4(+)CD28(+) and CD8(+) T-cell markers in the former root canal condition and an increase of IL-10 and CXCR4, followed by a decrease of proinflammatory cytokines such as RANKL, interferon-γ, IL-1β, and CCL5. Analyses of T-lymphocyte and cytokine expression in periapical area were able to show that distinct root canal conditions might play regulatory roles in controlling local immune/inflammatory processes. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Endothelial Notch signalling limits angiogenesis via control of artery formation

    PubMed Central

    Hasan, Sana S.; Tsaryk, Roman; Lange, Martin; Wisniewski, Laura; Moore, John C.; Lawson, Nathan D.; Wojciechowska, Karolina; Schnittler, Hans; Siekmann, Arndt F.

    2017-01-01

    Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation. PMID:28714969

  7. Stemness-Related Transcriptional Factors and Homing Gene Expression Profiles in Hepatic Differentiation and Cancer

    PubMed Central

    Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El

    2016-01-01

    Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812

  8. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-12-20

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model.more » Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function.« less

  9. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-07-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.

  10. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    PubMed Central

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364

  11. Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system

    PubMed Central

    Stoff-Khalili, Mariam A; Stoff, Alexander; Rivera, Angel A; Banerjee, Nilam S; Everts, Maaike; Young, Scott; Siegal, Gene P; Richter, Dirk F; Wang, Minghui; Dall, Peter; Mathis, J Michael; Zhu, Zeng B; Curiel, David T

    2005-01-01

    Introduction In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), α-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. Methods We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. Results Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. Conclusion These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast. PMID:16457694

  12. CCR5 Knockout Prevents Neuronal Injury and Behavioral Impairment Induced in a Transgenic Mouse Model by a CXCR4-using HIV-1 Glycoprotein 1201

    PubMed Central

    Maung, Ricky; Hoefer, Melanie M.; Sanchez, Ana B.; Sejbuk, Natalia E.; Medders, Kathryn E.; Desai, Maya K.; Catalan, Irene C.; Dowling, Cari C.; de Rozieres, Cyrus M.; Garden, Gwenn A.; Russo, Rossella; Roberts, Amanda J.; Williams, Roy; Kaul, Marcus

    2014-01-01

    The innate immune system has been implicated in several neurodegenerative diseases, including human immunodeficiency virus (HIV)-1 associated dementia. Here we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-utilizing viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic (tg) mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To further characterize the neuroprotective effect of CCR5-deficiency we performed a genome –wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and non-transgenic controls. Comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type (WT) and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly up-regulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion while inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-utilizing gp120. However, the combination of pharmacological CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-utilizing gp120 thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Altogether, our study provides evidence for an indirect pathological role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury. PMID:25031461

  13. Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcγR-mediated CD14 macrophage activation.

    PubMed

    Uo, Michihide; Hisamatsu, Tadakazu; Miyoshi, Jun; Kaito, Daiki; Yoneno, Kazuaki; Kitazume, Mina T; Mori, Maiko; Sugita, Akira; Koganei, Kazutaka; Matsuoka, Katsuyoshi; Kanai, Takanori; Hibi, Toshifumi

    2013-12-01

    Chronic inflammation characterised by IgG-producing plasma cell infiltration of colonic mucosa is a histological hallmark of ulcerative colitis (UC); however, whether its function is pathogenic or protective remains unclear. To explore the contribution of intestinal IgG plasma cells to UC pathogenesis. We isolated lamina propria mononuclear cells (LPMCs) from intestinal mucosa of UC patients and analysed the characteristics of intestinal plasma cells (expression profiles of differentiation molecules and chemokine receptors). We investigated the involvement of IgG-immune complex (IC)-Fc gamma receptor (FcγR) signalling in intestinal inflammation by examining the cytokine production by LPMCs in response to IgG-IC stimulation. IgG plasma cells that were markedly increased in number in the inflamed mucosa of UC patients showed a distinct expression profile (CD19(+)CD27(low), CCR10(low)CXCR4(high)) compared with IgA plasma cells (CD19(+/-)CD27(high), CCR10(high)CXCR4(-/low)). In vitro IgG-IC stimulation activated intestinal CD14 macrophages that were increased in number in the inflamed mucosa of UC patients via FcγRI and FcγRII, and induced the extensive production of pro-inflammatory cytokines such as tumour necrosis factor (TNF) and interleukin-1β (IL-1β), comparable to the effect of commensal bacteria stimulation. Co-stimulation with IgG-IC and commensal bacteria increased TNF and IL-1β production more than stimulation with the latter alone. Furthermore, IgG-IC notably up-regulated the expression of TL1A, whereas commensal bacteria specifically induced IL-23. Collectively, these results demonstrate a novel aspect of UC pathogenesis in which unique IgG plasma cells infiltrate the inflamed mucosa via CXCR4, and critically influence UC pathogenesis by exacerbating mucosal inflammation through the activation of 'pathogenic' intestinal CD14 macrophages via IgG-IC-FcγR signalling.

  14. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3–72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis

    PubMed Central

    Khan, Muhammad Noman; Wang, Bing; Wei, Jing; Zhang, Yingqiu; Li, Qiang; Luan, Xuelin; Cheng, Jya-Wei; Gordon, John R.; Li, Fang; Liu, Han

    2015-01-01

    CXCR1 and CXCR2 together with cognate chemokines are significantly upregulated in a number of cancers, where they act as key regulators of tumor cell proliferation, metastasis, and angiogenesis. We have previously reported a mutant protein of CXCL8/Interleukin-8, CXCL8(3–72)K11R/G31P (G31P), which can act as a selective antagonist towards CXCR1/2 with therapeutic efficacy in both inflammatory diseases and malignancies. In this study, we investigated the effect of this ELR-CXC chemokine antagonist G31P on human non-small cell lung cancer cells and lung tumor progression in an orthotopic xenograft model. We report increased mRNA levels of CXCR1 and CXCR2 in human lung cancer tissues compared to normal counterparts. Expression levels of CXCR1/2 cognate ligands was determined by ELISA. CXCR1/2 receptor antagonism via G31P leads to decreased H460 and A549 cell proliferation and migration in a dose-dependent manner. G31P also enhanced apoptosis in lung cancer cells as determined by elevated levels of cleaved PARP, Caspase-8, and Bax, together with a reduced expression of the anti-apoptotic protein Bcl-2. In an in vivo orthotopic xenograft mouse model of human lung cancer, G31P treatment suppressed tumor growth, metastasis, and angiogenesis. At the molecular level, G31P treatment was correlated with decreased expression of VEGF and NFкB-p65, in addition to reduced phosphorylation of ERK1/2 and AKT. Our results suggest that G31P blockage of CXCR1 and CXCR2 can inhibit human lung cancer cell growth and metastasis, which offers potential therapeutic opportunities. PMID:26087179

  15. CXCR3A contributes to the invasion and metastasis of gastric cancer cells.

    PubMed

    Yang, Chenggang; Zheng, Wanlei; Du, Wenfeng

    2016-09-01

    CXCR3, belonging to CXC chemokine receptors, has been identified to be overexpressed in various kinds of tumors. There are three mRNA variants of CXCR3 (CXCR3A, CXCR3B and CXCR3alt) in human cells. The functions of major CXCR3 isoforms (CXCR3A, CXCR3B) have been reported in some tumors including prostate and breast cancer. However, the effects of CXCR3A and CXCR3B on gastric cancer cell progression remain unknown. The present investigation found that CXCR3A mRNA level was upregulated but CXCR3B mRNA level was downregulated in gastric cancer cells and tissues. In vitro growth analysis showed that CXCR3A acted as a positive mediator in regulating cell growth, whereas CXCR3B exerted the opposite effect. In vitro invasion and migration assays showed that CXCL10 promoted gastric cancer cell invasion and migration via CXCR3A, but not CXCR3B. Moreover, knockdown of CXCR3A inhibited cell growth and metastasis in vivo. Additionally, CXCR3A knockdown attenuated matrix metalloproteinase (MMP)‑13 and IL‑6 expression, and reduced ERK1/2 activation. Together, these data suggest that CXCR3A contributes to the growth, invasion and metastasis of gastric cancer cells in vitro and in vivo, and thus may be a key mediator of gastric cancer progression.

  16. Constitutive and Treatment-Induced CXCL8-Signalling Selectively Modulates the Efficacy of Anti-Metabolite Therapeutics in Metastatic Prostate Cancer

    PubMed Central

    Longley, Daniel B.; Wilson, Richard H.; Johnston, Patrick G.; Waugh, David J. J.

    2012-01-01

    Background The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent. Methods The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression. Results Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU. Conclusions CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis. PMID:22590561

  17. CCR6(+) Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis.

    PubMed

    Paulissen, Sandra M J; van Hamburg, Jan Piet; Davelaar, Nadine; Vroman, Heleen; Hazes, Johanna M W; de Jong, Pascal H P; Lubberts, Erik

    2015-11-30

    Patients with rheumatoid arthritis (RA) can be separated into two major subpopulations based on the absence or presence of serum anti-citrullinated protein antibodies (ACPAs). The more severe disease course in ACPA(+) RA and differences in treatment outcome between these subpopulations suggest that ACPA(+) and ACPA(-) RA are different disease subsets. The identification of T-helper (Th) cells specifically recognizing citrullinated peptides, combined with the strong association between HLA-DRB1 and ACPA positivity, point toward a pathogenic role of Th cells in ACPA(+) RA. In this context we recently identified a potential pathogenic role for CCR6(+) Th cells in RA. Therefore, we examined whether Th cell population distributions differ by ACPA status. We performed a nested matched case-control study including 27 ACPA(+) and 27 ACPA(-) treatment-naive early RA patients matched for disease activity score in 44 joints, presence of rheumatoid factor, sex, age, duration of complaints and presence of erosions. CD4(+)CD45RO(+) (memory) Th cell distribution profiles from these patients were generated based on differential chemokine receptor expression and related with disease duration. ACPA status was not related to differences in total CD4(+) T cell or memory Th cell proportions. However, ACPA(+) patients had significantly higher proportions of Th cells expressing the chemokine receptors CCR6 and CXCR3. Similar proportions of CCR4(+) and CCR10(+) Th cells were found. Within the CCR6(+) cell population, four Th subpopulations were distinguished based on differential chemokine receptor expression: Th17 (CCR4(+)CCR10(-)), Th17.1 (CXCR3(+)), Th22 (CCR4(+)CCR10(+)) and CCR4/CXCR3 double-positive (DP) cells. In particular, higher proportions of Th22 (p = 0.02), Th17.1 (p = 0.03) and CCR4/CXCR3 DP (p = 0.01) cells were present in ACPA(+) patients. In contrast, ACPA status was not associated with differences in Th1 (CCR6(-)CXCR3(+); p = 0.90), Th2 (CCR6(-)CCR4(+); p = 0.27) and T-regulatory (CD25(hi)FOXP3(+); p = 0.06) cell proportions. Interestingly, CCR6(+) Th cells were inversely correlated with disease duration in ACPA(-) patients (R(2) = -0.35; p < 0.01) but not in ACPA(+) (R(2) < 0.01; p = 0.94) patients. These findings demonstrate that increased peripheral blood CCR6(+) Th cells proportions distinguish ACPA(+) RA from ACPA(-) RA. This suggests that CCR6(+) Th cells are involved in the differences in disease severity and treatment outcome between ACPA(+) and ACPA(-) RA.

  18. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    PubMed

    Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias

    2017-01-01

    Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.

  19. Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds

    PubMed Central

    Zhang, Xianjie; Sarkar, Kakali; Rey, Sergio; Sebastian, Raul; Andrikopoulou, Efstathia; Marti, Guy P.; Fox-Talbot, Karen

    2013-01-01

    Impaired wound healing in the elderly represents a major clinical problem. Delineating the cellular and molecular mechanisms by which aging impairs wound healing may lead to the development of improved treatment strategies for elderly patients with non-healing wounds. Neovascularization is an essential step in wound healing, and bone marrow-derived angiogenic cells (BMDACs) play an important role in vascularization. Using a mouse full-thickness burn wound model, we demonstrate that perfusion and vascularization of burn wounds were impaired by aging and were associated with dramatically reduced mobilization of BMDACs bearing the cell surface molecules CXCR4 and Sca1. Expression of stromal-derived factor 1 (SDF-1), the cytokine ligand for CXCR4, was significantly decreased in peripheral blood and burn wounds of old mice. Expression of hypoxia-inducible factor (HIF)-1α was detected in burn wounds from young (2-month-old), but not old (2-year-old), mice. When BMDACs from young donor mice were injected intravenously, homing to burn wound tissue was impaired in old recipient mice, whereas the age of the BMDAC donor mice had no effect on homing. Our results indicate that aging impairs burn wound vascularization by impairing the mobilization of BMDACs and their homing to burn wound tissue as a result of impaired HIF-1 induction and SDF-1 signaling. PMID:21499736

  20. Clinicopathological significance of chemokine receptor (CCR1, CCR3, CCR4, CCR5, CCR7 and CXCR4) expression in head and neck squamous cell carcinomas.

    PubMed

    González-Arriagada, Wilfredo A; Lozano-Burgos, Carlos; Zúñiga-Moreta, Rodrigo; González-Díaz, Paulina; Coletta, Ricardo D

    2018-05-24

    Head and neck squamous cell carcinoma shows high prevalence of lymph node metastasis at diagnosis, and despite the advances in treatment, the overall 5-year survival is still under 50%. Chemokine receptors have a role in the development and progression of cancer, but their effect in head and neck carcinoma remains poorly characterised. This study aimed to assess the prognostic value of CCR1, CCR3, CCR4, CCR5, CCR7 and CXCR4 in head and neck squamous cell carcinomas. Immunohistochemical expression of chemokine receptors was evaluated in a retrospective cohort of 76 cases of head and neck squamous cell carcinoma. Clinicopathological associations were analysed using the chi-square test, survival curves were analysed according to the Kaplan-Meier method, and the Cox proportional hazard model was applied for multivariate survival analysis. The chemokine receptors were highly expressed in primary carcinomas, except for CCR1 and CCR3. Significant associations were detected, including the associations between CCR5 expression and lymph node metastasis (N stage, P = .03), advanced clinical stage (P = .003), poor differentiation of tumours (P = .05) and recurrence (P = .01). The high expression of CCR5 was also associated with shortened disease-free survival (HR: 2.85, 95% CI: 1.09-8.14, P = .05), but the association did not withstand the Cox multivariate survival analysis. At univariate analysis, high expression of CCR7 was associated with disease-free survival and low levels of CXCR4 were significantly associated with both disease-specific and disease-free survival. These findings show that chemokine receptors may have an important role in head and neck squamous cell carcinoma progression, regional lymph node metastasis and recurrence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK

    PubMed Central

    Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A.; Mohamed, Amany O.; El-Amir, Azza; Abdel-Ghaffar, Fathy A.; Al-Quraishy, Saleh; Mahmoud, Mohamed H.

    2015-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity. PMID:25909640

  2. Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK.

    PubMed

    Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A; Mohamed, Amany O; El-Amir, Azza; Abdel-Ghaffar, Fathy A; Al-Quraishy, Saleh; Mahmoud, Mohamed H

    2015-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity.

  3. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6.

    PubMed

    Andersson, Karin M E; Brisslert, Mikael; Cavallini, Nicola Filluelo; Svensson, Mattias N D; Welin, Amanda; Erlandsson, Malin C; Ciesielski, Michael J; Katona, Gergely; Bokarewa, Maria I

    2015-08-21

    Follicular T helper (Tfh) cells are recognized by the expression of CXCR5 and the transcriptional regulator Bcl-6. Tfh cells control B cell maturation and antibody production, and if deregulated, may lead to autoimmunity. Here, we study the role of the proto-oncogene survivin in the formation of Tfh cells. We show that blood Tfh cells of patients with the autoimmune condition rheumatoid arthritis, have intracellular expression of survivin. Survivin was co-localized with Bcl-6 in the nuclei of CXCR5+CD4 lymphocytes and was immunoprecipitated with the Bcl-6 responsive element of the target genes. Inhibition of survivin in arthritic mice led to the reduction of CXCR5+ Tfh cells and to low production of autoantibodies. Exposure to survivin activated STAT3 and induced enrichment of PD-1+Bcl-6+ subset within Tfh cells. Collectively, our study demonstrates that survivin belongs to the Tfh cell phenotype and ensures their optimal function by regulating transcriptional activity of Bcl-6.

  4. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32.

    PubMed

    Michael, N L; Nelson, J A; KewalRamani, V N; Chang, G; O'Brien, S J; Mascola, J R; Volsky, B; Louder, M; White, G C; Littman, D R; Swanstrom, R; O'Brien, T R

    1998-07-01

    Individuals who are homozygous for the 32-bp deletion in the gene coding for the chemokine receptor and major human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 (CCR5 -/-) lack functional cell surface CCR5 molecules and are relatively resistant to HIV-1 infection. HIV-1 infection in CCR5 -/- individuals, although rare, has been increasingly documented. We now report that the viral quasispecies from one such individual throughout disease is homogenous, T cell line tropic, and phenotypically syncytium inducing (SI); exclusively uses CXCR4; and replicates well in CCR5 -/- primary T cells. The recently discovered coreceptors BOB and Bonzo are not used. Although early and persistent SI variants have been described in longitudinal studies, this is the first demonstration of exclusive and persistent CXCR4 usage. With the caveat that the earliest viruses available from this subject were from approximately 4 years following primary infection, these data suggest that HIV-1 infection can be mediated and persistently maintained by viruses which exclusively utilize CXCR4. The lack of evolution toward the available minor coreceptors in this subject underscores the dominant biological roles of the major coreceptors CCR5 and CXCR4. This and two similar subjects (R. Biti, R. Ffrench, J. Young, B. Bennetts, G. Stewart, and T. Liang, Nat. Med. 3:252-253, 1997; I. Theodoreu, L. Meyer, M. Magierowska, C. Katlama, and C. Rouzioux, Lancet 349:1219-1220, 1997) showed relatively rapid CD4+ T-cell declines despite average or low initial viral RNA load. Since viruses which use CXCR4 exclusively cannot infect macrophages, these data have implications for the relative infection of the T-cell compartment versus the macrophage compartment in vivo and for the development of CCR5-based therapeutics.

  5. Isolation and identification of tumor-initiating cell properties in human gallbladder cancer cell lines using the marker cluster of differentiation 133.

    PubMed

    Yu, Jiwei; Tang, Zhaohui; Gong, Wei; Zhang, Mingdi; Quan, Zhiwei

    2017-12-01

    The present study aimed to isolate and identify the properties of the cluster of differentiation (CD)133 + subset in human gallbladder cancer cells. The CD133 + and CD133 - subpopulations of the GBC-SD cell line were separated using immunomagnetic separation, and the biological features of the two subpopulations were analyzed in vitro and in vivo . In particular, the present study aimed to determine whether the two subpopulations were resistant to anti-tumor reagents and to identify the underlying molecular mechanisms involved. Following cell sorting of GBC-SD cells using immunomagnetic beads, 90.2±2% of cells were identified as CD133 + . Immunofluorescence confirmed that CD133 was expressed at higher levels in the Cd133 + group compared with the CD133 - group. The proliferation of the CD133 + group was significantly increased compared with the CD133 - group in vitro and in vivo . Following treatment with fluorouracil or gemcitabine, cells in the CD133 + group exhibited a decreased sensitivity to these drugs. The number of transmembrane cells was significantly increased in the CD133 + group compared with the CD133 - group. In addition, the expression levels of ATP binding cassette subfamily G member 2, CD44, C-X-C motif chemokine receptor 4 (CXCR4), phosphorylated-protein kinase B (Akt) and CD133 in the CD133 + group were significantly increased, compared with those in the CD133 - group. In CD133 + GBC-SD cells, stromal cell-derived factor 1α (SDF-1α) or treatment with AMD3100, an inhibitor of CXCR4, promotes or suppresses the SDF-1α/CXCR4 axis, respectively, resulting in increased or decreased CD133 expression through the Akt signaling pathway. Inhibition of the Akt signaling pathway resulted in decreased CD133 expression in GBC-SD cells. Immunomagnetic beads were successfully used for isolation of the CD133 + subset from GBC-SD cells. Furthermore, the CD133 + subset revealed an increased potential for tumor formation, cell proliferation, invasion and resistance to chemotherapeutic agents with expression of stem cell-associated genes. Therefore, in GBC-SD cells, the CXCR4/Akt/CD133 signaling pathways may be activated.

  6. Expansion and productive HIV-1 infection of Foxp3 positive CD4 T cells at pleural sites of HIV/TB co-infection

    PubMed Central

    Hirsch, Christina S; Baseke, Joy; Kafuluma, John Lusiba; Nserko, Mary; Mayanja-Kizza, Harriet; Toossi, Zahra

    2016-01-01

    Background CD4 T-cells expressing Foxp3 are expanded systemically during active tuberculosis (TB) regardless of HIV-1 co-infection. Foxp3+ CD4 T cells are targets of HIV-1 infection. However, expansion of HIV-1 infected Foxp3+ CD4 T cells at sites of HIV/TB co-infection, and whether they contribute to promotion of HIV-1 viral activity is not known. Methods Pleural fluid mononuclear cells (PFMC) from HIV/TB co-infected patients with pleural TB were characterized by immune-staining and FACS analysis for surface markers CD4, CD127, CCR5, CXCR4, HLA-DR and intracellular expression of Foxp3, HIVp24, IFN-γ and Bcl-2. Whole PFMC and bead separated CD4+CD25+CD127− T cells were assessed for HIV-1 LTR strong stop (SS) DNA by real-time PCR, which represents viral DNA post cell entry and initiation of reverse transcription. Results High numbers of HIV-1 p24 positive Foxp3+ and Foxp3+CD127− CD4 T cells were identified in PFMC from HIV/TB co-infected subjects. CD4+Foxp3+CD127− T cells displayed high expression of the cellular activation marker, HLA-DR. Further, expression of the HIV-1 co-receptors, CCR5 and CXCR4, were higher on CD4+Foxp3+T cells compared to CD4+Foxp3− T cells. Purified CD4+CD25+CD127− T cells isolated from PFMC of HIV/TB co-infected patients, were over 90% CD4+Foxp3+T cells, and exhibited higher HIV-1 SS DNA as compared to whole PFMC, and as compared to CD4+CD25+CD127− T cells from an HIV-infected subject with pleural mesothelioma. HIV-1 p24+ Foxp3+ CD4+T cells from HIV/TB patients higher in Bcl-2 expression as compared to both HIV-1 p24+ Foxp3− CD4 T cells, and Foxp3+ CD4+T cells without HIV-p24 expression. Conclusion Foxp3+ CD4 T cells in PFMC from HIV/TB co-infected subjects are predisposed to productive HIV-1 infection and have survival advantage as compared to Foxp3 negative CD4 T cells. PMID:28124031

  7. Prognostic impact of CXCL16 and CXCR6 in non-small cell lung cancer: combined high CXCL16 expression in tumor stroma and cancer cells yields improved survival.

    PubMed

    Hald, Sigurd M; Kiselev, Yury; Al-Saad, Samer; Richardsen, Elin; Johannessen, Charles; Eilertsen, Marte; Kilvaer, Thomas K; Al-Shibli, Khalid; Andersen, Sigve; Busund, Lill-Tove; Bremnes, Roy M; Donnem, Tom

    2015-05-29

    The chemokine CXCL16 and its receptor CXCR6 are expressed by a variety of immune cells and have been shown to influence angiogenesis. The expression of CXCR6 and CXCL16 has been examined in numerous human cancers; however no studies have yet investigated their influence on prognosis in non-small cell lung cancer (NSCLC). We aimed to explore their prognostic significance in NSCLC, in addition to examining associations with previously investigated markers. Resected tumor tissue from 335 consecutive unselected stage I-IIIA NSCLC patients (1990-2005) were collected. Immunohistochemistry was used to evaluate the expression of CXCR6 and CXCL16 on tissue microarrays. In vitro, NSCLC cells (NCI-H460, A549 cells) were transfected with CXCL16 siRNA to examine effects on proliferation. In univariate analysis, ↑ stromal cell CXCL16 expression was a significant positive prognostic factor (P = 0.016). CXCR6 was expressed in cancer cells, but did not show any prognostic impact. In the multivariate analysis, combined ↑cancer, and ↑stromal cell CXCL16 expression was an independent positive prognostic factor when compared to ↓stromal and ↓cancer cell expression (HR: 0.42; 95 % CI: 0.20-0.88; P = 0.022). Knockdown of CXCL16 by siRNA resulted in accelerated proliferation of NSCLC cell lines. We have shown that combined ↑cancer and ↑stromal cell CXCL16 expression is an independent positive prognostic factor in NSCLC. Further studies are warranted to elucidate the biological mechanism underlying this finding.

  8. The CXCR4/SDF1 Axis Improves Muscle Regeneration Through MMP-10 Activity

    PubMed Central

    Bobadilla, Miriam; Sainz, Neira; Abizanda, Gloria; Orbe, Josune; Rodriguez, José Antonio; Páramo, José Antonio; Prósper, Felipe

    2014-01-01

    The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration. PMID:24548137

  9. Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Thellung, Stefano; Würth, Roberto; Florio, Tullio

    2016-11-01

    Chemokines control homing and trafficking of leukocytes in bone marrow and lymphoid organs. In particular, CXCL12 and its receptors CXCR4/CXCR7 control the homeostasis of multiple organs and systems. Their overexpression is linked to tumor development, both through a direct modulation of neoplastic cell proliferation, survival, and migration, and, indirectly, acting on the tumor microenvironment which sustains drug resistant tumor stem-like cells. Leukemia and lymphomas frequently display upregulation of CXCL12/CXCR4 in bone marrow that nurtures tumor cells, and confers resistance to conventional chemotherapy, increasing disease relapse. Areas covered: The authors review the molecular and cellular mechanisms by which the CXCL12/CXCR4-7 system supports leukemic bone marrow and how it contributes to leukemia development, and their potential pharmacological targeting. Besides receptor antagonists that directly inhibit leukemic cell proliferation, preclinical and clinical studies demonstrate that CXCR4 inhibition mobilizes leukemic-lymphoma cells from their niches, improving conventional chemotherapy efficacy. Clinically available and experimental pharmacological tools targeting CXCR4/CXCR7 are also described. Expert opinion: Studies have revealed the therapeutic efficacy of combining CXCR4 inhibitors and cytotoxic agents to sensitize leukemic cells, and overcome natural or acquired resistance. However, several issues are still to be unveiled (for example the role of CXCR7) to maximize therapeutic response and reduce potential toxicities.

  10. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells.

    PubMed

    Wang, Xiaoyu; Gao, Yuxuan; Shi, Haigang; Liu, Na; Zhang, Wei; Li, Hongbo

    2016-09-01

    Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.

  11. Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor

    PubMed Central

    Li, Jing; Oupický, David

    2014-01-01

    Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo. PMID:24726746

  12. Circulating Follicular Helper-Like T Cells in Systemic Lupus Erythematosus: Association with Disease Activity

    PubMed Central

    Choi, Jin-Young; Ho, John Hsi-en; Pasoto, Sandra G; Bunin, Viviane; Kim, Sangtaek; Carrasco, Solange; Borba, Eduardo F; Gonçalves, Celio R; Costa, Priscila R; Kallas, Esper G; Bonfa, Eloisa; Craft, Joe

    2015-01-01

    Objective To assess circulating follicular helper-like CD4+ T (cTfh-like) cells in systemic lupus erythematosus (SLE) and determine their relationship to disease activity. Methods We analyzed blood samples from SLE patients, and as controls, Behçet’s disease (BD) patients and healthy individuals. We used flow cytometry to enumerate cTfh-like cells using as markers the C-X-C chemokine receptor type 5 (CXCR5), inducible T-cell costimulator (ICOS), programmed cell death protein-1 (PCDC1, PD-1), and secretion of interleukin-21 (IL-21). We compared the frequency of cTfh-like cells with that of circulating plasmablasts (CD19+IgD−CD38+) and evaluated their possible association with disease activity. Results cTfh-like T cells, identified as CXCR5hiICOShiPD-1hi, were expanded in the blood of SLE patients compared to BD and healthy controls. Such cells produced IL-21 with lower expression of CCR7, compared to circulating CXCR5hi central memory (Tcm) cells, enabling their distinction. PD-1, not ICOS or CXCR5, expression was significantly elevated in cTfh-like cells from SLE patients compared to controls. PD-1 expression among CXCR5hi cTfh-like cells correlated with disease activity, circulating plasmablasts, and anti-dsDNA antibody positivity, but not disease duration nor past organ injury; rather, it reflected current active disease. Conclusion We found that cTfh-like cells are associated with disease activity in SLE, suggesting that their presence indicates abnormal homeostasis of T-B cell collaboration with a causal relationship central to disease pathogenesis. These findings also suggest that cTfh-like cells provide a surrogate for aberrant GC activity in SLE, and that their PD-1 expression offers a tool for following disease activity and response to therapies. PMID:25581113

  13. Expression and Function of Chemokines CXCL9-11 in Micturition Pathways in Cyclophosphamide (CYP)-Induced Cystitis and Somatic Sensitivity in Mice

    PubMed Central

    Guo, Michael; Chang, Phat; Hauke, Eric; Girard, Beatrice M.; Tooke, Katharine; Ojala, Jacqueline; Malley, Susan M.; Hsiang, Harrison; Vizzard, Margaret A.

    2018-01-01

    Changes in urinary bladder function and somatic sensation may be mediated, in part, by inflammatory changes in the urinary bladder including the expression of chemokines. Male and female C57BL/6 mice were treated with cyclophosphamide (CYP; 75 mg/kg, 200 mg/kg, i.p.) to induce bladder inflammation (4 h, 48 h, chronic). We characterized the expression of CXC chemokines (CXCL9, CXCL10 and CXCL11) in the urinary bladder and determined the effects of blockade of their common receptor, CXCR3, at the level urinary bladder on bladder function and somatic (hindpaw and pelvic) sensation. qRT-PCR and Enzyme-Linked Immunoassays (ELISAs) were used to determine mRNA and protein expression of CXCL9, CXCL10 and CXCL11 in urothelium and detrusor. In urothelium of female mice treated with CYP, CXCL9 and CXCL10 mRNA significantly (p ≤ 0.01) increased with CYP treatment whereas CXC mRNA expression in the detrusor exhibited both increases and decreases in expression with CYP treatment. CXC mRNA expression urothelium and detrusor of male mice was more variable with both significant (p ≤ 0.01) increases and decreases in expression depending on the specific CXC chemokine and CYP treatment. CXCL9 and CXCL10 protein expression was significantly (p ≤ 0.01) increased in the urinary bladder with 4 h CYP treatment in female mice whereas CXC protein expression in the urinary bladder of male mice did not exhibit an overall change in expression. CXCR3 blockade with intravesical instillation of AMG487 (5 mg/kg) significantly (p ≤ 0.01) increased bladder capacity, reduced voiding frequency and reduced non-voiding contractions in female mice treated with CYP (4 h, 48 h). CXCR3 blockade also reduced (p ≤ 0.01) hindpaw and pelvic sensitivity in female mice treated with CYP (4 h, 48 h). CXC chemokines may be novel targets for treating urinary bladder dysfunction and somatic sensitization resulting from urinary bladder inflammation. PMID:29681802

  14. Germinal Center T Follicular Helper Cell IL-4 Production Is Dependent on Signaling Lymphocytic Activation Molecule Receptor (CD150)

    PubMed Central

    Yusuf, Isharat; Kageyama, Robin; Monticelli, Laurel; Johnston, Robert J.; DiToro, Daniel; Hansen, Kyle; Barnett, Burton; Crotty, Shane

    2010-01-01

    CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in TFH differentiation, as defined by common TFH surface markers. CXCR5+ TFH cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC TFH) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. GC TFH cells are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH cell subset and SAP− TFH cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC TFH cells. GC TFH cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in TFH cell and GC TFH cell differentiation. PMID:20525889

  15. A similar local immune and oxidative stress phenotype in vitiligo and halo nevus.

    PubMed

    Yang, Yuqi; Li, Shuli; Zhu, Guannan; Zhang, Qian; Wang, Gang; Gao, Tianwen; Li, Chunying; Wang, Lin; Jian, Zhe

    2017-07-01

    Vitiligo and halo nevus are two common T-cell-mediated skin disorders. Although autoimmunity has been suggested to be involved in both diseases, the relationship between vitiligo and halo nevus is not fully understood. The aim of the current study was to investigate whether vitiligo and halo nevus share the same immunological and oxidative stress response. Infiltrations of T cells, and expressions of chemokine receptors (CXCR3, CCR4, CCR5) and cytotoxic markers (Granzyme B, Perforin) in the lesions of vitiligo and halo nevus were examined by immunohistochemistry. Enzyme-linked immunosorbent assay was performed to analyze the expressions of chemokines in the serum samples and cytotoxic markers secreted by CD8 + T cells which were sorted from the peripheral blood mononuclear cells in healthy donors, vitiligo and halo nevus patients. Tissue levels of chemokine receptors and CXCR3 ligands in healthy controls, vitiligo patients and halo nevus patients were determined by qRT-PCR analysis. The percentages of CXCR3 + CD4 + T and CXCR3 + CD8 + T cells from the peripheral blood samples were examined by flow cytometry. Tissue and serum hydrogen peroxide (H 2 O 2 ) concentrations were measured using H 2 O 2 assay kit. Immunohistochemistry revealed a significant T-cell response, with pronounced dermal infiltrates of CD8 + T cells in vitiligo and halo nevus. The inflammatory cytotoxic markers such as Granzyme B and Perforin were also elevated in vitiligo and halo nevus, suggesting inflammatory responses in situ. By qRT-PCR and ELISA assay, we found significantly increased expressions of the chemokine receptor CXCR3 and its ligands, especially the accumulated CXCL10 in the skin lesions of vitiligo and halo nevus. Moreover, the level of H 2 O 2 , a key player involved in regulation of the immune response was significantly upregulated in the skin lesions of vitiligo and halo nevus. In addition, the increased H 2 O 2 concentration correlated positively with CXCL10 level in skin lesions of vitiligo and halo nevus. These results demonstrate a H 2 O 2 -involved autoimmune phenotype in vitiligo and halo nevus, characterized by increased level of IFN-γ-inducible chemokine pair CXCL10-CXCR3, as well as a dense CD8 + T infiltration in the skin lesions, thus suggesting a similar pathogenesis of the two diseases. Copyright © 2017. Published by Elsevier B.V.

  16. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  17. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    PubMed

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment

    PubMed Central

    Blaser, Bradley W.; Moore, Jessica L.; Hagedorn, Elliott J.; Li, Brian; Riquelme, Raquel; Yang, Song; Zhou, Yi; Tamplin, Owen J.; Binder, Vera

    2017-01-01

    The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC–endothelial cell “cuddling,” HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation. PMID:28351983

  19. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library.

    PubMed

    Bai, Renren; Shi, Qi; Liang, Zhongxing; Yoon, Younghyoun; Han, Yiran; Feng, Amber; Liu, Shuangping; Oum, Yoonhyeun; Yun, C Chris; Shim, Hyunsuk

    2017-01-27

    CXCR4 plays a crucial role in recruitment of inflammatory cells to inflammation sites at the beginning of the disease process. Modulating CXCR4 functions presents a new avenue for anti-inflammatory strategies. However, using CXCR4 antagonists for a long term usage presents potential serious side effect due to their stem cell mobilizing property. We have been developing partial CXCR4 antagonists without such property. A new computer-aided drug design program, the FRESH workflow, was used for anti-CXCR4 lead compound discovery and optimization, which coupled both compound library building and CXCR4 docking screens in one campaign. Based on the designed parent framework, 30 prioritized amide-sulfamide structures were obtained after systemic filtering and docking screening. Twelve compounds were prepared from the top-30 list. Most synthesized compounds exhibited good to excellent binding affinity to CXCR4. Compounds Ig and Im demonstrated notable in vivo suppressive activity against xylene-induced mouse ear inflammation (with 56% and 54% inhibition). Western blot analyses revealed that Ig significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, Ig attenuated the amount of TNF-α secreted by pathogenic E. coli-infected macrophages. More importantly, Ig had no observable cytotoxicity. Our results demonstrated that FRESH virtual high throughput screening program of targeted chemical class could successfully find potent lead compounds, and the amide-sulfamide pharmacophore was a novel and effective framework blocking CXCR4 function. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Locoregional Confinement and Major Clinical Benefit of 188Re-Loaded CXCR4-Targeted Nanocarriers in an Orthotopic Human to Mouse Model of Glioblastoma.

    PubMed

    Séhédic, Delphine; Chourpa, Igor; Tétaud, Clément; Griveau, Audrey; Loussouarn, Claire; Avril, Sylvie; Legendre, Claire; Lepareur, Nicolas; Wion, Didier; Hindré, François; Davodeau, François; Garcion, Emmanuel

    2017-01-01

    Gold standard beam radiation for glioblastoma (GBM) treatment is challenged by resistance phenomena occurring in cellular populations well prepared to survive or to repair damage caused by radiation. Among signals that have been linked with radio-resistance, the SDF1/CXCR4 axis, associated with cancer stem-like cell, may be an opportune target. To avoid the problem of systemic toxicity and blood-brain barrier crossing, the relevance and efficacy of an original system of local brain internal radiation therapy combining a radiopharmaceutical with an immuno-nanoparticle was investigated. The nanocarrier combined lipophilic thiobenzoate complexes of rhenium-188 loaded in the core of a lipid nanocapsule (LNC 188 Re) with a function-blocking antibody, 12G5 directed at the CXCR4, on its surface. The efficiency of 12G5-LNC 188 Re was investigated in an orthotopic and xenogenic GBM model of CXCR4-positive U87MG cells implanted in the striatum of Scid mice. We demonstrated that 12G5-LNC 188 Re single infusion treatment by convection-enhanced delivery resulted in a major clinical improvement in median survival that was accompanied by locoregional effects on tumor development including hypovascularization and stimulation of the recruitment of bone marrow derived CD11b- or CD68-positive cells as confirmed by immunohistochemistry analysis. Interestingly, thorough analysis by spectral imaging in a chimeric U87MG GBM model containing CXCR4-positive/red fluorescent protein (RFP)-positive- and CXCR4-negative/RFP-negative-GBM cells revealed greater confinement of DiD-labeled 12G5-LNCs than control IgG2a-LNCs in RFP compartments. Main conclusion: These findings on locoregional impact and targeting of disseminated cancer cells in tumor margins suggest that intracerebral active targeting of nanocarriers loaded with radiopharmaceuticals may have considerable benefits in clinical applications.

Top