NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad
2017-08-01
This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.
Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.
Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599
Zhang, Sai; Huang, Zheng-Qing; Ma, Yuanyuan; Gao, Wei; Li, Jing; Cao, Fangxian; Li, Lin; Chang, Chun-Ran; Qu, Yongquan
2017-01-01
Identification on catalytic sites of heterogeneous catalysts at atomic level is important to understand catalytic mechanism. Surface engineering on defects of metal oxides can construct new active sites and regulate catalytic activity and selectivity. Here we outline the strategy by controlling surface defects of nanoceria to create the solid frustrated Lewis pair (FLP) metal oxide for efficient hydrogenation of alkenes and alkynes. Porous nanorods of ceria (PN-CeO2) with a high concentration of surface defects construct new Lewis acidic sites by two adjacent surface Ce3+. The neighbouring surface lattice oxygen as Lewis base and constructed Lewis acid create solid FLP site due to the rigid lattice of ceria, which can easily dissociate H–H bond with low activation energy of 0.17 eV. PMID:28516952
NASA Astrophysics Data System (ADS)
Peirce, Anthony P.; Rabitz, Herschel
1988-08-01
The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.
Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3
NASA Astrophysics Data System (ADS)
Chen, Haidong; Zhang, Feng; Zhang, Weifeng; Du, Yingge; Li, Guoqiang
2018-01-01
Defects play an important and in many cases dominant role in the physical and chemical properties of many oxide materials. In this work, we show that the surface Ti3+ defects in SrTiO3 (STO), characterized by electron paramagnetic resonance and X-ray photoelectron spectroscopy, directly impact the photocatalytic activity of STO. O2 species are found to absorb preferentially on Ti3+ defect sites. Hydrogen evolution under ambient air diminishes with the increase in the concentration of surface Ti3+. This is explained by the over-accumulation of Pt cocatalysts on the site of surface Ti3+ defects after the removal of adsorbed O2.
Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong
2018-03-01
Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron transport in ethanol & methanol absorbed defected graphene
NASA Astrophysics Data System (ADS)
Dandeliya, Sushmita; Srivastava, Anurag
2018-05-01
In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.
Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO
Hoffmann, F. M.; Hrbek, J.; Ma, S.; ...
2015-12-02
Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less
Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material
Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; ...
2014-11-21
Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$$_2$$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less
NASA Astrophysics Data System (ADS)
Guevremont, J. M.; Strongin, D. R.; Schoonen, M. A. A.
1997-11-01
Studies are presented that investigate the adsorption and binding of CH 3OH and H 2O on the atomically clean (100) crystallographic plane of pyrite, FeS 2. Temperature programmed desorption suggests that both reactants adsorb molecularly at 90 K and desorb thermally between 170 and 400 K depending on the surface coverage. Photoemission of adsorbed xenon (PAX) suggests that the surface of pyrite is heterogeneous and contains a significant fraction of defect sites that are believed to be, at least in part, anion vacancy or sulfur-deficient sites. An upper limit of 0.2 is proposed for the fraction of surface sites that are defects on FeS 2(100). PAX indicates that these defect sites at low adsorbate coverage serve as the exclusive binding sites for H 2O and CH 3OH adsorbate. We speculate, on the basis of our ability to interpret PAX data for pyrite, that PAX may be of use for understanding the effect of short range order on adsorbate binding on other complex mineral surfaces. On the basis of high resolution electron energy loss spectroscopy, it is found that some dissociation of the adsorbate occurs on the pyrite. Vibrational data obtained with this technique suggests that FeO species result from the adsorbate decomposition. After saturation of the defect sites, further molecular adsorption is accommodated on the less reactive surface that we postulate is largely disulfide, the characteristic structural group of pyrite.
Atomistic investigation on the detachment of oil molecules from defective alumina surface
NASA Astrophysics Data System (ADS)
Xie, W. K.; Sun, Y. Z.; Liu, H. T.
2017-12-01
The mechanism of oil detachment from defective alumina surface in aqueous solution was investigated via atomistic molecular dynamics (MD) simulations. Special attention was focused on the effect of surface defect on the oil detachment. Our simulation results suggest that compared with perfect Al2O3 surface, defective substrate surface provides much more sites for the adsorption of oil molecules, thus it has higher oil adsorption energy. However, higher oil-solid adsorption energy does not mean that oil contaminants are much more difficult to be detached. It is found that surface defect could induce the spontaneous imbibition of water molecules, effectively promoting the detachment of oil molecules. Thus, compared with perfect alumina surface, the detachment of oil molecules from defective alumina surface tends to be much easier. Moreover, surface defect could lead to the oil residues inside surface defect. In water solution, the entire detachment process of oil molecules on defective surface consists of following stages, including the early detachment of oil molecules inside surface defect induced by capillary-driven spontaneous imbibition of water molecules, the following conformational change of oil molecules on topmost surface and the final migration of detached oil molecules from solid surface. These findings may help to sufficiently enrich the removal mechanism of oil molecules adhered onto defective solid surface.
Anti-site defected MoS2 sheet for catalytic application
NASA Astrophysics Data System (ADS)
Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid
2018-04-01
To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.
Resurfacing glabrous skin defects in the hand: the thenar base donor site.
Milner, Chris S; Thirkannad, Sunil M
2014-06-01
Defects of the glabrous skin surfaces of the palm and fingers result from numerous causes including larger fingertip injuries, unhealed burns, and after surgery for diverse pathologies. The qualities of glabrous skin are specifically tailored to the functional requirements of high-shear strength and robustness. Despite these unique properties, graft reconstruction of defects in the glabrous regions of the hand is frequently achieved with skin from nonglabrous donor sites such as the medial forearm. Nonglabrous skin has a poor color and texture match for such applications and is frequently associated with tender and unsightly donor scars. We describe our experiences of harvesting full-thickness grafts from the glabrous skin centered over the proximal flexion crease at the level of the metacarpophalangeal joint of the thumb. We have utilized this site to harvest skin grafts of up to 2 cm in width for the resurfacing of small-sized to medium-sized defects on the palmar surfaces of the hands and fingers in 28 patients under both traumatic and elective circumstances. The skin has an excellent type-match to the defect and is quick and easy to harvest due to its adjacent location to the defect. The donor scar matures quickly, and as it lies along the thumb base crease, it runs along one of the least used contact surfaces, thereby limiting the potential discomfort associated with FTSG harvest sites from other areas. Patient satisfaction with the procedure has been high, and it represents a useful alternative to traditional nonglabrous skin graft donor sites for small-sized to medium-sized defects.
NASA Astrophysics Data System (ADS)
Auzar, Zuriana; Johari, Zaharah; Sakina, S. H.; Alias, N. Ezaila
2018-02-01
High sensitivity and selectivity is desired in sensing devices. The aim of this study is to investigate the use of the ion bombardment process in creating a defect on graphene nanoribbons (GNR), which significantly affects sensing properties, in particular adsorption energy, charge transfer and sensitivity. A process has been developed to form the defect on the GNR surface using molecular dynamic (MD) with a reactive force field with nitrogen ion. The sensing properties were calculated using the extended Huckel theory when oxygen (O2) and ammonia (NH3) molecules are exposed to different areas on the defective site. Through simulation, it was found that the ion bombardment process formed various types of defects on the GNR surface. Most notably, molecules adsorbed on the ripple area considerably improve the sensitivity by more than 50%. This indicates that the defect on the armchair graphene nanoribbon (AGNR) surface can be a method to enhance graphene-based sensing performance.
Lee, Jung-Seok; Sohn, Joo-Yeon; Lim, Hyun-Chang; Jung, Ui-Won; Choi, Seong-Ho
2016-08-01
This study aimed to determine healing patterns in periimplant gap defect grafted with demineralized bovine bone mineral (DBBM) and porous titanium granules (PTG), which are known to induce a minimal tissue reaction and to undergo minimal biodegradation in healing process. Experiments were performed using a standardized periimplant gap-defect model in dogs with two observational periods: 4 and 8 weeks. Circumferential defects were surgically induced around dental implants on unilateral mandibles in five dogs, and collagen barrier membranes were placed over the DBBM and PTG grafts at two experimental sites and over a nongrafted site. Four weeks later, the same procedures were performed on the contralateral mandible, and the animals allowed to heal for a further 4 weeks, after which they were sacrificed and their mandibles with graft/control sites harvested for histologic evaluation. Both types of grafted biomaterials significantly enhanced the defect fill with newly formed bone, but the bone-to-implant contact (BIC) was significantly increased only at sites that had been grafted with DBBM. The two experimental sites exhibited different healing patterns, with new bone formation being observed on the surface of the DBBM particles throughout the defect, while there was no de novo bone formation on the PTG surface, but rather appositional bone growth from the base and lateral walls of the defect. It has been suggested that gap-defect filling with DBBM around dental implants may enhance both BIC and defect fill; however, the present findings show that defect grafting with PTG enhances only defect fill and not BIC. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1202-1209, 2016. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Malafsky, Geoffrey P.
1994-04-01
The temperature dependence of vacancy coalescence on an ion bombarded Ni(111) surface is measured by photoemission of adsorbed xenon (PAX). The Ni(111) crystal is sputtered by a low fluence (0.06 ML incident ions) Ar + ion beam with incident kinetic energies of 500-3000 eV. The Xe coverage decreases rapidly with increasing temperature between 88 and 375 K with little additional change from 375 to 775 K. The PAX spectra are acquired with a Xe chamber pressure of 8 × 10 -10 Torr and at a temperature of 88 K. Under these conditions, the Xe is selectively adsorbed at defect sites which would make the Xe coverage proportional to the surface defect density on simple defect structures but the large size of the Xe atom relative to the Ni atom prevents the direct relationship of Xe coverage to the defect density when complex and varying defect structures are present. The decrease in Xe coverage is not attributed to the loss of defect sites by adatom-vacancy recombination but the changing vacancy island shape and size with temperature which alters the ratio of adsorbed Xe atoms to surface vacancy sites. This ratio decreases with increasing temperature as the vacancy islands progress from small and irregularly shaped islands to larger and hexagonally shaped islands. This transition is seen in Monte Carlo simulations of the kinetically driven atomic diffusion on the sputtered surface.
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2016-09-28
Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.
Point defects at the ice (0001) surface
Watkins, Matthew; VandeVondele, Joost; Slater, Ben
2010-01-01
Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barin, G; Krungleviciute, V; Gutov, O
2014-07-07
We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range formore » different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.« less
Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces
2017-01-01
A detailed understanding of the water–semiconductor interface is of major importance for elucidating the molecular interactions at the photocatalyst’s surface. Here, we studied the effect of vacancy defects on the adsorption of a water molecule on the (101̅0) and (112̅0) CdS surfaces, using spin-polarized density functional theory. We observed that the local spin polarization did not persist for most of the cationic vacancies on the surfaces, unlike in bulk, owing to surface reconstructions caused by displaced S atoms. This result suggests that cationic vacancies on these surfaces may not be the leading cause of the experimentally observed magnetism in CdS nanostructures. The surface vacancies are predominantly nonmagnetic except for one case, where a magnetic cationic vacancy is relatively stable due to constraints posed by the (101̅0) surface geometry. At this particular magnetic defect site, we found a very strong interaction with the H2O molecule leading to a case of chemisorption, where the local spin polarization vanishes concurrently. At the same defect site, adsorption of an O2 molecule was also simulated, and the results were found to be consistent with experimental electron paramagnetic resonance findings for powdered CdS. The anion vacancies on these surfaces were always found to be nonmagnetic and did not affect the water adsorption at these surfaces. PMID:28539988
An improved segmentation method for defects inspection on steel roller surface
NASA Astrophysics Data System (ADS)
Xu, Jirui; Li, Xuekun; Cao, Yuzhong; Shi, Depeng; Yang, Jun; Jiang, Sheng; Rong, Yiming
2018-05-01
In the field of metal rolling, the quality of the steel roller's surface is significant for the final rolling products, e.g. metal sheets or foils. Besides the dimensional accuracy and surface roughness, the optical uniformity of the roller surface is also required for high quality rolling application. The typical optical defects of rollers after finish grinding include speckles, chatter marks, feed traces, and combination of all above. Unlike surface roughness, the optical defects can hardly be characterized by the topography or scanning electrical microscope measurement. Only the inspection by bared eyes of experienced engineers appears to be the effective manner for surface optical defects examination for large steel rollers. In this paper, an on-site machine vision system is designed to add on to the roller grinding machine to capture the surface image, and then an improved optical defects segmentation algorithm is developed based on the active contour model. Finally, experiments are carried out to verify the efficacy of the improved model.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl
NASA Astrophysics Data System (ADS)
Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka
2014-02-01
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.
NASA Astrophysics Data System (ADS)
Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song
2017-12-01
Photocatalytic conversion of CO2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C3N4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO2 to CO and CH4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.
Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song
2017-12-01
Photocatalytic conversion of CO 2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO 2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO 2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C 3 N 4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO 2 to CO and CH 4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO 2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO 2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.
Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard
2018-05-31
We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.
Chlorhexidine controlled-release profile after EDTA root surface etching: an in vivo study.
Gamal, Ahmed Y; Kumper, Radi M; Sadek, Hesham S; El Destawy, Mahmoud T
2011-05-01
The main objective of the present study was to quantify chlorhexidine (CHX) release after the use of CHX-EDTA root surface treatment as a local-delivery antimicrobial vehicle. Twenty non-smoking patients clinically diagnosed as having moderate-to-severe chronic periodontitis were selected to participate in this study. After cause-related therapy, one site in every patient received defect overfill with CHX gel 2% (20 sites). In addition, twenty contralateral sites received defect fill of CHX gel after 3 minutes of 24% EDTA gel root surface etching (20 sites). Gingival crevicular fluid samples were collected at 1, 3, 7, and 14 days post-therapy. The CHX-EDTA group showed statistically significantly higher levels of CHX than those of the control group at 1, 3, and 7 days. At 14 days, the CHX-EDTA group showed 0.8 mg/mL values. The use of CHX-EDTA root surface treatment as a local-delivery antimicrobial improves CHX substantivity.
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
A molecular model for ice nucleation and growth, attachment 1
NASA Technical Reports Server (NTRS)
Plummer, P. L. M.
1981-01-01
The quantum mechanical technique is used to study ionic, configurational, and impurity defects in the ice surface. In addition to static calculations of the energetics of the water monomer-ice surface interactions, molecular dynamics studies were initiated. The calculations of the monomer-ice surface interaction, molecular dynamics studies were initiated. The calculations of monomer-ice surface interactions indicate that many adsorption sites exist on the ice surfaces and that the barriers between bonding sites are relatively low. Bonding on the prism face of ice is preferentially above lattice sites.
Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.
1996-01-01
Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie; Selvidge, Shawn
2003-01-01
The focus of the evaluation was to develop a back-up method to cell plating for the improvement or repair of seal surface defects within D6-AC steel and 7075-T73 aluminum used in the RSRM program. Several techniques were investigated including thermal and non-thermal based techniques. Ideally the repair would maintain the inherent properties of the substrate without losing integrity at the repair site. The repaired sites were tested for adhesion, corrosion, hardness, microhardness, surface toughness, thermal stability, ability to withstand bending of the repair site, and the ability to endure a high-pressure water blast without compromising the repaired site. The repaired material could not change the inherent properties of the substrate throughout each of the test in order to remain a possible technique to repair the RSRM substrate materials. One repair method, Electro-Spark Alloying, passed all the testing and is considered a candidate for further evaluation.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.; Selvidge, Shawn A.; Cash, Steve (Technical Monitor)
2002-01-01
The focus of the evaluation was to develop a back-up method to cell plating for the improvement or repair of seal surface defects within D6-AC steel and 7075-T73 aluminum used in the RSRM program. Several techniques were investigated including thermal and non-thermal based techniques. Ideally the repair would maintain the inherent properties of the substrate without losing integrity at the repair site. The repaired sites were tested for adhesion, corrosion, hardness, microhardness, surface toughness, thermal stability, ability to withstand bending of the repair site, and the ability to endure a high-pressure water blast without compromising the repaired site. The repaired material could not change the inherent properties of the substrate throughout each of the test in order to remain a possible technique to repair the RSRM substrate materials. One repair method, Electro-Spark Alloying, passed all the testing and is considered a candidate for further evaluation.
A mechanism for the production of hydroxyl radical at surface defect sites on pyrite
NASA Astrophysics Data System (ADS)
Borda, Michael J.; Elsetinow, Alicia R.; Strongin, Daniel R.; Schoonen, Martin A.
2003-03-01
A previous contribution from our laboratory reported the formation of hydrogen peroxide (H 2O 2) upon addition of pyrite (FeS 2) to O 2-free water. It was hypothesized that a reaction between adsorbed H 2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH •). ≡Fe(III) + H 2O (ads) → ≡Fe(II) + OH •(ads) + H + The combination of two OH • then produces H 2O 2. In the present study, we show spectroscopic evidence consistent with the conversion of Fe(III) to Fe(II) at defect sites, the origin of H 2O 2 from H 2O, and the existence of OH • in solution. To demonstrate the iron conversion at the surface, X-ray photoelectron spectroscopy (XPS) was employed. Using a novel mass spectrometry method, the production of H 2O 2 was evaluated. The aqueous concentration of OH • was measured using a standard radical scavenger method. The formation of OH • via the interaction of H 2O with the pyrite surface is consistent with several observations in earlier studies and clarifies a fundamental step in the oxidation mechanism of pyrite.
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-02-02
A series of supported WO 3/TiO 2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH) 2 and (NH 4) 10W 12O 41*5H 2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO 3/TiO 2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O- 16O exchange demonstrated that tungsten oxide was exclusively present as surface WO x species on the TiO 2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnationmore » synthesis that found only surface one mono-oxo O=WO 4 site on TiO 2, the co-precipitation procedure resulted in the formation of two distinct surface WO x species: mono-oxo O=WO 4 (~1010-1017 cm -1) on low defect density patches of TiO 2 and a second mono-oxo O=WO 4 (~983-986 cm -1) on high defect density patches of TiO 2. The concentration of the second WO x surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH 3 SCR reactivity. The co-precipitated WO 3-TiO 2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH 3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH 4 + species on Br nsted acid sites were found to be more reactive than surface NH 3* species on Lewis acid sites for SCR of NO with NH 3.« less
Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces
NASA Astrophysics Data System (ADS)
Bhattacharya, Saswata; Berger, Daniel; Reuter, Karsten; Ghiringhelli, Luca M.; Levchenko, Sergey V.
2017-12-01
Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordinated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomistic thermodynamics, we investigate the interplay of bond-making, bond-breaking, and charge-carrier trapping at the corner defects at the (100) surface of a p -doped MgO in thermodynamic equilibrium with an O2 atmosphere. We show that by manipulating the coordination of surface atoms, one can drastically change and even reverse the order of stability of reduced versus oxidized surface sites.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Rentao; Dahal, Arjun; Wang, Zhi-Tao
Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. Themore » probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.« less
Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai
2017-03-10
We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.
Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jingyun; Liu, Changjun; Mei, Donghai
2013-06-03
Methanol synthesis from CO2 hydrogenation on the defective In2O3(110) surface with surface oxygen vacancies has been investigated using periodic density functional theory calculations. The relative stabilities of six possible surface oxygen vacancies numbered from Ov1 to Ov6 on the perfect In2O3(110) surface were examined. The calculated oxygen vacancy formation energies show that the D1 surface with the Ov1 defective site is the most thermodynamically favorable while the D4 surface with the Ov4 defective site is the least stable. Two different methanol synthesis routes from CO2 hydrogenation over both D1 and D4 surfaces were studied and the D4 surface was foundmore » to be more favorable for CO2 activation and hydrogenation. On the D4 surface, one of the O atoms of the CO2 molecule fills in the Ov4 site upon adsorption. Hydrogenation of CO2 to HCOO on the D4 surface is both thermodynamically and kinetically favorable. Further hydrogenation of HCOO involves both forming the C-H bond and breaking the C-O bond, resulting in H2CO and hydroxyl. The HCOO hydrogenation is slightly endothermic with an activation barrier of 0.57 eV. A high barrier of 1.14 eV for the hydrogenation of H2CO to H3CO indicates that this step is the rate-limiting step in the methanol synthesis on the defective In2O3(110) surface. We gratefully acknowledge the supports from the National Natural Science Foundation of China (#20990223) and from US Department of Energy, Basic Energy Science program (DE-FG02-05ER46231). D. Mei was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
Shakourian-Fard, Mehdi; Heydari, Hadiseh; Kamath, Ganesh
2017-09-06
Defect engineering potentially allows for dramatic tuning of the optoelectronic properties of two-dimensional materials. With the help of DFT calculations, a systematic study of DNA nucleobases adsorbed on hexagonal boron-nitride nanoflakes (h-BNNFs) with boron (V B ) and nitrogen (V N ) monovacancies is presented. The presence of V N and V B defects increases the binding strength of nucleobases by 9 and 34 kcal mol -1 , respectively (h-BNNF-V B >h-BNNF-V N >h-BNNF). A more negative electrostatic potential at the V B site makes the h-BNNF-V B surface more reactive than that of h-BNNF-V N , enabling H-bonding interactions with nucleobases. This binding energy difference affects the recovery time-a significant factor for developing DNA biosensors-of the surfaces in the order h-BNNF-V B >h-BNNF-V N >h-BNNF. The presence of V B and V N defect sites increases the electrical conductivity of the h-BNNF surface, V N defects being more favorable than V B sites. The blueshift of absorption peaks of the h-BNNF-V B -nucleobase complexes, in contrast to the redshift observed for h-BNNF-V N -nucleobase complexes, is attributed to their observed differences in binding energies, the HOMO-LUMO energy gap and other optoelectronic properties. Time-dependent DFT calculations reveal that the monovacant boron-nitride-sheet-nucleobase composites absorb visible light in the range 300-800 nm, thus making them suitable for light-emitting devices and sensing nucleobases in the visible region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Sang-Il; Herron, Jeffrey A.; Scaranto, Jessica; ...
2015-04-13
Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {100} facets have higher specific activities than those enclosed by {111} facets, in agreement with prior observations for Pd single-crystal substrates. If comparing nanocrystalsmore » predominantly enclosed by a specific type of facet, {100} or {111}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(211) sites, compared to the activity of both Pd(100) and Pd(111) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(211). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.« less
The role of defects in Fe(II) – goethite electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke
Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less
Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang
We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al{sub 2}Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped (211) surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir–Hinshelwood mechanism with themore » activation energy of 37 kJ/mol or via the CO–OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sang; Herron, Jeffrey A.; Scaranto, Jessica
2015-07-13
Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {1 0 0} facets have higher specific activities than those enclosed by {1 1 1} facets, in agreement with prior observations for Pd single-crystalmore » substrates. If comparing nanocrystals predominantly enclosed by a specific type of facet, {1 0 0} or {1 1 1}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(2 1 1) sites, compared to the activity of both Pd(1 0 0) and Pd(1 1 1) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(2 1 1). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.« less
NASA Astrophysics Data System (ADS)
Hunt, Steven R.; Collins, Phillip G.
2010-03-01
The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).
Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)
Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan
2016-01-01
Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303
NASA Astrophysics Data System (ADS)
Morita, Kazuki; Yasuoka, Kenji
2018-03-01
Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.
1994-09-15
and Terrace Sites of Monocrystalline Platinum: Mixed-Isotope Studies at Pt(335) and Pt(1 11) in the Aqueous Electrochemical Environment by Chung S. Kim... monocrystalline metals. These materials have structurally well-defined step and kink structures, which serve as models for the surface defect sites found on...and molecular interactions at stepped monocrystalline electrode surfaces [3,4]. A notable property of Pt(335)/CO is that the CO occupancy at step and
NASA Astrophysics Data System (ADS)
Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.
2018-01-01
Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the adsorption energy with the shift of the center of gravity of the occupied d-states of Pt sites.
NASA Astrophysics Data System (ADS)
Lu, J.-L.; Gao, H.-J.; Shaikhutdinov, S.; Freund, H.-J.
2006-11-01
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO 2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.
Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
Dabiri, Yaghoub; Li, LePing
2015-06-01
A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee
2018-05-01
We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.
NASA Astrophysics Data System (ADS)
Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping
2000-01-01
In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao
2018-05-01
ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.
Pascucci, Simone; Bassani, Cristiana; Palombo, Angelo; Poscolieri, Maurizio; Cavalli, Rosa
2008-02-22
This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, since in asphalt pavements the surface defects are strictly related to the decrease of oily components that cause an increase of the abundance of surfacing limestone, the diagnostic absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS emissivity data the areas exhibiting defects on asphalt pavements surface.The results showed that MIVIS emissivity allows establishing a threshold that points out those asphalt road sites on which a check for a maintenance intervention is required. Therefore, this technique can supply local government authorities an efficient, rapid and repeatable road mapping procedure providing the location of the asphalt pavements to be checked.
Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Karim, Ayman M.; Wang, Yong
2011-04-06
Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways ofmore » the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-04-14
We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less
Sivolella, Stefano; Bressan, Eriberto; Salata, Luiz A; Quiñones, Maria E; Lang, Niklaus P; Botticelli, Daniele
2014-03-01
To evaluate the influence on osseointegration of Deproteinized bovine bone mineral (DBBM) particles used to fill defects of at least 1 mm around implants having no primary contact with bone. Premolars and first molars were extracted bilaterally from the mandible of six Labrador dogs. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated, and one recipient site was prepared in the molar region of each hemi-mandible to place implants. These were installed with a deliberate circumferential and periapical space to the bone walls of 1.2 mm. All implants were stabilized with passive fixation plates to maintain the implants in situ and without any contact with the implant bed. The control sites were left to be filled with coagulum, while at the test sites, the residual gap was filled with DBBM. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically. Mineralized bone-to-implant contact was 4.0% and 3.9% for control and test sites, respectively. The width of the residual defects was 0.48 mm and 0.88 mm at the control and test sites, respectively. The percentage of implant surface covered by a layer of dense connective tissue of 0.12 mm of width on average was 84.9% and 88.5% at the control and test sites, respectively. A minor and not predictable degree of contact or distance osteogenesis was obtained on the implant surface when primary contact of the implant surface with the implant bed had deliberately been avoided. DBBM grafting of the artificial gap did not favor osseointegration. Neither did it enhance the ability to bridge the gap with newly formed bone in an artificial defect wider than 1 mm. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Theoretical Studies about Adsorption on Silicon Surface
NASA Astrophysics Data System (ADS)
Huang, Yan; Chen, Xiaoshuang; Zhu, Xiao Yan; Duan, He; Zhou, Xiao Hao; Lu, Wei
In this review paper, we address the important research topic of adsorption on the silicon surface. The deposition of single Si ad-species (adatom and ad-dimer) on the p(2×2) reconstructed Si(100) surface has been simulated by the empirical tight-binding method. Using the clean and defective Si surfaces as the deposition substrates, the deposition energies are mapped out around the clean surface, dimer vacancies, steps and kink structures. The binding sites, saddle points and several possible diffusion paths are obtained from the calculated energy. With further analysis of the deposition and diffusion behaviors, the influences of the surface defects can be found. Then, by adopting the first-principle calculations, the adsorptions of the II-VI group elements on the clean and As-passivated Si(211) substrates have been calculated as the example of adsorption on the high-miller-index Si surface.
McGuire, Michael K; Scheyer, Todd; Nevins, Myron; Schupbach, Peter
2009-02-01
The current study examined the histologic and microcomputed tomographic (micro CT) outcomes of the treatment of gingival recession defects with either a subepithelial connective tissue graft (CTG) or 0.3 mg/mL recombinant human platelet-derived growth factor (rhPDGF-BB) on a beta tricalcium phosphate (beta-TCP) matrix. Gingival recession defects were surgically created in six premolar teeth with no more than 3 mm of keratinized marginal tissue, an osseous crest 2 to 3 mm apical to the newly created gingival margin, and recession depth of at least 3 mm. The defects were left untouched for 2 months; then, four defects were grafted with rhPDGF-BB + beta-TCP + a wound healing dressing, and two defects received CTGs. A coronally advanced flap covered each grafted site. Nine months later, sections were obtained for examination. All four sites treated with rhPDGF-BB + beta-TCP showed connective tissue fibers (Sharpey fibers) perpendicularly inserting into newly formed cementum and alveolar bone. In the two sites treated with CTGs, a long junctional epithelium was seen coronal to the osseous crest and connective tissue fibers ran parallel to the adjacent root surfaces, with no evidence of insertion into cementum or bone. There was no evidence of regeneration of cementum, inserting connective tissue fibers, or supporting alveolar bone. Regeneration of the periodontium in gingival recession defects is possible through growth factor-mediated therapy.
Gurgel, Bruno César de Vasconcelos; Gonçalves, Patrícia Furtado; Pimentel, Suzana Peres; Nociti, Francisco Humberto; Sallum, Enilson Antonio; Sallum, Antonio Wilson; Casati, Marcio Zaffalon
2008-07-01
The aim of the present study was to histometrically evaluate bone healing in the absence of bone defects and in the presence of surgically created bone defects treated by guided bone regeneration at oxidized and turned implant surfaces. Three months after dental extractions, standardized buccal dehiscence defects (height: 5 mm; width: 4 mm) were surgically created following implant site preparation in the mandible of 10 dogs. Oxidized-surface implants (OSI) and turned-surface implants (TSI) were inserted bilaterally, and the bone defects were treated by guided bone regeneration. After 3 months of healing, the animals were sacrificed, blocks were dissected, and undecalcified sections were obtained and processed for histometric analysis. The percentage of bone-to-implant contact (BIC) and bone density (BD) was evaluated inside the threads on the buccal (regenerated bone) and lingual sides (pristine bone) of the implants. Data were evaluated using two-way analysis of variance (P <0.05). New bone formation could be observed in OSI and TSI in the region of the defect creation. The BIC values observed in OSI for pristine and regenerated bone were 57.03% +/- 21.86% and 40.86% +/- 22.73%, respectively. TSI showed lower values of BIC in pristine bone (37.39% +/- 23.33%) and regenerated bone (3.52% +/- 4.87%). The differences between OSI and TSI were statistically significant. BD evaluation showed no statistically significant differences between OSI and TSI in pristine and regenerated bone. The oxidized implant surface promoted a higher level of BIC than the turned implant surface at pristine and regenerated bone.
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric
Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.
NASA Astrophysics Data System (ADS)
Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin
2015-01-01
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.
Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng
2010-04-20
The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.
Hierarchical regrowth of flowerlike nanographene sheets on oxygen-plasma-treated carbon nanowalls
NASA Astrophysics Data System (ADS)
Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2014-04-01
Cauliflorous nanographene sheets were hierarchically regrown on the spearlike structures of carbon nanowalls (CNWs) produced by O2-plasma etching. The spears on the CNWs acted as a stem for the growth of flowerlike flaky nanographene sheets, where the root of the nanoflower was located at a defect or disordered site. The defects on the graphitic structures were induced by irradiation with oxygen-related radicals and ions in the O2-based plasmas and acted as sites for the nucleation of flowerlike nanographene. The porous carbon nanostructures regrown after O2-plasma treatment have a relatively higher surface area and are thus promising materials for electrochemical applications.
2007-04-01
MWNTs.20 These defects would provide sites for the electrophilic substitution reaction. In our previous work, FT-IR had been used to characterize the...various surface functionalities.22 In this study, MWNTs containing polar surface groups such as amino-, hydroxyl-, and fluorine groups displayed similar
Oxygen interaction with disordered and nanostructured Ag(001) surfaces
NASA Astrophysics Data System (ADS)
Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.
2001-08-01
We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.
Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; ...
2016-05-12
We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO 2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO 2(111) surface was obtained by annealing the thin film under 2.0 × 10 –5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO 2(111) surface, the thin film was annealed under ~5.0 × 10 –10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface.more » The saturated TMAA coverage on the CeO 2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO 2–δ(111) surface through dissociative adsorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.
2015-01-26
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less
Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.
Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan
2014-01-01
Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly
NASA Astrophysics Data System (ADS)
Mastrangeli, M.; Ruythooren, W.; Van Hoof, C.; Celis, J.-P.
2009-04-01
Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design.
Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin
2014-01-01
The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845
Pascucci, Simone; Bassani, Cristiana; Palombo, Angelo; Poscolieri, Maurizio; Cavalli, Rosa
2008-01-01
This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, since in asphalt pavements the surface defects are strictly related to the decrease of oily components that cause an increase of the abundance of surfacing limestone, the diagnostic absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS emissivity data the areas exhibiting defects on asphalt pavements surface.The results showed that MIVIS emissivity allows establishing a threshold that points out those asphalt road sites on which a check for a maintenance intervention is required. Therefore, this technique can supply local government authorities an efficient, rapid and repeatable road mapping procedure providing the location of the asphalt pavements to be checked. PMID:27879765
Method for producing damage resistant optics
Hackel, Lloyd A.; Burnham, Alan K.; Penetrante, Bernardino M.; Brusasco, Raymond M.; Wegner, Paul J.; Hrubesh, Lawrence W.; Kozlowski, Mark R.; Feit, Michael D.
2003-01-01
The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.
Understanding the synthesis, performance, and passivation of metal oxide photocathodes
NASA Astrophysics Data System (ADS)
Flynn, Cory James
Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.
Solar Wind Implantation into Lunar Regolith: Hydrogen Retention in a Surface with Defects
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Hurley, D. M.; Zimmerman, M. I.
2014-01-01
Solar wind protons are implanted directly into the top 100 nm of the lunar near-surface region, but can either quickly diffuse out of the surface or be retained, depending upon surface temperature and the activation energy, U, associated with the implantation site. In this work, we explore the distribution of activation energies upon implantation and the associated hydrogen-retention times; this for comparison with recent observation of OH on the lunar surface. We apply a Monte Carlo approach: for simulated solar wind protons at a given local time, we assume a distribution of U values with a central peak, U(sub c) and width, U(sub w), and derive the fraction retained for long periods in the near-surface. We find that surfaces characterized by a distribution with predominantly large values of U (greater than 1 eV) like that expected at defect sites will retain implanted H (to likely form OH). Surfaces with the distribution predominantly at small values of U (less than 0.2 eV) will quickly diffuse away implanted H. However, surfaces with a large portion of activation energies between 0.3 eV less than U less than 0.9 eV will tend to be H-retentive in cool conditions but transform into H-emissive surfaces when warmed (as when the surface rotates into local noon). These mid-range activation energies give rise to a diurnal effect with diffusive loss of H at noontime.
Corma, Avelino; Boronat, Mercedes; González, Silvia; Illas, Francesc
2007-08-28
The study of adsorption and dissociation of molecular hydrogen on single crystal Au(111) and Au(001) surfaces, monoatomic rows in an extended line defect and different Au nanoparticles by means of DF calculations allows us to firmly conclude that the necessary and sufficient condition for H2 dissociation is the existence of low coordinated Au atoms, regardless if they are in nanoparticles or at extended line defects.
Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng
2017-10-01
Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.
The aqueous electrochemistry of carbon-based surfaces-investigation by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Mühl, T.; Myhra, S.
2007-04-01
Electro-oxidation of carbon-based materials will lead to conversion of the solid to CO2/CO at the anode, with H2 being produced at the cathode. Recent voltammetric investigations of carbon nano-tubes and single crystal graphite have shown that only edge sites and other defect sites are electrochemically active. Local oxidation of diamond-like carbon films (DLC) by an STM tip in moist air followed by imaging allows correlation of topographical change with electro-chemical conditions and surface reactivity. The results may have implications for lithographic processing of carbon surfaces, and may have relevance for electrochemical H2 production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur
2010-09-01
We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such asmore » ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.« less
Mechanical tearing of graphene on an oxidizing metal surface.
George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu
2015-12-11
Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.
The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation
NASA Astrophysics Data System (ADS)
Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli
2013-05-01
The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
Nanoscale electron transport at the surface of a topological insulator.
Bauer, Sebastian; Bobisch, Christian A
2016-04-21
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Nanoscale electron transport at the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Bobisch, Christian A.
2016-04-01
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Microstructural studies by TEM of diamond films grown by combustion flame
NASA Astrophysics Data System (ADS)
Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.
Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
NASA Astrophysics Data System (ADS)
González, Julio; Wang, Jin An; Chen, Lifang; Manríquez, Maria; Salmones, José; Limas, Roberto; Arellano, Ulises
2018-07-01
A set of MoO3/SBA-15 mesoporous catalysts were characterized with a variety of spectroscopic techniques and their crystalline structures were refined with Rietveld method. Oxygen defect concentration, crystallite size, phase composition, surface acidity, mesoporous regularity, and textural properties were reported. Both α-MoO3 and β-MoO3 phases coexisted but α-MoO3 was predominated. Oxygen defects were created in the orthorhombic structure and its concentration decreased from 3.08% for the 20 wt%MoO3/SBA-15 to 0.55% for the 25 wt%MoO3/SBA-15. All the MoO3/SBA-15 catalysts chiefly contained a big number of Lewis acid sites originating from oxygen defects in MoO3 crystals. In the absence of formic acid, the oxidation of 4,6-dibenzothiophene (4,6-DMDBT) in a model diesel was almost proportional to the number of Lewis acid sites. In the presence of formic acid, 4,6-DMDBT oxidation was significantly affected by the formation of surface peroxometallic complex and Lewis acidity. Formic acid addition could improve the ODS efficiency by promoting peroxometallic complex formation and enhancing oxidant stability. Under the optimal reaction condition using the best 15 and 20 wt%MoO3/SBA-15 catalysts, more than 99% 4,6-DMDBT could be removed at 70 °C within 30 min. This work confirmed that 4,6-DMDBT oxidation is a texture and particle size sensitive and Lewis acidity dependent reaction. This work also shows that crystalline structure refinement combination with experiments can gain new insights in the design of heterogeneous nanocatalysts and help to better understand the catalytic behavior in the oxidative desulfurization reactions.
Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces
Li, Meijun; Tumuluri, Uma; Wu, Zili; ...
2015-09-25
Here, high-surface-area nanosized CeO 2 and M-doped CeO 2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO 2 adsorption. Cu, La, and Zr are doped into the lattice of CeO 2, whereas Mg is dispersed on the CeO 2 surface. The doping of Cu and La into CeO 2 leads to an increase of the CO 2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO 2 adsorption capacity at a low Mg content and a gradual increase at a highermore » content. The CO 2 adsorption capacity follows the sequence Cu-CeO 2>La-CeO 2>Zr-CeO 2≈CeO 2>Mg-CeO 2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO 2, modified by the dopants that play the vital role in CO 2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO 2 adsorption on the doped CeO 2.« less
Equilibrium defects and solute site preferences in intermetallics: I. thermodynamics
NASA Astrophysics Data System (ADS)
Collins, Gary S.; Zacate, Matthew O.
2001-03-01
A model was developed to describe equilibrium defects and site preferences of dilute solute atoms in compounds having the CsCl and Ni_2Al3 structures. Equilibrium defects considered were combinations of elementary point defects that preserve the composition. Equilibria among possible defect combinations were combined with appropriate equations of constraint to obtain defect concentrations as a function of temperature and possible deviation from the stoichiometric composition. As an application, site-energies of defects and solutes in AB and A_2B_3) systems were estimated using Miedema's empirical model, with A=(Ni, Pd, Pt) and B= (Al, Ga, In). Dominant equilibrium defects in the respective systems were found to be the "triple defect" (2V_A+ A_B) and "octal defect" (5V_A+ 3A_B). Site preferences were found to depend on concentrations of intrinsic defects as well as on site-energy differences, and results reveal how preferences generally depend on temperature and composition. Consider solute S which, based on site energies, prefers to replace atom B. It is found that S always occupies B-sites in B-deficient alloys. In B-rich alloys, however, S may or may not occupy B-sites, depending on site-energy differences and the formation energies of equilibrium defects. For a solute that prefers to replace atom A, analogous results are obtained but with A replacing B in the three preceding sentences. This work was supported in part by the NSF under grant DMR 96-12306.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jia, E-mail: jia-zhu@jxnu.edu.cn, E-mail: zhangyf@fzu.edu.cn; Zhang, Hui; Tong, Yawen
The structures and electronic properties of bimetallic oxide CrW{sub 2}O{sub 9} clusters supported on the perfect and defective MgO(001) surfaces with three different color centers, F{sub S}{sup 0}, F{sub S}{sup +}, and F{sub S}{sup 2+} centers, respectively, have been investigated by density functional theory calculations. Our results show that the configurations, adsorption energies, charge transfers, and bonding modes of dispersed CrW{sub 2}O{sub 9} clusters are sensitive to the charge states of the F{sub S} centers. Compared with the gas-phase configuration, the CrW{sub 2}O{sub 9} clusters supported on the defective surfaces are distorted dramatically, which exhibit different chain structures. On themore » perfect MgO surface, the depositions of clusters do not involve obvious charge transfer, while the situation is quite different on the defective MgO(001) surfaces in which significant electron transfer occurs from the surface to the cluster. Interestingly, this effect becomes more remarkable for electron-rich oxygen vacancies (F{sub S}{sup 0} center) than that for electron-poor oxygen vacancies (F{sub S}{sup +} and F{sub S}{sup 2+} centers). Furthermore, our work reveals a progressive Brønsted acid sites where spin density preferentially localized around the Cr atoms not the W atoms for all kinds of F{sub S}-centers, indicating the better catalytic activities can be expected for CrW{sub 2}O{sub 9} cluster on defective MgO(001) surfaces with respect to the W{sub 3}O{sub 9} cluster.« less
Zeolite Crystal Growth (ZCG) Flight on USML-2
NASA Technical Reports Server (NTRS)
Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.
1997-01-01
The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.
Controlling defects and secondary phases of CZTS by surfactant Potassium
NASA Astrophysics Data System (ADS)
Zhu, Junyi; Zhang, Yiou; Tse, Kinfai; Xiao, Xudong
Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material with earth abundant and nontoxic elements. However, the detrimental native defects and secondary phases of CSTS will largely reduce the energy conversion efficiencies. To understand the origin of these problems during the growth of CZTS, we investigated the kinetic processes on CZTS (-1-1-2) surface, using first principles calculations. A surface Zn atom was found to occupy the subsurface Cu site easily due to a low reaction barrier, which may lead to a high ZnCu concentration and a secondary phase of ZnS. These n-type defects may create deep electron traps near the interface and become detrimental to device performance. To reduce the population of ZnCu and the secondary phase, we propose to use K as a surfactant to alter surface kinetic processes. Improvements on crystal quality and device performance based on this surfactant are consistent with early experimental observations. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding at CUHK.
NASA Astrophysics Data System (ADS)
May, P. W.; Harvey, J. N.; Allan, N. L.; Richley, J. C.; Mankelevich, Yu. A.
2010-12-01
A one-dimensional kinetic Monte Carlo (KMC) model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model considers adsorption, etching/desorption, lattice incorporation and surface migration but not defect formation or renucleation processes. Two methods have been devised for estimation of the gas phase concentrations of species at the growing diamond surface, and are used to determine adsorption rates for C1Hx hydrocarbons for the different conditions. The rate of migration of adsorbed carbon species is governed by the availability of neighboring radical sites, which, in turn, depend upon the rates of H abstraction and of surface-radical migration. The KMC model predicts growth rates and surface roughness for each of diamond types consistent with experiment. In the absence of defect formation and renucleation the average surface diffusion length, ℓ, is a key parameter controlling surface morphology. When ℓ <2, surface migration is limited by the lack of availability of surface radical sites, and the migrating surface species simply hop back and forth between two adjacent sites but do not travel far beyond their initial adsorption site. Thus, Eley-Rideal processes dominate the growth, leading to the rough surfaces seen in NCD and UNCD. The maximum or "intrinsic" surface roughness occurs for nominally zero-migration conditions (ℓ =0) with an rms value of approximately five carbon atoms. Conversely, when migration occurs over greater distances (ℓ >2), Langmuir-Hinshelwood processes dominate the growth producing the smoother surfaces of MCD and SCD. By extrapolation, we predict that atomically smooth surfaces over large areas should occur once migrating species can travel approximately five sites (ℓ ˜5). β-scission processes are found to be unimportant for MCD and SCD growth conditions, but can remove up to 5% of the adsorbing carbon for NCD and UNCD growth. C1Hx insertion reactions also contribute <1% to the growth for nearly all conditions, while C2Hx (x <2) insertion reactions are negligible due their very low concentrations at the surface. Finally, the predictions for growth rate and morphology for UNCD deposition in a microwave system were found to be anomalous compared to those for all the other growth conditions, suggesting that carbonaceous particulates created in these plasmas may significantly affect the gas chemistry.
Attempts to obtain re-osseointegration following experimental peri-implantitis in dogs.
Wetzel, A C; Vlassis, J; Caffesse, R G; Hämmerle, C H; Lang, N P
1999-04-01
The purpose of this study was to examine the healing potential and re-osseointegration in peri-implant infection defects adjacent to various implant surfaces. In 7 female Beagle dogs, a total of 41 titanium oral implants (ITI, Straumann, Waldenburg; Switzerland) with a sink depth of 6 mm (diameter 2.8 mm) were placed transmucosally. Four different surface configurations (TPS: titanium plasma sprayed (10); SLA: sand blasted and acid-etched (13); M: machined and smooth (11); TPS furc.: titanium plasma sprayed with coronally placed perforation to mimic a furcation (7) were distributed among the animals and locations. Following a healing period of 3 months, silk ligatures were placed and oral cleaning procedures abolished for 4 months to induce a vertical bone loss of about 40%. Following mechanical and chemical cleansing (chlorhexidine and metronidazole) and disinfection, the lesions were either sham operated (11) or subjected to a GTR procedure using ePTFE (30). After 6 months of healing the animals were killed and the jaws histologically evaluated. Six membranes were lost TPS: (1); SLA: (2); M: (2); TPS furc: (1) and 3 membranes exposed TPS: (1); M: (2) and excluded from further evaluation. Owing to the loss of 1 implant and infection of the membranes in the TPS furc group, this implant configuration was discarded from further analysis. For TPS surfaces, bone fill was 2.6 mm (73% of the distance from the bottom of the defect to the shoulder of the implant) sites with (4 GTR) and 0.33 mm (14%) for sites without membrane (2 controls). Re-osseointegration was 0.5 mm (14%) in the test group and 0.3 mm (14%) in the control. For SLA surfaces bone fill was 2.3 mm (83%) for sites with (7 GTR) and 0.41 mm (15%) for sites without membranes (4 controls). Re-osseointegration was 0.6 mm (20%) and 0.3 mm (11%) respectively. Corresponding values for M surfaces were 2.2 mm (62%) with 4 GTR) and 0.82 mm (31%) without membranes. Re-osseointegration was 0.07 mm (2%) and 0.19 mm (7%) respectively. This study has documented that peri-implant infections defects may heal with bone fill provided that the infection is controlled through effective antibacterial therapy. However, true reosseointegration appears to be difficult to achieve.
Regulating the surface of nanoceria and its applications in heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Ma, Yuanyuan; Gao, Wei; Zhang, Zhiyun; Zhang, Sai; Tian, Zhimin; Liu, Yuxuan; Ho, Johnny C.; Qu, Yongquan
2018-03-01
Ceria (CeO2) as a support, additive, and active component for heterogeneous catalysis has been demonstrated to have great catalytic performance, which includes excellent thermal structural stability, catalytic efficiency, and chemoselectivity. Understanding the surface properties of CeO2 and the chemical reactions occurred on the corresponding interfaces is of great importance in the rational design of heterogeneous catalysts for various reactions. In general, the reversible Ce3+/Ce4+ redox pair and the surface acid-base properties contribute to the superior intrinsic catalytic capability of CeO2, and hence yield enhanced catalytic phenomenon in many reactions. Particularly, nanostructured CeO2 is characterized by a large number of surface-bound defects, which are primarily oxygen vacancies, as the surface active catalytic sites. Many efforts have therefore been made to control the surface defects and properties of CeO2 by various synthetic strategies and post-treatments. The present review provides a comprehensive overview of recent progress in regulating the surface structure and composition of CeO2 and its applications in catalysis.
Custom implant design for large cranial defects.
Marreiros, Filipe M M; Heuzé, Y; Verius, M; Unterhofer, C; Freysinger, W; Recheis, W
2016-12-01
The aim of this work was to introduce a computer-aided design (CAD) tool that enables the design of large skull defect (>100 [Formula: see text]) implants. Functional and aesthetically correct custom implants are extremely important for patients with large cranial defects. For these cases, preoperative fabrication of implants is recommended to avoid problems of donor site morbidity, sufficiency of donor material and quality. Finally, crafting the correct shape is a non-trivial task increasingly complicated by defect size. We present a CAD tool to design such implants for the neurocranium. A combination of geometric morphometrics and radial basis functions, namely thin-plate splines, allows semiautomatic implant generation. The method uses symmetry and the best fitting shape to estimate missing data directly within the radiologic volume data. In addition, this approach delivers correct implant fitting via a boundary fitting approach. This method generates a smooth implant surface, free of sharp edges that follows the main contours of the boundary, enabling accurate implant placement in the defect site intraoperatively. The present approach is evaluated and compared to existing methods. A mean error of 89.29 % (72.64-100 %) missing landmarks with an error less or equal to 1 mm was obtained. In conclusion, the results show that our CAD tool can generate patient-specific implants with high accuracy.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory
2009-10-01
AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.
NASA Astrophysics Data System (ADS)
Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.
2016-04-01
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Lyu, Huisheng; Liu, Jiatao; Chen, Yifei; Li, Guiming; Jiang, Haoxi; Zhang, Minhua
2018-03-07
Developing a new type of low-cost and high-efficiency non-noble metal catalyst is beneficial for industrially massive synthesis of alcohols from carboxylic acids which can be obtained from renewable biomass. In this work, the effect of active oxygen vacancies on ethanol synthesis from acetic acid hydrogenation over defective In 2 O 3 (110) surfaces has been studied using periodic density functional theory (DFT) calculations. The relative stabilities of six surface oxygen vacancies from O v1 to O v6 on the In 2 O 3 (110) surface were compared. D1 and D4 surfaces with respective O v1 and O v4 oxygen vacancies were chosen to map out the reaction paths from acetic acid to ethanol. A reaction cycle mechanism between the perfect and defective states of the In 2 O 3 surface was found to catalyze the formation of ethanol from acetic acid hydrogenation. By H 2 reduction the oxygen vacancies on the In 2 O 3 surface play key roles in promoting CH 3 COO* hydrogenation and C-O bond breaking in acetic acid hydrogenation. The acetic acid, in turn, benefits the creation of oxygen vacancies, while the C-O bond breaking of acetic acid refills the oxygen vacancy and, thereby, sustains the catalytic cycle. The In 2 O 3 based catalysts were shown to be advantageous over traditional noble metal catalysts in this paper by theoretical analysis.
Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study
Li, Xiong; Li, Hang; Yang, Gang
2015-01-01
Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873
CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon
NASA Astrophysics Data System (ADS)
Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.
1993-11-01
The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Liu, Yang; Zhu, Guanghui
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
Oporto V, Gonzalo H; Fuentes, Ramón; Borie, Eduardo; del Sol, Mariano; Orsi, Iara Augusta; Engelke, Wilfried
2014-01-01
Regeneration of resorbed edentulous sites can be induced by bone grafts from the subject himself and/or by the use of biomaterials. At present, there has been an extensive search for biomaterials that are evaluated by artificially creating one or more critical defects. The aim of this work was to clinically and radiographically analyze bone formation by the use of some biomaterials in artificially created defects in the parietal bone of rabbits. Six rabbits were used, creating defects of 8 mm in diameter in parietal bones. One defect was maintained with coagulum only, and in others, freeze-dried bone allograft (FDBA), autologous bone, and a combination of autologous bone with FDBA respectively, were added. Animals were sacrificed at 15-90 days with 2 weeks interval each, and calvaria were analyzed macroscopically, measuring by digital caliper the lack of filling at the surface of defects, identifying limits at anteroposterior and coronal view, realizing a digital photograph register of their external surfaces. This was subsequently evaluated radiographically by occlusal film radiography used to quantify its density through software. In conclusion, autologous bone showed the best behavior, clinically as well as radiographically. However, FDBA is a good option as an alternative to autologous bone as its behavior was slightly lower over time. The combination of autologous bone and FDBA in the same defect showed results considerably inferior to grafts used separately. Low radiopacity and clear limits were observed through time for the control coagulum filled defect. PMID:25126163
Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.
Jinnouchi, Ryosuke; Asahi, Ryoji
2017-09-07
Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.
Prabhakar, Alisha; Lynch, Amy P; Ahearne, Mark
2016-04-01
Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat-pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly-ε-caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat-pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self-assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self-assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform-cast films appeared to contain more collagen type II and less collagen type I than acetone-cast films. These self-assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, David J.; Restrepo, David T.; Parra, Natalia S.
Catalytic hydrogenation is an important process used for the production of everything from foods to fuels. Current heterogeneous implementations of this process utilize metals as the active species. Until recently, catalytic heterogeneous hydrogenation over a metal-free solid was unknown; implementation of such a system would eliminate the health, environmental, and economic concerns associated with metal-based catalysts. We report good hydrogenation rates and yields for a metal-free heterogeneous hydrogenation catalyst as well as its unique hydrogenation mechanism. We achieved catalytic hydrogenation of olefins over defect-laden h-BN (dh-BN) in a reactor designed to maximize the defects in h-BN sheets. Good yields (>90%)more » and turnover frequencies (6 × 10 –5–4 × 10 –3) were obtained for the hydrogenation of propene, cyclohexene, 1,1-diphenylethene, (E)- and (Z)-1,2-diphenylethene, octadecene, and benzylideneacetophenone. Temperature-programmed desorption of ethene over processed h-BN indicates the formation of a highly defective structure. Solid-state NMR (SSNMR) measurements of dh-BN with high and low propene surface coverages show four different binding modes. The introduction of defects into h-BN creates regions of electronic deficiency and excess. Density functional theory calculations show that both the alkene and hydrogen-bond order are reduced over four specific defects: boron substitution for nitrogen (B N), vacancies (V B and V N), and Stone–Wales defects. SSNMR and binding-energy calculations show that V N are most likely the catalytically active sites. Our work shows that catalytic sites can be introduced into a material previously thought to be catalytically inactive through the production of defects.« less
Combined advanced finishing and UV laser conditioning process for producing damage resistant optics
Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.
2005-07-26
A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.
NASA Astrophysics Data System (ADS)
Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng
2018-04-01
In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.
Cdk1-dependent control of membrane-trafficking dynamics
McCusker, Derek; Royou, Anne; Velours, Christophe; Kellogg, Douglas
2012-01-01
Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression. PMID:22767578
Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...
2014-03-24
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO 2 and CH 4 are similar, although CO 2 binding is generally stronger by ~4 to 5 kJ mol –1. Furthermore, the differential between the adsorption of CO 2 and CH 4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH 4/CO 2 flow separation and gas-selective sensors.« less
NASA Astrophysics Data System (ADS)
Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya
Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.
Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride
Nash, David J.; Restrepo, David T.; Parra, Natalia S.; ...
2016-12-21
Catalytic hydrogenation is an important process used for the production of everything from foods to fuels. Current heterogeneous implementations of this process utilize metals as the active species. Until recently, catalytic heterogeneous hydrogenation over a metal-free solid was unknown; implementation of such a system would eliminate the health, environmental, and economic concerns associated with metal-based catalysts. We report good hydrogenation rates and yields for a metal-free heterogeneous hydrogenation catalyst as well as its unique hydrogenation mechanism. We achieved catalytic hydrogenation of olefins over defect-laden h-BN (dh-BN) in a reactor designed to maximize the defects in h-BN sheets. Good yields (>90%)more » and turnover frequencies (6 × 10 –5–4 × 10 –3) were obtained for the hydrogenation of propene, cyclohexene, 1,1-diphenylethene, (E)- and (Z)-1,2-diphenylethene, octadecene, and benzylideneacetophenone. Temperature-programmed desorption of ethene over processed h-BN indicates the formation of a highly defective structure. Solid-state NMR (SSNMR) measurements of dh-BN with high and low propene surface coverages show four different binding modes. The introduction of defects into h-BN creates regions of electronic deficiency and excess. Density functional theory calculations show that both the alkene and hydrogen-bond order are reduced over four specific defects: boron substitution for nitrogen (B N), vacancies (V B and V N), and Stone–Wales defects. SSNMR and binding-energy calculations show that V N are most likely the catalytically active sites. Our work shows that catalytic sites can be introduced into a material previously thought to be catalytically inactive through the production of defects.« less
The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment
NASA Astrophysics Data System (ADS)
Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira
2018-06-01
Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.
2015-01-01
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
Shalabi, A S
2002-08-01
The twofold potentials of F(A)(I):Au(+) and F(A)(II)Cu(+) color centers at the low coordinated surfaces of AgBr thin films in providing tunable laser activity and photographic sensitization were investigated using ab initio methods of molecular electronic structure calculations. Clusters of variable size were embedded in simulated Coulomb fields that closely approximated the Madelung fields of the host surfaces, and the nearest neighbor ions to the F(A) defect site were allowed to relax to equilibrium in each case. Based on the calculated Stokes shifted optical transition bands and horizontal shifts along the configuration coordinate diagrams, both F(A)(I):Au(+) and F(A)(II):Cu(+) color centers were found to be laser active. The laser activity faded quickly as the bromide ion coordination decreased from 5 (flat) to 4 (edge) to 3 (corner) and as the size of the impurity cation increased from Cu(+) to Au(+). The latter relation was explainable in terms of the axial perturbation of the impurity cation. The smallest calculated Stokes-shift at the corner surface suggested that emission had the same oscillator strength as absorption. All relaxed excited states RESs of the defect containing surfaces were deep below the lower edges of the conduction bands of the defect free ground state surfaces, indicating that F(A)(I):Au(+) and F(A)(II):Cu(+) are suitable laser defects. The probability of orientational destruction of the two centers attributed to the assumed RES saddle point ion configurations along the <110> axis was found to be directly proportional to the size of the impurity cation, with activation energy barriers of about 0.655-3.294 eV for Cu(+), and about 1.887-3.404 eV for Au(+). The possibility of exciton (energy) transfer from the sites of higher coordination to those of lower coordination is demonstrated. The more laser active F(A)(II):Cu(+) center was more easily formed than the less laser active F(A)(I):Au(+) center. The Glasner-Tompkins empirical relation was generalized to include F(A) centers at the low coordinated surfaces of silver bromide thin film. As far as color photographic sensitization is concerned, the lowest unoccupied molecular orbitals of the selected dye molecules in the excited states were high enough for electron injection. F(A) defect formation and rotational diffusion of silver clusters reduced the energy gaps between the excited dye molecules and the lower edges of the conduction bands and allowed for hole injection. About 54-60% of the reduction of silver ions at the flat surface of AgBr was attributed to the host anions and F(A) defect formation, leaving about 40-46% for the reduction of photoelectrons as well as the electrons of the developer or dye molecules. The unrelaxed rotational diffusions of the central Ag(4) by 90 degrees decreased the latter percentage, but were severely hindered by activation energy barriers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1104-1120, 2002
Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies
Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...
2017-09-21
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
Agarwal, Rachit; García, Andrés J.
2015-01-01
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724
Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon
2016-01-01
We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density. PMID:27553518
Epitaxial growth of ordered and disordered granular sphere packings
NASA Astrophysics Data System (ADS)
Panaitescu, Andreea; Kudrolli, Arshad
2014-09-01
We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.
Epitaxial growth of ordered and disordered granular sphere packings.
Panaitescu, Andreea; Kudrolli, Arshad
2014-09-01
We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.
Short-term implantation effects of a DCPD-based calcium phosphate cement.
Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N
1998-06-01
Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.
NASA Astrophysics Data System (ADS)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-01
We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
NASA Astrophysics Data System (ADS)
Miller, Ryan; Larson, Amanda; Pohl, Karsten
Pentacene serves as a backbone for several molecules that provide attractive qualities for organic photovoltaic devices. One of these pentacene derivatives is 5 6,7-trithiapentacene-13-one (TTPO), which is unique in that it achieves its lowest energy configuration on Au(1 1 1) surfaces with the thiol group angled down towards the surface, allowing many molecules to pack closely together and form molecular nanowires. However, TTPO diffuses on flat surfaces, making it difficult for the self-assembly process to be initiated. With the help of the low-energy sites in surface defects and Au(7 8 8) step edges, TTPO molecules can be anchored in place on surfaces, allowing for chain formation to begin. By using high-performance Density Functional Theory based molecular dynamics calculations, the molecules can be shown to stay localized to these bonding sites and serve as a basis for chain formation. In addition, by simulating various temperatures with a Nose-Hoover thermostat, we can analyze how temperature affects anchoring ability and diffusion properties.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing
2016-11-01
The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.
Langlois, Peter H; Brender, Jean D; Suarez, Lucina; Zhan, F Benjamin; Mistry, Jatin H; Scheuerle, Angela; Moody, Karen
2009-07-01
Most studies of the relationship between maternal residential proximity to sources of environmental pollution and congenital cardiovascular malformations have combined heart defects into one group or broad subgroups. The current case-control study examined whether risk of conotruncal heart defects, including subsets of specific defects, was associated with maternal residential proximity to hazardous waste sites and industrial facilities with recorded air emissions. Texas Birth Defects Registry cases were linked to their birth or fetal death certificate. Controls without birth defects were randomly selected from birth certificates. Distances from maternal addresses at delivery to National Priority List (NPL) waste sites, state superfund waste sites, and Toxic Release Inventory (TRI) facilities were determined for 1244 cases (89.5% of those eligible) and 4368 controls (88.0%). Living within 1 mile of a hazardous waste site was not associated with risk of conotruncal heart defects [adjusted odds ratio (aOR) = 0.83, 95% confidence interval (CI) = 0.54, 1.27]. This was true whether looking at most types of defects or waste sites. Only truncus arteriosus showed statistically elevated ORs with any waste site (crude OR: 2.80, 95% CI 1.19, 6.54) and with NPL sites (crude OR: 4.63, 95% CI 1.18, 13.15; aOR 4.99, 95% CI 1.26, 14.51), but the latter was based on only four exposed cases. There was minimal association between conotruncal heart defects and proximity to TRI facilities (aOR = 1.10, 95% CI = 0.91, 1.33). Stratification by maternal age or race/ethnic group made little difference in effect estimates for waste sites or industrial facilities. In this study population, maternal residential proximity to waste sites or industries with reported air emissions was not associated with conotruncal heart defects or its subtypes in offspring, with the exception of truncus arteriosus.
Muttigi, Manjunatha S; Kim, Byoung Ju; Choi, Bogyu; Yoshie, Arai; Kumar, Hemant; Han, Inbo; Park, Hansoo; Lee, Soo-Hong
2018-03-01
Matrilin-3 is an essential extracellular matrix component present only in cartilaginous tissues. Matrilin-3 exerts chondroprotective effects by regulating an anti-inflammatory function and extracellular matrix components. We hypothesized that the codelivery of matrilin-3 with infrapatellar adipose-tissue-derived mesenchymal stem cells (Ad-MSCs) may enhance articular cartilage regeneration. Matrilin-3 treatment of Ad-MSCs in serum-free media induced collagen II and aggrecan expression, and matrilin-3 in chondrogenic media also enhanced in vitro chondrogenic differentiation. Next, the in vivo effect of matrilin-3 codelivery with Ad-MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad-MSCs and hyaluronic acid were implanted at the defect site with or without matrilin-3 (140, 280, and 700 ng). Safranin O staining revealed that matrilin-3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation. In the animals treated with 140-ng matrilin-3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface. The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin-3; 140 ng) compared with the other groups. Furthermore, the defects treated with 140-ng matrilin-3 revealed significant hyaline-like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700-ng matrilin-3 exhibited drastically reduced cartilage regeneration with mixed hyaline-fibrocartilage morphology. Codelivery of matrilin-3 with Ad-MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue-specific protein for a cartilage-targeted stem cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Guo, Hualing; Zheng, Bin; Liu, Hui
2017-11-01
In the present research, the mechanism governing the interaction between laser-generated ultrasonic wave and the micro-defects on an aluminum plate has been studied by virtue of numerical simulation as well as practical experiments. Simulation results indicate that broadband ultrasonic waves are caused mainly by surface waves, and that the surface waves produced by micro-defects could be utilized for the detection of micro-defects because these waves reflect as much information of the defects as possible. In the research, a laser-generated ultrasonic wave testing system with a surface wave probe has been established for the detection of micro-defects, and the surface waves produced by the defects with different depths on an aluminum plate have been tested by using the system. The interaction between defect depth and the maximum amplitude of the surface wave and that between defect depth and the center frequency of the surface wave have also been analyzed in detail. Research results indicate that, when the defect depth is less than half of the wavelength of the surface wave, the maximum amplitude and the center frequency of the surface wave are in linear proportion to the defect depth. Sound consistency of experimental results with theoretical simulation indicates that the system as established in the present research could be adopted for the quantitative detection of micro-defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zili; Mann, Amanda K. P.; Li, Meijun
In addition to their well-known redox character, the acid-base property is another interesting aspect of ceria-based catalysts. Thus, the effect of surface structure on the acid-base property of ceria was studied in detail by utilizing ceria nanocrystals with different morphologies (cubes, octahedra and rods) that exhibit crystallographically well-defined surface facets. The nature, type, strength and amount of acid and base sites on these ceria nanoshapes were investigated via in situ IR spectroscopy combined with various probe molecules. Pyridine adsorption shows the presence of Lewis acid sites (Ce cations) on the ceria nanoshapes. These Lewis acid sites are relatively weak andmore » similar in strength among the three nanoshapes according to the probing by both pyridine and acetonitrile. Both Br nsted (hydroxyl group) and Lewis (surface lattice oxygen) base sites are present on the ceria nanoshapes as probed by CO2 adsorption. CO2 and chloroform adsorption indicate that the strength and amount of the Lewis base sites are shape dependent: rods > cubes > octahedra. Moreover, the weak and strong surface dependence of the acid and base sites, respectively, are a result of interplay between the surface structure dependent coordination unsaturation status of the Ce cations and O anions and the amount of defect sites on the three ceria nanoshapes. Furthermore, it was found that the nature of the acid-base sites of ceria can be impacted by impurities, such as Na and P residues that result from their use as structure-directing reagent in the hydrothermal synthesis of the ceria nanocrystals. Finally, our observation calls for precaution in interpreting the catalytic behavior of nanoshaped ceria where trace impurities may be present.« less
Observation of the Amorphous-to-Crystalline Surface Transition in Al-AlxOy Using Slow Positrons
NASA Astrophysics Data System (ADS)
Lynn, K. G.
1980-05-01
The amorphous-to-crystalline surface transition of AlxOy on the Al(111) surface is observed between 650 and 800 K with different O2 exposures by measuring the positronium (Ps) fraction produced by e+ impinging on the surface. The data are interpreted in terms of vacancy-type defects in the film or at the metal-metal-oxide interface which as trapping sites for e+ or Ps. As the ordering process proceeds to completion the trapping centers anneal out and the Ps fraction increases, showing an irreversible transition. This technique provides a new experimental method to study interfaces.
Zadeh, Homayoun H
2011-01-01
An array of therapeutic options are available for treatment of gingival recession defects, though many of these are better suited for treatment of isolated defects. Some of the limitations of current techniques include the need for harvesting of autogenous donor tissues and their associated morbidity, as well as scar formation at the recipient site resulting from surface incisions. Moreover, muscle pull during healing often leads to incomplete root coverage or relapse of the recession. The current case reports introduce a novel, minimally invasive approach applicable for both isolated recession defects as well as multiple contiguous defects in the maxillary anterior region. Access to the surgical site is obtained by means of an approach referred to as vestibular incision subperiosteal tunnel access (VISTA). This entails making an access incision in the maxillary anterior frenum, followed by elevation of a subperiosteal tunnel. VISTA allows for both access as well as an opportunity to coronally reposition the gingival margins of all involved teeth. In this approach, recombinant human platelet-derived growth factor BB saturated onto a matrix of beta-tricalcium phosphate is introduced using VISTA over root dehiscences to enhance periodontal healing. A novel method of stabilization of the gingival margins is also introduced, referred to as coronally anchored suturing, designed to maintain the coronal positioning during healing. The current report describes the technique and two clinical case documentations for treatment of Miller Class I and II defects, demonstrating stable, long-term outcomes. Although VISTA has been applied in other regions, its application is most advantageous in the esthetic zone.
Kuznetsova, D; Ageykin, A; Koroleva, A; Deiwick, A; Shpichka, A; Solovieva, A; Kostjuk, S; Meleshina, A; Rodimova, S; Akovanceva, A; Butnaru, D; Frolova, A; Zagaynova, E; Chichkov, B; Bagratashvili, V; Timashev, P
2017-04-28
In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation. The in vivo experiments have shown that, by week 10, deposition of calcium phosphate particles occurs in the scaffold at the defect site, as well as, the formation of a new bone and ingrowth of blood vessels from the surrounding tissues. These results demonstrate that the cross-linked microstructured tetrafunctional polylactide scaffolds are promising microstructures for bone regeneration in tissue engineering.
Yang, Dong; Ortuño, Manuel A; Bernales, Varinia; Cramer, Christopher J; Gagliardi, Laura; Gates, Bruce C
2018-03-14
Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr 6 O 8 . Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr 6 O 8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an S N 2 mechanism.
Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai
The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time was granted by the scientific user projects using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a DOE national scientific user facility located at PNNL, and supported by the DOE’s Office of Science, Biological and Environmental Research.« less
Self-organized semiconductor nano-network on graphene
NASA Astrophysics Data System (ADS)
Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun
2017-04-01
A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Effect of substrate orientation on CdS homoepitaxy by molecular dynamics
Almeida, S.; Chavez, J. J.; Zhou, X. W.; ...
2016-02-10
CdS homoepitaxy growth was performed by molecular dynamics using different substrate orientations and structures in order to analyze the CdS crystallinity. As anticipated from thermodynamics of homoepitaxy, highly crystalline films with only point defects were obtained on substrates with rectangular surface geometries, including View the MathML source[112¯] zinc blende (ZB), [101¯0] wurtzite (WZ), [112¯0] WZ, [110][110] ZB, [010][010] ZB, and View the MathML source[1101110] ZB. In contrast, films grown on substrates with hexagonal surface geometries, corresponding to the [0001][0001] WZ and [111][111] ZB growth directions, showed structures with a large number of defects including; anti-sites, vacancies, stacking faults, twinning, andmore » polytypism. WZ and ZB transitions and grain boundaries are identified using a lattice identification algorithm and represented graphically in a structural map. A dislocation analysis was performed to detect, identify, and quantify linear defects within the atomistic data. Systematic simulations using different temperatures, deposition rates, and substrate polarities were perform to analyze the trends of dislocation densities on [0001][0001] WZ direction and showed persistent polytypism. As a result, the polytypism observed in the films grown on the substrates with hexagonal surface geometry is attributed to the similar formation energies of the WZ and ZB phases.« less
Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong
2012-06-01
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.
Atomic oxygen protective coating with resistance to undercutting at defect sites
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1994-01-01
Structures composed at least partially of an organic substrate may be protected from oxidation by applying a catalyst onto said substrate for promoting the combination of atomic oxygen to molecular oxygen. The structure may also be protected by applying both a catalyst and an atomic oxygen shielding layer onto the substrate. The structures to be protected include spacecraft surfaces.
High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping
2017-07-01
High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.
Periodontal and peri-implant bone regeneration: clinical and histologic observations.
Artzi, Z; Zohar, R; Tal, H
1997-02-01
The principle of guided tissue regeneration by barrier membranes to restore lost periodontal tissue around natural teeth has also been used around osseointegrated implants in an attempt to restore alveolar ridge defects. While most periodontal procedures in the literature describe root coverage by mucogingival surgery, which achieves healing through soft tissue attachment, regeneration of denuded root surfaces is performed by guided tissue regeneration using expanded polytetrafluoroethylene barrier membranes and demineralized freeze-dried bone allografts as inductive/conductive materials. In this study the technique is applied in two partially exposed cylindrical hydroxyapatite-coated implants in extraction sites in one patient. Surgical reentry in both sites is presented, with histologic examination revealing new bone formation on the exposed root surface and the hydroxyapatite-coated implants.
Plasmonic bio-sensing for the Fenna-Matthews-Olson complex
NASA Astrophysics Data System (ADS)
Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco
2017-01-01
We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.
Optical activity and defect/dopant evolution in ZnO implanted with Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej
2015-09-28
The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Ermore » atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.« less
Study on on-machine defects measuring system on high power laser optical elements
NASA Astrophysics Data System (ADS)
Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin
2017-10-01
The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.
NASA Astrophysics Data System (ADS)
Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon
2017-07-01
Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.
Simulation of the evolution of fused silica's surface defect during wet chemical etching
NASA Astrophysics Data System (ADS)
Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei
2017-08-01
Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.
The directed self-assembly for the surface patterning by electron beam II
NASA Astrophysics Data System (ADS)
Nakagawa, Sachiko T.
2015-03-01
When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.
The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Yau, A.
Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defectivemore » Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.« less
Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome.
Agrebi, N; Ben-Mustapha, I; Matoussi, N; Dhouib, N; Ben-Ali, M; Mekki, N; Ben-Ahmed, M; Larguèche, B; Ben Becher, S; Béjaoui, M; Barbouche, M R
2017-10-01
Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations. Copyright © 2017 Elsevier Inc. All rights reserved.
A provisional fixed partial denture that simulates gingival tissue at the pontic-site defect.
Haj-Ali, Reem; Walker, Mary P
2002-03-01
A technique is presented for the fabrication of an esthetic, provisional fixed partial denture that compensates for a pontic-site ridge defect. This provisional restoration enables both the dentist and the patient to evaluate whether this prosthetic approach will adequately camouflage the pontic-site defect or whether surgical correction of the pontic site should also be considered. Copyright 2002 by The American College of Prosthodontists.
Inspection of lithographic mask blanks for defects
Sommargren, Gary E.
2001-01-01
A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.
NASA Astrophysics Data System (ADS)
Saldana, Tiffany; McGarvey, Steve; Ayres, Steve
2014-04-01
The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.
Kim, Chang-Sung; Choi, Seong-Ho; Cho, Kyoo-Sung; Chai, Jung-Kiu; Wikesjö, Ulf M E; Kim, Chong-Kwan
2005-06-01
Autogenous bone grafts and bone biomaterials are being used as part of protocols aiming at reconstruction of periodontal defects. There is a limited biologic information on the effect of such materials on periodontal healing, in particular aberrant healing events that may prevent their general use. The objective of this study was, using histological techniques, to evaluate periodontal healing with focus on root resorption and ankylosis following implantation of autogenous bone and a coral-derived biomaterial into intra-bony defects in dogs. One-wall intra-bony periodontal defects were surgically created at the distal aspect of the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in four Beagle dogs. Each animal received particulated autogenous bone and the resorbable calcium carbonate biomaterial into discrete one-wall intra-bony defects. The mucoperiosteal flaps were positioned and sutured to their pre-surgery position. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis. There were no significant differences in periodontal healing between sites receiving autograft bone and the coral-derived biomaterial. A well-organized periodontal ligament bridging new bone and cementum regeneration was observed extending coronal to a notch prepared to delineate the apical extent of the defect. Osteoid and bone with enclosed osteocytes were formed onto the surface of both autograft and coral particles. Although small resorption pits were evident in most teeth, importantly none of the biomaterials provoked marked root resorption. Ankylosis was not observed. Particulated autogenous bone and the coral-derived biomaterial may be implanted into periodontal defects without significant healing aberrations such as root resorption and ankylosis. The histopathological evaluation suggests that the autogenous bone graft has a limited osteogenic potential as demonstrated in this study model.
NASA Astrophysics Data System (ADS)
Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping
2018-05-01
The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.
Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride
NASA Astrophysics Data System (ADS)
Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.
2013-11-01
Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less
Surface defects and chiral algebras
NASA Astrophysics Data System (ADS)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-01
We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.
Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation
Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.
2016-08-09
Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less
Defects and Small Polarons on Oxide Surfaces
NASA Astrophysics Data System (ADS)
Janotti, Anderson
The presence and behavior of defects on the surface of oxides are central in many research areas, including catalysis, photochemistry, solar cells, and surface science in general. Experimental characterization of individual defects and their activities are challenging and often requires special preparations of the surface. First-principles calculations based on density functional theory are a powerful tool to study surfaces and defects, often providing information on properties that are difficult to access experimentally. Here we discuss the behavior of defects on oxide surfaces from the perspective on first-principles calculations. We use the oxygen vacancy on TiO2 surface as example, a system that has been extensively reported in the literature. Using DFT with a hybrid function, we discuss surface states induced by the defect and localization of the excess charge in the form of small polarons. We then discuss the effects of hydrogen and compare the behavior of these defects on the surface with that in the bulk. We also compare our recent results with previous theoretical studies and experiments. Finally, we generalize the findings on TiO2 to the surfaces of other oxides. This work was supported by the NSF.
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion miscroscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching, and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Effect of surface topography on structural growth of thick sputtered films
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Primarily thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica, glass, and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. These nodules do not disappear after full annealing. Further, they have undesirable effects on mechanial properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Hal A.; Zhao, Xun; Wang, Chi
Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformationmore » but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.« less
NASA Astrophysics Data System (ADS)
Wei, Shiqian; Wang, Fang; Dan, Meng; Zeng, Kaiyue; Zhou, Ying
2017-11-01
In this work, spin-polarized DFT + U method has been employed to investigate adsorption properties of H2S on the rutile TiO2 (110) surface with a high coverage of bridging oxygen vacancies (BOVs). The influence of different BOV coverage (θ-BOVs) on the surface electronic structure is examined. Defected states increase within the band gap with θ-BOVs increasing from 1/8 to 4/8 monolayer (ML). The high defected surface with θ-BOVs = 4/8 ML is determined to have a desired band structure and noticeable visible light response. In addition, H2S adsorption behaviors are noticeably affected by different H2S coverage (θ-H2S). Particularly, it is found molecular adsorption at θ-H2S ≤ 1/8 ML and dissociative adsorption at the higher θ-H2S. The maximization of spontaneous dissociation of H2S can be realized when the BOVs are all covered by H2S molecules. This work gains mechanistic insights into BOVs in tuning the surface properties and provides a guide for the effective utilization of the active surface sites on the rutile TiO2 (110) in the field of H2S splitting.
Influence of surface defects on the tensile strength of carbon fibers
NASA Astrophysics Data System (ADS)
Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.
2014-12-01
The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.
Efe, Turgay; Schofer, Markus D; Füglein, Alexander; Timmesfeld, Nina; Fuchs-Winkelmann, Susanne; Stein, Thomas; El-Zayat, Bilal Farouk; Paletta, Jürgen Rj; Heyse, Thomas J
2010-12-15
Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.
2010-01-01
Background Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). Methods A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Results Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. Conclusion The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects. PMID:21159196
Direct instrumental identification of catalytically active surface sites
NASA Astrophysics Data System (ADS)
Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.
2017-09-01
The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.
Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof
2016-09-30
Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.
NASA Astrophysics Data System (ADS)
Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof
2016-09-01
Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface.
Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian
2011-10-19
TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.
Experimental and Theoretical Investigations of Glass Surface Charging Phenomena
NASA Astrophysics Data System (ADS)
Agnello, Gabriel
Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.
Surface defects and chiral algebras
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-26
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
Surface defects and chiral algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder
NASA Astrophysics Data System (ADS)
You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.
2018-01-01
To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.
Ralph E. Thomas
2012-01-01
As hardwood trees grow and develop, surface defects such as limb stubs and wounds are overgrown and encapsulated into the tree. Evidence of these defects can remain on the tree's surface for decades and in many instances for the life of the tree. The location and severity of internal defects dictate the quality and value of products that can be obtained from logs...
On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Dillhöfer, A.
2011-06-01
This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.
Polymer Formulations for Cartilage Repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutowska, Anna; Jasionowski, Marek; Morris, J. E.
2001-05-15
Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis ofmore » aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.« less
Magnetorheological finishing for removing surface and subsurface defects of fused silica optics
NASA Astrophysics Data System (ADS)
Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Cormont, Philippe; Maunier, Cedric; Lambert, Sebastien
2014-09-01
We investigate the capacity of magnetorheological finishing (MRF) process to remove surface and subsurface defects of fused silica optics. Polished samples with engineered surface and subsurface defects were manufactured and characterized. Uniform material removals were performed with a QED Q22-XE machine using different MRF process parameters in order to remove these defects. We provide evidence that whatever the MRF process parameters are, MRF is able to remove surface and subsurface defects. Moreover, we show that MRF induces a pollution of the glass interface similar to conventional polishing processes.
Reduction of damage initiation density in fused silica optics via UV laser conditioning
Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.
2004-03-16
The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
Xue, Tianyu; Yu, Shansheng; Zhang, Xiaoming; Zhang, Xinzheng; Wang, Lei; Bao, Qiaoliang; Chen, Caiyun; Zheng, Weitao; Cui, Xiaoqiang
2016-01-01
A proper understanding of the role that molecular doping plays is essential to research on the modulation of the optical and electronic properties of graphene. The adsorption of R6G molecules onto defect-rich reduced graphene oxide nanosheets results in a shift of the Fermi energy and, consequently, a variation in the optical constants. This optical variation in the graphene nanosheets is used to develop an ultrasensitive surface plasmon resonance biosensor with a detection limit of 10−17 M (0.01 fM) at the molecular level. A density functional theory calculation shows that covalent bonds were formed between the R6G molecules and the defect sites on the graphene nanosheets. Our study reveals the important role that defects play in tailoring the properties and sensor device applications of graphene materials. PMID:26887525
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films
NASA Astrophysics Data System (ADS)
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.
2016-01-01
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06222e
Modeling pore corrosion in normally open gold- plated copper connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien
2008-09-01
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less
Lee, Jung Keun; Oh, Jong Jin; Lee, Sangchul; Lee, Seung Bae; Byun, Seok-Soo; Lee, Sang Eun; Jeong, Chang Wook
2016-04-01
We developed a sliding-loop technique that narrowed both sides of the parenchyma in a porcine model and compared it with the conventional sliding-clip technique. Three pigs (30-40 kg) were reused following another experiment conducted by the same researchers. Bilateral kidneys were harvested within 30 minutes after euthanasia. Two partial nephrectomies per kidney were performed on opposite surfaces. All kidney defects were of the same size (diameter of 2.5-3 cm with a depth of 1.0-1.5 cm). The sliding-clip technique and sliding-loop technique were performed separately. In the sliding-loop technique, we created a 1-cm loop at the end of a Vicryl and placed a tetrafluoroethylene polymer pledget in front of the knots passing through the needle. The needle then crossed the loop after passing through the renal parenchyma. A Weck clip was placed and slid on one side to tighten the suture. Tightening was controlled with an equivalent force using a digital push-pull gauge. Three stitches were placed at each renorrhaphy site. The distance between repaired renal surfaces was measured at 5 different points (3 suture sites and 2 middle sites between sutures). The results of the 2 techniques were compared by using the independent t test. The mean distance between renal surfaces was significantly narrower in the sliding-loop technique than in the conventional technique (1.80 ± 1.08 mm vs 5.28 ± 2.46 mm, P < .001). In the porcine model, the sliding-loop technique more effectively closed the partial nephrectomy defects compared with the conventional sliding-clip technique. © The Author(s) 2015.
Xin, Chunyu; Hu, Maocong; Wang, Kang; Wang, Xitao
2017-07-11
Electron-hole pair separation efficiency and adsorption performance of photocatalysts to CO 2 are the two key factors affecting the performance of photocatalytic CO 2 reduction with H 2 O. Distinct from conventional promoter addition, this study proposed a novel approach to address these two issues by tuning the own surface features of semiconductor photocatalyst. Three ZnO samples with different morphologies, surface area, and defect content were fabricated by varying preparation methods, characterized by XRD, TEM, and room-temperature PL spectra, and tested in photoreduction of CO 2 with H 2 O. The results show that the as-prepared porous ZnO nanosheets exhibit a much higher activity for photoreduction of CO 2 with H 2 O when compared to ZnO nanoparticles and nanorods attributed to the existence of more defect sites, that is, zinc and oxygen vacancies. These defects would lower the combination rate of electron-hole pair as well as promote the formation of basic zinc carbonate by Lewis acid-base interaction, which is the active intermediate species for photoreduction of CO 2 . ZnO nanoparticles and ZnO nanorods with few defects show weak adsorption for CO 2 leading to the inferior photocatalytic activities. This work provides new insight on the CO 2 activation under light irradiation.
Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia
1993-01-01
Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.
Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker
2005-08-24
Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.
Niwa, Masahiro; Hiraishi, Yasuhiro
2014-01-30
Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor.
Madrigal, Carlos A; Branch, John W; Restrepo, Alejandro; Mery, Domingo
2017-10-02
Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%.
A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor
Branch, John W.
2017-01-01
Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%. PMID:28974037
Dual-band infrared imaging for quantitative corrosion detection in aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Grande, N.K.
1993-12-31
Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels whichmore » had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.« less
Dual-band infrared imaging for quantitative corrosion detection in aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Grande, N.K.
1993-11-01
Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thicknessmore » losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.« less
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie
2017-06-01
Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.
Lü, Chunliu; Li, Zan; Zhou, Xiao; Song, Dajiang; Peng, Xiaowei; Zhou, Bo; Yang, Lichang
2016-12-08
To investigate the clinical value of pedicled latissimus dorsi Kiss flap in repairing chest wall large skin defect after tumor operation. A retrospective analysis was made on the clinical data from 15 cases of chest wall tumors treated between December 2010 and December 2015. There were 2 males and 13 females with an average age of 51.8 years (range, 43-60 years); there were 11 cases of locally advanced breast cancer, 3 cases of fibrosarcoma in chest wall, and 1 case of chest wall radiation ulcer with a median disease duration of 24.1 months (range, 6 months to 8 years). The area of skin defects was 17 cm×12 cm to 20 cm×18 cm after primary tumor resection; the pedicled latissimus dorsi Kiss flap was designed to repair wounds. The flap was a two-lobed flap at a certain angle on the surface of latissimus dorsi based on the thoracodorsal artery, with a size of 17 cm×6 cm to 20 cm×9 cm for each lobe. The donor site was sutured directly. Fourteen flaps survived with primary healing of wound; delayed healing was observed in 1 flap because of distal necrosis; and healing by first intention was obtained at the donor sites. The follow-up time was from 6 months to 3 years (mean, 21.6 months). The flap had good appearance with no bloated pedicle. The shoulder joint activities were normal. No local recurrence occurred, but distant metastasis in 2 cases. No obvious scar was found at donor sites. The application of pedicled latissimus dorsi Kiss flap to repair chest wall skin defects after tumor resection has important clinical value, because of the advatages of simple operation, minor donor site damage and rapid postoperative recovery, especially for late stage cancer patients.
NASA Astrophysics Data System (ADS)
Rupprechter, G.; Kaichev, V. V.; Unterhalt, H.; Morkel, M.; Bukhtiyarov, V. I.
2004-07-01
The CO dissociation probability on transition metals is often invoked to explain the product distribution (selectivity) of catalytic CO hydrogenation. Along these lines, we have investigated CO adsorption and dissociation on smooth and ion-bombarded Pd(1 1 1) at pressures up to 1 mbar using vibrational sum frequency generation (SFG) and X-ray photoelectron spectroscopy (XPS). Under high pressure, CO adsorbate structures were observed that were identical to high-coverage structures in UHV. On ion-bombarded surfaces an additional species was detected which was attributed to CO bridge bonded to defect (low-coordinated) sites. On both surfaces, no indications of CO dissociation were found even after hours of 0.1 mbar CO exposure. However, exposing CO/H 2 mixtures to ion-bombarded Pd(1 1 1) produced carbonaceous deposits suggesting CH xO species as precursors for CO bond cleavage and that the formation of CH xO is facilitated by surface defects. The relevance of the observations for CO hydrogenation on Pd catalysts is discussed.
Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects
NASA Astrophysics Data System (ADS)
Gramlich, Michael W.; Conway, Leslie; Liang, Winnie H.; Labastide, Joelle A.; King, Stephen J.; Xu, Jing; Ross, Jennifer L.
2017-03-01
The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell’s control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.
Defect detection and classification of machined surfaces under multiple illuminant directions
NASA Astrophysics Data System (ADS)
Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun
2010-08-01
Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.
Orthopositronium study of positron-irradiation-induced surface defects in alumina powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauwe, C.; Mbungu-Tsumbu
1992-01-01
Three-quantum-yield measurements and orthopositronium ({ital o}-Ps)-lifetime spectrometry at low temperatures are used to study the interaction of positronium with the surface in fine powders of aluminum oxide. It is found that electron and/or positron irradiation of the specimen induces surface defects which influence the positronium in three ways: (1) A surface positroniumlike bound state is created, (2) the fraction of {ital o}-Ps escaping from the particles is slightly inhibited, and (3) the escaped {ital o}-Ps is quenched into two-quantum decay upon collisions with the surface defects. It is found that the surface Ps state is not populated at the expensemore » of the interparticle Ps. The most likely surface defects are Al{sup 2+} or Al{sup 0} due to the migration of irradiation-induced interstitials. The techniques of long-lifetime spectrometry and of three-quantum-annihilation-rate measurement could be used to study both the diffusion of bulk defects to the surfaces, and the interactions of {ital o}-Ps to surface defects.« less
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films.
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E; Malko, Anton V; Chabal, Yves J
2016-01-21
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (∼10(17) cm(-3)) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.
Site-Directed Nanotherapeutics to Abrogate RRMS and Promote Remyelination Repair
2012-09-01
peptides. Freezing of the NP without cryoprotection leads to disassembling, freezing with a cryoprotectant to aggregation and/or surface modification...Furthermore to get all the necessary inductions to work in the labs delayed the onset of the practical work further. • Long lasting defect in freeze ... dryer prevented a more in depth investigations of long term storage of nanoparticles. • No peptide sequence to bind to myelin is available
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.; ...
2016-08-16
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
Two Stages of Surface-Defect Formation in a MOS Structure under Low-Dose Rate Gamma Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. D., E-mail: wdpopov@mail.ru
2016-03-15
The results of an experimental study of how surface defects are formed at the Si–SiO{sub 2} interface at γ-radiation dose rates of P = 0.1 and 1.0 rad/s are reported. It is found that the surface defects are formed in two stages. The defect-formation mechanisms are analyzed.
Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.
Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng
2016-02-10
In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Gang; Zhou, Lijun
2014-01-01
Defects are often considered as the active sites for chemical reactions. Here a variety of defects in zeolites are used to stabilize zwitterionic glycine that is not self-stable in gas phase; in addition, effects of acidic strengths and zeolite channels on zwitterionic stabilization are demonstrated. Glycine zwitterions can be stabilized by all these defects and energetically prefer to canonical structures over Al and Ga Lewis acidic sites rather than Ti Lewis acidic site, silanol and titanol hydroxyls. For titanol (Ti-OH), glycine interacts with framework Ti and hydroxyl sites competitively, and the former with Lewis acidity predominates. The transformations from canonical to zwitterionic glycine are obviously more facile over Al and Ga Lewis acidic sites than over Ti Lewis acidic site, titanol and silanol hydroxyls. Charge transfers that generally increase with adsorption energies are found to largely decide the zwitterionic stabilization effects. Zeolite channels play a significant role during the stabilization process. In absence of zeolite channels, canonical structures predominate for all defects; glycine zwitterions remain stable over Al and Ga Lewis acidic sites and only with synergy of H-bonding interactions can exist over Ti Lewis acidic site, while automatically transform to canonical structures over silanol and titanol hydroxyls. PMID:25307449
Low energy ion-solid interactions and chemistry effects in a series of pyrochlores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liyuan; Li, Yuhong; Devanathan, Ram
The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O.more » The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.« less
Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process
NASA Astrophysics Data System (ADS)
Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang
2013-05-01
In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.
Single-Molecule Probing of Adsorption and Diffusion on Silica Surfaces
NASA Astrophysics Data System (ADS)
Wirth, Mary J.; Legg, Michael A.
2007-05-01
Single-molecule spectroscopy has emerged as a valuable tool in probing kinetics and dynamic equilibria in adsorption because advances in instrumentation and technology have enabled researchers to obtain high signal-to-noise ratios for common dyes at room temperature. Single-molecule spectroscopy was applied to the study of an important problem in chromatography: peak broadening and asymmetry in the chromatograms of pharmaceuticals, peptides, and proteins. Using DiI, a cationic dye that exhibits the same problematic chromatographic behavior, investigators showed that the adsorption sites that cause chromatographic problems are located at defects on the silica crystal surface.
Favero, Giacomo; Botticelli, Daniele; Favero, Giovanni; García, Brismayda; Mainetti, Tomaso; Lang, Niklaus P
2013-01-01
To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. The pulp tissue of the mesial roots of (4)P(4) was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.
The critical role of point defects in improving the specific capacitance of δ-MnO 2 nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Peng; Metz, Peter; Hey, Trevyn
3D porous nanostructures built from 2D δ-MnO 2 nanosheets are an environmentally friendly and industrially scalable class of supercapacitor electrode material. While both the electrochemistry and defects of this material have been studied, the role of defects in improving the energy storage density of these materials has not been addressed. In this work, δ-MnO 2 nanosheet assemblies with 150 m 2 g -1 specific surface area are prepared by exfoliation of crystalline K xMnO 2 and subsequent reassembly. Equilibration at different pH introduces intentional Mn vacancies into the nanosheets, increasing pseudocapacitance to over 300 F g -1, reducing charge transfermore » resistance as low as 3 Ω, and providing a 50% improvement in cycling stability. X-ray absorption spectroscopy and high-energy X-ray scattering demonstrate a correlation between the defect content and the improved electrochemical performance. The results show that Mn vacancies provide ion intercalation sites which concurrently improve specific capacitance, charge transfer resistance and cycling stability.« less
Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices.
Moldovan, Grigore; Kazemian, Payam; Edwards, Paul R; Ong, Vincent K S; Kurniawan, Oka; Humphreys, Colin J
2007-01-01
Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.
Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image
NASA Astrophysics Data System (ADS)
Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.
2017-12-01
Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
Design and Optimization of Nanomaterials for Sensing Applications
NASA Astrophysics Data System (ADS)
Sanderson, Robert Noboru
Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.
Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.
Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M
2016-02-23
We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.
Formation of p-type ZnO thin film through co-implantation
NASA Astrophysics Data System (ADS)
Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen
2017-01-01
We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.
Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans
Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin
2017-01-01
Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377
Intersecting surface defects and two-dimensional CFT
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Le Floch, Bruno; Pan, Yiwen; Peelaers, Wolfger
2017-08-01
We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N =2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N =2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of S U (N ).
Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong
2013-07-14
The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.
Surface characterization of acidic ceria-zirconia prepared by direct sulfation
NASA Astrophysics Data System (ADS)
Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.
2010-05-01
Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.
Osteochondral Autograft Transplantation Surgery for Metacarpal Head Defects.
Kitay, Alison; Waters, Peter M; Bae, Donald S
2016-03-01
Post-traumatic osteonecrosis of the metacarpal head is a challenging problem, particularly in younger patients in whom arthroplasty may not be a durable option. Although several osteochondral reconstructive options have been proposed, some are associated with considerable donor site morbidity and/or require the use of internal fixation. We present an application of osteochondral autograft transplantation surgery as a treatment option for focal metacarpal head lesions. An osteochondral plug from the non-weight-bearing articular surface of the knee is transferred and press-fit to resurface a focal metacarpal head defect. The technical pearls and pitfalls are reviewed, and an illustrative case is presented. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong
2018-05-30
In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.
NASA Astrophysics Data System (ADS)
Zhao, Jing-xiang; Ding, Yi-hong
2009-07-01
The recent study has shown that the point defects formed under electron irradiation in the boron nitride nanotubes (BNNTs) are primarily BN divacancies. In the present work, we explore the properties of BNNTs with divacancies and estimate their surface reactivity toward various adsorbates through density functional theory calculations. Divacancies in BNNTs can self-heal by spontaneously reconstructing stable structures that have two pentagons side by side with an octagon (585). The formation energies, which strongly depend on the divacancy orientation with respect to the tube axis, increase with increasing tube diameters. Compared to the reactivity of the perfect BNNT, those sites near the divacancies have a higher reactivity due to the formation of frustrated B-B and N-N bonds and the local strain induced by pentagonal and octagonal rings. The present results might be useful for deeply understanding the nature of defects in BNNTs and rendering BNNTs promising for many applications, especially in nanoelectronics.
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...
2017-07-14
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Tracking Site-specific C-C Coupling of Formaldehyde Molecules on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Ke; Xia, Yaobiao; Tang, Miru
2015-06-25
Direct imaging of site-specific reactions of individual mole-cules as a function of temperature is a long-sought goal in molecular science. Here, we report the direct visualization of molecular coupling of formaldehyde on reduced rutile TiO2(110) surfaces as we track the same set of molecules when the temperature is increased from 75 to 170 K using scanning tunneling microscope (STM). Our recent study showed that formaldehyde preferably adsorbs on bridging-bonded oxygen (Ob) vacancy (VO) defect site. Herein, images from the same area as the temperature is increased show that VO-bound formaldehyde couples with Ti-bound formaldehyde forming a diolate intermediate. Exposure ofmore » formaldehyde at room temperature leads to diolate as the majority species on the surface and no VO-bound formaldehyde is observed. The diolate species are the key reaction intermediates in the formation of ethylene reported in previous ensemble-averaged studies.« less
NASA Astrophysics Data System (ADS)
Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok
2017-12-01
The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Process for the detection of micro-cracks
Lapinski, Norman; Sather, Allen
1979-01-01
A process for the nondestructive testing of ceramic objects to detect the presence of defects and micro-cracks in the surface in which a solution of silver nitrate is applied to the surface of the object which penetrates into the surface defects, drying the object so that the silver nitrate remains in the defects, and preparing an X-ray radiograph whereby any defects and micro-cracks will appear in the radiograph.
Tree Hazards Recognition and Reduction in Recreation Sites
David W. Johnson
1981-01-01
Defective trees are potential hazards to people and property in recreation areas. Most reported tree failures within recreation sites in the Rocky Mountain Region occur in lodgepole pine. Defective root systems account for the greatest percentage of failures. External indicators of defects are used to identify trees that may fail. Some tree species, particularly aspen...
Defect Detectability Improvement for Conventional Friction Stir Welds
NASA Technical Reports Server (NTRS)
Hill, Chris
2013-01-01
This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.
NASA Astrophysics Data System (ADS)
Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu
When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.
Quantum Structure of Adsorbates on Semiconductor Surfaces.
1983-12-01
un rmv or, 2 tL Vacuum UV: Aplication of Synchrotr.n, ;.iat:-! Germany. September 1982. 7 D. Professional Personnel Principal Investigator Gerald J...limit the mobility of the small proportion of oxygen mole- cules that do land on defect sites and are dissociated. As the VI. CONCLUSIONS...34G. M. Lancaster. J. A. Taylor, A. Ignatie’. J. W. Rablais. J. Electron ’P. Pianetta. Ph.D. thesis , Stanford University SSRL Report 77/17. Spectros
Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects
Panigrahi, Puspamitra; Araujo, C Moyses; Hussen, Tanveer; Ahuja, Rajeev
2014-01-01
We have employed first-principles calculations based on density functional theory (DFT) to investigate the underlying physics of unusual magnetism in Mn-doped MgO surface. We have studied two distinct scenarios. In the first one, two Mn atoms are substitutionally added to the surface, occupying the Mg sites. Both are stabilized in the Mn valence state carrying a local moment of 4.3 having a high-spin configuration. The magnetic interaction between the local moments display a very short-ranged characteristic, decaying very quickly with distance, and having antiferromagnetic ordering lower in energy. The energetics analysis also indicates that the Mn ions prefer to stay close to each other with an oxygen atom bridging the local interaction. In the second scenario, we started exploring the effect of native defects on the magnetism by crafting both Mg and O vacancies, which are p- and n-type defects, respectively. It is found that the electrons and holes affect the magnetic interaction between Mn ions in a totally different manner. The n-type defect leads to very similar magnetism, with the AFM configuration being energetically preferred. However, in the presence of Mg vacancy, the situation is quite different. The Mn atoms are further oxidized, giving rise to mixed Mn(d) ionic states. As a consequence, the Mn atoms couple ferromagnetically, when placed in the close configuration, and the obtained electronic structure is coherent with the double-exchange type of magnetic interaction. To guarantee the robustness of our results, we have benchmarked our calculations with three distinct theory levels, namely DFT-GGA, DFT-GGA+U and DFT-hybrid functionals. On the surface, the Mg vacancy displays lower formation energy occurring at higher concentrations. Therefore, our model systems can be the basis to explain a number of controversial results regarding transition metal doped oxides. PMID:27877684
The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin
2017-07-01
The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.
Online aptitude automatic surface quality inspection system for hot rolled strips steel
NASA Astrophysics Data System (ADS)
Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan
2005-12-01
Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.
A DFT study on the failure mechanism of Al2O3 film by various point defects in solution
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Hui; Chen, Bao; Jin, Ying; Sun, Dong-Bai
2018-03-01
The defects on oxide film surface are very important, and they would occur when the film is peeled or scratched. The periodic DFT calculations have been performed on Al2O3 surface to model the influences of various point-defects. Three kinds of point defect surfaces (vacancy, inversion, substitution) are considered, and the molecular H2O dissociation and the transition state are calculated. The predicted formation energy of O vacancy is 8.30 eV, whereas that corresponding to the formation of Al vacancy is found to be at least a 55% larger. On the vacancy point defect surfaces, upward H2O molecule surfaces prefer to occur chemical reaction, leading the surfaces to be hydroxylated. And then the D-Cl-substitution-Al surface is corroded, which suggests a Cl adsorption induced failure mechanism of the oxide film. At last, the process of H2O dissociation on the OH-substitution-Al surfaces with four or five transition paths are discussed.
Immobile defects in ferroelastic walls: Wall nucleation at defect sites
NASA Astrophysics Data System (ADS)
He, X.; Salje, E. K. H.; Ding, X.; Sun, J.
2018-02-01
Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.
R. Edward Thomas
2009-01-01
As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...
Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan
2018-03-20
The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.
Dynamic thermal tomography for nondestructive inspection of aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.
1993-11-01
The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (abovemore » ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less
A 3D Laser Profiling System for Rail Surface Defect Detection
Li, Qingquan; Mao, Qingzhou; Zou, Qin
2017-01-01
Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323
Super-hydrophobic coatings with nano-size roughness prepared with simple PECVD method
NASA Astrophysics Data System (ADS)
Choi, Yoon S.; Lee, Joon S.; Jin, Su B.; Han, Jeon G.
2013-08-01
A simple and conventional method to synthesize nearly flat super-hydrophobic coatings was studied. Conventional plasma enhanced chemical vapour deposition (PECVD) was adopted to synthesize hydrophobic coatings on plastic and glass substrates at room temperature. Hexamethyldisilane was used as a precursor, and hydrogen gas was added to modulate the surface roughness and passivate defects, such as dangling bond and electrically uncovered polar sites rendering non-hydrophobicity. The static water contact angle (WCA) was controlled in the range 120°-160° by adjusting process parameters, especially the hydrogen flow rate and power. AFM showed that the film with a WCA of 145° has as small as 2.5 nm roughness in rms value. In the resistance test of salt water and cosmetics, this film showed excellent results owing to super-hydrophobicity and defect passivation which keeps the surface isolated from external agents. In order to exploit these results, Rare gas analysis was used to examine the process plasma and Fourier transform infrared (FTIR) was used to analyse the chemical structures of the super-hydrophobic films. In the FTIR results, the remarkable increase in the modes of Si-Hx and Si-C bonds as well as Si-CH2-Si in the film was observed indicating the defect passivation and closely packed dense film structure.
Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.
Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M
2007-09-11
The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.
Scanning electron microscope investigation of the structural growth in thick sputtered coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1975-01-01
Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Computer-assisted selection of donor sites for autologous grafts
NASA Astrophysics Data System (ADS)
Krol, Zdzislaw; Zeilhofer, Hans-Florian U.; Sader, Robert; Hoffmann, Karl-Heinz; Gerhardt, Paul; Horch, Hans-Henning
1997-05-01
A new method is proposed for a precise planning of autologous bone grafts in cranio- and maxillofacial surgery. In patients with defects of the facial skeleton, autologous bone transplants can be harvested from various donor sites in the body. The preselection of a donor site depends i.a. on the morphological fit of the available bone mass and the shape of the part that is to be transplanted. A thorough planning and simulation of the surgical intervention based on 3D CT studies leads to a geometrical description and the volumetric characterization of the bone part to be resected and transplanted. Both, an optimal fit and a minimal lesion of the donor site are guidelines in this process. We use surface similarity and voxel similarity measures in order to select the optimal donor region for an individually designed transplant.
Farzaneh, Amirfarrokh; DeJaco, Robert F.; Ohlin, Lindsay; ...
2017-08-02
A promising route for sustainable 1-butanol (butanol) production is ABE (acetone, butanol, ethanol) fermentation. However, recovery of the products is challenging because of the low concentrations obtained in the aqueous solution, thus hampering large-scale production of biobutanol. Membrane and adsorbent-based technologies using hydrophobic zeolites are interesting alternatives to traditional separation techniques (e.g., distillation) for energy-efficient separation of butanol from aqueous mixtures. To maximize the butanol over water selectivity of the material, it is important to reduce the number of hydrophilic adsorption sites. This can, for instance, be achieved by reducing the density of lattice defect sites where polar silanol groupsmore » are found. The density of silanol defects can be reduced by preparing the zeolite at neutral pH instead of using traditional synthesis solutions with high pH. In this work, binary adsorption of butanol and water in two silicalite-1 films was studied using in situ attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy under equal experimental conditions. One of the films was prepared in fluoride medium, whereas the other one was prepared at high pH using traditional synthesis conditions. The amounts of water and butanol adsorbed from binary vapor mixtures of varying composition were determined at 35 and 50 °C, and the corresponding adsorption selectivities were also obtained. Both samples showed very high selectivities (100–23 000) toward butanol under the conditions studied. The sample having low density of defects, in general, showed ca. a factor 10 times higher butanol selectivity than the sample having a higher density of defects at the same experimental conditions. This difference was due to a much lower adsorption of water in the sample with low density of internal defects. Analysis of molecular simulation trajectories provides insights on the local selectivities in the zeolite channel network and at the film surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzaneh, Amirfarrokh; DeJaco, Robert F.; Ohlin, Lindsay
A promising route for sustainable 1-butanol (butanol) production is ABE (acetone, butanol, ethanol) fermentation. However, recovery of the products is challenging because of the low concentrations obtained in the aqueous solution, thus hampering large-scale production of biobutanol. Membrane and adsorbent-based technologies using hydrophobic zeolites are interesting alternatives to traditional separation techniques (e.g., distillation) for energy-efficient separation of butanol from aqueous mixtures. To maximize the butanol over water selectivity of the material, it is important to reduce the number of hydrophilic adsorption sites. This can, for instance, be achieved by reducing the density of lattice defect sites where polar silanol groupsmore » are found. The density of silanol defects can be reduced by preparing the zeolite at neutral pH instead of using traditional synthesis solutions with high pH. In this work, binary adsorption of butanol and water in two silicalite-1 films was studied using in situ attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy under equal experimental conditions. One of the films was prepared in fluoride medium, whereas the other one was prepared at high pH using traditional synthesis conditions. The amounts of water and butanol adsorbed from binary vapor mixtures of varying composition were determined at 35 and 50 °C, and the corresponding adsorption selectivities were also obtained. Both samples showed very high selectivities (100–23 000) toward butanol under the conditions studied. The sample having low density of defects, in general, showed ca. a factor 10 times higher butanol selectivity than the sample having a higher density of defects at the same experimental conditions. This difference was due to a much lower adsorption of water in the sample with low density of internal defects. Analysis of molecular simulation trajectories provides insights on the local selectivities in the zeolite channel network and at the film surface.« less
Rasperini, Giulio; Acunzo, Raffaele; Barnett, Andrew; Pagni, Giorgio
2013-01-01
The ability to stabilize the blood clot is crucial in achieving predictable periodontal regeneration in infrabony defects. Unfortunately, micromovements may cause degradation of the clot-root interface and result in suboptimal wound healing. Current surgical and suturing techniques are aimed at reducing flap micromovement because flap management is one of the main factors influencing the stability of the clot. The aim of this paper is to describe the use of the soft tissue wall technique to enhance periodontal tissue regeneration outcomes of challenging non-contained infrabony defects. Nine one-wall infrabony defects were treated with a combination of a papilla preservation technique and a coronally advanced flap. Enamel matrix derivative was delivered to the defect, but no bone grafting materials or membranes were employed. Mean 1-year probing depth reduction was 6.3 ± 2.0 mm (P < .001) and mean clinical attachment gain was 7.1 ± 1.0 mm (P < .001). All treated sites showed a mean reduction of exposed root surface equal to 1.0 ± 0.4 mm (P = .05). The results suggest the possibility of improving the regenerative potential of a one-wall infrabony defect by the creation of a stable soft tissue wall while also enhancing the esthetic outcome of the surgical procedure. Further studies with a larger number of patients are needed to support these preliminary data.
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.
2013-12-01
Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.
Shaping drops with textured surfaces
NASA Astrophysics Data System (ADS)
Ehlinger, Quentin; Biance, Anne-Laure; Ybert, Christophe
2017-11-01
When a drop impacts a substrate, it can behave differently depending on the nature of the surface and of the liquid (spreading, bouncing, resting, splashing ...). Understanding these behaviors is crucial to predict the drop morphology during and after impact. Whereas surface wettability has extensively been studied, the effect of surface roughness remains hardly explored. In this work, we consider the impact of a drop in a pure non-wetting situation by using superheated substrates i.e. in the Leidenfrost regime. The surface texture consists of a well-controlled microscopic defect shaped with photolithography on a smooth silicon wafer. Different regimes are observed, depending on the distance between the defect and the impact point and the defect size. Comparing the lamella thickness versus the defect height proves relevant as the transition criteria between regimes. Others characteristics of the drop behavior (direction of satellite droplet ejection, lamella rupture) are also well captured by inertial/capillary models. Drop impacts on multiple defects are also investigated and drop shape well predicted considering the interactions between the local flow and the defects.
Automated real-time detection of defects during machining of ceramics
Ellingson, W.A.; Sun, J.
1997-11-18
Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.
Automated real-time detection of defects during machining of ceramics
Ellingson, William A.; Sun, Jiangang
1997-01-01
Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
NASA Astrophysics Data System (ADS)
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards
Location, location &size: defects close to surfaces dominate fatigue crack initiation.
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-27
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-01-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599
Role of cationic size in the optical properties of the LiCl crystal surface: theoretical study.
Abdel Halim, Wael Salah; Abdullah, Noha; Abdel-Aal, Safaa; Shalabi, A S
2012-06-01
The size of the cations (either Ca(2+), Sr(2+), Ga(+), or Au(+)) at the F(A1)-type color centers on the (100) surface of LiCl crystal plays an important role in the optical properties of this surface. In this work, double-well potentials at this surface were investigated using ab initio quantum mechanical methods. Quantum clusters were embedded in simulated Coulomb fields that closely approximate the Madelung fields of the host surface, and the ions that were the nearest neighbors to the F(A1) site were allowed to relax to equilibrium. The calculated Stokes-shifted optical transition bands, optical-optical conversion efficiency, and relaxed excited states of the defect-containing surface, as well as the orientational destruction of the color centers, recording sensitivity, exciton (energy) transfer, and the Glasner-Tompkins empirical relation were all found to be sensitive to the size of the dopant cation.
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish (i.e., scratches, inclusions, etc.) act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Biomimetic materials for controlling bone cell responses.
Drevelle, Olivier; Faucheux, Nathalie
2013-01-01
Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.
Atomic oxygen durability of solar concentrator materials for Space Station Freedom
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.
1990-01-01
The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.
Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix
NASA Astrophysics Data System (ADS)
Sendil Kumar, A.; Bhatnagar, Anil K.
2018-02-01
Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.
Enhanced chromium adsorption capacity via plasma modification of natural zeolites
NASA Astrophysics Data System (ADS)
Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.
2017-01-01
Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.
Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A
2015-11-11
It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.
Rubber hose surface defect detection system based on machine vision
NASA Astrophysics Data System (ADS)
Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng
2018-01-01
As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.
Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction
Chang, Seo Hyoung; Connell, Justin G.; Danilovic, Nemanja; ...
2014-07-25
Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity–stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO 3 thin films in alkaline solutions. We propose that the electrochemical transformation of either watermore » (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state ( n) of Ru: from stable but inactive Ru 4+ to unstable but active Ru n>4+. We conclude that if the oxide is stable then it is completely inactive for the OER. As a result, a practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.« less
Depth dependence of defect evolution and TED during annealing
NASA Astrophysics Data System (ADS)
Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.
2004-02-01
A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.
System and process for detecting and monitoring surface defects
NASA Technical Reports Server (NTRS)
Mueller, Mark K. (Inventor)
1994-01-01
A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.
NASA Astrophysics Data System (ADS)
Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.
2015-03-01
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.
Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.
Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping
2018-08-24
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
Insights into H2 formation in space from ab initio molecular dynamics
Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco
2013-01-01
Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584
Theoretical study of native point defects in strained-layer superlattice systems
NASA Astrophysics Data System (ADS)
Krishnamurthy, S.; Yu, Zhi Gang
2018-04-01
We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.
Wu, Jing; Dathar, Gopi Krishna Phani; Sun, Chunwen; Theivanayagam, Murali G; Applestone, Danielle; Dylla, Anthony G; Manthiram, Arumugam; Henkelman, Graeme; Goodenough, John B; Stevenson, Keith J
2013-10-25
Previous studies of the size dependent properties of LiFePO4 have focused on the diffusion rate or phase transformation pathways by bulk analysis techniques such as x-ray diffraction (XRD), neutron diffraction and electrochemistry. In this work, in situ Raman spectroscopy was used to study the surface phase change during charge and self-discharge on a more localized scale for three morphologies of LiFePO4: (1) 25 ± 6 nm width nanorods, (2) 225 ± 6 nm width nanorods and (3) ∼2 μm porous microspheres. Both the large nanorod and microsphere geometries showed incomplete delithiation at the end of charge, which was most likely caused by anti-site defects along the 1D diffusion channels in the bulk of the larger particles. Based on the in situ Raman measurements, all of the morphologies studied exhibited self-discharge with time. Among them, the smallest FePO4 particles self-discharged (lithiated) the fastest. While nanostructuring LiFePO4 can offer advantages in terms of lowering anti-site defects within particles, it also creates new problems due to high surface energies that allow self-discharge. The in situ Raman spectroscopy also showed that carbon coating did not provide significant improvement to the stability of the lithiated particles.
Swayne, Theresa C; Zhou, Chun; Boldogh, Istvan R; Charalel, Joseph K; McFaline-Figueroa, José Ricardo; Thoms, Sven; Yang, Christine; Leung, Galen; McInnes, Joseph; Erdmann, Ralf; Pon, Liza A
2011-12-06
Mitochondria accumulate at neuronal and immunological synapses and yeast bud tips and associate with the ER during phospholipid biosynthesis, calcium homeostasis, and mitochondrial fission. Here we show that mitochondria are associated with cortical ER (cER) sheets underlying the plasma membrane in the bud tip and confirm that a deletion in YPT11, which inhibits cER accumulation in the bud tip, also inhibits bud tip anchorage of mitochondria. Time-lapse imaging reveals that mitochondria are anchored at specific sites in the bud tip. Mmr1p, a member of the DSL1 family of tethering proteins, localizes to punctate structures on opposing surfaces of mitochondria and cER sheets underlying the bud tip and is recovered with isolated mitochondria and ER. Deletion of MMR1 impairs bud tip anchorage of mitochondria without affecting mitochondrial velocity or cER distribution. Deletion of the phosphatase PTC1 results in increased Mmr1p phosphorylation, mislocalization of Mmr1p, defects in association of Mmr1p with mitochondria and ER, and defects in bud tip anchorage of mitochondria. These findings indicate that Mmr1p contributes to mitochondrial inheritance as a mediator of anchorage of mitochondria to cER sheets in the yeast bud tip and that Ptc1p regulates Mmr1p phosphorylation, localization, and function. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gongwei; Zheng, Dong; Liu, Dan
Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.
Wang, Gongwei; Zheng, Dong; Liu, Dan; ...
2017-04-28
Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.
A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten
NASA Astrophysics Data System (ADS)
Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.
2016-08-01
An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
Eddy Current Testing for Detecting Small Defects in Thin Films
NASA Astrophysics Data System (ADS)
Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor
2007-03-01
Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Thompson, Alexander E; Meredig, Bryce; Wolverton, C
2014-03-12
We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.
The Economy in Autologous Tissue Transfer: Part 1. The Kiss Flap Technique.
Zhang, Yi Xin; Hayakawa, Thomas J; Levin, L Scott; Hallock, Geoffrey G; Lazzeri, Davide
2016-03-01
All reconstructive microsurgeons realize the need to improve aesthetic and functional donor-site outcomes. A "kiss" flap design concept was developed to increase the surface area of skin flap coverage while minimizing donor-site morbidity. The main goal of the kiss flap technique is to harvest multiple skin paddles that are smaller than those raised with traditional techniques, to minimize donor-site morbidity. These smaller flap components are then sutured to each other, or said to kiss each other side-by-side, to create a large, wide flap. The skin paddles in the kiss technique can be linked to one another by a variety of native intrinsic vascular connections, by additional microanastomosis, or both. This technique can be widely applied to both free and pedicle flaps, and essentially allows for the reconstruction of a large defect while providing the easy primary closure of a smaller donor-site defect. According to their origin of blood supply, kiss flaps are classified into three styles and five types. All of the different types of kiss flaps are unique in both flap design and harvest technique. Most kiss flaps are based on common flaps already familiar to the reconstructive surgeon. The basis of the kiss flap design concept is to convert multiple narrow flaps into a single unified flap of the desired greater width. This maximizes the size of the resulting flap and minimizes donor-site morbidity, as a direct linear closure is usually possible. Therapeutic, V.
Use of split-thickness plantar skin grafts in the management of leg and foot skin defects.
Liu, Hung-Hui; Chang, Chun-Kai; Huang, Chih-Han; Wu, Jen-Ru; Chen, Chun-Yu; Huang, Dun-Wei; Chu, Tzi-Shiang; Hsu, Kuo-Feng; Wang, Chi-Yu; Chiang, I-Han; Ou, Kuang-Ling; Wang, Chih-Hsin; Dai, Niann-Tzyy; Chen, Shyi-Gen; Tzeng, Yuan-Sheng
2018-05-24
The basic principle of donor site selection is to take skin from areas that will heal with minimal scarring while balancing the needs of the recipient site. For skin loss from the lower legs and feet, the most common harvest site for split-thickness skin grafts is the anterior or posterior thigh; grafts from the plantar areas have been mostly used to cover the volar aspect of digits and palms. Between September 2015 and September 2017, 42 patients with areas of skin loss on the legs or feet were treated with plantar skin grafts because of their cosmetic benefits and the convenience of the surgical procedure and postoperative wound care. Our technique of harvesting a single layer of split-thickness skin graft (0.014 in. thick) from a non-weight-bearing area of the foot of the injured leg is simple and provided good functional and cosmetic outcomes at both the donor and recipient sites. All patients were very satisfied with the recovery progress and final results. Therefore, in the management of skin defects in the lower legs or feet that comprise less than 1.5% of the total body surface area, our surgical method is a reliable alternative to anterior or posterior thigh skin grafting. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Allard, T.; Fourdrin, C.; Calas, G.
2007-05-01
Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U systematics. The corresponding results reveal past accumulation of uranium in the mineralized zone and past leaching in the fissure network of the present barren rock. Geochemical implications for HLNWR will be discussed.
USDA-ARS?s Scientific Manuscript database
Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
Liya Thomas; R. Edward Thomas
2011-01-01
We have developed an automated defect detection system and a state-of-the-art Graphic User Interface (GUI) for hardwood logs. The algorithm identifies defects at least 0.5 inch high and at least 3 inches in diameter on barked hardwood log and stem surfaces. To summarize defect features and to build a knowledge base, hundreds of defects were measured, photographed, and...
Effective rate constants for nanostructured heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Hendy, Shaun; Gaston, Nicola; Zhang, Philip; Lund, Nat
2012-02-01
There is currently a high level of interest in the use of nanostructured materials for catalysis. For instance, gold, which is largely inert in the bulk, can exhibit strong catalytic activity when in nanoparticle form. With precious metal catalysts such as Pt and Pd in high demand, the use of these materials in nanoparticle form can also substantially reduce costs by exposure of more surface area for the same volume of material. When reactants are plentiful, the effective activity of a nanoparticulate catalyst will increase roughly with its surface area. However, under diffusion-limited conditions, the reactant must diffuse to active sites on the catalyst, so a high surface area and a high density of active sites may bring diminishing returns if reactant is consumed faster than it arrives. Here we apply a mathematical homogenisation approach to derive simple expressions for the effective reactivity of a nanostructured catalyst under diffusion limited conditions that relate the intrinsic rate constants of the surfaces presented by the catalyst to an effective rate constant. When highly active catalytic sites, such as step edges or other defects are present, we show that distinct limiting cases emerge depending on the degree of overlap of the reactant depletion zone about each site. In gases, the size of this depletion zone is approximately the mean free path, so the effective reactivity will depend on the structure of the catalyst on that scale. We discuss implications for the optimal design of nanoparticle catalysts.
Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand
Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways ofmore » CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.« less
NASA Astrophysics Data System (ADS)
Roehl, Jason L.
Diffusion of point defects on crystalline surfaces and in their bulk is an important and ubiquitous phenomenon affecting film quality, electronic properties and device functionality. A complete understanding of these diffusion processes enables one to predict and then control those processes. Such understanding includes knowledge of the structural, energetic and electronic properties of these native and non-native point defect diffusion processes. Direct experimental observation of the phenomenon is difficult and microscopic theories of diffusion mechanisms and pathways abound. Thus, knowing the nature of diffusion processes, of specific point defects in given materials, has been a challenging task for analytical theory as well as experiment. The recent advances in computing technology have been a catalyst for the rise of a third mode of investigation. The advent of tremendous computing power, breakthroughs in algorithmic development in computational applications of electronic density functional theory now enables direct computation of the diffusion process. This thesis demonstrates such a method applied to several different examples of point defect diffusion on the (001) surface of gallium arsenide (GaAs) and the bulk of cadmium telluride (CdTe) and cadmium sulfide (CdS). All results presented in this work are ab initio, total-energy pseudopotential calculations within the local density approximation to density-functional theory. Single particle wavefunctions were expanded in a plane-wave basis and reciprocal space k-point sampling was achieved by Monkhorst-Pack generated k-point grids. Both surface and bulk computations employed a supercell approach using periodic boundary conditions. Ga adatom adsorption and diffusion processes were studied on two reconstructions of the GaAs(001) surface including the c(4x4) and c(4x4)-heterodimer surface reconstructions. On the GaAs(001)- c(4x4) surface reconstruction, two distinct sets of minima and transition sites were discovered for a Ga adatom relaxing from heights of 3 and 0.5 A from the surface. These two sets show significant differences in the interaction of the Ga adatom with surface As dimers and an electronic signature of the differences in this interaction was identified. The energetic barriers to diffusion were computed between various adsorption sites. Diffusion profiles for native Cd and S, adatom and vacancy, and non-native interstitial adatoms of Te, Cu and Cl were investigated in bulk wurtzite CdS. The interstitial diffusion paths considered in this work were chosen parallel to c-axis as it represents the path encountered by defects diffusing from the CdTe layer. Because of the lattice mismatch between zinc-blende CdTe and hexagonal wurtzite CdS, the c-axis in CdS is normal to the CdTe interface. The global minimum and maximum energy positions in the bulk unit cell vary for different diffusing species. This results in a significant variation, in the bonding configurations and associated strain energies of different extrema positions along the diffusion paths for various defects. The diffusion barriers range from a low of 0.42 eV for an S interstitial to a high of 2.18 eV for a S vacancy. The computed 0.66 eV barrier for a Cu interstitial is in good agreement with experimental values in the range of 0.58 - 0.96 eV reported in the literature. There exists an electronic signature in the local density of states for the s- and d-states of the Cu interstitial at the global maximum and global minimum energy position. The work presented in this thesis is an investigation into diffusion processes for semiconductor bulk and surfaces. The work provides information about these processes at a level of control unavailable experimentally giving an elaborate description into physical and electronic properties associated with diffusion at its most basic level. Not only does this work provide information about GaAs, CdTe and CdS, it is intended to contribute to a foundation of knowledge that can be extended to other systems to expand our overall understanding into the diffusion process. (Abstract shortened by UMI.)
Tissue engineering-based cartilage repair with mesenchymal stem cells in a porcine model.
Chang, Chih-Hung; Kuo, Tzong-Fu; Lin, Feng-Huei; Wang, Jyh-Horng; Hsu, Yuan-Ming; Huang, Huei-Ting; Loo, Shiao-Tung; Fang, Hsu-Wei; Liu, Hwa-Chang; Wang, Wen-Chih
2011-12-01
This in vivo pilot study explored the use of mesenchymal stem cell (MSC) containing tissue engineering constructs in repair of osteochondral defects. Osteochondral defects were created in the medial condyles of both knees of 16 miniature pigs. One joint received a cell/collagen tissue engineering construct with or without pretreatment with transforming growth factor β (TGF-β) and the other joint from the same pig received no treatment or the gel scaffold only. Six months after surgery, in knees with no treatment, all defects showed contracted craters; in those treated with the gel scaffold alone, six showed a smooth gross surface, one a hypertrophic surface, and one a contracted crater; in those with undifferentiated MSCs, five defects had smooth, fully repaired surfaces or partially repaired surfaces, and one defect poor repair; in those with TGF-β-induced differentiated MSCs, seven defects had smooth, fully repaired surfaces or partially repaired surfaces, and three defects showed poor repair. In Pineda score grading, the group with undifferentiated MSC, but not the group with TGF-β-induced differentiated MSCs, had significantly lower subchondral, cell morphology, and total scores than the groups with no or gel-only treatment. The compressive stiffness was larger in cartilage without surgical treatment than the treated area within each group. In conclusion, this preliminary pilot study suggests that using undifferentiated MSCs might be a better approach than using TGF-β-induced differentiated MSCs for in vivo tissue engineered treatment of osteochondral defects. Copyright © 2011 Orthopaedic Research Society.
Maroo, Sneha; Murthy, K Raja V
2014-01-01
The need to increase the predictability of periodontal regeneration has encouraged clinicians and researchers to employ cell-stimulating proteins in combination with osteoconductive scaffolds, based on the principles of tissue engineering. The purpose of this clinical and radiographic study was to compare the regenerative potential of the combination of β-tricalcium phosphate (β-TCP) and recombinant human platelet-derived growth factor BB (rhPDGF-BB) in the grafting of intraosseous defects with the established technique of bone grafting with (β-TCP alone. A total of 30 sites from 15 patients with infrabony defects in two different quadrants were selected, and the sites were randomly divided into test sites (rhPDGF + β-TCP) and control sites (β-TCP alone) using a split-mouth design. Clinical parameters, including probing pocket depth, clinical attachment level, and gingival recession, were recorded at baseline, 6 months, and 9 months. Radiographic evaluation was carried out to evaluate defect fill, change in alveolar crest height, and percentage of defect fill at baseline, 6 months, and 9 months. Both the experimental groups showed statistically significant reduction in probing pocket depth and gain in clinical attachment level. On intergroup comparison, sites treated with rhPDGF + β-TCP demonstrated a significantly greater pocket depth reduction (P < .05) and greater gain in clinical attachment level (P < .01). Mean percentage defect fill was significantly greater in test sites as compared with control sites at 6 and 9 months (P < .01). rhPDGF + β-TCP-treated sites demonstrated a significant gain in mean alveolar crest height at 6 and 9 months (P < .05), while β-TCP-treated sites demonstrated crestal resorption. Both groups demonstrated potential in enhancing periodontal regeneration; however, on comparison between the two groups, the results obtained by rhPDGF + β-TCP were significantly better with respect to both clinical and radiographic parameters.
Patel, Sandeep; Kubavat, Ajay; Ruparelia, Brijesh; Agarwal, Arvind; Panda, Anup
2012-01-01
The aim of periodontal surgery is complete regeneration. The present study was designed to evaluate and compare clinically soft tissue changes in form of probing pocket depth, gingival shrinkage, attachment level and hard tissue changes in form of horizontal and vertical bone level using resorbable membranes. Twelve subjects with bilateral class 2 furcation defects were selected. After initial phase one treatment, open debridement was performed in control site while freezedried dura mater allograft was used in experimental site. Soft and hard tissue parameters were registered intrasurgically. Nine months reentry ensured better understanding and evaluation of the final outcome of the study. Guided tissue regeneration is a predictable treatment modality for class 2 furcation defect. There was statistically significant reduction in pocket depth as compared to control (p < 0.01). There is statistically significant increase in periodontal attachment level within control and experimental sites showed better results (p < 0.01). For hard tissue parameter, significant defect fill resulted in experimental group, while in control group, less significant defect fill was found in horizontal direction and nonsignificant defect fill was found in vertical direction. The results showed statistically significant improvement in soft and hard tissue parameters and less gingival shrinkage in experimental sites compared to control site. The use of FDDMA in furcation defects helps us to achieve predictable results. This cross-linked collagen membrane has better handling properties and ease of procurement as well as economic viability making it a logical material to be used in regenerative surgeries.
Using parallel computing methods to improve log surface defect detection methods
R. Edward Thomas; Liya Thomas
2013-01-01
Determining the size and location of surface defects is crucial to evaluating the potential yield and value of hardwood logs. Recently a surface defect detection algorithm was developed using the Java language. This algorithm was developed around an earlier laser scanning system that had poor resolution along the length of the log (15 scan lines per foot). A newer...
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
Lau, C K; Sim, K S; Tso, C P
2011-01-01
This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Martinez, I. A.; Eisenmann, D.
2012-12-01
Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.
The effect of a defective BSF layer on solar cell open circuit voltage. [Back Surface Field
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1985-01-01
A straightforward analysis of special limiting cases has permitted the determination of the range of possible open circuit voltage losses due to a defective BSF (back surface field) layer. An important result of the analysis is the finding that it is possible to have a fully effective BSF region, regardless of the spatial distribution of the defective areas, as long as the total defective area is reduced below certain limits. Distributed defects were found to be much more harmful than lumped defects.
Optimizing surface defects for atomic-scale electronics: Si dangling bonds
NASA Astrophysics Data System (ADS)
Scherpelz, Peter; Galli, Giulia
2017-07-01
Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.
Cementoblast Delivery for Periodontal Tissue Engineering
Zhao, Ming; Jin, Qiming; Berry, Janice E.; Nociti, Francisco H.; Giannobile, William V.; Somerman, Martha J.
2008-01-01
Background Predictable periodontal regeneration following periodontal disease is a major goal of therapy. The objective of this proof of concept investigation was to evaluate the ability of cementoblasts and dental follicle cells to promote periodontal regeneration in a rodent periodontal fenestration model. Methods The buccal aspect of the distal root of the first mandibular molar was denuded of its periodontal ligament (PDL), cementum, and superficial dentin through a bony window created bilaterally in 12 athymic rats. Treated defects were divided into three groups: 1) carrier alone (PLGA polymer sponges), 2) carrier + follicle cells, and 3) carrier + cementoblasts. Cultured murine primary follicle cells and immortalized cementoblasts were delivered to the defects via biodegradable PLGA polymer sponges, and mandibulae were retrieved 3 weeks and 6 weeks post-surgery for histological evaluation. In situ hybridization, for gene expression of bone sialoprotein (BSP) and osteocalcin (OCN), and histomorphometric analysis were further done on 3-week specimens. Results Three weeks after surgery, histology of defects treated with carrier alone indicated PLGA particles, fibrous tissue, and newly formed bone scattered within the defect area. Defects treated with carrier + follicle cells had a similar appearance, but with less formation of bone. In contrast, in defects treated with carrier + cementoblasts, mineralized tissues were noted at the healing site with extension toward the root surface, PDL region, and laterally beyond the buccal plate envelope of bone. No PDL-bone fibrous attachment was observed in any of the groups at this point. In situ hybridization showed that the mineralized tissue formed by cementoblasts gave strong signals for both BSP and OCN genes, confirming its nature as cementum or bone. The changes noted at 3 weeks were also observed at 6 weeks. Cementoblast-treated and carrier alone-treated defects exhibited complete bone bridging and PDL formation, whereas follicle cell-treated defects showed minimal evidence of osteogenesis. No new cementum was formed along the root surface in the above two groups. Cementoblast-treated defects were filled with trabeculated mineralized tissue similar to, but more mature, than that seen at 3 weeks. Furthermore, the PDL region was maintained with well-organized collagen fibers connecting the adjacent bone to a thin layer of cementum-like tissue observed on the root surface. Neoplastic changes were observed at the superficial portions of the implants in two of the 6-week cementoblast-treated specimens, possibly due in part to the SV40-transformed nature of the implanted cell line. Conclusions This pilot study demonstrates that cementoblasts have a marked ability to induce mineralization in periodontal wounds when delivered via polymer sponges, while implanted dental follicle cells seem to inhibit periodontal healing. These results confirm the selective behaviors of different cell types in vivo and support the role of cementoblasts as a tool to better understand periodontal regeneration and cementogenesis. PMID:15025227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.
2015-03-31
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less
Schwarz, Frank; Sager, Martin; Kadelka, Ines; Ferrari, Daniel; Becker, Jürgen
2010-05-01
The aim of the present study was to compare bone regeneration in dehiscence-type defects at titanium implants with chemically modified sandblasted/acid-etched (modSLA) or dual acid-etched surfaces with a calcium phosphate nanometre particle modification (DCD/CaP). Buccal dehiscence-type defects were surgically created following implant site preparation in both the upper and the lower jaws of 12 fox hounds. Both types of implants were randomly allocated in a split-mouth design and left to heal in a submerged position for 2 and 8 weeks. Dissected blocks were processed for histomorphometrical analysis [e.g. new bone height (NBH), percentage of bone-to-implant contact (BIC), area of new bone fill (BF), and area of mineralized tissue (MT) within BF]. At 2 and 8 weeks, both groups revealed comparable mean BF (2.3+/-0.6 to 2.5+/-0.6 mm(2)versus 2.0+/-0.6 to 1.4+/-0.5 mm(2)) and MT (31.1+/-14.3-83.2+/-8.2%versus 38.9+/-15.9-84.4+/-6.3%) values. However, modSLA implants revealed significantly higher mean NBH (2.4+/-0.8 to 3.6+/-0.3 mm versus 0.9+/-0.8 to 1.8+/-1.4 mm) and BIC (53.3+/-11.3-79.5+/-6.6%versus 19.3+/-16.4-47.2+/-30.7%) values than DCD/CaP implants. ModSLA implants may have a higher potential to support osseointegration in dehiscence-type defects than DCD/CaP implants.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, W.A.; Brada, M.P.
1995-06-20
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.
NASA Astrophysics Data System (ADS)
Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing
2017-05-01
Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.
Severity of MIH findings at tooth surface level among German school children.
Petrou, M A; Giraki, M; Bissar, A-R; Wempe, C; Schäfer, M; Schiffner, U; Beikler, T; Schulte, A G; Splieth, C H
2015-06-01
This study was to investigate the distribution and clinical characteristics of teeth diagnosed with MIH at surface and defect type level in a cohort of German children. The study cohort included 242 children diagnosed with MIH which had been recorded during the compulsory dental school examinations of 20 German primary schools. The subjects had been enrolled by cluster sampling. All children attended the second to fourth grade (age 7-10 years, mean 8.1 ± 0.8). The children were examined by five calibrated examiners (kappa = 0.9) after tooth brushing. The recording comprised teeth, surfaces, type and severity of MIH defects and was conducted using a portable light, mirrors and cotton rolls. MIH was registered according to the EAPD criteria. Defects <1 mm were not recorded. Statistical analysis included descriptive statistics and Spearman's correlation. Most affected teeth were first permanent molars (71.4 %) followed by the maxillary central incisors (15.6 %). The most common defects were demarcated opacities (82.2 %), while the remaining 17.8 % of the affected teeth exhibited severe enamel defects. The most frequently affected surface in molars was the occlusal surface (72.4 %); in incisors, it was the buccal surface (73.5 %). There were no atypical restorations in the affected incisors. Different types of MIH defects at various surfaces of the same tooth were common. The number of affected tooth surfaces was positively correlated with the severity of MIH at child (p < 0.001). The study demonstrates severe enamel defects involving in almost one-fifth of all MIH teeth. The knowledge of the intra-oral distribution and severity of MIH findings at the enamel surface level is important for assessing the treatment needs.
Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi
2014-05-05
Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less
Positive holes in magnesium oxide - Correlation between magnetic, electric, and dielectric anomalies
NASA Technical Reports Server (NTRS)
Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.; Freund, M. M.
1991-01-01
The present magnetic susceptibility investigation of high purity MgO single crystals notes an anomally at 800 K which is associated with increasing electrical conductivity, a rise in static dielectric constant from 9 to 150, and the appearance of a pronounced positive surface charge. These phenomena can be accounted for in terms of peroxy defects which represent self-trapped, spin-paired positive holes at Mg(2+) vacancy sites. The holes begin to decouple their spins above 600 K.
2011-04-01
sputtered PZT films on both sapphire and Si substrates were textured along the [110] direction. The degree of preference for the [110] direction was... PZT . Since these films are approximately 0.5 μm thick and breakdown occurs at relatively high fields, surface-related ( ceramic metal contact band... ceramics created donor sites, which are n-type. From the crystallographic data, it is seen that the degree of crystallinity and PZT crystal quality
MeV ion-induced movement of lattice disorder in single crystalline silicon
NASA Astrophysics Data System (ADS)
Sen, P.; Akhtar, J.; Russell, F. M.
2000-08-01
We provide experimental evidence for the transport of atomic disorder over large distances, in device grade single-crystalline silicon, following irradiation with 200 MeV silver ions. Pile-up of lattice defects or disorder is effected at predetermined locations, spatially separated from the irradiation site. These are revealed by STM scans with atomic resolution, of an intermediate region, spanning from irradiated to shadowed parts of the crystal surface. The experimental results are consistent with transport of disorder through breather-like intrinsic localised excitations.
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Nanavati, Sachin P.; Majumder, Chiranjib; Ghaisas, S. V.
2014-03-01
In the present work we have calculated using density functional theory (DFT), diffusion barrier potentials on both the CdTe (111) surfaces, Cd terminated (A-type) & Te terminated (B-type). We employ nudge elastic band method (NEB) for obtaining the barrier potentials. The barrier is computed for Cd and for Te adatoms on both A-type and B-type surfaces. We report two energetically favourable positions along the normal to the surface, one above and other below the surface. The one above the surface has binding energy slightly more the one below. According to the results of this work, binding energy (in all cases) for adatoms are reasonable and close to experimental data. The barrier potential for hopping adatoms (Cd and Te) on both the surfaces is less than 0.35 eV. Apart from these most probable sites, there are other at least two sites on both the types of surfaces which are meta stable. We have also computed barriers for hopping to and from these meta stable positions. The present results can shade light on the defect formation mechanism in CdTe thin films during growth. The authors would like to thank C-DAC for the computing time on its PARAM series of supercomputers and DST Govt. of India, for partial funding.
The chemisorption and reactions of formic acid on Cu films on ZnO (000 overline1)-O
NASA Astrophysics Data System (ADS)
Ludviksson, A.; Zhang, R.; Campbell, Charles T.; Griffiths, K.
1994-06-01
The adsorption and reactions of formic acid (HCOOD : HCOOH = 3:1) on the oxygen-terminated ZnO(0001¯)-O surface and on thin Cu films deposited on the ZnO(0001¯)-O surface have been studied with temperature programmed desorption (TPD) and XPS. Small amounts of formic acid dissociate at defect sites on clean ZnO(0001¯)-O to yield surface formate (HCOO). The acid D(H) from this dissociation does not reappear in TPD, and is lost to the ZnO bulk, as confirmed by nuclear reaction analysis. The surface HCOO decomposes to yield nearly simultaneous CO 2 (37%), CO (63%) and H 2 TPD peaks at 560 K. Substantial amounts of D (˜ 20%) are incorporated in this hydrogen TPD peak resulting from formate decomposition at ZnO defects, indicating that bulk D is readily accessible. Submonolayer and multilayer Cu films that are deposited at 130 K and partially cover the ZnO surface as 2D and 3D islands adsorb formic acid and decompose it into formate and hydrogen much like the Cu(110) surface. The surface formate from the Cu film decomposes at 470-500 K to give primarily CO 2 and H 2, also much like Cu(110), although atom-thin Cu islands also give ˜ 40% CO. Annealed Cu films give formate decomposition peaks at 25-50 K lower in temperature, attributed to thickening and ordering of the Cu islands to form Cu(111)-like sites. The acid D(H) atom from the formic acid is partially lost by hydrogen spillover from the Cu islands into the ZnO substrate, especially for thin Cu films. This effect partially desorbs and is enhanced upon preannealing the Cu layers, due to increased H diffusion rates across the annealed Cu islands, and/or the decrease in island size. Bulk D(H) is slowly removed as D 2, HD and H 2 above 400 K in diffusion-limited desorption, catalyzed by Cu.
NASA Astrophysics Data System (ADS)
Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan
2016-03-01
Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Mihelcic, Judith A.
1989-01-01
Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.
Influence of point defects on the near edge structure of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.
2017-10-01
Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.
Imaging of Formaldehyde Adsorption and Diffusion on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhenrong; Tang, Miru; Wang, Zhitao
2015-03-01
Surface reactions of formaldehyde with reduced TiO2(110) surfaces have been studied using variable-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). STM results show that formaldehyde preferably adsorbs on the bridging bonded oxygen (Ob) vacancy (VO) defect site. Bias-dependent STM images show that both the Ti-bound CH2O and the VO-bound CH2O are positioned between the Ob row and the Ti row. The VO-bound formaldehyde rotates at 95 K. It starts to diffuse along the Ob row as –CH2– at ~170 K and starts to diffuse along the Ti row as a molecule at ~215 K. However, the stabilities andmore » the configurations of the Ti-bound and the VO-bound formaldehyde calculated using DFT are not in line with the experimental results. The values of diffusion barriers determined experimentally and theoretically are also different. The discrepancy between the experiment and theory indicates the presence of a complex charge distribution related to the defects.« less
Multiple focused EMAT designs for improved surface breaking defect characterization
NASA Astrophysics Data System (ADS)
Thring, C. B.; Fan, Y.; Edwards, R. S.
2017-02-01
Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Optical signatures of deep level defects in Ga2O3
NASA Astrophysics Data System (ADS)
Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.
2018-06-01
We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
NASA Astrophysics Data System (ADS)
Salmani, E.; Benyoussef, A.; Ez-Zahraouy, H.; H. Saidi, E.
2011-08-01
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
Spatial distribution of defect luminescence in GaN nanowires.
Li, Qiming; Wang, George T
2010-05-12
The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.
Enhanced luminescence of Cu-In-S nanocrystals by surface modification.
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo
2012-04-01
We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.
Defects in GaAs films grown by MOMBE
NASA Astrophysics Data System (ADS)
Werner, K.; Heinecke, H.; Weyers, M.; Lüth, H.; Balk, P.
1987-02-01
The nature and densities of the defects obtained in MOMBE GaAs films have been studied. In addition to particulate matter deposited on the surface, imperfections in the substrate will lead to defect generation. Furthermore, the rate of generation is strongly affected by the ratio of the pressures of the group III alkyl and the group V hydride in the molecular beams and by the growth temperature, also on defect-free substrates. Doping has no effect on the defect structure of the surface. By proper choice of experimental conditions defect densities below 100 cm -2 may be consistently obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.
2015-02-02
Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less
Cao, Moyuan; Li, Zhe; Ma, Hongyu; Geng, Hui; Yu, Cunming; Jiang, Lei
2018-06-20
Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.
Studies of surface states in zinc oxide nanopowders
NASA Astrophysics Data System (ADS)
Peters, Raul Mugabe
The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.
Hot cracking of Structural Steel during Laser Welding
NASA Astrophysics Data System (ADS)
Pineda Huitron, Rosa M.; Vuorinen, Esa
2017-10-01
Laser welding is an important technique in many industries due to its high precision in operation, its local and fast processing, narrow welds and its good weld surface quality. However, the process can involve some complications due to the rapid heating and cooling of the material processed, resulting in physical and metallurgical effects as thermal contraction during solidification, giving as a result the presence of residual stresses in the narrow weld. Formation of defects during the process is an important topic to be evaluated in order to achieve better performance of the steels in use. In the present work, defects formed during laser welding of a structural steel have been investigated. The defects formed have been identified and the causes of the defects are discussed. Possible strategies for improvement of the welding procedure and final weld result are proposed. The defects were analysed by optical and scanning electron microscopy and hardness measurement. Cracks were located in the middle of the fusion zone and followed both inter-granular and trans-granular paths. Impurities as manganese sulphides were found along the welding direction, and could act as sites for crack formation. The cracks formed during solidification of the weld are identified as solidification cracks. This kind of cracks is usually caused by solidification shrinkage and thermal contractions during the process, which appear in the fusion zone and sometimes in the heat affected zone.
Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity.
Lei, Wen; Xiao, Weiping; Li, Jingde; Li, Gaoran; Wu, Zexing; Xuan, Cuijuan; Luo, Dan; Deng, Ya-Ping; Wang, Deli; Chen, Zhongwei
2017-08-30
Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption-swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g -1 even after 2000 cycles at a high current density of 10.0 A g -1 . It is proposed that the excellent Na + storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly "host" Na + and therefore contribute to the enhanced storage capacity.
Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation
Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed
2012-01-01
This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186
Lumber defect detection by ultrasonics
K. A. McDonald
1978-01-01
Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.
Automatic casting surface defect recognition and classification
NASA Astrophysics Data System (ADS)
Wong, Boon K.; Elliot, M. P.; Rapley, C. W.
1995-03-01
High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.
A sharp interface model for void growth in irradiated materials
NASA Astrophysics Data System (ADS)
Hochrainer, Thomas; El-Azab, Anter
2015-03-01
A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.
Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.
2017-01-01
The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376
NASA Astrophysics Data System (ADS)
Shoemaker, James Richard
Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.
Defect-mediated magnetism of transition metal doped zinc oxide thin films
NASA Astrophysics Data System (ADS)
Roberts, Bradley Kirk
Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.
Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.
Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim
2018-03-29
Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.
The Role of Sodium in Tuning Product Distribution in Syngas Conversion by Rh Catalysts
Yang, Nuoya; Liu, Xinyan; Asundi, Arun S.; ...
2017-10-23
Alkali metal oxides commonly exist as impurities or promoters in syngas conversion catalysts and can significantly influence the activity and selectivity towards higher oxygenate products. In this study, we investigate the effects of sodium oxide on silica-supported Rh catalysts by experimentally introducing different amounts of sodium and monitoring the change in reactivity and CO adsorption behavior. The experimental results combined with density functional theory (DFT) calculations show that sodium selectively blocks step/defect sites on Rh surfaces, leading to reduced activity but higher C 2 oxygenate selectivity. DFT calculations also suggest that sodium present on Rh terrace sites can facilitate COmore » dissociation, potentially increasing C 2 oxygenate production. The overall activity and selectivity toward various products can be changed significantly based on the degree of site blocking by the added sodium.« less
The Role of Sodium in Tuning Product Distribution in Syngas Conversion by Rh Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nuoya; Liu, Xinyan; Asundi, Arun S.
Alkali metal oxides commonly exist as impurities or promoters in syngas conversion catalysts and can significantly influence the activity and selectivity towards higher oxygenate products. In this study, we investigate the effects of sodium oxide on silica-supported Rh catalysts by experimentally introducing different amounts of sodium and monitoring the change in reactivity and CO adsorption behavior. The experimental results combined with density functional theory (DFT) calculations show that sodium selectively blocks step/defect sites on Rh surfaces, leading to reduced activity but higher C 2 oxygenate selectivity. DFT calculations also suggest that sodium present on Rh terrace sites can facilitate COmore » dissociation, potentially increasing C 2 oxygenate production. The overall activity and selectivity toward various products can be changed significantly based on the degree of site blocking by the added sodium.« less
On the failure load and mechanism of polycrystalline graphene by nanoindentation
Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.
2014-01-01
Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732
Trapping photons on the line: controllable dynamics of a quantum walk
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao
2014-04-01
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.
Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten
NASA Astrophysics Data System (ADS)
Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.
2018-01-01
Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.
Modeling of the oxygen reduction reaction for dense LSM thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Liu, Jian; Yu, Yang
In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less
Modeling of the oxygen reduction reaction for dense LSM thin films
Yang, Tao; Liu, Jian; Yu, Yang; ...
2017-10-17
In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less
Stabilization of Reactive MgO Surfaces by Ni Doping
NASA Astrophysics Data System (ADS)
Mazheika, Aliaksei; Levchenko, Sergey V.
Ni-MgO solid solutions are promising materials for catalytic reduction of CO2 and dry reforming of CH4. To explain the catalytic activity, an ab initio study of Ni-substitutional defects in MgO (NiMg) has been performed. At first, the validation of the theory level was done. We compared results of CCSD(T) embedded-cluster calculations of NiMg formation energies and adsorption energies of CO, CO2 and H2 on them to the HSE(α) hybrid DFT functional with the fraction of the exact exchange α varied between 0 and 1. HSE(0.3) was found to be the best compromise in this study. Our periodic HSE(0.3) calculations show that NiMg defects are most stable at corner sites, followed by steps, and are least stable at (001) terraces. Thus, Ni-doping stabilizes stepped MgO surfaces. The dissociative adsorption of H2 on the terrace is found to be endothermic (+ 1 . 1 eV), whereas on (110) surface with NiMg it is highly exothermic (- 1 . 6 eV). Adsorbed CO2 is also significantly stabilized (- 0 . 6 vs. - 2 . 2 eV). These findings explain recent microcalorimetry measurements of H2 and CO2 adsorption at doped Ni-MgO samples. partially supported by UniCat (Deutsche Forschungsgemeinschaft).
Hydrogen-related defects in hydrogenated amorphous semiconductors
NASA Astrophysics Data System (ADS)
Jin, Shu; Ley, Lothar
1991-07-01
One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the special bonding configurations mentioned above are the predominant species. The formation and annealing of this defect will be discussed.
Murakami, S; Takayama, S; Kitamura, M; Shimabukuro, Y; Yanagi, K; Ikezawa, K; Saho, T; Nozaki, T; Okada, H
2003-02-01
Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.
Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T
2017-10-01
To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Defect chemistry and characterization of Hg sub 1x Cd sub x Te
NASA Technical Reports Server (NTRS)
Vydyanath, H. R.
1982-01-01
Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.
Weak scratch detection and defect classification methods for a large-aperture optical element
NASA Astrophysics Data System (ADS)
Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng
2017-03-01
Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.
Agrichemicals in surface water and birth defects in the United States
Winchester, Paul D; Huskins, Jordan; Ying, Jun
2009-01-01
Objectives: To investigate if live births conceived in months when surface water agrichemicals are highest are at greater risk for birth defects. Methods: Monthly concentrations during 1996–2002 of nitrates, atrazine and other pesticides were calculated using United States Geological Survey's National Water Quality Assessment data. Monthly United States birth defect rates were calculated for live births from 1996 to 2002 using United States Centers for Disease Control and Prevention natality data sets. Birth defect rates by month of last menstrual period (LMP) were then compared to pesticide/nitrate means using logistical regression models. Results: Mean concentrations of agrichemicals were highest in April–July. Total birth defects, and eleven of 22 birth defect subcategories, were more likely to occur in live births with LMPs between April and July. A significant association was found between the season of elevated agrichemicals and birth defects. Conclusion: Elevated concentrations of agrichemicals in surface water in April–July coincided with higher risk of birth defects in live births with LMPs April–July. While a causal link between agrichemicals and birth defects cannot be proven from this study an association might provide clues to common factors shared by both variables. PMID:19183116
Key structure-activity relationships in the vanadium phosphorus oxide catalyst system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.R.; Ebner, J.R.
1990-04-01
The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account formore » the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.« less
Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.
2014-01-01
Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?
PREFACE: The International Workshop on Positron Studies of Defects 2014
NASA Astrophysics Data System (ADS)
Sugita, Kazuki; Shirai, Yasuharu
2016-01-01
The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials
Berninger, Markus T.; Wexel, Gabriele; Rummeny, Ernst J.; Imhoff, Andreas B.; Anton, Martina
2013-01-01
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6. Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11. The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12. Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11. Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect. In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22. The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit's bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit's knee joint will be described. PMID:23728213
Hydrogen mobility in transition zone silicates
NASA Astrophysics Data System (ADS)
Caracas, Razvan; Panero, Wendy R.
2017-12-01
We study the hydrogen mobility in ringwoodite and wadsleyite considering multiple charge-balanced defects, including Mg < = > 2H, Si < = > Mg + 2H, and the hydrogarnet defect, Si < = > 4H, using molecular dynamics simulations based on the density functional theory at transition zone pressures and temperatures between 1500 and 2500 K. We determine the diffusion coefficients and study in detail the mechanism of hydrogen mobility during lengthy simulations. Our results show that temperature, water concentration, and defect mechanism have a significant effect on mobility. We find that the fastest diffusion is for the Mg < = > 2H defect, while H is more mobile when incorporated as Si < = > Mg + 2H than as hydrogarnet defects. The computed diffusivities for ringwoodite are larger than for wadsleyite: at 2000 K, diffusivity is 1.13 × 10-09 m2/s for ringwoodite compared to 0.93 × 10-09 m2/s for wadsleyite. In general, the hydrogen atoms spend on the order of tens of picoseconds or more trapped in or around the vacancy sites with net migration between sites over timescales of tens of femtoseconds. At 2500 K, some of these hydrogen excursions take place over several angstroms, while at 2000 K, they do not always result in net diffusion. At 1500 K, most of the defects fail to make excursions from their defect sites resulting in diffusion.
NASA Astrophysics Data System (ADS)
Basnyat, Prakash M.
About 30% of the total market share of industrial manufacture of silicon solar cells is taken by single crystalline Czochralski (CZ) grown wafers. The efficiency of solar cells fabricated on boron-doped Czochralski silicon degrades due to the formation of metastable defects when excess electrons are created by illumination or minority carrier injection during forward bias. The recombination path can be removed by annealing the cell at about 200° C but recombination returns on exposure to light. Several mono-crystalline and multi-crystalline solar cells have been characterized by methods such as laser beam induced current (LBIC), Four-Probe electrical resistivity etc. to better understand the light induced degradation (LID) effect in silicon solar cells. All the measurements are performed as a function of light soaking time. Annealed states are produced by exposing the cells/wafer to temperature above 200° C for 30 minutes and light soaked state was produced by exposure to 1000 W/m2 light using AM1.5 solar simulator for 72 hours. Dark I-V data are analyzed by a software developed at NREL. This study shows that LID, typically, has two components- a bulk component that arises from boron-oxygen defects and a surface component that appears to be due to the SiNx:H-Si interface. With the analysis of dark saturation current (J02), it is seen that the surface LID increases with an increase in the q/2kT component. Results show that cell performance due to bulk effect is fully recovered upon annealing where as surface LID does not recover fully. This statement is also verified by the study of mc- silicon solar cells. Multi-crystalline silicon solar cell has very low oxygen content and, therefore, recombination sites will not be able to form. This shows that there is no bulk degradation in mc- Si solar cells but they exhibit surface degradation. The results suggest that a typical Cz-silicon solar cell with an initial efficiency of ˜18% could suffer a reduction in efficiency to ˜ 17.5% after the formation of a metastable defect, out of which ˜ 0.4% comes from a bulk effect and ˜0.1% is linked to a surface effect.
Spectral engineering of LaF3:Ce3+ nanoparticles: The role of Ce3+ in surface sites
NASA Astrophysics Data System (ADS)
Jacobsohn, L. G.; Toncelli, A.; Sprinkle, K. B.; Kucera, C. J.; Ballato, J.
2012-04-01
Due to the high surface-to-volume ratio, luminescence centers on the surface have relative dominance in the overall spectral response of nanoparticles. The luminescence of LaF3:Ce3+ nanoparticles was investigated in the spectral and temporal domains with a particular focus on the role of Ce3+ on the surface. These nanoparticles present two luminescence bands at 4.10 eV and 4.37 eV attributed to Ce3+ transitions from the 5d level to the spin-orbit split 4f ground levels 2F5/2 and 2F7/2, in addition to a low-energy band at 3.62 eV that has been attributed to Ce3+ ions residing in perturbed sites. The growth of up to three undoped shells, ca. 0.9 nm thick each, around the core promoted a progressive enhancement of luminescence output, concomitant with an increase in the fluorescence lifetime due to the weakening of energy transfer through multipolar interaction between Ce3+ in the core and quenching defects on the surface. Also, the growth of the first shell led to a decrease in the relative intensity of the low-energy band and a 0.23 eV shift to higher energies. These results were interpreted as being due to the existence of two types of perturbed sites, one on the surface that is eliminated by the growth of the first shell, and another within the volume of the nanoparticle, similar to observations in bulk single crystals. This work demonstrates how surface engineering can affect and control the luminescence behavior of this nanomaterial.
NASA Astrophysics Data System (ADS)
Gryzunova, N. N.; Vikarchuk, A. A.; Tyur'kov, M. N.
2016-10-01
The defect structure of the electrolytic copper coatings formed upon mechanical activation of a cathode is described. These coatings are shown to have a fragmented structure containing disclination-type defects, namely, terminating dislocation, disclination and twin boundaries; partial disclinations, misorientation bands; and twin layers. They have both growth and deformation origins. The mechanisms of formation of the structural defects are discussed. It is experimentally proved that part of the elastic energy stored in the crystal volume during electrocrystallization can be converted into surface energy. As a result, catalytically active materials with a large developed surface can be synthesized.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.
Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-12-05
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.
NASA Astrophysics Data System (ADS)
Takano, Yu; Kobayashi, Nobuhiko; Morikawa, Yoshitada
2018-06-01
Through computer simulations using atomistic models, it is becoming possible to calculate the atomic structures of localized defects or dopants in semiconductors, chemically active sites in heterogeneous catalysts, nanoscale structures, and active sites in biological systems precisely. Furthermore, it is also possible to clarify physical and chemical properties possessed by these nanoscale structures such as electronic states, electronic and atomic transport properties, optical properties, and chemical reactivity. It is sometimes quite difficult to clarify these nanoscale structure-function relations experimentally and, therefore, accurate computational studies are indispensable in materials science. In this paper, we review recent studies on the relation between local structures and functions for inorganic, organic, and biological systems by using atomistic computer simulations.
Concepts in Gene Therapy for Cartilage Repair
Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.
2009-01-01
Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477
Missing dimer defects investigated by adsorption of nitric oxide (NO) on silicon (100) 2 × 1
NASA Astrophysics Data System (ADS)
Sasse, A. G. B. M.; Kleinherenbrink, P. M.; Van Silfhout, A.
This paper describes a study concerning the interaction of nitric oxide (NO) with the clean Si(100)2×1 surface in ultra-high vacuum at room temperature. Differential reflectometry (DR) in the photon energy range of 2.4-4.4 eV. Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) have been used to investigate the chemisorption of NO on Si(100)2×1. With this combination of techniques it is possible to make an analysis of the geometric and electronic structure and chemical composition of the surface layer. The aim of the present study was to explain the experimental results of the adsorption of NO on the clean Si(100)2×1 at 300 K. Analysing the electronic and geometric structure of a simplified stepped 2×1 reconstructed Si(100) surface and of the NO molecule in combination with the use of Woodward-Hoffmann rules (WHR) we were able to model a surface defect specific adsorption mechanism. Surface defects such as missing dimer defects seem to play an important role in the adsorption mechanism of NO on the silicon surface. The experimental results are consistent with this developed model. We also suggest a relation between the missing dimer defects and the number of steps on the silicon surface.
Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch
2002-11-01
Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.
Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein.
Sikora, Arthur; Joseph, Benesh; Matson, Morgan; Staley, Jacob R; Cafiso, David S
2016-11-01
In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B 12 , substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B 12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Leclère, Franck Marie; Casoli, Vincent
2015-01-01
Lower extremity defects may account for 14.6% of the approximately 117 million visits to emergency departments in the U. S. in 2007. In this article, we present a reconstruction of a traumatic plantar foot defect with a medial triceps brachii (MTB) free flap. A 53-year-old man sustained an accidental gunshot wound to the right foot. The patient was admitted after the failure of a sural flap procedure performed in another hospital. He presented with a soft-tissue defect with calcaneal exposition and osteomyelitis. The defect was reconstructed with a MTB free flap anastomosed to his dorsalis pedis vessels. Flap raising time was 52 min. There were no intraoperative complications. The total flap surface was 38.5 cm². The pedicle length was 3 cm. The diameters of the artery and vein of the flap pedicle were 1.1 mm and 1.4 mm, respectively. Ischemia time was 28 min. His donor site healed uneventfully without any morbidity, and the scar was well concealed. The flaps survived and there was no partial flap necrosis. A split-thickness skin graft was performed 12 days postoperatively. Two months later, he had a completely healed wound with no contour abnormality. The total follow-up was 24 months. The patient was able to walk normally. MTB free flap appears to be an excellent option for plantar foot defects in patients with preserved vascularization of the foot. Due to the anatomical shape of the flap, the position of its pedicle, and the moldability of the muscle, we predict that the use of the MTB free flap will grow and develop rapidly for reconstruction of ankle and foot defects.
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep
2016-01-01
Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region. PMID:28773363
Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep
2016-03-28
Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.
NASA Astrophysics Data System (ADS)
Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.
2017-01-01
An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.
Primary detection of hardwood log defects using laser surface scanning
Ed Thomas; Liya Thomas; Lamine Mili; Roger Ehrich; A. Lynn Abbott; Clifford Shaffer; Clifford Shaffer
2003-01-01
The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation's hardwood industry. The location, type, and...
Chen, Xiaoxiao; Chen, Baoliang
2015-05-19
The surface properties and adsorption mechanisms of graphene materials are important for potential environmental applications. The adsorption of m-dinitrobenzene, nitrobenzene, and p-nitrotoluene onto graphene oxide (GO), reduced graphene oxide (RGO), and graphene (G) nanosheets was investigated using IR spectroscopy to probe the molecular interactions of graphene materials with nitroaromatic compounds (NACs). The hydrophilic GO displayed the weakest adsorption capability. The adsorption of RGO and G was significantly increased due to the recovery of hydrophobic π-conjugation carbon atoms as active sites. RGO nanosheets, which had more defect sites than did GO or G nanosheets, resulted in the highest adsorption of NACs which was 10-50 times greater than the reported adsorption of carbon nanotubes. Superior adsorption was dominated by various interaction modes including π-π electron donor-acceptor interactions between the π-electron-deficient phenyls of the NACs and the π-electron-rich matrix of the graphene nanosheets, and the charge electrostatic and polar interactions between the defect sites of graphene nanosheets and the -NO2 of the NAC. The charge transfer was initially proved by FTIR that a blue shift of asymmetric -NO2 stretching was observed with a concomitant red shift of symmetric -NO2 stretching after m-dinitrobenzene was adsorbed. The multiple interaction mechanisms of the adsorption of NAC molecule onto flat graphene nanosheets favor the adsorption, detection, and transformation of explosives.
Intensity compensation for on-line detection of defects on fruit
NASA Astrophysics Data System (ADS)
Wen, Zhiqing; Tao, Yang
1997-10-01
A machine-vision sorting system was developed that utilizes the difference in light reflectance of fruit surfaces to distinguish the defective and good apples. To accommodate to the spherical reflectance characteristics of fruit with curved surface like apple, a spherical transform algorithm was developed that converts the original image to a non-radiant image without losing defective segments on the fruit. To prevent high-quality dark-colored fruit form being classified into the defective class and increase the defect detection rate for light-colored fruit, an intensity compensation method using maximum propagation was used. Experimental results demonstrated the effectiveness of the method based on maximum propagation and spherical transform for on-line detection of defects on apples.
Metallurgical investigation of wire breakage of tyre bead grade.
Palit, Piyas; Das, Souvik; Mathur, Jitendra
2015-10-01
Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.
2016-03-01
In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.
An Analysis of the Magneto-Optic Imaging System
NASA Technical Reports Server (NTRS)
Nath, Shridhar
1996-01-01
The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.
A fast button surface defects detection method based on convolutional neural network
NASA Astrophysics Data System (ADS)
Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran
2018-01-01
Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.
Site location and optical properties of Eu implanted sapphire
NASA Astrophysics Data System (ADS)
Marques, C.; Wemans, A.; Maneira, M. J. P.; Kozanecki, A.; da Silva, R. C.; Alves, E.
2005-10-01
Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 × 1016 cm-2. Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 °C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 °C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements.
Adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110).
Smith, R Scott; Li, Zhenjun; Chen, Long; Dohnálek, Zdenek; Kay, Bruce D
2014-07-17
The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (Ob), Ti5c, and defect sites in order of increasing peak temperature. Analysis of the saturated surface spectrum for both species reveals that the corresponding adsorption energies on all sites are greater for H2O than for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupy the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K.
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
NASA Astrophysics Data System (ADS)
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; Stavitski, Eli; Sadowski, Jerzy T.; Vescovo, Elio; Walter, Andrew; Attenkofer, Klaus; Stacchiola, Darío J.; Liu, Mingzhao
2017-12-01
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices such as ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of the reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...
2017-12-04
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
Atomic Force Microscope Observation of Growth and Defects on As-Grown (111) 3C-SiC Mesa Surfaces
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony
2004-01-01
This paper presents experimental atomic force microscope (AFM) observations of the surface morphology of as-grown (111) silicon-face 3C-SiC mesa heterofilms. Wide variations in 3C surface step structure are observed as a function of film growth conditions and film defect content. The vast majority of as-grown 3C-SiC surfaces consisted of trains of single bilayer height (0.25 nm) steps. Macrostep formation (i.e., step-bunching) was rarely observed, and then only on mesa heterofilms with extended crystal defects. As supersaturation is lowered by decreasing precursor concentration, terrace nucleation on the top (111) surface becomes suppressed, sometimes enabling the formation of thin 3C-SiC film surfaces completely free of steps. For thicker films, propagation of steps inward from mesa edges is sometimes observed, suggesting that enlarging 3C mesa sidewall facets begin to play an increasingly important role in film growth. The AFM observation of stacking faults (SF's) and 0.25 nm Burgers vector screw component growth spirals on the as-grown surface of defective 3C films is reported.
An optical investigation of nano-crystalline CaF2 particles doped with Nd3+ ions
NASA Astrophysics Data System (ADS)
O'Dwyer, C.; James, H. J.; Cheu, B.; Jaque, F.; Han, T. P. J.
2017-10-01
Good crystalline quality CaF2 sub-micron size particles doped with neodymium ions have been produced by the co-precipitation process and their crystallinity have been further improved by thermal treatment at 500 °C. Core and surface related luminescence defect centres have been identified and the effects of Y3+ and Yb3+ codopants are also investigated. Core defects centres are associated with single-ion and multi-ion defect centres as observed in bulk single crystal whereas the origin of the surface or near surface defect, A‧, centre has been ascertained to be derived from a single-ion centre most probably charge compensated by a hydroxyl group.
Morphology of gold and copper ion-plated coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1978-01-01
Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.
Moreno-Sánchez, Manuel; González-García, Raúl; Ruiz-Laza, Luis; Manzano Solo de Zaldívar, Damián; Moreno-García, Carlos; Monje, Florencio
2016-01-01
Traditional donor-site closure has been associated with serious esthetic and functional morbidity. The purpose of this study was to assess morbidity in esthetics and function and measure the postoperative complications of the radial forearm free flap (RFFF) donor site after using combined local triangular full-thickness skin grafting. This prospective study of patients who underwent reconstruction of head and neck defects using an RFFF was conducted from July 2008 through December 2014. The donor site was repaired with a combined local triangular full-thickness skin graft. Quality of the scar, color match, tendon exposure, presence of necrosis, dehiscence of the suture, and presence of dysesthesia were recorded and analyzed using SPSS 21.0 software. One hundred consecutive patients (71 male and 29 female) underwent RFFF harvesting. RFFF donor-site defects ranged from 15 to 70 cm2; partial skin graft loss occurred in 7% of patients. Five patients (5%) had small dehiscences of the forearm skin graft, and 2 cases (2%) presented tendon exposure. In all cases, these sites healed secondarily by conservative management, with no final impairment of function. Esthetic results were considered excellent in 87%, good in 11%, and suboptimal in 2% of the cases. The combined local triangular full-thickness skin graft is a reliable method for closing RFFF donor-site defects because it obviates a second surgical site, it provides excellent color match and pliability, and it can be used for covering large defects of the donor site. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.
Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L
2015-12-17
Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.
Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Weidemann, O.; Hermann, M.; Steinhoff, G.; Wingbrant, H.; Lloyd Spetz, A.; Stutzmann, M.; Eickhoff, M.
2003-07-01
The hydrogen response of Pd:GaN Schottky diodes, prepared by in situ and ex situ deposition of catalytic Pd Schottky contacts on Si-doped GaN layers is compared. Ex situ fabricated devices show a sensitivity towards molecular hydrogen, which is about 50 times higher than for in situ deposited diodes. From the analysis of these results, we conclude that adsorption sites for atomic hydrogen in Pd:GaN sensors are provided by an oxidic intermediate layer. In addition, in situ deposited Pd Schottky contacts reveal lower barrier heights and drastically higher reverse currents. We suggest that the passivation of the GaN surface before ex situ deposition of Pd also results in quenching of leakage paths caused by structural defects.
NASA Astrophysics Data System (ADS)
Kwon, Kideok D.; Newton, Aric G.
2016-10-01
The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface.
A Comparison of Rule-Based, K-Nearest Neighbor, and Neural Net Classifiers for Automated
Tai-Hoon Cho; Richard W. Conners; Philip A. Araman
1991-01-01
Over the last few years the authors have been involved in research aimed at developing a machine vision system for locating and identifying surface defects on materials. The particular problem being studied involves locating surface defects on hardwood lumber in a species independent manner. Obviously, the accurate location and identification of defects is of paramount...
Electrochemical method for defect delineation in silicon-on-insulator wafers
Guilinger, Terry R.; Jones, Howland D. T.; Kelly, Michael J.; Medernach, John W.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.
NASA Astrophysics Data System (ADS)
Wan, Weibing; Shi, Pengfei; Li, Shuguang
2009-10-01
Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril
2013-05-14
A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.
Tarasevich, Yuri Yu; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I
2015-01-01
The effect of defects on the percolation of linear k-mers (particles occupying k adjacent sites) on a square lattice is studied by means of Monte Carlo simulation. The k-mers are deposited using a random sequential adsorption mechanism. Two models L(d) and K(d) are analyzed. In the L(d) model it is assumed that the initial square lattice is nonideal and some fraction of sites d is occupied by nonconducting point defects (impurities). In the K(d) model the initial square lattice is perfect. However, it is assumed that some fraction of the sites in the k-mers d consists of defects, i.e., is nonconducting. The length of the k-mers k varies from 2 to 256. Periodic boundary conditions are applied to the square lattice. The dependences of the percolation threshold concentration of the conducting sites p(c) vs the concentration of defects d are analyzed for different values of k. Above some critical concentration of defects d(m), percolation is blocked in both models, even at the jamming concentration of k-mers. For long k-mers, the values of d(m) are well fitted by the functions d(m)∝k(m)(-α)-k(-α) (α=1.28±0.01 and k(m)=5900±500) and d(m)∝log(10)(k(m)/k) (k(m)=4700±1000) for the L(d) and K(d) models, respectively. Thus, our estimation indicates that the percolation of k-mers on a square lattice is impossible even for a lattice without any defects if k⪆6×10(3).
The effects of the initial stages of native-oxide formation on the surface properties of GaSb (001)
NASA Astrophysics Data System (ADS)
Bermudez, V. M.
2013-07-01
Atomically clean surfaces of n-type GaSb (001) have been prepared by a combination of ex-situ wet-chemical treatment in HCl and in-situ annealing in a flux of H atoms in ultra-high vacuum (UHV). The surfaces are exposed to "excited" O2 and studied using primarily x-ray photoelectron spectroscopy. Low O2 exposures, up to ˜3 × 103 Langmuirs (L), result in a partial passivation of electrically active defects as shown by a decrease in upward band bending. Adsorption of O2 in this exposure range appears to form mainly Ga+1 sites, with little or no indication of Ga+3, and saturates at an O coverage of ˜0.2-0.3 monolayers. For exposures of ˜104 L or higher, oxidation occurs through insertion into Ga-Sb bonds as indicated by the onset of Ga+3 as well as of Sb+4 and/or Sb+5 together with the appearance of an O 1s feature. Defects resulting from this process cause a reversal of the band-bending change seen for smaller exposures. Data obtained for the composition of a native oxide formed in situ in UHV are compared with those for a "practical" surface produced by processing under ambient conditions. These results suggest an optimum procedure for forming a Ga2O3 layer prior to the growth by atomic layer deposition of an Al2O3 layer.
Subsurface Contamination Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Yuan
There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of themore » subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.« less
Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials
NASA Astrophysics Data System (ADS)
Thompson, Alexander
In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties and defect energetics, important properties for UO2 because of the high temperature and defective reactor environment.. Previously published potentials could only yield accurate defect energetics or accurate phonons, but never both.
Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W
2017-10-16
Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.
2018-05-01
The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection
Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-01-01
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154
Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.
2014-01-01
One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865
Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan
2016-12-28
The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.
Method for improving the stability of amorphous silicon
Branz, Howard M.
2004-03-30
A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
Experimental rugged fitness landscape in protein sequence space.
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-12-20
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.
Experimental Rugged Fitness Landscape in Protein Sequence Space
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-01-01
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7×104-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region. PMID:17183728
Mach 6 electroformed nickel nozzle refurbishment: FNAS investigation of ultra-smooth surfaces
NASA Technical Reports Server (NTRS)
Rood, Robert; Griffith, Charles; Engelhaupt, Darell; Cernosek, John
1992-01-01
The task objective has been to apply a coating of nickel-phosphorous alloy to a laminar flow wind tunnel nozzle by catalytic deposition and then polish and inspect the inside surface using optical device processes. The surface of the nozzle was coated with a nickel-phosphorous alloy of sufficient hardness and corrosion resistance to improve the durability. Due to plating defects that were clearly process related and not inherent, the final polished part was less than the desired quality. Surface finishing processes and lapping media were identified which produced a submicron surface finish on the interior plated surface. Defects apparently manifested by the first plating attempt were repaired using a small brush plating process demonstrating that individual small defects can be repaired. Measurement and analysis by profilometry demonstrated that quantitative control of the surface can be achieved.
Enhancing droplet deposition through in-situ precipitation
Damak, Maher; Mahmoudi, Seyed Reza; Hyder, Md Nasim; Varanasi, Kripa K.
2016-01-01
Retention of agricultural sprays on plant surfaces is an important challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of soil and groundwater pollution and pesticide overuse. Here we report a method to increase droplet deposition through in-situ formation of hydrophilic surface defects that can arrest droplets during impact. Defects are created by simultaneously spraying oppositely charged polyelectrolytes that induce surface precipitation when two droplets come into contact. Using high-speed imaging, we study the coupled dynamics of drop impact and surface precipitate formation. We develop a physical model to estimate the energy dissipation by the defects and predict the transition from bouncing to sticking. We demonstrate macroscopic enhancements in spray retention and surface coverage for natural and synthetic non-wetting surfaces and provide insights into designing effective agricultural sprays. PMID:27572948
Enhancing droplet deposition through in-situ precipitation
NASA Astrophysics Data System (ADS)
Damak, Maher; Mahmoudi, Seyed Reza; Hyder, Md Nasim; Varanasi, Kripa K.
2016-08-01
Retention of agricultural sprays on plant surfaces is an important challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of soil and groundwater pollution and pesticide overuse. Here we report a method to increase droplet deposition through in-situ formation of hydrophilic surface defects that can arrest droplets during impact. Defects are created by simultaneously spraying oppositely charged polyelectrolytes that induce surface precipitation when two droplets come into contact. Using high-speed imaging, we study the coupled dynamics of drop impact and surface precipitate formation. We develop a physical model to estimate the energy dissipation by the defects and predict the transition from bouncing to sticking. We demonstrate macroscopic enhancements in spray retention and surface coverage for natural and synthetic non-wetting surfaces and provide insights into designing effective agricultural sprays.
Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo
2014-11-04
We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. X-ray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.
HIV integration sites and implications for maintenance of the reservoir.
Symons, Jori; Cameron, Paul U; Lewin, Sharon R
2018-03-01
To provide an overview of recent research of how HIV integration relates to productive and latent infection and implications for cure strategies. How and where HIV integrates provides new insights into how HIV persists on antiretroviral therapy (ART). Clonal expansion of infected cells with the same integration site demonstrates that T-cell proliferation is an important factor in HIV persistence, however, the driver of proliferation remains unclear. Clones with identical integration sites harbouring defective provirus can accumulate in HIV-infected individuals on ART and defective proviruses can express RNA and produce protein. HIV integration sites differ in clonally expanded and nonexpanded cells and in latently and productively infected cells and this influences basal and inducible transcription. There is a growing number of cellular proteins that can alter the pattern of integration to favour latency. Understanding these pathways may identify new interventions to eliminate latently infected cells. Using advances in analysing HIV integration sites, T-cell proliferation of latently infected cells is thought to play a major role in HIV persistence. Clonal expansion has been demonstrated with both defective and intact viruses. Production of viral RNA and protein from defective viruses may play a role in driving chronic immune activation. The site of integration may determine the likelihood of proliferation and the degree of basal and induced transcription. Finally, host factors and gene expression at the time of infection may determine the integration site. Together these new insights may lead to novel approaches to elimination of latently infected cells.
NASA Astrophysics Data System (ADS)
Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.
2016-07-01
Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.
1974-12-01
defect types were tested at various levels: Comet- Tail, Dig-Nick, Dirt Brinell, Grind-Skip Lines, Impingement, Orange Peel , Pit, Scratch and "Liney...Shallow irregular indentation of surface. <.0015 max. dim. -(<.0008)*’ Otange Peel Pebbly appearance of raceway surface. Small ** Comet Tail Pit...scratch; dig-nick; impingement; grind-skip lines; and orange peel . The data obtained indicated that these defects in most cases, affected bearing
Han, Ba Leun; Choi, Hwan Jun
2014-03-01
Sequential flap coverage might be required for recurrent defects, but reusing a flap as a donor site has seldom been reported. The concept of a "free-style flap" has been developed, and it allows reconstructive surgeons to raise flaps with various designs reliably, even at sites of previous flap surgery. This article presents the concept of free-style recycling of a tensor fascia lata flap into a perforator-based flap separated in 2 planes in a patient with a recurrent bilateral trochanteric defect. If a reliable perforator is preserved and identified within the tissues by computed tomography angiography or a Doppler device, a new perforator flap can be designed and raised at the previous flap site.
An intelligent system for real time automatic defect inspection on specular coated surfaces
NASA Astrophysics Data System (ADS)
Li, Jinhua; Parker, Johné M.; Hou, Zhen
2005-07-01
Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.
Applied algorithm in the liner inspection of solid rocket motors
NASA Astrophysics Data System (ADS)
Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet
2018-03-01
In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.
Flagellar motility is critical for Listeria monocytogenes biofilm formation.
Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto
2007-06-01
The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Gihun, E-mail: G.Ryu@fkf.mpg.de; Son, Kwanghyo
A defect-free high quality single crystal of spin dimer TlCuCl{sub 3} compound is firstly synthesized at the optimal growth temperature using the vertical Bridgman method. In this study, we clearly found that the cupric chloride is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C. The Cl{sup −}- related gas phase at the high temperature region also always gives rise to a pinhole-like surface defect at the surface of crystal. Therefore, we clearly verified an exotic anisotropic magnetic behavior (anisotropic ratio of M{sub b}/M{sub (201)} at 2 K, 7 T=10) using the defect-free TlCuCl{sub 3} crystals in thismore » three-dimensional spin dimer TlCuCl{sub 3} compound, relatively stronger magnetic ordering in the H//b than that of H//(201) direction at above the transition magnetic field. - Graphical abstract: A single crystal of spin dimer TlCuCl{sub 3} compound with a defect free is successfully synthesized on the basis of TG/DTA result. We newly found that this cupric chloride compound is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C and Cl{sup −} related gas phases also give rise to the defects like a pinhole on the surface of TlCuCl{sub 3} crystal. Using the crystals with a surface defect free, we also clearly verified the crystal structure of spin dimer TlCuCl{sub 3} compound.« less
Single-site neural tube closure in human embryos revisited.
de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan
2017-10-01
Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Seifi, Massoud; Ghoraishian, Seyed Ahmad
2012-01-01
Background: Socket preservation after tooth extraction is one of the indications of bone grafting to enhance preorthodontic condition. The aim of this study is to determine the effects of socket preservation on the immediate tooth movement, alveolar ridge height preservation and orthodontic root resorption. Materials and Methods: In a split-mouth technique, twelve sites in three dogs were investigated as an experimental study. Crushed demineralized freeze-dried bone allograft (DFDBA) (CenoBone®) was used as the graft material. The defects were made by the extraction of 3rd premolar. On one side of each jaw, the defects were preserved by DFDBA and defects of the other side left opened as the control group. Simultaneously the teeth adjacent to the defects were pulled together by a NiTi coil spring. After eight weeks, the amount of (OTM), alveolar height, and root resorption were measured. Analysis of variance was used for purpose of comparison. Results: There was a slight increase in OTM at grafted sites as they were compared to the control sites (P<0.05). Also a significant bone resorption in control site and successful socket preservation in experimental site were observed. Reduction of root resorption at the augmented site was significant compared to the normal healing site (P<0.05). Conclusion: Using socket preservation, tooth movement can be immediately started without waiting for the healing of the recipient site. This can provide some advantages like enhanced rate of OTM, its approved effects on ridge preservation that reduces the chance of dehiscence and the reduction of root resorption. PMID:22623939
Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.
2001-09-01
Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.
Qiu, Z; Hobman, T C; McDonald, H L; Seto, N O; Gillam, S
1992-01-01
The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site. Images PMID:1583721
Soliton-like defects in nematic liquid crystal thin layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru
The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions ofmore » a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.« less
Development of an optical inspection platform for surface defect detection in touch panel glass
NASA Astrophysics Data System (ADS)
Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu
2016-04-01
An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.
Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching
NASA Astrophysics Data System (ADS)
McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.
2016-10-01
The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 < x < 0.17) layers. SPV measurements reveal significant deviation from previous SPV studies on p-GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.
Peng, Feng; Chen, Lin; Han, Dong; Xiao, Chenwei; Bao, Qiyuan; Wang, Tao
2013-11-01
We presented our experience on the use of anterolateral thigh (ALT) chimeric flap to reconstruct two separate defects in upper extremity. From December 2009 to August 2012, we used this ALT chimeric flap to reconstruct two separate defects in upper extremity on five patients (mean age: 36.6 years; range: 15 ∼ 47 years). The locations of defect were palm and fingers in four patients and forearm in the other patient. The sizes of defect ranged from 4.5 × 1.5 cm to 20 × 10 cm. A minimum of two separate perforator vessels in the flap were identified. The skin paddle was then split between the two perforators to shape two separate paddles with a common vascular supply. There were no cases of flap failure or re-exploration. Four donor sites were directly closed and one was covered by a skin graft. Donor-site morbidity was negligible. The ALT chimeric flap provides customized cover for two separate defects in upper extremity. Copyright © 2013 Wiley Periodicals, Inc.
Reconstruction of the midface and maxilla.
Dalgorf, Dustin; Higgins, Kevin
2008-08-01
To review the current classification systems and reconstructive options available for restoration of maxillectomy defects. Defects involving the midface can have a great functional and aesthetic impact on the patient. Adequate restoration of the complex three-dimensional maxillary structure is required to replace form and function of the native tissue. An in-depth discussion of appropriate recipient vessel selection and reconstructive options are included in this article. The superficial temporal vessel system is presented as a reliable anastomosis site for restoration of midfacial defects. In addition, the complications of vein grafting, arteriovenous fistula loops and alternative recipient vessels sites are addressed to manage the challenge of the vessel-depleted neck. The current indications, advantages and disadvantages of local, regional and free-flap reconstructive options available for maxillectomy defects are highlighted in order to aid the surgeon in appropriate flap selection. A myriad of reconstructive options are available to restore maxillectomy defects. The surgeon must consider each defect and the needs of the individual patient when choosing the best suited reconstructive technique.
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
Xie, Jin; Liao, Lei; Gong, Yongji; Li, Yanbin; Shi, Feifei; Pei, Allen; Sun, Jie; Zhang, Rufan; Kong, Biao; Subbaraman, Ram; Christensen, Jake; Cui, Yi
2017-01-01
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte. PMID:29202031
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin; Liao, Lei; Gong, Yongji
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less
Reconstruction of Canine Mandibular Bone Defects Using a Bone Transport Reconstruction Plate
Elsalanty, Mohammed E.; Zakhary, Ibrahim; Akeel, Sara; Benson, Byron; Mulone, Timothy; Triplett, Gilbert R.; Opperman, Lynne A.
2010-01-01
Objectives Reconstruction of mandibular segmental bone defects is a challenging task. This study tests a new device used for reconstructing mandibular defects based on the principle of bone transport distraction osteogenesis. Methods Thirteen beagle dogs were divided into control and experimental groups. In all animals, a 3 cm defect was created on one side of the mandible. In eight control animals, the defect was stabilized with a reconstruction plate without further reconstruction and the animals were sacrificed two to three months after surgery. The remaining five animals were reconstructed with a bone transport reconstruction plate (BTRP), comprising a reconstruction plate with attached intraoral transport unit, and were sacrificed after one month of consolidation. Results Clinical evaluation, cone-beam CT densitometry, three-dimensional histomorphometry, and docking site histology revealed significant new bone formation within the defect in the distracted group. Conclusion The physical dimensions and architectural parameters of the new bone were comparable to the contralateral normal bone. Bone union at the docking site remains a problem. PMID:19770704
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
Xie, Jin; Liao, Lei; Gong, Yongji; ...
2017-11-29
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less
Surface Inspection Tool for Optical Detection of Surface Defects
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert; Dyer, Dustin
2013-01-01
The Space Shuttle Orbiter windows were damaged both by micrometeor impacts and by handling, and required careful inspection before they could be reused. The launch commit criteria required that no defect be deeper than a critical depth. The shuttle program used a refocus microscope to perform a quick pass/fail determination, and then followed up with mold impressions to better quantify any defect. However, the refocus microscope is slow and tedious to use due to its limited field of view, only focusing on one small area of glass at a time. Additionally, the unit is bulky and unable to be used in areas with tight access, such as defects near the window frame or on the glass inside the Orbiter due to interference with the dashboard. The surface inspection tool is a low-profile handheld instrument that provides two digital video images on a computer for monitoring surface defects. The first image is a wide-angle view to assist the user in locating defects. The second provides an enlarged view of a defect centered in the window of the first image. The focus is adjustable for each of the images. However, the enlarged view was designed to have a focal plane with a short depth. This allows the user to get a feel for the depth of different parts of the defect under inspection as the focus control is varied. A light source is also provided to illuminate the defect, precluding the need for separate lighting tools. The software provides many controls to adjust image quality, along with the ability to zoom digitally the images and to capture and store them for later processing.
NASA Astrophysics Data System (ADS)
Freyss, Michel
2010-01-01
Point defects and volatile impurities (helium, xenon, oxygen) in uranium monocarbide UC are studied by first-principles calculations. Preliminarily, bulk properties of UC and of two other uranium carbide phases, UC2 and U2C3 , are calculated in order to compare them to experimental data and to get confidence in the use of the generalized gradient approximation for this class of compounds. The subsequent study of different types of point defects shows that the carbon sublattice best accommodates the defects. The perturbation of the crystal structure induced by the defects is weak and the interaction between defects is found short range. Interstitial carbon dumbbells possibly play an important role in the diffusion of carbon atoms. The most favorable location of diluted helium, xenon, and oxygen impurities in the UC crystal lattice is then determined. The rare-gas atoms occupy preferably a uranium substitution site or a uranium site in a U-C bivacancy. But their incorporation in UC is, however, not energetically favorable, especially for xenon, suggesting their propensity to diffuse in the material and/or form bubbles. On the other hand, oxygen atoms are very favorably incorporated as diluted atoms in the UC lattice, confirming the easy oxidation of UC. The oxygen atoms preferably occupy a carbon substitution site or the carbon site of a U-C bivacancy. Our results are compared to available experimental data on UC and to similar studies by first-principles calculations for other carbides and nitrides with the rock-salt structure.
Won, Yougun; Lee, Gi Soo; Kim, Sang Bum; Kim, Sun Joong; Yang, Kyu Hyun
2016-11-01
As anatomical reduction of the articular surface of femoral head fractures and restoration of damaged cartilage are essential for good long-term results, many treatment options have been suggested, including fixation of the fracture using various surgical exposures and implants, as well as arthroscopic irrigation and debridement, bone marrow stimulating techniques, osteochondral allograft, autograft, and autogenous chondrocyte implantation. We report a case of osteochondral autograft harvested from its own femoral articular surface through surgical hip dislocation. The osteochondral graft was harvested from the inferior non-weight-bearing articular surface and grafted to the osteochondral defect. One year later, the clinical and radiological results were good, without the collapse of the femoral head or arthritic change. This procedure introduced in our case is considered convenient and able to lessen surgical time without morbidity of the donor site associated with the harvest.
NASA Astrophysics Data System (ADS)
Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.
2013-02-01
The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.
Laser scatter feature of surface defect on apples
NASA Astrophysics Data System (ADS)
Rao, Xiuqin; Ying, Yibin; Cen, YiKe; Huang, Haibo
2006-10-01
A machine vision system for real-time fruit quality inspection was developed. The system consists of a chamber, a laser projector, a TMS-7DSP CCD camera (PULNIX Inc.), and a computer. A Meteor-II/MC frame grabber (Matrox Graphics Inc.) was inserted into the slot of the computer to grab fruit images. The laser projector and the camera were mounted at the ceiling of the chamber. An apple was put in the chamber, the spot of the laser projector was projected on the surface of the fruit, and an image was grabbed. 2 breed of apples was test, Each apple was imaged twice, one was imaged for the normal surface, and the other for the defect. The red component of the images was used to get the feature of the defect and the sound surface of the fruits. The average value, STD value and comentropy Value of red component of the laser scatter image were analyzed. The Standard Deviation value of red component of normal is more suitable to separate the defect surface from sound surface for the ShuijinFuji apples, but for bintang apples, there is more work need to do to separate the different surface with laser scatter image.
Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas
2017-01-01
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu
2018-04-01
Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.
Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.
2015-01-01
We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.
NASA Astrophysics Data System (ADS)
Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki
High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.
Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV
NASA Astrophysics Data System (ADS)
Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration
2014-03-01
Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.
Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam
NASA Astrophysics Data System (ADS)
Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.
2012-01-01
Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.
Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.
Solchaga, Luis A; Temenoff, Johnna S; Gao, Jizong; Mikos, Antonios G; Caplan, Arnold I; Goldberg, Victor M
2005-04-01
The natural repair of osteochondral defects can be enhanced with biocompatible, biodegradable materials that support the repair process. It is our hypothesis that hyaluronan-based scaffolds are superior to synthetic scaffolds because they provide biological cues. We tested this thesis by comparing two hyaluronan-based scaffolds [auto cross-linked polysaccharide polymer (ACP) and HYAFF-11] to polyester-based scaffolds [poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA)] with similar pore size, porosity and degradation times. Fifty-four rabbits received bilateral osteochondral defects. One defect received a hyaluronan-based scaffold and the contralateral defect received the corresponding polyester-based scaffold. Rabbits were euthanized 4, 12 and 20 weeks after surgery and the condyles dissected and processed for histology. Only ACP-treated defects presented bone at the base of the defect at 4 weeks. At 12 weeks, only defects treated with rapidly dissolving implants (ACP and PLGA) presented bone reconstitution consistently, while bone was present in only one third of those treated with slowly dissolving scaffolds (HYAFF-11 and PLLA). After 20 weeks, the articular surface of PLGA-treated defects presented fibrillation more frequently than in ACP-treated defects. The surface of defects treated with slowly dissolving scaffolds presented more cracks and fissures. The degradation rate of the scaffolds is critical for the repair process. Slowly dissolving scaffolds sustain thicker cartilage at the surface but, it frequently presents cracks and discontinuities. These scaffolds also delay bone formation at the base of the defects. Hyaluronan-based scaffolds appear to allow faster cell infiltration leading to faster tissue formation. The degradation of ACP leads to rapid bone formation while the slow degradation of HYAFF-11 prolongs the presence of cartilage and delays endochondral bone formation.
Computational design of surfaces, nanostructures and optoelectronic materials
NASA Astrophysics Data System (ADS)
Choudhary, Kamal
Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.
Debye screening in single-molecule carbon nanotube field-effect sensors.
Sorgenfrei, Sebastian; Chiu, Chien-Yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L
2011-09-14
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.
Debye screening in single-molecule carbon nanotube field-effect transistors
Sorgenfrei, Sebastian; Chiu, Chien-yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L.
2013-01-01
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough repulsive potentials, the target DNA is completely repelled and RTN is suppressed. PMID:21806018
Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester
2016-03-01
Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.
Tangjaroen, Somard; Watanapa, Prasit
2014-02-01
Port-site hernia (PSH) is one of the complications after laparoscopic cholecystectomy (LC). Closure of the fascial defect has been mentioned to prevent such complication. However, the results are still controversial. The present study was done to clarify whether unclosed fascial defect was actually the risk factor for the development of PSH MATERIAL AND METHOD: Two hundred ninety four patients underwent LC by a single surgeon at Kalasin Hospital between 2007 and 2010. The procedure was done by using a four-port technique without closure of any fascial defects. The male:female ratio was 85:209, and the mean body mass index was 24.38 +/- 3.33 (SD). The mean operative time was 18.71 +/- 3.76 minutes and there was no postoperative wound infection. Patients were regularly followed-up and underwent both supine and upright physical examination. The mean duration of follow-up period was 4.94 +/- 1.31 years with the shortest follow-up period of two years. None of the patients in the present study developed PSH in any port sites during the follow-up period. Unclosed fascial defect may not have the significant risk factor of developing PSH after LC.
Everette D. Rast; John A. Beaton; John A. Beaton
1985-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide aids the individual in identifying the surface defect indicator and also shows the progressive stages of the defect throughout its development for black cherry. It illustrates and...
Everette D. Rast; John A. Beaton; David L. Sonderman
1991-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow birch. Eleven types of external...
Everette D. Rast; John A. Beaton; David L. Sonderman
1991-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for sugar maple. Eleven types of external...
Everette D.Beaton John A. Rast; David L. Sonderman; David L. Sonderman
1988-01-01
To properly classify qr grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide aids the individual in identifying the surface defect indicator and also shows the progressive stages of the defect throughout its develqpment for black walnut. It illustrates and...
Everette D. Rast; John A. Beaton; David L. Sonderman; David L. Sonderman
1989-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and also shows the progressive stages of the defect throughout its development for white oak. It illustrates and...
Everette D. Rast; John A. Beaton; David L. Sonderman
1991-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...
Everette D. Rast
1982-01-01
To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide aids the individual in identifying the surface defect indicator and also shows the progressive stages of the defect throughout its development. It illustrates and describes eight types...
Metalworking defects in surgery screws as a possible cause of post-surgical infections
NASA Astrophysics Data System (ADS)
Spector, Mario; Peretti, Leandro E.; Romero, Gustavo
2016-04-01
In the first phase of this work, surface defects (metalworking) in stainless steel implantable prostheses and their possible relation to infections that can be generated after surgery was studied. In a second phase, the results obtained in the aforementioned stage were applied to knee cruciate ligaments surgery screws, considering the fact that a substantial number of Mucormycetes infections have been reported after arthroscopic surgery in Argentina since the year 2005. Two types of screws, transverse and interference screws, were analyzed. The Allen heads presented defects such as burrs and metalworking bending as a result of the machining process. These defects allow the accumulation of machining oil, which could be contaminated with fungal spores. When this is the case, the gaseous sterilization by ethylene oxide may be jeopardized. Cortical screws were also analyzed and were found to present serious metalworking defects inside their heads. To reduce the risk of infection in surgery, the use of screws with metalworking defects on the outer surface, analyzed with stereomicroscope and considering the inside part of the Allen as an outer surface, should be avoided altogether.
Atomically Flat Surfaces Developed for Improved Semiconductor Devices
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
2001-01-01
New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
Hassan, Khalid S; Marei, Hesham F; Alagl, Adel S
2012-04-01
This study was designed to evaluate the use of xenograft plus a membrane as grafting material for periodontal osseous defects distal to the mandibular second molar compared with nongrafted extraction sites after removal of impacted mandibular third molars. We performed a single-blind, randomized, controlled clinical trial, and the sample comprised of subjects at high risk for the development of periodontal osseous defects distal to the second molar after third molar extraction (aged 30-35 years), pre-existing osseous defects distal to the second molar, and horizontal third molar impaction. The predictor variable was the treatment status of the second molar osseous defects. The third molar extraction sites were grafted with an anorganic xenograft plus a membrane. The other sites received a full-thickness flap and extraction of the third molar without placement of the grafting materials. The outcome variables were the change in gingival index, pocket probing depth, and clinical attachment level on the distobuccal aspect of the second molar preoperatively and at 3, 6, 9, and 12 months after surgery. Data were statistically analyzed by multivariate analysis of variance, and the statistical significance was set at P < .05. The study was composed of 28 sites that were selected by use of a split-mouth design for each patient, and this was randomly determined through a biased coin randomization. Twelve months after third molar removal, there was a statistically significant gain in the clinical attachment level and a reduction in the probing pocket depth in the grafted sites compared with the nongrafted sites (P < .001). Moreover, there was a significant difference in the alveolar bone height during the monitoring periods for the grafted sites compared with the nongrafted sites (P < .001). Grafting of osseous defects distal to mandibular second molars with an anorganic xenograft plus a membrane predictably resulted in a significant reduction in the probing pocket depth, clinical attachment level gain, and bone fill, which suggests that grafting the extraction sites with an anorganic xenograft plus a membrane could prevent periodontal disease in the future. Published by Elsevier Inc.
The frictional response of patterned soft polymer surfaces
NASA Astrophysics Data System (ADS)
Rand, Charles J.
2008-10-01
Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid film/soft elastomer interface. These aligned wrinkled surfaces can be used to tune the adhesion and friction of an interface. The work presented here gives insight into tuning the friction of a soft polymeric surface as well as understanding the friction of complex hierarchical structures.
Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films
Yang, Ye; Yang, Mengjin; Moore, David T.; ...
2017-01-23
Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning thatmore » recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. As a result, the surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.« less
NASA Astrophysics Data System (ADS)
Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier
2014-05-01
As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the visible spectrum would hinder the projected light beam since a laser with wavelength of 532 nm was used as the coherent light source. Experimentations were successful, but only with mitigated efficiency for shearography [2]. The thermal response was the fastest and it was possible to fully locate all defects. For shearography, the available equipment forced us to restrict the area of observation to only one defect at a time (roughly 100 cm²). Numerical models were designed based on the multiple sample tested in the experimental step of the study. Using the COMSOL© finite elements modeling software, numerous simulations yielded results in accordance with experimental data. Different types of defect could be modeled and showed that both shearography and thermography have different sensibility in function of the nature of the defect. Furthermore, analysis of the simulated results demonstrated a relation between the contrast evolution of the temperature and displacement field. In the near future, we expect to make several improvement to our experimental setup. As for the numerical model, some small disparities between the theoretical and experimental results still remain to be addressed. The numerical model could be improved but to do so it requires to raise the shearographic measurements sampling rate close to the one used for infrared thermography. Once this issue will be resolved, it will be possible to use experimental data to refine the numerical model. So, accurate models will be helpful to optimize the overall efficiency of the coupling of thermal shearography and active infrared thermography for in situ NDT application. References [1] Y.Y. Hung, C.Y. Liand, Image-shearing camera for direct measurement of surface strains, Applied Optics, Vol. 18, n°7, pages 1046-1051, 1979 [2] L-D. Théroux, J. Dumoulin, X. Maldague, Square heating applied to shearography and active infrared thermography measurements coupling: form feasibility test in laboratory to numerical study of pultruded CFRP plates glued on concrete specimen, STRAIN journal, in press
Kobayashi, Yasukazu; Yasuda, Kazunori; Kondo, Eiji; Katsura, Taro; Tanabe, Yoshie; Kimura, Masashi; Tohyama, Harukazu
2010-04-01
Concerning meniscal tissue regeneration, many investigators have studied the development of a tissue-engineered meniscus. However, the utility still remains unknown. Implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect may significantly enhance fibrocartilage regeneration in vivo in the defect. Controlled laboratory study. Seventy-five mature rabbits were used in this study. In each animal, an anterior one-third of the right medial meniscus was resected. Then, the animals were divided into the following 3 groups of 25 rabbits each: In group 1, no treatment was applied to the meniscal defect. In group 2, the defect was covered with a fascia sheath. In group 3, after the resected meniscus was fragmented into small pieces, the fragments were grafted into the defect. Then, the defect with the meniscal fragments was covered with a fascia sheath. In each group, 5 rabbits were used for histological evaluation at 3, 6, and 12 weeks after surgery, and 5 rabbits were used for biomechanical evaluation at 6 and 12 weeks after surgery. Histologically, large round cells in group 3 were scattered in the core portion of the meniscus-shaped tissue, and the matrix around these cells was positively stained by safranin O and toluisin blue at 12 weeks. The histological score of group 3 was significantly higher than that of group 1 and group 2. Biomechanically, the maximal load and stiffness of group 3 were significantly greater than those of groups 1 and 2. This study clearly demonstrated that implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect significantly enhanced fibrocartilage regeneration in vivo in the defect at 12 weeks after implantation in the rabbit. This study proposed a novel strategy to treat a large defect after a meniscectomy.
Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au
NASA Astrophysics Data System (ADS)
Radetic, T.; Lançon, F.; Dahmen, U.
2002-08-01
We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
NASA Astrophysics Data System (ADS)
Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul
2017-11-01
In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.
A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH
NASA Astrophysics Data System (ADS)
Wu, Y. C.; Zhai, T.; Coleman, P. G.
2012-08-01
Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.
Imaging and manipulation of adatoms on an alumina surface by noncontact atomic force microscopy
NASA Astrophysics Data System (ADS)
Simon, G. H.; Heyde, M.; Freund, H.-J.
2012-02-01
Noncontact atomic force microscopy (NC-AFM) has been performed on an aluminum oxide film grown on NiAl(110) in ultrahigh vacuum (UHV) at low temperature (5 K). Results reproduce the topography of the structural model, unlike scanning tunnelling microscopy (STM) images. Equipped with this extraordinary contrast the network of extended defects, which stems from domain boundaries intersecting the film surface, can be analysed in atomic detail. The knowledge of occurring surface structures opens up the opportunity to determine adsorption sites of individual adsorbates on the alumina film. The level of difficulty for such imaging depends on the imaging characteristics of the substrate and the interaction which can be maintained above the adsorbate. Positions of single adsorbed gold atoms within the unit cell have been determined despite their easy removal at slightly higher interaction strength. Preliminary manipulation experiments indicate a pick-up process for the vanishing of the gold adatoms from the film surface.
Slow positrons in the study of surface and near-surface defects
NASA Astrophysics Data System (ADS)
Lynn, K. G.
A general theoretical model is presented which includes the probability of a positron diffusing back to the surface after implantation, and thermalization in samples containing various defects. This model incorporates surface state and thermal desorption from this state, as well as reflection back into the bulk. With this model vacancy formation enthalpies, activation energies of positrons from surface states, and specific trapping rates are deduced from the positronium fraction data. An amorphous Al/sub x/O/sub y/ overlayer on Al is discussed as an example of trapping in overlayers. In well-annealed single crystal samples, the positron is shown to be freely diffusing at low temperatures, whereas in a neutron-irradiatied Al single crystal sample the positron is localized at low positron binding energy defects presumably created during irradiation.
Method and apparatus for electrical cable testing by pulse-arrested spark discharge
Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.
2005-02-08
A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... structural defect. (d) Structural defect. A defect in the dwelling or unit, installation or set-up of a unit... of the dwelling or unit or site such as faulty wiring, or failure of sewage disposal or water supply systems located on the property securing the loan caused by faulty materials or improper installation. (3...
A Sensor System for Detection of Hull Surface Defects
Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan
2010-01-01
This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590
Early Orthodontic Tooth Movement into Regenerative Bony Defects: A Case Report.
Tsai, Hui-Chen; Yao, Chung-Chen Jane; Wong, Man-Ying
Early orthodontic tooth movement following regenerative surgery is controversial. In this case, during protraction of the maxillary right first premolar to substitute for the long-term missing maxillary right canine, Bio-Oss and Bio-Gide were used for lateral ridge augmentation at the area of the maxillary right lateral incisor and to cover the denuded surface at the buccal side of the first premolar. Orthodontic tooth movement (OTM) commenced 2 weeks after regenerative surgery. After 8 months, new bone formation was observed on the root surface of the first premolar during implant surgery. A cone beam computed tomography scan taken 1.5 years postsurgery revealed good maintenance of regenerative bone at the same site. This satisfactory outcome of early OTM following regenerative surgery suggests biomechanical stimulation may not jeopardize the regenerative effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Wolf, Walter; Wimmer, Erich
2013-01-09
The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less
Free toe pulp transfer for digital reconstruction after high-pressure injection injury.
Chan, B K; Tham, S K; Leung, M
1999-10-01
We report two cases of high-pressure injection injuries to the fingertip in which free toe pulp flaps were used to resurface the palmar surface of the finger following extensive wound debridement. There was good return of sensibility and, because of the high durability of the donor skin, both patients regained good functional use of the injured digits and returned to heavy manual work. There was minimal associated morbidity of the donor sites. The free toe pulp flap represents an excellent alternative for resurfacing the digit with a large residual skin defect after high-pressure injection injury.
Use of Adipose Derived Stem Cells to Treat Large Bone Defects. Addendum
2009-07-01
optimal delivery . We have also completed characterization of our segmental defect model, including analysis of vascular ingrowth during defect healing...cells seeded in 1.2% Keltone alginate at a density of 12-15x106cells/ml were loaded on 24-well transwell insert membranes [6]. Once hydrogel discs...process from tissue culture plates and hydrogels does not alter the surface phenotype. Gene expression of surface markers and proteins associated with
Saludes-Rodil, Sergio; Baeyens, Enrique; Rodríguez-Juan, Carlos P
2015-04-29
An unsupervised approach to classify surface defects in wire rod manufacturing is developed in this paper. The defects are extracted from an eddy current signal and classified using a clustering technique that uses the dynamic time warping distance as the dissimilarity measure. The new approach has been successfully tested using industrial data. It is shown that it outperforms other classification alternatives, such as the modified Fourier descriptors.
Multiple splicing defects in an intronic false exon.
Sun, H; Chasin, L A
2000-09-01
Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.
NASA Astrophysics Data System (ADS)
Zhang, Xueqiang Alex; Jain, Prashant
2017-06-01
Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.
Three-dimensional printing and porous metallic surfaces: a new orthopedic application.
Melican, M C; Zimmerman, M C; Dhillon, M S; Ponnambalam, A R; Curodeau, A; Parsons, J R
2001-05-01
As-cast, porous surfaced CoCr implants were tested for bone interfacial shear strength in a canine transcortical model. Three-dimensional printing (3DP) was used to create complex molds with a dimensional resolution of 175 microm. 3DP is a solid freeform fabrication technique that can generate ceramic pieces by printing binder onto a bed of ceramic powder. A printhead is rastered across the powder, building a monolithic mold, layer by layer. Using these 3DP molds, surfaces can be textured "as-cast," eliminating the need for additional processing as with commercially available sintered beads or wire mesh surfaces. Three experimental textures were fabricated, each consisting of a surface layer and deep layer with distinct individual porosities. The surface layer ranged from a porosity of 38% (Surface Y) to 67% (Surface Z), whereas the deep layer ranged from 39% (Surface Z) to 63% (Surface Y). An intermediate texture was fabricated that consisted of 43% porosity in both surface and deep layers (Surface X). Control surfaces were commercial sintered beaded coatings with a nominal porosity of 37%. A well-documented canine transcortical implant model was utilized to evaluate these experimental surfaces. In this model, five cylindrical implants were placed in transverse bicortical defects in each femur of purpose bred coonhounds. A Latin Square technique was used to randomize the experimental implants left to right and proximal to distal within a given animal and among animals. Each experimental site was paired with a porous coated control site located at the same level in the contralateral limb. Thus, for each of the three time periods (6, 12, and 26 weeks) five dogs were utilized, yielding a total of 24 experimental sites and 24 matched pair control sites. At each time period, mechanical push-out tests were used to evaluate interfacial shear strength. Other specimens were subjected to histomorphometric analysis. Macrotexture Z, with the highest surface porosity, failed at a significantly higher shear stress (p = 0.05) than the porous coated controls at 26 weeks. It is postulated that an increased volume of ingrown bone, resulting from a combination of high surface porosity and a high percentage of ingrowth, was responsible for the observed improvement in strength. Macrotextures X and Y also had significantly greater bone ingrowth than the controls (p = 0.05 at 26 weeks), and displayed, on average, greater interfacial shear strengths than controls, although they were not statistically significant. Copyright 2001 John Wiley & Sons
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Qianlai; Wang, Yin; Sun, Zhiyi
2018-05-01
For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.
Foam morphology, frustration and topological defects in a Negatively curved Hele-Shaw geometry
NASA Astrophysics Data System (ADS)
Mughal, Adil; Schroeder-Turk, Gerd; Evans, Myfanwy
2014-03-01
We present preliminary simulations of foams and single bubbles confined in a narrow gap between parallel surfaces. Unlike previous work, in which the bounding surfaces are flat (the so called Hele-Shaw geometry), we consider surfaces with non-vanishing Gaussian curvature. We demonstrate that the curvature of the bounding surfaces induce a geometric frustration in the preferred order of the foam. This frustration can be relieved by the introduction of topological defects (disclinations, dislocations and complex scar arrangements). We give a detailed analysis of these defects for foams confined in curved Hele-Shaw cells and compare our results with exotic honeycombs, built by bees on surfaces of varying Gaussian curvature. Our simulations, while encompassing surfaces of constant Gaussian curvature (such as the sphere and the cylinder), focus on surfaces with negative Gaussian curvature and in particular triply periodic minimal surfaces (such as the Schwarz P-surface and the Schoen's Gyroid surface). We use the results from a sphere-packing algorithm to generate a Voronoi partition that forms the basis of a Surface Evolver simulation, which yields a realistic foam morphology.
Electronic characterization of defects in narrow gap semiconductors
NASA Technical Reports Server (NTRS)
Patterson, James D.
1994-01-01
We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.
NASA Astrophysics Data System (ADS)
Mayboroda, I. O.; Knizhnik, A. A.; Grishchenko, Yu. V.; Ezubchenko, I. S.; Zanaveskin, Maxim L.; Kondratev, O. A.; Presniakov, M. Yu.; Potapkin, B. V.; Ilyin, V. A.
2017-09-01
The growth kinetics of AlGaN in NH3 MBE under significant Ga desorption was studied. It was found that the addition of gallium stimulates 2D growth and provides better morphology of films compared to pure AlN. The effect was experimentally observed at up to 98% desorption of the impinging gallium. We found that under the conditions of significant thermal desorption, larger amounts of gallium were retained at lateral boundaries of 3D surface features than at flat terraces because of the higher binding energy of Ga atoms at specific surface defects. The selective accumulation of gallium resulted in an increase in the lateral growth component through the formation of the Ga-enriched AlGaN phase at boundaries of 3D surface features. We studied the temperature dependence of AlGaN growth rate and developed a kinetic model analytically describing this dependence. As the model was in good agreement with the experimental data, we used it to estimate the increase in the binding energy of Ga atoms at surface defects compared to terrace surface sites using data on the Ga content in different AlGaN phases. We also applied first-principles calculations to the thermodynamic analysis of stable configurations on the AlN surface and then used these surface configurations to compare the binding energy of Ga atoms at terraces and steps. Both first-principles calculations and analytical estimations of the experimental results gave similar values of difference in binding energies; this value is 0.3 eV. Finally, it was studied experimentally whether gallium can act as a surfactant in AlN growth by NH3 MBE at elevated temperatures. Gallium application has allowed us to grow a 300 nm thick AlN film with a RMS surface roughness of 2.2 Å over an area of 10 × 10 μm and a reduced density of screw dislocations.
Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping
2017-02-01
Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.
Development of large engineered cartilage constructs from a small population of cells.
Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D
2013-01-01
Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Critical Role of Water and Oxygen Defects in C-O Scission during CO2 Reduction on Zn2GeO4(010).
Yang, Jing; Li, Yanlu; Zhao, Xian; Fan, Weiliu
2018-03-27
Exploration of catalyst structure and environmental sensitivity for C-O bond scission is essential for improving the conversion efficiency because of the inertness of CO 2 . We performed density functional theory calculations to understand the influence of the properties of adsorbed water and the reciprocal action with oxygen vacancy on the CO 2 dissociation mechanism on Zn 2 GeO 4 (010). When a perfect surface was hydrated, the introduction of H 2 O was predicted to promote the scission step by two modes based on its appearance, with the greatest enhancement from dissociative adsorbed H 2 O. The dissociative H 2 O lowers the barrier and reaction energy of CO 2 dissociation through hydrogen bonding to preactivate the C-O bond and assisted scission via a COOH intermediate. The perfect surface with bidentate-binding H 2 O was energetically more favorable for CO 2 dissociation than the surface with monodentate-binding H 2 O. Direct dissociation was energetically favored by the former, whereas monodentate H 2 O facilitated the H-assisted pathway. The defective surface exhibited a higher reactivity for CO 2 decomposition than the perfect surface because the generation of oxygen vacancies could disperse the product location. When the defective surface was hydrated, the reciprocal action for vacancy and surface H 2 O on CO 2 dissociation was related to the vacancy type. The presence of H 2 O substantially decreased the reaction energy for the direct dissociation of CO 2 on O 2c1 - and O 3c2 -defect surfaces, which converts the endoergic reaction to an exoergic reaction. However, the increased decomposition barrier made the step kinetically unfavorable and reduced the reaction rate. When H 2 O was present on the O 2c2 -defect surface, both the barrier and reaction energy for direct dissociation were invariable. This result indicated that the introduction of H 2 O had little effect on the kinetics and thermodynamics. Moreover, the H-assisted pathway was suppressed on all hydrated defect surfaces. These results provide a theoretical perspective for the design of highly efficient catalysts.
Wetting hysteresis induced by nanodefects
Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried
2016-01-01
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395
Photoluminescence of CuInS2 nanocrystals: effect of surface modification
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2011-09-01
We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb
Defect engineering of the electrochemical characteristics of carbon nanotube varieties
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.; Bandaru, Prabhakar R.
2010-08-01
The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multiwalled CNT morphologies. The controlled addition of argon ions was used for varying the charge and type of extrinsic defects. It was indicated from Raman spectroscopy and voltammetry that the electrocatalytic response of hollow type CNTs could be tailored more significantly, compared to bamboo type CNTs which have innately high reactive site densities and are less amenable to modification. An in-plane correlation length parameter was used to understand the variation of the defect density as a function of argon ion irradiation. The work has implications in the design of nanotube based chemical sensors, facilitated through the introduction of suitable reactive sites.
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
Effect of manufacturing defects on optical performance of discontinuous freeform lenses.
Wang, Kai; Liu, Sheng; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing
2009-03-30
Discontinuous freeform lens based secondary optics are essential to LED illumination systems. Surface roughness and smooth transition between two discrete sub-surfaces are two of the most common manufacturing defects existing in discontinuous freeform lenses. The effects of these two manufacturing defects on the optical performance of two discontinuous freeform lenses were investigated by comparing the experimental results with the numerical simulation results based on Monte Carlo ray trace method. The results demonstrated that manufacturing defects induced surface roughness had small effect on the light output efficiency and the shape of light pattern of the PMMA lens but significantly affected the uniformity of light pattern, which declined from 0.644 to 0.313. The smooth transition surfaces with deviation angle more than 60 degrees existing in the BK7 glass lens, not only reduced the uniformity of light pattern, but also reduced the light output efficiency from 96.9% to 91.0% and heavily deformed the shape of the light pattern. Comparing with the surface roughness, the smooth transition surface had a much more adverse effect on the optical performance of discontinuous freeform lenses. Three methods were suggested to improve the illumination performance according to the analysis and discussion.