Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics
Antiochia, Riccarda; Bollella, Paolo; Favero, Gabriele
2016-01-01
In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared. PMID:27594884
Laser speckle and skin cancer: skin roughness assessment
NASA Astrophysics Data System (ADS)
Lee, Tim K.; Tchvialeva, Lioudmila; Zeng, Haishan; McLean, David I.; Lui, Harvey
2009-10-01
Incidence of skin cancer has been increasing rapidly since the last few decades. Non-invasive optical diagnostic tools may improve the diagnostic accuracy. In this paper, skin structure, skin cancer statistics and subtypes of skin cancer are briefly reviewed. Among the subtypes, malignant melanoma is the most aggressive and dangerous; early detection dramatically improves the prognosis. Therefore, a non-invasive diagnostic tool for malignant melanoma is especially needed. In addition, in order for the diagnostic tool to be useful, it must be able to differentiate melanoma from common skin conditions such as seborrheic keratosis, a benign skin disease that resembles melanoma according to the well known clinical-assessment ABCD rule. The key diagnostic feature between these two diseases is surface roughness. Based on laser speckle contrast, our research team has recently developed a portable, optical, non-invasive, in-vivo diagnostic device for quantifying skin surface roughness. The methodology of our technique is described in details. Examining the preliminary data collected in a pilot clinical study for the prototype, we found that there was a difference in roughness between melanoma and seborrheic keratosis. In fact, there was a perfect cutoff value for the two diseases based on our initial data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.
2015-02-15
A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, andmore » we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.« less
Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River Basin
USDA-ARS?s Scientific Manuscript database
Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance, or with spatially distributed prognostic models that simultaneously balance both the energy and water budgets over landscapes using predictive equations for land...
When Diagnostic Labels Mask Trauma
ERIC Educational Resources Information Center
Foltz, Robert; Dang, Sidney; Daniels, Brian; Doyle, Hillary; McFee, Scott; Quisenberry, Carolyn
2013-01-01
A growing body of research shows that many seriously troubled children and adolescents are reacting to adverse life experiences. Yet traditional diagnostic labels are based on checklists of surface symptoms. Distracted by disruptive behavior, the common response is to medicate, punish, or exclude rather than respond to needs of youth who have…
Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics
NASA Astrophysics Data System (ADS)
Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.
2011-05-01
In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.
Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Driscoll, Ashley J.
Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system parameters such as particle diameter, initial analyte concentration and dissociation constants. The projected sensitivities over a broad range of assay conditions are examined and the governing regime of particle systems reported. The results provide metrics in the design of more robust analytics that are of particular interest for POC diagnostics.
Tsikata, Edem; Lee, Ramon; Shieh, Eric; Simavli, Huseyin; Que, Christian J.; Guo, Rong; Khoueir, Ziad; de Boer, Johannes; Chen, Teresa C.
2016-01-01
Purpose To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. Methods Neuroretinal rim parameters derived from three-dimensional (3D) volume scans were compared with the two-dimensional (2D) Spectralis retinal nerve fiber layer (RNFL) thickness scans for diagnostic capability. This study analyzed one eye per patient of 104 glaucoma patients and 58 healthy subjects. The shortest distances between the cup surface and the OCT-based disc margin were automatically calculated to determine the thickness and area of the minimum distance band (MDB) neuroretinal rim parameter. Traditional 150-μm reference surface–based rim parameters (volume, area, and thickness) were also calculated. The diagnostic capabilities of these five parameters were compared with RNFL thickness using the area under the receiver operating characteristic (AUROC) curves. Results The MDB thickness had significantly higher diagnostic capability than the RNFL thickness in the nasal (0.913 vs. 0.818, P = 0.004) and temporal (0.922 vs. 0.858, P = 0.026) quadrants and the inferonasal (0.950 vs. 0.897, P = 0.011) and superonasal (0.933 vs. 0.868, P = 0.012) sectors. The MDB area and the three neuroretinal rim parameters based on the 150-μm reference surface had diagnostic capabilities similar to RNFL thickness. Conclusions The 3D MDB thickness had a high diagnostic capability for glaucoma and may be of significant clinical utility. It had higher diagnostic capability than the RNFL thickness in the nasal and temporal quadrants and the inferonasal and superonasal sectors. PMID:27768203
On-chip purification and detection of hepatitis C virus RNA from human plasma.
Vaghi, V; Potrich, C; Pasquardini, L; Lunelli, L; Vanzetti, L; Ebranati, E; Lai, A; Zehender, G; Mombello, D; Cocuzza, M; Pirri, C F; Pederzolli, C
2016-01-01
Hepatitis C virus (HCV) is one of the main causes of chronic liver disease worldwide. The diagnosis and monitoring of HCV infection is a crucial need in the clinical management. The conventional diagnostic technologies are challenged when trying to address molecular diagnostics, especially because they require a complex and time-consuming sample preparation phase. Here, a new concept based on surface functionalization was applied to viral RNA purification: first of all polydimethylsiloxane (PDMS) flat surfaces were modified to hold RNA adsorption. After a careful chemical and morphological analysis of the modified surfaces, the functionalization protocols giving the best RNA adsorbing surfaces were applied to PDMS microdevices. The functionalized microdevices were then used for RNA purification from HCV infected human plasma samples. RNA purification and RT were successfully performed in the same microdevice chamber, saving time of analysis, reagents, and labor. The PCR protocol for HCV cDNA amplification was also implemented in the microdevice, demonstrating that the entire process of HCV analysis, from plasma to molecular readout, could be performed on-chip. Not only HCV but also other microdevice-based viral RNA detection could therefore result in a successful Point-of-Care (POC) diagnostics for resource-limited settings. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong
2014-09-01
A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.
Automated Dermoscopy Image Analysis of Pigmented Skin Lesions
Baldi, Alfonso; Quartulli, Marco; Murace, Raffaele; Dragonetti, Emanuele; Manganaro, Mario; Guerra, Oscar; Bizzi, Stefano
2010-01-01
Dermoscopy (dermatoscopy, epiluminescence microscopy) is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs), allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis). This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR). PMID:24281070
[Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].
Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I
2002-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.
NASA Astrophysics Data System (ADS)
Brito, Ana; Lopes, Ilídio
2017-04-01
We use a seismic diagnostic, based on the derivative of the phase shift of the acoustic waves reflected by the surface, to probe the outer layers of the star HD 49933. This diagnostic is particularly sensitive to partial ionization processes occurring above the base of the convective zone. The regions of partial ionization of light elements, hydrogen and helium, have well-known seismological signatures. In this work, we detect a different seismic signature in the acoustic frequencies, which we showed to correspond to the location where the partial ionization of heavy elements occurs. The location of the corresponding acoustic glitch lies between the region of the second ionization of helium and the base of the convective zone, approximately 5 per cent below the surface of the stars.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao
2014-09-01
This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.
3D Human cartilage surface characterization by optical coherence tomography.
Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven
2015-10-07
Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8 × 8, 4 × 4 and 1 × 1 mm (width × length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.
3D Human cartilage surface characterization by optical coherence tomography
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven
2015-10-01
Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8 × 8, 4 × 4 and 1 × 1 mm (width × length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.
HIDRA-MAT: A Material Analysis Tool for Fusion Devices
NASA Astrophysics Data System (ADS)
Andruczyk, Daniel; Rizkallah, Rabel; Bedoya, Felipe; Kapat, Aveek; Schamis, Hanna; Allain, Jean Paul
2017-10-01
The former WEGA stellarator which is now operating as HIDRA at the University of Illinois will be almost exclusively used to study the intimate relationship between the plasma interacting with surfaces of different materials. A Material Analysis Tool (HIDRA-MAT) is being designed and will be built based on the successful Material Analysis and Particle Probe (MAPP) which is currently used on NSTX-U at PPPL. This will be an in-situ material diagnostic probe, meaning that all analysis can be done without breaking vacuum. This allows surface changes to be studied in real-time. HIDRA-MAT will consist of several in-situ diagnostics including Langmuir probes (LP), Thermal Desorption Spectroscopy (TDS), X-ray Photo Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). This presentation will outline the HIDRA-MAT diagnostic and initial design, as well as its integration into the HIDRA system.
NASA Astrophysics Data System (ADS)
Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay
2014-09-01
This letter presents a method which employs surface acoustic wave induced acoustic streaming to differentially peel treated red blood cells (RBCs) off a substrate based on their adhesive properties and separate populations of pathological cells from normal ones. We demonstrate the principle of operation by comparing the applied power and time required to overcome the adhesion displayed by healthy, glutaraldehyde-treated or malaria-infected human RBCs. Our experiments indicate that the method can be used to differentiate between various cell populations contained in a 9 μl droplet within 30 s, suggesting potential for rapid diagnostics.
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)
1995-01-01
Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.
NASA Astrophysics Data System (ADS)
Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao
2013-02-01
The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.
Shin, Chulwoo
2016-09-06
The genus Eurypedus Gistel is revised based on detailed morphological study, including examination of the mouthparts and genitalia. Besides previously known diagnostic characters, such as an oblong and laterally parallel-sided body, narrow elytral lamella, narrow prosternal process between the procoxae, and angled pronotal base, new diagnostic characters are identified: antennal notches on the ventral surface of antennomeres V-XI, a stridulatory file on the vertex, and paired projections on the ventral surface of the pronotum. The distinct stridulatory file is found only in males. The number of ridges of the stridulatory file varies between 48 and 59. Eurypedus thoni Barber (= Cassida oblonga Sturm in Thon) syn. nov. is synonymized with E. peltoides (Boheman). The remaining two species E. peltoides and E. nigrosignatus (Boheman) show distinct distributions separated by the Amazon Basin.
Zhang, Ying; Alonzo, Todd A
2016-11-01
In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Weinstein-Webb, Joseph A.
Cancer is the second leading cause of death globally according to the World Health Organization. Especially dangerous and lethal are the breast cancers that have genetic mutations for surface receptors utilized in drug therapy. This resistance calls for new and innovative treatments that be optimized for cancers based on an individual patient basis/cancer phenotype. Nanoparticle based diagnostics and therapeutics have recently emerged as a novel platform for management and mitigation of cancer at all stages. Gold nanostructures, specifically, have multiple characteristics that make them ideal for cancer theranostics including: (i) high biocompatibility, (ii) ease of bioconjugation, (iii) ability to tune their plasmon resonance to absorb tissue penetrating near infrared light, (iv) their use as contrast agents, and (v) ability to convert light to heat when excited at the plasmon resonance for photothermal ablation of cancer cells. Further, due to their adaptability as a platform, the nanoparticles affect the battle against cancer in multiple different strategies. These theranostic gold nanoprobes can be incorporated into point of care diagnostic (POCD) systems for biomarker detection, used as theranostic probes to delivery multiplex SERS receptor imaging and photothermal therapy or be involved in future immunotherapy treatments. In this work we demonstrate the use of near-infrared light absorbing multibranched gold nanoantennas (MGNs) to simultaneously deliver diagnostic and therapeutic (theranostic) capabilities in cancer models. More aggressive cancer cell lines require approaches that are versatile and multifunctional, and the possibilities for the usage in diagnostics or therapeutics for these theranostic MGNs are abundant.
Rapid bacterial diagnostics via surface enhanced Raman microscopy.
Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D
2012-06-01
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
Ocular Pharmacology of Tear Film, Dry Eye, and Allergic Conjunctivitis.
Gulati, Shilpa; Jain, Sandeep
2017-01-01
Dry Eye Disease (DED) is "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear-film instability with potential damage to the ocular surface." DED comprises two etiologic categories: aqueous-deficient dry eye (ADDE) and evaporative dry eye (EDE). Diagnostic workup of DED should include clinical history, symptom questionnaire, fluorescein TBUT, ocular surface staining grading, Schirmer I/II, lid and meibomian pathology, meibomian expression, followed by other available tests. New diagnostic tests employ the Oculus Keratograph, which performs non-invasive tear-film analysis and a bulbar redness (BR). The TearLab Osmolarity Test enables rapid clinical evaluation of tear osmolarity. Lipiview is a recently developed diagnostic tool that uses interferometry to quantitatively evaluate tear-film thickness. In DED, epithelial and inflammatory cells produce a variety of inflammatory mediators. A stagnant tear film and decreased concentration of mucin result in the accumulation of inflammatory factors that can penetrate tight junctions and cause epithelial cell death. DED treatment algorithms are based on severity of clinical signs and symptoms, and disease etiology. Therapeutic approaches include lubricating artificial tears and immunomodulatory agents.
Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review.
Spin-Neto, Rubens; Gotfredsen, Erik; Wenzel, Ann
2013-08-01
The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.
Diagnostic methods for atmospheric inversions of long-lived greenhouse gases
NASA Astrophysics Data System (ADS)
Michalak, Anna M.; Randazzo, Nina A.; Chevallier, Frédéric
2017-06-01
The ability to predict the trajectory of climate change requires a clear understanding of the emissions and uptake (i.e., surface fluxes) of long-lived greenhouse gases (GHGs). Furthermore, the development of climate policies is driving a need to constrain the budgets of anthropogenic GHG emissions. Inverse problems that couple atmospheric observations of GHG concentrations with an atmospheric chemistry and transport model have increasingly been used to gain insights into surface fluxes. Given the inherent technical challenges associated with their solution, it is imperative that objective approaches exist for the evaluation of such inverse problems. Because direct observation of fluxes at compatible spatiotemporal scales is rarely possible, diagnostics tools must rely on indirect measures. Here we review diagnostics that have been implemented in recent studies and discuss their use in informing adjustments to model setup. We group the diagnostics along a continuum starting with those that are most closely related to the scientific question being targeted, and ending with those most closely tied to the statistical and computational setup of the inversion. We thus begin with diagnostics based on assessments against independent information (e.g., unused atmospheric observations, large-scale scientific constraints), followed by statistical diagnostics of inversion results, diagnostics based on sensitivity tests, and analyses of robustness (e.g., tests focusing on the chemistry and transport model, the atmospheric observations, or the statistical and computational framework), and close with the use of synthetic data experiments (i.e., observing system simulation experiments, OSSEs). We find that existing diagnostics provide a crucial toolbox for evaluating and improving flux estimates but, not surprisingly, cannot overcome the fundamental challenges associated with limited atmospheric observations or the lack of direct flux measurements at compatible scales. As atmospheric inversions are increasingly expected to contribute to national reporting of GHG emissions, the need for developing and implementing robust and transparent evaluation approaches will only grow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecale Zhou, C L; Zemla, A T; Roe, D
2005-01-29
Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set ofmore » ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.« less
Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care
NASA Astrophysics Data System (ADS)
Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard
2017-06-01
Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.
Surface Diagnostics in Tribology Technology and Advanced Coatings Development
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.
Visualization techniques for tongue analysis in traditional Chinese medicine
NASA Astrophysics Data System (ADS)
Pham, Binh L.; Cai, Yang
2004-05-01
Visual inspection of the tongue has been an important diagnostic method of Traditional Chinese Medicine (TCM). Clinic data have shown significant connections between various viscera cancers and abnormalities in the tongue and the tongue coating. Visual inspection of the tongue is simple and inexpensive, but the current practice in TCM is mainly experience-based and the quality of the visual inspection varies between individuals. The computerized inspection method provides quantitative models to evaluate color, texture and surface features on the tongue. In this paper, we investigate visualization techniques and processes to allow interactive data analysis with the aim to merge computerized measurements with human expert's diagnostic variables based on five-scale diagnostic conditions: Healthy (H), History Cancers (HC), History of Polyps (HP), Polyps (P) and Colon Cancer (C).
Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces
NASA Technical Reports Server (NTRS)
Marinelli, W. J.; Green, B. D.
1988-01-01
Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.
Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er
2012-12-01
Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.
Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.
NASA Astrophysics Data System (ADS)
Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong
2014-11-01
Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.
NASA Astrophysics Data System (ADS)
Lin, Xueliang; Lin, Duo; Ge, Xiaosong; Qiu, Sufang; Feng, Shangyuan; Chen, Rong
2017-10-01
The present study evaluated the capability of saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy (SERS) for noninvasive detection of nasopharyngeal carcinoma (NPC). A rapid and convenient protein purification method based on cellulose acetate membrane was developed. A total of 659 high-quality SERS spectra were acquired from purified proteins extracted from the saliva samples of 170 patients with pathologically confirmed NPC and 71 healthy volunteers. Spectral analysis of those saliva protein SERS spectra revealed specific changes in some biochemical compositions, which were possibly associated with NPC transformation. Furthermore, principal component analysis combined with linear discriminant analysis (PCA-LDA) was utilized to analyze and classify the saliva protein SERS spectra from NPC and healthy subjects. Diagnostic sensitivity of 70.7%, specificity of 70.3%, and diagnostic accuracy of 70.5% could be achieved by PCA-LDA for NPC identification. These results show that this assay based on saliva protein SERS analysis holds promising potential for developing a rapid, noninvasive, and convenient clinical tool for NPC screening.
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-01-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks under various conditions with a series of RH. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups within paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude-regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
NASA Astrophysics Data System (ADS)
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-05-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks at room temperature and under different RH conditions. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups with paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude – regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael
2011-01-01
Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
Passive Optical Technique to Measure Physical Properties of a Vibrating Surface
2014-01-01
it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura
2015-01-01
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727
A new nanostructured Silicon biosensor for diagnostics of bovine leucosis
NASA Astrophysics Data System (ADS)
Luchenko, A. I.; Melnichenko, M. M.; Starodub, N. F.; Shmyryeva, O. M.
2010-08-01
In this report we propose a new instrumental method for the biochemical diagnostics of the bovine leucosis through the registration of the formation of the specific immune complex (antigen-antibody) with the help of biosensor based on the nano-structured silicon. The principle of the measurements is based on the determination of the photosensitivity of the surface. In spite of the existed traditional methods of the biochemical diagnostics of the bovine leucosis the proposed approach may provide the express control of the milk quality as direct on the farm and during the process raw materials. The proposed variant of the biosensor based on the nano-structured silicon may be applied for the determination of the concentration of different substances which may form the specific complex in the result of the bioaffine reactions. A new immune technique based on the nanostructured silicon and intended for the quantitative determination of some toxic substances is offered. The sensitivity of such biosensor allows determining T-2 mycotoxin at the concentration of 10 ng/ml during several minutes.
Diagnostics of transparent polymer coatings of metal items
NASA Astrophysics Data System (ADS)
Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.
2017-08-01
The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.
Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V
2017-01-01
Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .
The distribution of star formation and metals in the low surface brightness galaxy UGC 628
NASA Astrophysics Data System (ADS)
Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.
2015-09-01
We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao
2015-05-01
This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection
Cunningham, Brian T.; Zangar, Richard C.
2013-01-01
Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539
2014-01-01
Background Fractal geometry has been the basis for the development of a diagnosis of preneoplastic and neoplastic cells that clears up the undetermination of the atypical squamous cells of undetermined significance (ASCUS). Methods Pictures of 40 cervix cytology samples diagnosed with conventional parameters were taken. A blind study was developed in which the clinic diagnosis of 10 normal cells, 10 ASCUS, 10 L-SIL and 10 H-SIL was masked. Cellular nucleus and cytoplasm were evaluated in the generalized Box-Counting space, calculating the fractal dimension and number of spaces occupied by the frontier of each object. Further, number of pixels occupied by surface of each object was calculated. Later, the mathematical features of the measures were studied to establish differences or equalities useful for diagnostic application. Finally, the sensibility, specificity, negative likelihood ratio and diagnostic concordance with Kappa coefficient were calculated. Results Simultaneous measures of the nuclear surface and the subtraction between the boundaries of cytoplasm and nucleus, lead to differentiate normality, L-SIL and H-SIL. Normality shows values less than or equal to 735 in nucleus surface and values greater or equal to 161 in cytoplasm-nucleus subtraction. L-SIL cells exhibit a nucleus surface with values greater than or equal to 972 and a subtraction between nucleus-cytoplasm higher to 130. L-SIL cells show cytoplasm-nucleus values less than 120. The rank between 120–130 in cytoplasm-nucleus subtraction corresponds to evolution between L-SIL and H-SIL. Sensibility and specificity values were 100%, the negative likelihood ratio was zero and Kappa coefficient was equal to 1. Conclusions A new diagnostic methodology of clinic applicability was developed based on fractal and euclidean geometry, which is useful for evaluation of cervix cytology. PMID:24742118
Diagnostic guide for evaluating surface distortions in veneered furniture and cabinetry
Alfred W. Christiansen; Mark Knaebe
2004-01-01
Manufacturers and installers of wood-veneered furniture and cabinetry sometimes find that their products eventually develop surface distortions, characterized by either buckling or cracking of the surface finish. The veneer itself sometimes buckles or cracks. Most surface distortions are caused by moisture changes in the product. This guide is a diagnostic tool for...
Development and use of culture systems to modulate specific cell responses
NASA Astrophysics Data System (ADS)
Martin, Yves
Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.
Gimenez, Thais; Braga, Mariana Minatel; Raggio, Daniela Procida; Deery, Chris; Ricketts, David N; Mendes, Fausto Medeiros
2013-01-01
Fluorescence-based methods have been proposed to aid caries lesion detection. Summarizing and analysing findings of studies about fluorescence-based methods could clarify their real benefits. We aimed to perform a comprehensive systematic review and meta-analysis to evaluate the accuracy of fluorescence-based methods in detecting caries lesions. Two independent reviewers searched PubMed, Embase and Scopus through June 2012 to identify papers/articles published. Other sources were checked to identify non-published literature. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND DIAGNOSTIC METHODS: The eligibility criteria were studies that: (1) have assessed the accuracy of fluorescence-based methods of detecting caries lesions on occlusal, approximal or smooth surfaces, in both primary or permanent human teeth, in the laboratory or clinical setting; (2) have used a reference standard; and (3) have reported sufficient data relating to the sample size and the accuracy of methods. A diagnostic 2×2 table was extracted from included studies to calculate the pooled sensitivity, specificity and overall accuracy parameters (Diagnostic Odds Ratio and Summary Receiver-Operating curve). The analyses were performed separately for each method and different characteristics of the studies. The quality of the studies and heterogeneity were also evaluated. Seventy five studies met the inclusion criteria from the 434 articles initially identified. The search of the grey or non-published literature did not identify any further studies. In general, the analysis demonstrated that the fluorescence-based method tend to have similar accuracy for all types of teeth, dental surfaces or settings. There was a trend of better performance of fluorescence methods in detecting more advanced caries lesions. We also observed moderate to high heterogeneity and evidenced publication bias. Fluorescence-based devices have similar overall performance; however, better accuracy in detecting more advanced caries lesions has been observed.
Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon
2015-07-15
Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoshima, S.; Frey, K.A.; Koeppe, R.A.
1995-07-01
To improve the diagnostic performance of PET as an aid in evaluating patients suspected of having Alzheimer`s disease, the authors developed a fully automated method which generates comprehensive image presentations and objective diagnostic indices. Fluorine-18-fluorodeoxyglucose PET image sets were collected from 37 patients with probable Alzheimer`s disease (including questionable and mild dementia), 22 normal subjects and 5 patients with cerebrovascular disease. Following stereotactic anatomic standardization, metabolic activity on an individual`s PET image set was extracted to a set of predefined surface pixels (three-dimensional stereotactic surface projection, 3D-SSP), which was used in the subsequent analysis. A normal database was created bymore » averaging extracted datasets of the normal subjects. Patients` datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspections. Diagnostic indices were then generated based on averaged Z-scores for the association cortices. Patterns and severities of metabolic reduction in patients with probable Alzheimer`s disease were seen in the standard 3D-SSP views of extracted raw data and statistical Z-scores. When discriminating patients with probable Alzheimer`s disease from normal subjects, diagnostic indices of the parietal association cortex and unilaterally averaged parietal-temporal-frontal cortex showed sensitivities of 95% and 97%, respectively, with a specificity of 100%. Neither index yielded false-positive results for cerebrovascular disease. 3D-SSP enables quantitative data extraction and reliable localization of metabolic abnormalities by means of stereotactic coordinates. The proposed method is a promising approach for interpreting functional brain PET scans. 45 refs., 5 figs.« less
Design criteria for developing low-resource magnetic bead assays using surface tension valves
Adams, Nicholas M.; Creecy, Amy E.; Majors, Catherine E.; Wariso, Bathsheba A.; Short, Philip A.; Wright, David W.; Haselton, Frederick R.
2013-01-01
Many assays for biological sample processing and diagnostics are not suitable for use in settings that lack laboratory resources. We have recently described a simple, self-contained format based on magnetic beads for extracting infectious disease biomarkers from complex biological samples, which significantly reduces the time, expertise, and infrastructure required. This self-contained format has the potential to facilitate the application of other laboratory-based sample processing assays in low-resource settings. The technology is enabled by immiscible fluid barriers, or surface tension valves, which stably separate adjacent processing solutions within millimeter-diameter tubing and simultaneously permit the transit of magnetic beads across the interfaces. In this report, we identify the physical parameters of the materials that maximize fluid stability and bead transport and minimize solution carryover. We found that fluid stability is maximized with ≤0.8 mm i.d. tubing, valve fluids of similar density to the adjacent solutions, and tubing with ≤20 dyn/cm surface energy. Maximizing bead transport was achieved using ≥2.4 mm i.d. tubing, mineral oil valve fluid, and a mass of 1-3 mg beads. The amount of solution carryover across a surface tension valve was minimized using ≤0.2 mg of beads, tubing with ≤20 dyn/cm surface energy, and air separators. The most favorable parameter space for valve stability and bead transport was identified by combining our experimental results into a single plot using two dimensionless numbers. A strategy is presented for developing additional self-contained assays based on magnetic beads and surface tension valves for low-resource diagnostic applications. PMID:24403996
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2015-03-01
We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.
Heat flow diagnostics for helicon plasmas.
Berisford, Daniel F; Bengtson, Roger D; Raja, Laxminarayan L; Cassady, Leonard D; Chancery, William J
2008-10-01
We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.
NASA Astrophysics Data System (ADS)
Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid
2017-04-01
In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.
NASA Astrophysics Data System (ADS)
Cescatti, A.; Duveiller, G.; Hooker, J.
2017-12-01
Changing vegetation cover not only affects the atmospheric concentration of greenhouse gases but also alters the radiative and non-radiative properties of the surface. The result of competing biophysical processes on Earth's surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate. To date these effects are not accounted for in land-based climate policies because of the complexity of the phenomena, contrasting model predictions and the lack of global data-driven assessments. To overcome the limitations of available observation-based diagnostics and of the on-going model inter-comparison, here we present a new benchmarking dataset derived from satellite remote sensing. This global dataset provides the potential changes induced by multiple vegetation transitions on the single terms of the surface energy balance. We used this dataset for two major goals: 1) Quantify the impact of actual vegetation changes that occurred during the decade 2000-2010, showing the overwhelming role of tropical deforestation in warming the surface by reducing evapotranspiration despite the concurrent brightening of the Earth. 2) Benchmark a series of ESMs against data-driven metrics of the land cover change impacts on the various terms of the surface energy budget and on the surface temperature. We anticipate that the dataset could be also used to evaluate future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
NASA Astrophysics Data System (ADS)
Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa
2010-11-01
The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.
Plasmonic SERS nanochips and nanoprobes for medical diagnostics and bio-energy applications
NASA Astrophysics Data System (ADS)
Ngo, Hoan T.; Wang, Hsin-Neng; Crawford, Bridget M.; Fales, Andrew M.; Vo-Dinh, Tuan
2017-02-01
The development of rapid, easy-to-use, cost-effective, high accuracy, and high sensitive DNA detection methods for molecular diagnostics has been receiving increasing interest. Over the last five years, our laboratory has developed several chip-based DNA detection techniques including the molecular sentinel-on-chip (MSC), the multiplex MSC, and the inverse molecular sentinel-on-chip (iMS-on-Chip). In these techniques, plasmonic surface-enhanced Raman scattering (SERS) Nanowave chips were functionalized with DNA probes for single-step DNA detection. Sensing mechanisms were based on hybridization of target sequences and DNA probes, resulting in a distance change between SERS reporters and the Nanowave chip's gold surface. This distance change resulted in change in SERS intensity, thus indicating the presence and capture of the target sequences. Our techniques were single-step DNA detection techniques. Target sequences were detected by simple delivery of sample solutions onto DNA probe-functionalized Nanowave chips and SERS signals were measured after 1h - 2h incubation. Target sequence labeling or washing to remove unreacted components was not required, making the techniques simple, easy-to-use, and cost effective. The usefulness of the techniques for medical diagnostics was illustrated by the detection of genetic biomarkers for respiratory viral infection and of dengue virus 4 DNA.
Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy
McGee, Sasha; Mardirossian, Vartan; Elackattu, Alphi; Mirkovic, Jelena; Pistey, Robert; Gallagher, George; Kabani, Sadru; Yu, Chung-Chieh; Wang, Zimmern; Badizadegan, Kamran; Grillone, Gregory; Feld, Michael S.
2010-01-01
Objectives We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). Methods In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. Results Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. Conclusions Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined. PMID:19999369
Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi.
Balouz, Virginia; Cámara, María de Los Milagros; Cánepa, Gaspar E; Carmona, Santiago J; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán; Buscaglia, Carlos A
2015-03-01
The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Mapping Antigenic Motifs in the Trypomastigote Small Surface Antigen from Trypanosoma cruzi
Balouz, Virginia; Cámara, María de los Milagros; Cánepa, Gaspar E.; Carmona, Santiago J.; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán
2015-01-01
The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. PMID:25589551
NASA Astrophysics Data System (ADS)
Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.
2015-06-01
We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
NASA Astrophysics Data System (ADS)
Chon, H.; Lee, S.; Wang, R.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-C.; Hong, S. H.; Yoon, Y. H.; Lim, D.; Choo, J.
2015-07-01
We report a highly sensitive anti-cyclic citrullinated peptide (anti-CCP) detection method for early diagnosis of rheumatoid arthritis (RA) using surface-enhanced Raman scattering (SERS)-based immunoassay. Herein, cyclic citrullinated peptide (CCP)-conjugated magnetic beads and anti-human IgG-conjugated hollow gold nanospheres (HGNs) were used as substrates and SERS nano-tags, respectively. First, its detection sensitivity was evaluated using anti-CCP standard solutions. Then quantitative anti-CCP levels, determined by the SERS-based assay, were compared with those obtained from three commercially available anti-CCP assay kits (Immunoscan CCPlus, ImmunnLisa™ CCP and BioPlex™ 2200) to assess its potential utility as a clinical tool. Finally, clinical samples from 20 RA patients were investigated using them. In the SERS-based assay, the anti-CCP level in human serum was successfully determined by monitoring the characteristic Raman peak intensity of SERS nano-tags. The diagnostic performance of our SERS-based immunoassay for clinical samples shows a good agreement with those measured by three commercial anti-CCP kits. In addition, our SERS-based assay results are more consistent in the low concentration range (0-25 U/mL) than those achieved by the commercial kits. Accordingly, it is estimated that the SERS-based assay is a potentially useful diagnostic tool for early diagnosis of RA.
You, Mingxu; Zhu, Guizhi; Chen, Tao; Donovan, Michael J; Tan, Weihong
2015-01-21
The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy.
NASA Astrophysics Data System (ADS)
Gajek, Andrzej
2016-09-01
The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.
Optical biosensor technologies for molecular diagnostics at the point-of-care
NASA Astrophysics Data System (ADS)
Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan
2015-05-01
Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.
Optical diagnostics in the oral cavity: an overview.
Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A
2010-11-01
As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.
Micromechanical sensors based on conformational change of proteins
NASA Astrophysics Data System (ADS)
Yang, Xin; Buchapudi, Koutilya R.; Gao, Hongyan; Xu, Xiaohe; Ji, Hai-Feng
2008-04-01
Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental, and fast throughput analysis. One of recently focus in this technology is the development of biosensors based on the conformational change of proteins on MCL surfaces. The surface stress changes due to conformational change of the proteins upon interaction with specific analytes are promising as transducers of chemical information. We will discuss our recent results on several biosensors due to conformational change of proteins. The proteins include glucose oxidase (GOx), organophosphorus hydrolyses (OPH), Calmodulin (CaM), and Horseradish peroxidase (HRP).
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
Miller, Douglas L.
2016-01-01
Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustic radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds, and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiological conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. PMID:27649878
To Duc, Khanh
2017-11-18
Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .
NASA Astrophysics Data System (ADS)
Mohan, T. S.; Annamalai, H.; Marx, Larry; Huang, Bohua; Kinter, James
2018-02-01
In the present study, we analyze 30-years output from free run solutions of CFSv2 coupled model to assess the model’s representation of extended (>7 days) active and break monsoon episodes over south Asia. Process based diagnostics is applied to the individual and composite events to identify precursor signals in both ocean and atmospheric variables. Our examination suggests that CFSv2, like most coupled models, depict systematic biases in variables important for ocean-atmosphere interactions. Nevertheless, model solutions capture many aspects of monsoon extended break and active episodes realistically, encouraging us to apply process-based diagnostics. Diagnostics reveal that sea surface temperature (SST) variations over the northern Bay of Bengal where the climatological mixed-layer is thin, lead the in-situ precipitation anomalies by about 8 (10) days during extended active (break) episodes, and the precipitation anomalies over central India by 10-14 days. Mixed-layer heat budget analysis indicates for a close correspondence between SST tendency and net surface heat flux (Q_net). MSE budgets indicate that horizontal moisture advection to be a coherent precursor signal ( 10 days) during both extended break (dry advection) and active (moist advection) events. The lead timings in these precursor signals in CFSv2 solutions will be of potential use to monitor and predict extended monsoon episodes. Diagnostics, however, also indicate that for about 1/3 of the identified extended break and active episodes, inconsistencies in budget terms suggest precursor signals could lead to false alarms. Apart from false alarms, compared to observations, CFSv2 systematically simulates a greater number of extended monsoon active episodes.
Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...
Heat flow diagnostics for helicon plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berisford, Daniel F.; Bengtson, Roger D.; Raja, Laxminarayan L.
2008-10-15
We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magneticmore » fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.« less
Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas
NASA Astrophysics Data System (ADS)
Allen, Luke Daniel
Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy
Barhoumi, Aoune; Halas, Naomi J.
2013-01-01
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.
Barhoumi, Aoune; Halas, Naomi J
2011-12-15
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics
NASA Astrophysics Data System (ADS)
Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.
1996-07-01
Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.
DNA "nano-claw": logic-based autonomous cancer targeting and therapy.
You, Mingxu; Peng, Lu; Shao, Na; Zhang, Liqin; Qiu, Liping; Cui, Cheng; Tan, Weihong
2014-01-29
Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.
NASA Astrophysics Data System (ADS)
Song, N. N.; Wu, F.
2016-04-01
An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.
Novel droplet platforms for the detection of disease biomarkers.
Zec, Helena; Shin, Dong Jin; Wang, Tza-Huei
2014-09-01
Personalized medicine - healthcare based on individual genetic variation - has the potential to transform the way healthcare is delivered to patients. The promise of personalized medicine has been predicated on the predictive and diagnostic power of genomic and proteomic biomarkers. Biomarker screening may help improve health outcomes, for example, by identifying individuals' susceptibility to diseases and predicting how patients will respond to drugs. Microfluidic droplet technology offers an exciting opportunity to revolutionize the accessibility of personalized medicine. A framework for the role of droplet microfluidics in biomarker detection can be based on two main themes. Emulsion-based microdroplet platforms can provide new ways to measure and detect biomolecules. In addition, microdroplet platforms facilitate high-throughput screening of biomarkers. Meanwhile, surface-based droplet platforms provide an opportunity to develop miniaturized diagnostic systems. These platforms may function as portable benchtop environments that dramatically shorten the transition of a benchtop assay into a point-of-care format.
Pixel-based characterisation of CMOS high-speed camera systems
NASA Astrophysics Data System (ADS)
Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.
2011-05-01
Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.
Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...
2015-06-11
In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Lisichkin, G. V.; Mingalev, P. G.; Loschenov, V. B.
2016-08-01
The spectroscopic properties of potentially perspective nanostructure: diamond nanoparticles with a surface layer of IR-photosensitizer, bacteriochlorin, were experimentally investigated in this study. Such specific structure of the object encourages enhancement of the drug tropism to the tumor, as well as increasing of photodynamic penetration depth. The size distribution spectra of diamond nanoparticles; diamond nanoparticles, artificially covered with bacteriochlorin molecules layer, in aqueous solution, were obtained during the study. Based on the absorption and fluorescence spectra analysis, the benefits of functional nanostructure as a drug for deep-lying tumor diagnostics and therapy were reviewed.
Sugars Can Actually Be Good For Your Health (LBNL Science at the Theater)
Bertozzi, Carolyn
2018-05-25
Like peanut M&Ms, all cells are coated with sugars but the functions of these sugar coatings were a mystery until very recently. This presentation will highlight recent fascinating discoveries regarding why cells are coated with sugars, as well as new tools for cancer detection that take advantage of the cells sugar coating. Professor Bertozzis lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches. In addition, her group develops nanoscience-based technologies for probing cell function and for medical diagnostics.
Reactive Behavior of Explosive Billets in Deflagration Tube of Varied Confinements
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Yingwen; Li, Tao; Fu, Hua; Shang, Hailin; Wen, Shanggang; Qiu, Tian; LaboratoryShock Wave; Detonation Physics Research Team
2017-06-01
The deflagration process of small size cylinder billets of pressed HMX-based explosive JO-9159 and the deflagration tube wall deformation is recorded by combined pressure velocity-meter high-speed frame photographic and radiographic diagnostic system. The influence of confinement structure strength on deflagration evolution behavior is compared with analysis of convective flame propagation along the slot between explosive billet and confinement wall.The follow-up reaction inside the cracks on the initiation site end surface on the side surfaces and between the end surfaces of explosive billets is restored with the analysis results of post experimental explosive billet remains.
Study of a high power hydrogen beam diagnostic based on secondary electron emission.
Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R
2016-11-01
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.
Taylor, Seth; Carroll, Adam; Lord, Jessi
2016-07-01
Amplion, Inc. (OR, USA) is focused on progressing the primary drivers of precision medicine. Focused on enabling the front end of the healthcare value chain, pharmaceutical developers and diagnostic test developers, Amplion zeros in on the research and market components that will make precision medicine a reality. With BiomarkerBase™, Amplion's flagship product, Amplion provides evidence-based biomarker information that support the key strategic decisions pharmaceutical and diagnostic developers need to make to be successful in the emerging world of precision medicine. A passion for saving lives and improving patient outcomes using precision medicine inspires Amplion's product BiomarkerBase™. A unique combination of hard science and data science positions Amplion to surface the relationships of biomarkers and clinical evidence that gives pharmaceutical and diagnostic companies unique insight into the technical realities and market opportunities provided by biomarkers.
High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA).
Singh, Harpal; Morita, Takahiro; Suzuki, Yuma; Shimojima, Masayuki; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked immunosorbent assays (ELISA) are considered the gold standard in the demonstration of various immunological reactions with an application in the detection of infectious diseases such as during outbreaks or in patient care. This study aimed to produce an ELISA-based diagnostic with an increased sensitivity of detection compared to the standard 96-well method in the immunologic diagnosis of infectious diseases. A '3DStack' was developed using readily available, low cost fabrication technologies namely nanoimprinting and press stamping with an increased surface area of 4 to 6 times more compared to 96-well plates. This was achieved by stacking multiple nanoimprinted polymer sheets. The flow of analytes between the sheets was enhanced by rotating the 3DStack and confirmed by Finite-Element (FE) simulation. An Immunoglobulin G (IgG) ELISA for the detection of antibodies in human serum raised against Rubella virus was performed for validation. An improved sensitivity of up to 1.9 folds higher was observed using the 3DStack compared to the standard method. The increased surface area of the 3DStack developed using nanoimprinting and press stamping technologies, and the flow pattern between sheets generated by rotating the 3DStack were potential contributors to a more sensitive ELISA-based diagnostic device.
A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots
2010-01-01
mance of QD infrared detector to a level that is compatible to the widely used, conventional MCT infrared detector . Acknowledgment. S.Y.L. gratefully...amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this...demonstration would bring the performance of QD-based infrared detectors to a level suitable for emerging surveillance and medical diagnostic
Plasma treatments of wool fiber surface for microfluidic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su
Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less
Huettig, Falk; Altmann, Gerry T M
2011-01-01
Three eye-tracking experiments investigated the influence of stored colour knowledge, perceived surface colour, and conceptual category of visual objects on language-mediated overt attention. Participants heard spoken target words whose concepts are associated with a diagnostic colour (e.g., "spinach"; spinach is typically green) while their eye movements were monitored to (a) objects associated with a diagnostic colour but presented in black and white (e.g., a black-and-white line drawing of a frog), (b) objects associated with a diagnostic colour but presented in an appropriate but atypical colour (e.g., a colour photograph of a yellow frog), and (c) objects not associated with a diagnostic colour but presented in the diagnostic colour of the target concept (e.g., a green blouse; blouses are not typically green). We observed that colour-mediated shifts in overt attention are primarily due to the perceived surface attributes of the visual objects rather than stored knowledge about the typical colour of the object. In addition our data reveal that conceptual category information is the primary determinant of overt attention if both conceptual category and surface colour competitors are copresent in the visual environment.
Multimodal correlation and intraoperative matching of virtual models in neurosurgery
NASA Technical Reports Server (NTRS)
Ceresole, Enrico; Dalsasso, Michele; Rossi, Aldo
1994-01-01
The multimodal correlation between different diagnostic exams, the intraoperative calibration of pointing tools and the correlation of the patient's virtual models with the patient himself, are some examples, taken from the biomedical field, of a unique problem: determine the relationship linking representation of the same object in different reference frames. Several methods have been developed in order to determine this relationship, among them, the surface matching method is one that gives the patient minimum discomfort and the errors occurring are compatible with the required precision. The surface matching method has been successfully applied to the multimodal correlation of diagnostic exams such as CT, MR, PET and SPECT. Algorithms for automatic segmentation of diagnostic images have been developed to extract the reference surfaces from the diagnostic exams, whereas the surface of the patient's skull has been monitored, in our approach, by means of a laser sensor mounted on the end effector of an industrial robot. An integrated system for virtual planning and real time execution of surgical procedures has been realized.
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...
USDA-ARS?s Scientific Manuscript database
Development of field-deployable methodology utilizing antigen–antibody reactions and the surface Plasmon resonance (SPR) effect to provide a rapid diagnostic test for recognition of the blue tongue virus (BTV) and epizootic hemorrhage disease virus (EHDV) in wild and domestic ruminants is reported. ...
Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D
2013-01-21
Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.
Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy
2014-01-01
The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy. PMID:25361164
Mukherjee, Prabuddha; Misra, Santosh K; Gryka, Mark C; Chang, Huei-Huei; Tiwari, Saumya; Wilson, William L; Scott, John W; Bhargava, Rohit; Pan, Dipanjan
2015-09-01
In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics
NASA Astrophysics Data System (ADS)
Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong
2015-03-01
Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.
Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues
NASA Astrophysics Data System (ADS)
Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong
2014-04-01
The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.
Yakes, B J; Buijs, J; Elliott, C T; Campbell, K
2016-08-15
Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein. Copyright © 2016 Elsevier B.V. All rights reserved.
Multisource Estimation of Long-term Global Terrestrial Surface Radiation
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.
2017-12-01
Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.
Miller, Douglas L
2016-12-01
Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-01-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-02-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.; Chen, Hua; Cassell, Alan M.; Ye, Qi; Han, Jie; Meyyappan, Meyya; Li, Jun
2004-01-01
BACKGROUND: Reducing cost and time is the major concern in clinical diagnostics, particularly in molecular diagnostics. Miniaturization technologies have been recognized as promising solutions to provide low-cost microchips for diagnostics. With the recent advancement in nanotechnologies, it is possible to further improve detection sensitivity and simplify sample preparation by incorporating nanoscale elements in diagnostics devices. A fusion of micro- and nanotechnologies with biology has great potential for the development of low-cost disposable chips for rapid molecular analysis that can be carried out with simple handheld devices. APPROACH: Vertically aligned multiwalled carbon nanotubes (MWNTs) are fabricated on predeposited microelectrode pads and encapsulated in SiO2 dielectrics with only the very end exposed at the surface to form an inlaid nanoelectrode array (NEA). The NEA is used to collect the electrochemical signal associated with the target molecules binding to the probe molecules, which are covalently attached to the end of the MWNTs. CONTENT: A 3 x 3 microelectrode array is presented to demonstrate the miniaturization and multiplexing capability. A randomly distributed MWNT NEA is fabricated on each microelectrode pad. Selective functionalization of the MWNT end with a specific oligonucleotide probe and passivation of the SiO2 surface with ethylene glycol moieties are discussed. Ru(bpy)2+ -mediator-amplified guanine oxidation is used to directly measure the electrochemical signal associated with target molecules. SUMMARY: The discussed MWNT NEAs have ultrahigh sensitivity in direct electrochemical detection of guanine bases in the nucleic acid target. Fewer than approximately 1000 target nucleic acid molecules can be measured with a single microelectrode pad of approximately 20 x 20 microm2, which approaches the detection limit of laser scanners in fluorescence-based DNA microarray techniques. MWNT NEAs can be easily integrated with microelectronic circuitry and microfluidics for development of a fully automated system for rapid molecular analysis with minimum cost.
21 CFR 886.1390 - Flexible diagnostic Fresnel lens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has its surface a concentric series of increasingly refractive zones. The device is intended to be applied...
Dry Eye Disease: Concordance Between the Diagnostic Tests in African Eyes.
Onwubiko, Stella N; Eze, Boniface I; Udeh, Nnenma N; Onwasigwe, Ernest N; Umeh, Rich E
2016-11-01
To assess the concordance between the diagnostic tests for dry eye disease (DED) in a Nigerian hospital population. The study was a hospital-based cross-sectional survey of adults (≥18 years) presenting at the eye clinic of the University of Nigeria Teaching Hospital (UNTH), Enugu; September-December, 2011. Participants' socio-demographic data were collected. Each subject was assessed for DED using the "Ocular Surface Disease Index" (OSDI) questionnaire, tear-film breakup time (TBUT), and Schirmer test. The intertest concordance was assessed using kappa statistic, correlation, and regression coefficients. The participants (n=402; men: 193) were aged 50.1±19.1 standard deviation years (range: 18-94 years). Dry eye disease was diagnosed in 203 by TBUT, 170 by Schirmer test, and 295 by OSDI; the concordance between the tests were OSDI versus TBUT (Kappa, κ=-0.194); OSDI versus Schirmer (κ=-0.276); and TBUT versus Schirmer (κ=0.082). Ocular Surface Disease Index was inversely correlated with Schirmer test (Spearman ρ=-0.231, P<0.001) and TBUT (ρ=-0.237, P<0.001). In the linear regression model, OSDI was poorly predicted by TBUT (β=-0.09; 95% confidence interval (CI): -0.26 to -0.03, P=0.14) and Schirmer test (β=-0.35, 95% CI: -0.53 to -0.18, P=0.18). At UNTH, there is poor agreement, and almost equal correlation, between the subjective and objective tests for DED. Therefore, the selection of diagnostic test for DED should be informed by cost-effectiveness and diagnostic resource availability, not diagnostic efficiency or utility.
Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2013-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.
3D surface-based registration of ultrasound and histology in prostate cancer imaging.
Schalk, Stefan G; Postema, Arnoud; Saidov, Tamerlan A; Demi, Libertario; Smeenge, Martijn; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo
2016-01-01
Several transrectal ultrasound (TRUS)-based techniques aiming at accurate localization of prostate cancer are emerging to improve diagnostics or to assist with focal therapy. However, precise validation prior to introduction into clinical practice is required. Histopathology after radical prostatectomy provides an excellent ground truth, but needs accurate registration with imaging. In this work, a 3D, surface-based, elastic registration method was developed to fuse TRUS images with histopathologic results. To maximize the applicability in clinical practice, no auxiliary sensors or dedicated hardware were used for the registration. The mean registration errors, measured in vitro and in vivo, were 1.5±0.2 and 2.1±0.5mm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rapid Technology Assessment via Unified Deployment of Global Optical and Virtual Diagnostics
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Fleming, Gary A.; Leighty, Bradley D.; Schwartz, Richard J.; Ingram, JoAnne L.; Grinstead, Keith D., Jr.; Oglesby, Donald M.; Tyler, Charles
2003-01-01
This paper discusses recent developments in rapid technology assessment resulting from an active collaboration between researchers at the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base (WPAFB) and the NASA Langley Research Center (LaRC). This program targets the unified development and deployment of global measurement technologies coupled with a virtual diagnostic interface to enable the comparative evaluation of experimental and computational results. Continuing efforts focus on the development of seamless data translation methods to enable integration of data sets of disparate file format in a common platform. Results from a successful low-speed wind tunnel test at WPAFB in which global surface pressure distributions were acquired simultaneously with model deformation and geometry measurements are discussed and comparatively evaluated with numerical simulations. Intensity- and lifetime-based pressure-sensitive paint (PSP) and projection moire interferometry (PMI) results are presented within the context of rapid technology assessment to enable simulation-based R&D.
Smirenin, S A; Khabova, Z S; Fetisov, V A
2015-01-01
The objective of the present study was to determine the diagnostic coefficients (DC) of injuries to the upper and lower extremities of the passengers inside the car passenger compartment based on the analysis of 599 archival expert documents available from 45 regional state bureaus of forensic medical examination of the Russian federation for the period from 1995 till 2014. These materials included the data obtained by the examination of 200 corpses and 300 live persons involved in the traffic accidents. The statistical and mathematical treatment of these materials with the use the sequential analysis method based on the Byes and Wald formulas yielded the diagnostic coefficients that made it possible to identify the most important signs characterizing the risk of injuries for the passenger occupying the front seat of the vehicle. In the case of the lethal outcome, such injuries include fractures of the right femur (DC -8.9), bleeding (DC -7.1), wounds in the soft tissues of the right thigh (DC -5.0) with the injurious force applied to its anterior surface, bruises on the posterior surface of the right shoulder (DC -6.2), the right deltoid region (DC -5.9), and the posterior surface of the right forearm (DC -5.5), fractures of the right humerus (DC -5.), etc. When both the driver and the passengers survive, the most informative signs in the latter are bleeding and scratches (DC -14.5 and 11.5 respectively) in the soft tissues at the posterior surface of the right shoulder, fractures of the right humerus (DC -10.0), bruises on the anterior surface of the right thigh (DC -13.0), the posterior surface of the right forearm (DC -10.0) and the fontal region of the right lower leg (DC -10.0), bleeding in the posterior region of the right forearm (DC -9.0) and the anterior region of the left thigh (DC -8.6), fractures of the right femur (DG -8.1), etc. It is concluded that the knowledge of diagnostic coefficients helps to draw attention of the experts to the analysis of the above morphological signs for the objective determination of the passenger position inside the car passenger compartment during traffic accidents and thereby to improve the quality of expert conclusions and the results of forensic medical examination of the injuries inflicted in car crashes.
sFIDA automation yields sub-femtomolar limit of detection for Aβ aggregates in body fluids.
Herrmann, Yvonne; Kulawik, Andreas; Kühbach, Katja; Hülsemann, Maren; Peters, Luriano; Bujnicki, Tuyen; Kravchenko, Kateryna; Linnartz, Christina; Willbold, Johannes; Zafiu, Christian; Bannach, Oliver; Willbold, Dieter
2017-03-01
Alzheimer's disease (AD) is a neurodegenerative disorder with yet non-existent therapeutic and limited diagnostic options. Reliable biomarker-based AD diagnostics are of utmost importance for the development and application of therapeutic substances. We have previously introduced a platform technology designated 'sFIDA' for the quantitation of amyloid β peptide (Aβ) aggregates as AD biomarker. In this study we implemented the sFIDA assay on an automated platform to enhance robustness and performance of the assay. In sFIDA (surface-based fluorescence intensity distribution analysis) Aβ species are immobilized by a capture antibody to a glass surface. Aβ aggregates are then multiply loaded with fluorescent antibodies and quantitated by high resolution fluorescence microscopy. As a model system for Aβ aggregates, we used Aβ-conjugated silica nanoparticles (Aβ-SiNaPs) diluted in PBS buffer and cerebrospinal fluid, respectively. Automation of the assay was realized on a liquid handling system in combination with a microplate washer. The automation of the sFIDA assay results in improved intra-assay precision, linearity and sensitivity in comparison to the manual application, and achieved a limit of detection in the sub-femtomolar range. Automation improves the precision and sensitivity of the sFIDA assay, which is a prerequisite for high-throughput measurements and future application of the technology in routine AD diagnostics. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.
1995-02-01
A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.
Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.
1991-01-01
Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.
Plasmonics Enhanced Smartphone Fluorescence Microscopy.
Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan
2017-05-18
Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.
Recycling microcavity optical biosensors.
Hunt, Heather K; Armani, Andrea M
2011-04-01
Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
2010-10-01
steps applied for generating the 3D ROC surface diagnostic metrics: 1. Obtain system data: Gain access to a suitable database of system data under...surface, VUSTPR and VUSCCR, can be calculated. This can be accomplished by partitioning the VUSTPR and VUSCCR volumes into polyhedrons as illustrated... polyhedron volumes to produce VUSTPR and VUSCCR. In the example given in Figures 7 and 8 a logarithmic scaling has been applied to the TL axis. This places
Paper-based CRP Monitoring Devices
NASA Astrophysics Data System (ADS)
Lin, Shang-Chi; Tseng, Chung-Yuh; Lai, Po-Liang; Hsu, Min-Yen; Chu, Shueh-Yao; Tseng, Fan-Gang; Cheng, Chao-Min
2016-12-01
Here, we discuss the development of a paper-based diagnostic device that is inexpensive, portable, easy-to-use, robust, and capable of running simultaneous tests to monitor a relevant inflammatory protein for clinical diagnoses i.e. C-reactive protein (CRP). In this study, we first attempted to make a paper-based diagnostic device via the wax printing method, a process that was used in previous studies. This device has two distinct advantages: 1) reduced manufacturing and assay costs and operation duration via using wax printing method to define hydrophobic boundaries (for fluidic devices or general POC devices); and, 2) the hydrophilicity of filter paper, which is used to purify and chromatographically correct interference caused by whole blood components with a tiny amount of blood sample (only 5 μL). Diagnosis was based on serum stain length retained inside the paper channels of our device. This is a balanced function between surface tension and chromatographic force following immune reactions (CRP assays) with a paper-embedded biomarker.
Study of a high power hydrogen beam diagnostic based on secondary electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.
2016-11-15
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less
Wei, Ting-Yen; Yen, Tzung-Hai; Cheng, Chao-Min
2018-01-01
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur. Several experimental and clinical studies have shown the potential of portable Surface Enhanced Raman Scattering (SERS), paper-based devices, and machine learning for paraquat intoxication diagnosis. Portable SERS and new SERS substrates maintain the sensitivity of SERS while being less costly and more convenient than conventional SERS. Paper-based devices provide the advantages of price and portability. Machine learning algorithms can be implemented as a mobile phone application and facilitate diagnosis in resource-limited areas. Although these methods have not yet met all features of an ideal diagnostic method, the combination and development of these methods offer much promise.
NASA Astrophysics Data System (ADS)
Nabiev, Igor
2017-01-01
An ideal single-photon (1P) or multiphoton fluorescent nanoprobe should combine a nanocrystal with the largest possible 1P or two-photon (2P) absorption cross section and the smallest possible highly specific recognition molecules conjugated with the nanoparticle in an oriented manner. However, the conditions used for conjugation of typical recognition molecules (conventional antibodies, Abs) with nanoparticles often provoke their unfolding and/or yield nanoprobes with irregular orientation of Abs on the nanoparticle surface. Conjugation of smaller Ab fragments, such as single-domain antibodies (sdAbs), with quantum dots (QDs) in an oriented manner can be considered as an attractive approach to engineering of ultrasmall diagnostic nanoprobes. QDs conjugated to 13-kDa sdAbs derived from camelid IgG or streptavidin have been used as efficient 1P or 2P excitation probes for imaging of cancer markers. The 2P absorption cross sections (TPACSs) for some conjugates are higher than 49,000 GM (Goeppert-Mayer units), which is close to the theoretical value calculated for CdSe QDs and considerably exceeds that of organic dyes. A further step in advanced QD-based cancer diagnostics has been made through implementation of efficient FRET-based imaging with 2P excitation, which has been demonstrated for double immunostaining complexes formed on the surface of cancer cells from sdAb-QD conjugates (donor) and a combination of monoclonal Abs and secondary antibodies labeled with the AlexaFluor dye (acceptor). The proposed approach permits obtaining an exceptional contrast of 2P imaging of cancer biomarkers without any contribution of cell and tissue autofluorescence in the recorded images.
Development of a HIV-1 Virus Detection System Based on Nanotechnology.
Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo
2015-04-27
Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.
Si-based Nanoparticles: a biocompatibility study
NASA Astrophysics Data System (ADS)
Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.
2010-10-01
Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
Ng, Wan Kee; Ng, Yin Kwee; Tan, Yung Khan
2009-01-01
To evaluate the prospective use of the thermography diagnostic system in assessing sexual function in patients with erectile dysfunction (ED). Thermographs were taken on 14 subjects in a clinical trial conducted at Tan Tock Seng Hospital. After a thorough clinical interview with a standardized questionnaire, patients were scanned for baseline temperature profile before being given an oral dose of sildenafil 100 mg. Subjects were scanned again in the same setting an hour later. If so desired, subjects were given visual stimulation and were allowed minimum direct stimulation, excluding the penis, to elicit erection. Temperature profiles were analyzed using the thermography analysis software in the VarioCAM camera. Three representative cases are presented to illustrate the potential for using the Infrared thermography (IR) diagnostic system in differentiating psychogenic ED. IR was able to capture a significant difference in blood flow to the corpus cavernosum. Subjects with psychogenic ED have higher surface temperatures (34.3 degrees C +/- 0.71 in the flaccid state and 35.3 degrees C +/- 0.2 during erection) compared to subjects with organic ED (33.64 degrees C +/- 0.4 in flaccid and 33.55 degrees C +/- 0.91 during erection). The difference in surface temperature between flaccid and erected states in subjects with organic ED was not significant. The proposed diagnostic test based on IR has tremendous clinical potential in differentiating psychogenic ED from organic ED. IR could potentially be a portable, noninvasive and convenient adjunct in the diagnosis and management of ED.
Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.
Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm
2009-08-01
Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.
Dielectrophoresis and its application to biomedical diagnostics platforms
NASA Astrophysics Data System (ADS)
Basuray, Sagnik
Novel pathogenic diagnostics and on field devices to attest their growth have been the current norm of scientific research and curiosity. Microfluidics and Nanofluidics have recently been on the forefront of the development of these devices for their inherent advantages of large surface to volume ratio and small diffusion times. With the advancement of soft lithographic techniques, the devices can be easily adapted for medical systems and bio-diagnostic devices to study mechanistic pathways of bio-molecules, bio-chemical reactions and as delivery modules for drug. However, the lack of better sensors, other than optics, to detect low bio-particle numbers in real samples have made the instruments bulky, expensive and not suitable for field use. Thus there is an urgent need to develop label-free, portable, inexpensive, rapid diagnostic devices. In order to achieve a viable device, researchers in these fields have been using dielectrophoresis as the mechanism of choice for a variety of tasks, from particle manipulation, to delivery, to movement of the particles through the fluid. However, the exact physical mechanism for not only the dielectrophoresis of the colloidal assembly is unclear, but the dielectrophoresis of single bio-particles/charged nano-colloids is not understood fully. In this thesis, I present a theory for charged nano-colloid dielectrophoresis taking into account the surface charge and Debye double layer effects. The exact mechanism of the origin of the Stern layer, through the surface conductance effect of a nano-colloid to form a collapsed diffuse layer that renders a nano-colloid conductive at sub-optical frequency has been formulated. This effect is utilized to optimize a nano-colloid assay to detect DNA hybridization. The collapsed diffuse layer kinetics with thick diffuse layer is solved, using spherical harmonics of the Bessel solution of the Poisson equation, to give a modified Clausius-Mosotti factor, that accounts for the size dependent monotonic rise in crossover frequency, unlike in classical theories. This effect is used to design molecular detection platform based on dielectrophoretic trapping of carbon nano-tube (CNT) in an inter-digitized microfluidics platform. The platform can distinguish the target DNA from a heterogeneous DNA mixture or from 3 base mismatched congenic species based on the different electrical impedance signatures (EIS). The open flow device uses shear enhanced discrimination to shear off the non-target biomolecules from CNT surface and also remove the parasitic double layer signal to high frequency for high resolution of the hybridization signal unlike batch processes. It is used to dielectrophoretically trap DNAs, RNAs and biomolecule from a flowing solution to the CNT surface to allow for very rapid, sensitive and selective detection. We designed a rapid, inexpensive, sensitive real time polymerase chain reaction detector; the nano-slot that used dielectrophoresis and EIS to concentrate the DNA molecules for real time detection near a nano-slot.
Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo
2017-01-01
Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications
Wang, Da-Shin; Fan, Shih-Kang
2016-01-01
Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed. PMID:27472340
CMOS image sensor for detection of interferon gamma protein interaction as a point-of-care approach.
Marimuthu, Mohana; Kandasamy, Karthikeyan; Ahn, Chang Geun; Sung, Gun Yong; Kim, Min-Gon; Kim, Sanghyo
2011-09-01
Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen-antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.
Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J.; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated for the first time to provide through-the-coating-thickness temperature readings up to 1000 C with the phosphor layer residing beneath a 100-Fm-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.
Thomas, Ekelijn; Bouma, Annemarie; van Eerden, Ellen; Landman, Wil J M; van Knapen, Frans; Stegeman, Arjan; Bergwerff, Aldert A
2006-08-31
A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two commercial ELISA kits based on LPS antigen and flagellar antigen. A number of 163 egg yolk and combined egg white and yolk samples from chickens experimentally infected with S. enterica serovar enteritidis and 90 egg yolk and combined egg white and yolk samples from uninfected chickens were analyzed. Receiver operating characteristic analysis of the data calculated a diagnostic sensitivity of 82% and a diagnostic specificity of 100%. The within-day coefficient of variation of a positive internal-control egg yolk was 1%. The SPR biosensor assay was able to detect antibodies in a significantly higher percentage of known positive samples than the commercial ELISA's. The anticipated use of the SPR biosensor assay is to determine the S. enterica serovar enteritidis serostatus of non-vaccinated layer hens.
Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Bencic, T. J.; Allison, S. W.; Beshears, D. L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non- contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, the use of thermographic phosphor (Y2O3:Eu) luminescence decay time measurements is demonstrated for the first time for through-the-thickness temperature readings up to 1000 C with the phosphor placed beneath a 100-micron-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.
Magnetic wire trap arrays for biomarker-based molecular detection
NASA Astrophysics Data System (ADS)
Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.
2012-02-01
Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Nano-carriers for targeted delivery and biomedical imaging enhancement.
Parekh, Gaurav; Shi, Yuanyuan; Zheng, Juanjuan; Zhang, Xingcai; Leporatti, Stefano
2018-05-01
Theranostic approaches using nanotechnology have been a hot research area for the past decade. All nano drug delivery techniques and architectures have some limitations, as do diagnostic nano-approaches. Thus, combining nano drug delivery strategies with diagnostic techniques using nanoparticles for improving imaging modalities has been the key to fill up those gaps. In the past decade, lots of approaches have been made with different combinations of biomaterials fabricated/synthesized to nanostructures with modified surface functionalization to improve their overall theranostic properties. This article summarizes recent research works based on the biomaterials used for fabricating these nanostructures. Their combinations with other biomaterials have been demonstrated with their overall advantages and limitations.
Surface impact on nanoparticle-based magnetic resonance imaging contrast agents
Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin
2018-01-01
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097
A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data
NASA Technical Reports Server (NTRS)
Barnes, J. R.
1993-01-01
Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.
3D morphometry of red blood cells by digital holography.
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro
2014-12-01
Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.
NASA Technical Reports Server (NTRS)
Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava
2013-01-01
This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.
Chou, Ying-Nien; Sun, Fang; Hung, Hsiang-Chieh; Jain, Priyesh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Chang, Yung; Wen, Ten-Chin; Yu, Qiuming; Jiang, Shaoyi
2016-08-01
For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rohde, Rosemary Dyane
In this thesis, I describe projects that were aimed at improving ways to capture proteins for clinical diagnostics. Nanoelectronic sensors, such as silicon nanowires (SiNWs), can provide label-free quantitative measurements of protein biomarkers in real time. One technical challenge for SiNWs is to develop chemistry that can be applied for selectively encoding the nanowire surfaces with capture agents, thus making them sensors that have selectivity for specific proteins. Furthermore, because of the nature of how the sensor works, it is desirable to achieve this spatially selective chemical functionalization without having the silicon undergo oxidation. This method is described here and provides a general platform that can incorporate organic and biological molecules on Si (111) with minimal oxidation of the silicon surface. The development of these devices is, in part, driven by early diagnosis, treatment, monitoring, and personalized medicine---all of which are increasingly requiring quantitative, rapid, and multiparameter measurements. To begin achieving this goal, a large number of protein biomarkers need to be captured and quantitatively measured to create a diagnostic panel. One of the greatest challenges towards making protein-biomarker-based in vitro diagnostics inexpensive involves developing capture agents to detect the proteins. A major thrust of this thesis is to develop multi-valent, high-affinity and high-selectivity protein capture agents using in situ click chemistry. In situ click chemistry is a tool that utilizes the protein itself to catalyze the formation of a biligand from individual azide and alkyne ligands that are co-localized. Large one-bead one-compound (OBOC) libraries of peptides are used to form the body of these ligands, also providing high chemical diversity with minimal synthetic effort. This process can be repeated to identify a triligand, tetraligand, and so forth. Moreover, the resulting multiligand protein capture agents can be produced in gram-scale quantities with designed control over chemical and biochemical stability and water solubility. This is a general and robust method for inexpensive, high-throughput capture agent discovery that can be utilized to capture the relevant biomarker proteins for blood protein diagnostics.
NASA Astrophysics Data System (ADS)
Turner, D. P.; Jacobson, A. R.; Nemani, R. R.
2013-12-01
The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global network of CO2 observation stations, but had difficulty resolving regional fluxes such as that in the PNW given the still sparse nature of the CO2 measurement network.
NASA Astrophysics Data System (ADS)
Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan
2016-12-01
Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.
The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.
Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V
2015-01-01
Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.
Coussot, Gaëlle; Le Postollec, Aurélie; Faye, Clément; Dobrijevic, Michel
2018-04-15
The scope of this paper is to present a gold standard method to evaluate functional activity of antibody (Ab)-based materials during the different phases of their development, after their exposure to forced degradations or even during routine quality control. Ab-based materials play a central role in the development of diagnostic devices, for example, for screening or therapeutic target characterization, in formulation development, and in novel micro(nano)technology approaches to develop immunosensors useful for the analysis of trace substances in pharmaceutical and food industries, clinical and environmental fields. A very important aspect in diagnostic device development is the construction of its biofunctional surfaces. These Ab surfaces require biocompatibility, homogeneity, stability, specificity and functionality. Thus, this work describes the validation and applications of a unique ligand binding assay to directly perform the quantitative measurement of functional Ab binding sites immobilized on the solid surfaces. The method called Antibody Anti-HorseRadish Peroxidase (A2HRP) method, uses a covalently coated anti-HRP antibody (anti-HRP Ab) and does not need for a secondary Ab during the detection step. The A2HRP method was validated and gave reliable results over a wide range of absorbance values. Analyzed validation criteria were fulfilled as requested by the food and drug administration (FDA) and European Medicines Agency (EMA) guidance for the validation of bioanalytical methods with 1) an accuracy mean value within +15% of the nominal value; 2) the within-assay precision less than 7.1%, and 3) the inter-day variability under 12.1%. With the A2HRP method, it is then possible to quantify from 0.04 × 10 12 to 2.98 × 10 12 functional Ab binding sites immobilized on the solid surfaces. A2HRP method was validated according to FDA and EMA guidance, allowing the creation of a gold standard method to evaluate Ab surfaces for their resistance under laboratory constraints. Stability testing was described through forced degradation studies after exposure of Ab-surfaces to storage, pH and aqueous-organic solvent mixture stresses. Copyright © 2018 Elsevier B.V. All rights reserved.
Mars analog minerals' spectral reflectance characteristics under Martian surface conditions
NASA Astrophysics Data System (ADS)
Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.
2018-05-01
We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.
A multidisciplinary study of planetary, solar and astrophysical radio emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.
1986-01-01
Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.
1986-02-27
pavement testing include the use of the falling weight deflectometer and layered -elastic analysis. The falling weight deflectometer has the advantages of...being more transportable, lighter weight, and requires fewer operational personnel. The layer -elastic analysis provides for calculation of the elastic...moduli for pavement layers and sub- grade based on deflection measurements at the pavement surface. This analysis is device independent and will
Three-dimensional characterization of bacterial microcolonies on solid agar-based culture media.
Drazek, Laurent; Tournoud, Maud; Derepas, Frédéric; Guicherd, Maryse; Mahé, Pierre; Pinston, Frédéric; Veyrieras, Jean-Baptiste; Chatellier, Sonia
2015-02-01
For the last century, in vitro diagnostic process in microbiology has mainly relied on the growth of bacteria on the surface of a solid agar medium. Nevertheless, few studies focused in the past on the dynamics of microcolonies growth on agar surface before 8 to 10h of incubation. In this article, chromatic confocal microscopy has been applied to characterize the early development of a bacterial colony. This technology relies on a differential focusing depth of the white light. It allows one to fully measure the tridimensional shape of microcolonies more quickly than classical confocal microscopy but with the same spatial resolution. Placing the device in an incubator, the method was able to individually track colonies growing on an agar plate, and to follow the evolution of their surface or volume. Using an appropriate statistical modeling framework, for a given microorganism, the doubling time has been estimated for each individual colony, as well as its variability between colonies, both within and between agar plates. A proof of concept led on four bacterial strains of four distinct species demonstrated the feasibility and the interest of the approach. It showed in particular that doubling times derived from early tri-dimensional measurements on microcolonies differed from classical measurements in micro-dilutions based on optical diffusion. Such a precise characterization of the tri-dimensional shape of microcolonies in their late-lag to early-exponential phase could be beneficial in terms of in vitro diagnostics. Indeed, real-time monitoring of the biomass available in a colony could allow to run well established microbial identification workflows like, for instance, MALDI-TOF mass-spectrometry, as soon as a sufficient quantity of material is available, thereby reducing the time needed to provide a diagnostic. Moreover, as done for pre-identification of macro-colonies, morphological indicators such as three-dimensional growth profiles derived from microcolonies could be used to perform a first pre-identification step, but in a shorten time. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cross, Jon B.; Koontz, Steven L.
1993-01-01
The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at 25 C, and that combined OA/VUV interaction produces a wide variety of gas phase reaction products.
Saha, Arindam; Jana, Nikhil R
2015-01-14
Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
2016-07-06
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
NASA Astrophysics Data System (ADS)
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.
2014-05-01
The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.
NASA Astrophysics Data System (ADS)
Francois, Alexandre; Boehm, Jonathan; Penno, Megan; Hoffmann, Peter; Monro, Tanya M.
2011-05-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light. Here we show for the first time that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. It is applicable to a range of SPR geometries, including optical fibres. As an example, this approach has been used to demonstrate the detection of a protein identified as a being a biomarker for cancer.
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessi, G. T. von; Hole, M. J.; Svensson, J.
2012-01-15
In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlledmore » Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.« less
Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.
Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L
2017-01-01
The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.
Cho, Sung Jin; Lee, Jihoo; Lee, Hyun Jae; Jo, Hyun-Young; Sinniah, Mangalam; Kim, Hak-Yong; Chong, Chom-Kyu; Song, Hyun-Ok
2016-01-01
Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
Diagnosis is a team sport - partnering with allied health professionals to reduce diagnostic errors.
Thomas, Dana B; Newman-Toker, David E
2016-06-01
Diagnostic errors are the most common, most costly, and most catastrophic of medical errors. Interdisciplinary teamwork has been shown to reduce harm from therapeutic errors, but sociocultural barriers may impact the engagement of allied health professionals (AHPs) in the diagnostic process. A qualitative case study of the experience at a single institution around involvement of an AHP in the diagnostic process for acute dizziness and vertigo. We detail five diagnostic error cases in which the input of a physical therapist was central to correct diagnosis. We further describe evolution of the sociocultural milieu at the institution as relates to AHP engagement in diagnosis. Five patients with acute vestibular symptoms were initially misdiagnosed by physicians and then correctly diagnosed based on input from a vestibular physical therapist. These included missed labyrinthine concussion and post-traumatic benign paroxysmal positional vertigo (BPPV); BPPV called gastroenteritis; BPPV called stroke; stroke called BPPV; and multiple sclerosis called BPPV. As a consequence of surfacing these diagnostic errors, initial resistance to physical therapy input to aid medical diagnosis has gradually declined, creating a more collaborative environment for 'team diagnosis' of patients with dizziness and vertigo at the institution. Barriers to AHP engagement in 'team diagnosis' include sociocultural norms that establish medical diagnosis as something reserved only for physicians. Drawing attention to the valuable diagnostic contributions of AHPs may help facilitate cultural change. Future studies should seek to measure diagnostic safety culture and then implement proven strategies to breakdown sociocultural barriers that inhibit effective teamwork and transdisciplinary diagnosis.
Thomas, Dana B; Newman-Toker, David E
2016-06-01
Diagnostic errors are the most common, most costly, and most catastrophic of medical errors. Interdisciplinary teamwork has been shown to reduce harm from therapeutic errors, but sociocultural barriers may impact the engagement of allied health professionals (AHPs) in the diagnostic process. A qualitative case study of the experience at a single institution around involvement of an AHP in the diagnostic process for acute dizziness and vertigo. We detail five diagnostic error cases in which the input of a physical therapist was central to correct diagnosis. We further describe evolution of the sociocultural milieu at the institution as relates to AHP engagement in diagnosis. Five patients with acute vestibular symptoms were initially misdiagnosed by physicians and then correctly diagnosed based on input from a vestibular physical therapist. These included missed labyrinthine concussion and post-traumatic benign paroxysmal positional vertigo (BPPV); BPPV called gastroenteritis; BPPV called stroke; stroke called BPPV; and multiple sclerosis called BPPV. As a consequence of surfacing these diagnostic errors, initial resistance to physical therapy input to aid medical diagnosis has gradually declined, creating a more collaborative environment for 'team diagnosis' of patients with dizziness and vertigo at the institution. Barriers to AHP engagement in 'team diagnosis' include sociocultural norms that establish medical diagnosis as something reserved only for physicians. Drawing attention to the valuable diagnostic contributions of AHPs may help facilitate cultural change. Future studies should seek to measure diagnostic safety culture and then implement proven strategies to breakdown sociocultural barriers that inhibit effective teamwork and transdisciplinary diagnosis.
Chae, Myung-Sic; Kim, Jinsik; Jeong, Dahye; Kim, YoungSoo; Roh, Jee Hoon; Lee, Sung Min; Heo, Youhee; Kang, Ji Yoon; Lee, Jeong Hoon; Yoon, Dae Sung; Kim, Tae Geun; Chang, Suk Tai; Hwang, Kyo Seon
2017-06-15
We performed oxygen plasma treatment on reduced graphene oxide (rGO) to improve its surface reactivity with respect to biomolecular interactions. Oxygen-plasma-treated rGO surfaces were employed as reactive interfaces for the detection of amyloid-beta (Aβ) peptides, the pathological hallmarks of Alzheimer's disease (AD), as the target analytes. By measuring the changes in electrical characteristics and confirmation through topographic analysis, the oxygen-plasma-treated rGO sensors had enhanced surface functionality for better antibody immobilization and sensing performance, with a 3.33-fold steeper slope for the electrical responses versus analyte concentration curve (logarithmic scale) compared to the untreated. The elicited biomolecular reactivity of the rGO surfaces with the oxygen plasma treatment remained at 46-51% of the initial value even after aging for 6h in ambient conditions. This phenomenon was also confirmed by pretreating the rGO surfaces with a blocking agent and subsequently subjecting them to antibody immobilization. Finally, the feasibility of the oxygen-plasma-treated rGO sensors as a diagnostic tool was evaluated with clinical samples of neural-derived exosomal Aβ peptides extracted from apparent AD patients and normal controls (NC). In contrast to the untreated sensors (p=0.0460), the oxygen-plasma-treated rGO sensors showed a significant p-value in the identification of clinical samples of AD and NC subjects (p<0.001). These results suggest that oxygen plasma treatment improves sensor performance without complicated fabrication procedures and should aid in the development of novel diagnostic tools based on carbon nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Zheng; Chen, Shengfu; Jiang, Shaoyi
2006-12-01
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.
2016-07-01
Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO{sub 2} was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to anmore » acid solution. Amine and oxide functionalized TiO{sub 2} based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.
2014-11-15
Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less
How valid are current diagnostic criteria for dental erosion?
2008-01-01
In principle, there is agreement about the clinical diagnostic criteria for dental erosion, basically defined as cupping and grooving of the occlusal/incisal surfaces, shallow defects on smooth surfaces located coronal from the enamel–cementum junction with an intact cervical enamel rim and restorations rising above the adjacent tooth surface. This lesion characteristic was established from clinical experience and from observations in a small group of subjects with known exposure to acids rather than from systematic research. Their prevalence is higher in risk groups for dental erosion compared to subjects not particularly exposed to acids, but analytical epidemiological studies on random or cluster samples often fail to find a relation between occurrence or severity of lesions and any aetiological factor. Besides other aspects, this finding might be due to lack of validity with respect to diagnostic criteria. In particular, cupping and grooving might be an effect of abrasion as well as of erosion and their value for the specific diagnosis of erosion must be doubted. Knowledge about the validity of current diagnostic criteria of different forms of tooth wear is incomplete, therefore further research is needed. PMID:18228062
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.;
2014-01-01
The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H
2014-06-21
Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.
Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki
2016-06-01
The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Lee, Timothy J.
1989-01-01
Four reprints are presented from four projects which are to be published in a refereed journal. Two are of interest to us and are presented herein. One is a description of a very detailed theoretical study of four anionic hydrogen bonded complexes. The other is a detailed study of the first generally reliable diagnostic for determining the quality of results that may be expected from single reference based electron correlation methods.
NASA Astrophysics Data System (ADS)
Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan
2016-03-01
Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.
NASA Astrophysics Data System (ADS)
Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John
1999-07-01
Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.
NASA Astrophysics Data System (ADS)
Belov, M. Ye.; Shayko-Shaykovskiy, O. G.; Makhrova, Ye. G.; Kramar, V. M.; Oleksuik, I. S.
2018-01-01
We represent here the theoretical justifications, block scheme and experimental sample of a new automated complex "Thermodyn" for remote contactless diagnostics of inflammatory processes of the surfaces and in subcutaneous areas of human body. Also we described here the methods and results of diagnostic measurements, and results of practical applications of this complex.
Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan
2013-01-01
With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-alkyl polyethylenimine-stabilized IOs. The experimental protocols related to these topics are described in this chapter. PMID:22568910
Leong, Siew Wen; Lim, Theam Soon; Ismail, Asma; Choong, Yee Siew
2018-05-01
With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics. Copyright © 2017 John Wiley & Sons, Ltd.
Huckle, David
2015-06-01
Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.
Ke, Hengte; Yue, Xiuli; Wang, Jinrui; Xing, Sen; Zhang, Qian; Dai, Zhifei; Tian, Jie; Wang, Shumin; Jin, Yushen
2014-03-26
The integration of multimodal contrast-enhanced diagnostic imaging and therapeutic capabilities could utilize imaging guided therapy to plan the treatment strategy based on the diagnostic results and to guide/monitor the therapeutic procedures. Herein, gold nanoshelled perfluorooctylbromide (PFOB) nanocapsules with PEGylation (PGsP NCs) are constructed by oil-in-water emulsion method to form polymeric PFOB nanocapsules, followed by the formation of PEGylated gold nanoshell on the surface. PGsP NCs could not only provide excellent contrast enhancement for dual modal ultrasound and CT imaging in vitro and in vivo, but also serve as efficient photoabsorbers for photothermal ablation of tumors on xenografted nude mouse model. To our best knowledge, this is the first report of gold nanoshell serving as both CT contrast agents and photoabsorbers for photothermal therapy. The novel multifunctional nanomedicine would be of great value to offer more comprehensive diagnostic information to guide more accurate and effective cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation levels and image quality in patients undergoing chest X-ray examinations
NASA Astrophysics Data System (ADS)
de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto
2017-11-01
Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.
Process-based upscaling of surface-atmosphere exchange
NASA Astrophysics Data System (ADS)
Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.
2015-12-01
Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.
NASA Astrophysics Data System (ADS)
Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Granstedt, E. M.; Jacobson, C. M.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Gonderman, S.
2013-10-01
The Lithium Tokamak Experiment (LTX) is a spherical torus designed to accommodate solid or liquid lithium as the primary plasma-facing component (PFC). We present initial results from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP) diagnostic, a collaboration among PPPL, Purdue University, and the University of Illinois. MAPP is a compact in vacuo surface science diagnostic, and its operation on LTX will provide the first ever in situ surface measurements of a tokamak first wall environment. With MAPP's analysis techniques, we will study the evolution of the surface chemistry of LTX's first wall as a function of varied temperature and lithium coating. During its 2013 run campaign, LTX will use an electron beam to evaporate lithium onto the first wall from an in-vessel reservoir. We will use two quartz crystal microbalances to estimate thickness of lithium coatings thus applied to the MAPP probe. We have recently installed a set of triple Langmuir probes on LTX, and they will be used to relate LTX edge plasma parameters to MAPP results. We will combine data from MAPP and the triple probes to estimate the local edge recycling coefficient based on desorption of retained hydrogen. This work was supported by U.S. DOE contract DE-AC02-09CH11466.
First measurements of error fields on W7-X using flux surface mapping
Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...
2016-08-03
Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less
Applications of human hepatitis B virus preS domain in bio- and nanotechnology.
Toita, Riki; Kawano, Takahito; Kang, Jeong-Hun; Murata, Masaharu
2015-06-28
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Noninvasive identification of bladder cancer with sub-surface backscattered light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Mourant, J.R.; Boyer, J.
1994-02-01
A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. Absorption bands in the tissue also add useful complexity to the spectral data collected. The use of elastic scattering as themore » key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering as well as absorption. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g., as in skin cancer or cervical cancer). We report here specifically on its potential application in the detection of bladder cancer.« less
Chang, Andrew L.; McKeague, Maureen; Smolke, Christina D.
2015-01-01
Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer–ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices. PMID:25432760
Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor
NASA Astrophysics Data System (ADS)
Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien
2010-08-01
In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.
Selective corneal optical aberration (SCOA) for customized ablation
NASA Astrophysics Data System (ADS)
Jean, Benedikt J.; Bende, Thomas
2001-06-01
Wavefront analysis still have some technical problems which may be solved within the next years. There are some limitations to use wavefront as a diagnostic tool for customized ablation alone. An ideal combination would be wavefront and topography. Meanwhile Selective Corneal Aberration is a method to visualize the optical quality of a measured corneal surface. It is based on a true measured 3D elevation information of a video topometer. Thus values can be interpreted either using Zernike polynomials or visualized as a so called color coded surface quality map. This map gives a quality factor (corneal aberration) for each measured point of the cornea.
[Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].
Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I
2009-01-01
The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.
Silver nanorod structures for metal enhanced fluorescence
NASA Astrophysics Data System (ADS)
Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min
2016-09-01
Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Characterization of the Goubau line for testing beam diagnostic instruments
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.
2017-12-01
One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.
Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.
Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul
2016-02-01
To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.
Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul
2017-06-20
Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites
NASA Astrophysics Data System (ADS)
Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis
2011-10-01
The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeylue, U.O.
1997-05-01
An in situ particulate diagnostic/analysis technique is outlined based on the Rayleigh-Debye-Gans polydisperse fractal aggregate (RDG/PFA) scattering interpretation of absolute angular light scattering and extinction measurements. Using proper particle refractive index, the proposed data analysis method can quantitatively yield all aggregate parameters (particle volume fraction, f{sub v}, fractal dimension, D{sub f}, primary particle diameter, d{sub p}, particle number density, n{sub p}, and aggregate size distribution, pdf(N)) without any prior knowledge about the particle-laden environment. The present optical diagnostic/interpretation technique was applied to two different soot-containing laminar and turbulent ethylene/air nonpremixed flames in order to assess its reliability. The aggregate interpretationmore » of optical measurements yielded D{sub f}, d{sub p}, and pdf(N) that are in excellent agreement with ex situ thermophoretic sampling/transmission electron microscope (TS/TEM) observations within experimental uncertainties. However, volume-equivalent single particle models (Rayleigh/Mie) overestimated d{sub p} by about a factor of 3, causing an order of magnitude underestimation in n{sub p}. Consequently, soot surface areas and growth rates were in error by a factor of 3, emphasizing that aggregation effects need to be taken into account when using optical diagnostics for a reliable understanding of soot formation/evolution mechanism in flames. The results also indicated that total soot emissivities were generally underestimated using Rayleigh analysis (up to 50%), mainly due to the uncertainties in soot refractive indices at infrared wavelengths. This suggests that aggregate considerations may not be essential for reasonable radiation heat transfer predictions from luminous flames because of fortuitous error cancellation, resulting in typically a 10 to 30% net effect.« less
Ma, Y; Dai, X; Hong, T; Munk, G B; Libera, M
2016-12-19
Despite their many advantages and successes, molecular beacon (MB) hybridization probes have not been extensively used in microarray formats because of the complicating probe-substrate interactions that increase the background intensity. We have previously shown that tethering to surface-patterned microgels is an effective means for localizing MB probes to specific surface locations in a microarray format while simultaneously maintaining them in as water-like an environment as possible and minimizing probe-surface interactions. Here we extend this approach to include both real-time detection together with integrated NASBA amplification. We fabricate small (∼250 μm × 250 μm) simplex, duplex, and five-plex assays with microarray spots of controllable size (∼20 μm diameter), position, and shape to detect bacteria and fungi in a bloodstream-infection model. The targets, primers, and microgel-tethered probes can be combined in a single isothermal reaction chamber with no post-amplification labelling. We extract total RNA from clinical blood samples and differentiate between Gram-positive and Gram-negative bloodstream infection in a duplex assay to detect RNA- amplicons. The sensitivity based on our current protocols in a simplex assay to detect specific ribosomal RNA sequences within total RNA extracted from S. aureus and E. coli cultures corresponds to tens of bacteria per ml. We furthermore show that the platform can detect RNA- amplicons from synthetic target DNA with 1 fM sensitivity in sample volumes that contain about 12 000 DNA molecules. These experiments demonstrate an alternative approach that can enable rapid and real-time microarray-based molecular diagnostics.
Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro
2018-07-01
Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.
NASA Astrophysics Data System (ADS)
Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.
2014-09-01
By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.
Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.
2015-01-01
Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454
The video fluorescent device for diagnostics of cancer of human reproductive system
NASA Astrophysics Data System (ADS)
Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.
2008-06-01
Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).
Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging
NASA Astrophysics Data System (ADS)
Milgroom, Andrew Carson
Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble-type contrast agents. In vitro studies using cells with varied levels of HER2 expression demonstrated the selectivity of the MSN-Herceptin conjugate to cells with HER2 overexpression. Fluorescence imaging suggest these images remain surface-bound and are not incorporated into the cell body. This study demonstrates the potential of MSNs as a stable, safe, and effective imaging contrast agent for ultrasound-based cancer diagnostics. Ultimately this work will contribute towards the improvement of diagnostic alternatives to conventional ionizing radiation-intensive imaging—such as MRI or X-ray—without compromising the specificity of the test.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
NASA Astrophysics Data System (ADS)
Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko
2016-02-01
The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.
Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne
2012-12-01
We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.
Progress in diagnostics of the COMPASS tokamak
NASA Astrophysics Data System (ADS)
Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.
2017-12-01
The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Loree, T.R.; Mourant, J.
1993-08-01
A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact thatmore » many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.« less
Dry eye disease: pathophysiology, classification, and diagnosis.
Perry, Henry D
2008-04-01
Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2006-07-01
In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.
NASA Technical Reports Server (NTRS)
Belt, Carol L.; Fuelberg, Henry E.
1984-01-01
The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.
NASA Astrophysics Data System (ADS)
Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan
2017-02-01
Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.
Thiel, M; Bossart, W; Bernauer, W
1997-01-01
BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface. METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls. RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease. CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface. PMID:9505824
Cellphone-based devices for bioanalytical sciences
Vashist, Sandeep Kumar; Mudanyali, Onur; Schneider, E.Marion; Zengerle, Roland; Ozcan, Aydogan
2014-01-01
During the last decade, there has been a rapidly growing trend toward the use of cellphone-based devices (CBDs) in bioanalytical sciences. For example, they have been used for digital microscopy, cytometry, read-out of immunoassays and lateral flow tests, electrochemical and surface plasmon resonance based bio-sensing, colorimetric detection and healthcare monitoring, among others. Cellphone can be considered as one of the most prospective devices for the development of next-generation point-of-care (POC) diagnostics platforms, enabling mobile healthcare delivery and personalized medicine. With more than 6.5 billion cellphone subscribers worldwide and approximately 1.6 billion new devices being sold each year, cellphone technology is also creating new business and research opportunities. Many cellphone-based devices, such as those targeted for diabetic management, weight management, monitoring of blood pressure and pulse rate, have already become commercially-available in recent years. In addition to such monitoring platforms, several other CBDs are also being introduced, targeting e.g., microscopic imaging and sensing applications for medical diagnostics using novel computational algorithms and components already embedded on cellphones. This manuscript aims to review these recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities. PMID:24287630
Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation
Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim
2013-01-01
A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571
Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan
2012-01-01
With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-alkyl polyethylenimine-stabilized IOs. The experimental protocols related to these topics are described in this chapter. Copyright © 2012 Elsevier Inc. All rights reserved.
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro; Batra, Surinder K.; Krasnoslobodtsev, Alexey V.
2017-01-01
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. PMID:28085088
NASA Astrophysics Data System (ADS)
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-11-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.
Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen
2018-06-27
Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.
Microtexture diagnostics of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Florková, Zuzana; Pepucha, L.'ubomír
2017-09-01
The microtexture of asphalt pavement surface is an essential parameter from the traffic safety point of view and it closely relates to a geometrical, petrological and physical properties of aggregate particle used in asphalt pavement. Microtexture has a significant influence for assurance basic friction values between tire and pavement in relation to a skid resistance properties. Therefore, the microtexture detecting methods are necessary. The British pendulum tester measurements have been carried out on selected sections of roads with different asphalt surfaces. Individual grains of aggregates were taken from the surface of each section from the sliding path and also from the core sample after the extraction. The laboratory profilometry measurements have been practiced on these aggregate samples and subsequently the surface microtexture was investigated based on commonly used texture characteristics and the filtration approach was applied in calculation process. The results have shown the degradation of microtexture values occurs due to polishing of aggregate under loading from traffic in relation to the type of used aggregate. Some correlation between BPN values and texture characteristics was found.
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes—including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH—in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media. PMID:27834380
Lens-free imaging of magnetic particles in DNA assays.
Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen
2013-11-07
We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
NASA Astrophysics Data System (ADS)
Collins, David J.; Alan, Tuncay; Neild, Adrian
2014-07-01
We introduce a surface acoustic wave (SAW) based method for acoustically controlled concentration, capture, release, and sorting of particles in a microfluidic system. This method is power efficient by the nature of its design: the vertical direction of a traveling acoustic wave, in which the majority of the energy at the SAW-water interface is directed, is used to concentrate particles behind a microfabricated polydimethylsiloxane membrane extending partially into a channel. Sorting is also demonstrated with this concentration shown to be size-dependent. Low-power, miniature SAW devices, using methods such as the one demonstrated here, are well placed for future integration into point-of-care diagnostic systems.
Integrated biostratigraphic zonation for the Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakzan, A.M.; Nasib, B.Md.; Harun, A.
1994-07-01
This study presents a detailed biostratigraphic scheme for the Malay Basin based on the examination of 10 wells by PRSS, and the review of data from 12 wells, which were previously studied by service companies. For each of the wells reviewed, foraminiferal, nannofossil, and quantitative palynological data were available. This paper demonstrates that through the integration of data from all three biostratigraphic disciplines and through taking careful accounts of lithologies, it is possible to make accurate correlations within the Malay Basin, which would not be possible using data from a single discipline. Stratigraphic relationships within upper Oligocene fluvial and lacustrinemore » sediments are best determined from their rich miospore and freshwater algal content. Miospores are also of importance for correlation in the paralic lower Miocene, but in addition, marine flooding surfaces may be characterized by benthic foraminifera, which although not age diagnostic, may permit accurate correlations. These marine pulses sometimes contain age-diagnostic nannofossils, which permit palynological and foraminiferal events to be dated. The lower/middle Miocene boundary is represented by a marine transgressive unit, which can be dated by nannofossils; benthic foraminiferal and palynological events again provide a basis for detailed correlations. The remainder of the middle Miocene, and most of the upper Miocene, consists of paralic sediments for which correlations can be achieved using benthic foraminifera and miospores. Again age-diagnostic nannofossils may be associated with marine flooding surfaces. The upper part of the upper Miocene and the Pliocene-Pleistocene is marine and readily dated using planktonic foraminifera and nannofossils.« less
Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu
2016-03-01
We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.
Mandell, Jacob C; Rhodes, Jeffrey A; Shah, Nehal; Gaviola, Glenn C; Gomoll, Andreas H; Smith, Stacy E
2017-11-01
Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy. This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A. Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land- PBL coupling at the process-level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. Southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are applied to the dry/wet regimes exhibited in this region, and in the process a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling testbed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger towards the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g. reanalysis products) in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and in support of hydrological anomalies.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi
2016-10-18
Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.
Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)
NASA Astrophysics Data System (ADS)
Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer
2009-02-01
Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions
NASA Astrophysics Data System (ADS)
Cheung, Mark
2017-08-01
The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.
An expert system for diagnostics and estimation of steam turbine components condition
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.
2017-11-01
The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.
Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.
2016-01-01
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711
NASA Astrophysics Data System (ADS)
Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.
2015-10-01
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.
NASA Astrophysics Data System (ADS)
Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve
1996-10-01
Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.
Caharel, Stéphanie; Jiang, Fang; Blanz, Volker; Rossion, Bruno
2009-10-01
The human brain recognizes faces by means of two main diagnostic sources of information: three-dimensional (3D) shape and two-dimensional (2D) surface reflectance. Here we used event-related potentials (ERPs) in a face adaptation paradigm to examine the time-course of processing for these two types of information. With a 3D morphable model, we generated pairs of faces that were either identical, varied in 3D shape only, in 2D surface reflectance only, or in both. Sixteen human observers discriminated individual faces in these 4 types of pairs, in which a first (adapting) face was followed shortly by a second (test) face. Behaviorally, observers were as accurate and as fast for discriminating individual faces based on either 3D shape or 2D surface reflectance alone, but were faster when both sources of information were present. As early as the face-sensitive N170 component (approximately 160 ms following the test face), there was larger amplitude for changes in 3D shape relative to the repetition of the same face, especially over the right occipito-temporal electrodes. However, changes in 2D reflectance between the adapter and target face did not increase the N170 amplitude. At about 250 ms, both 3D shape and 2D reflectance contributed equally, and the largest difference in amplitude compared to the repetition of the same face was found when both 3D shape and 2D reflectance were combined, in line with observers' behavior. These observations indicate that evidence to recognize individual faces accumulate faster in the right hemisphere human visual cortex from diagnostic 3D shape information than from 2D surface reflectance information.
Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications
Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh
2015-01-01
Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747
Gold nanoparticles for cancer theranostics — A brief update
Zhao, Ning; Pan, Yongxu; Cheng, Zhen; ...
2016-03-04
Gold nanoparticles (AuNPs) exhibit superior optical and physical properties for more effective treatment of cancer through incorporating both diagnostic and therapeutic functions into one single platform. The ability to passively accumulate on tumor cells provides AuNPs the opportunity to become an attractive contrast agent for X-ray based computed tomography (CT) imaging in vivo. Because of facile surface modification, various size and shape of AuNPs have been extensively functionalized and applied as active nanoprobes and drug carriers for cancer targeted theranostics. Moreover, their capabilities on producing photoacoustic (PA) signals and photothermal effects have been used to image and treat tumor progression,more » respectively. Furthermore, we review the developments of AuNPs as cancer diagnostics and chemotherapeutic drug vector, summarizing strategies for tumor targeting and their applications in vitro and in vivo.« less
NASA Astrophysics Data System (ADS)
Yilmaz, M.; Anderson, M. C.; Zaitchik, B. F.; Crow, W. T.; Hain, C.; Ozdogan, M.; Chun, J. A.
2012-12-01
Actual evapotranspiration (ET) can be estimated using both prognostic and diagnostic modeling approaches, providing independent yet complementary information for hydrologic applications. Both approaches have advantages and disadvantages. When provided with temporally continuous atmospheric forcing data, prognostic models offer continuous sub-daily ET information together with the full set of water and energy balance fluxes and states (i.e. soil moisture, runoff, sensible and latent heat). On the other hand, the diagnostic modeling approach provides ET estimates over regions where reliable information about available soil water is not known (e.g., due to irrigation practices or shallow ground water levels not included in the prognostic model structure, unknown soil texture or plant rooting depth, etc). Prognostic model-based ET estimates are of great interest whenever consistent and complete water budget information is required or when there is a need to project ET for climate or land use change scenarios. Diagnostic models establish a stronger link to remote sensing observations, can be applied in regions with limited or questionable atmospheric forcing data, and provide valuable observation-derived information about the current land-surface state. Analysis of independently obtained ET estimates is particularly important in data poor regions. Such comparisons can help to reduce the uncertainty in the modeled ET estimates and to exclude outliers based on physical considerations. The Nile river basin is home to tens of millions of people whose daily life depends on water extracted from the river Nile. Yet the complete basin scale water balance of the Nile has been studied only a few times, and the temporal and the spatial distribution of hydrological fluxes (particularly ET) are still a subject of active research. This is due in part to a scarcity of ground-based station data for validation. In such regions, comparison between prognostic and diagnostic model output may be a valuable model evaluation tool. Motivated by the complementary information that exists in prognostic and diagnostic energy balance modeling, as well as the need for evaluation of water consumption estimates over the Nile basin, the purpose of this study is to 1) better describe the conceptual differences between prognostic and diagnostic modeling, 2) present the potential for diagnostic models to capture important hydrologic features that are not explicitly represented in prognostic model, 3) explore the differences in these two approaches over the Nile Basin, where ground data are sparse and transnational data sharing is unreliable. More specifically, we will compare output from the Noah prognostic model and the Atmosphere-Land Exchange Inverse (ALEXI) diagnostic model generated over ground truth data-poor Nile basin. Preliminary results indicate spatially, temporally, and magnitude wise consistent flux estimates for ALEXI and NOAH over irrigated Delta region, while there are differences over river-fed wetlands.
An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite
NASA Astrophysics Data System (ADS)
Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna
2018-06-01
Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.
Ngo, Hoan T; Gandra, Naveen; Fales, Andrew M; Taylor, Steve M; Vo-Dinh, Tuan
2016-07-15
One of the major obstacles to implement nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is the lack of sensitive and practical DNA detection methods that can be seamlessly integrated into portable platforms. Herein we present a sensitive yet simple DNA detection method using a surface-enhanced Raman scattering (SERS) nanoplatform: the ultrabright SERS nanorattle. The method, referred to as the nanorattle-based method, involves sandwich hybridization of magnetic beads that are loaded with capture probes, target sequences, and ultrabright SERS nanorattles that are loaded with reporter probes. Upon hybridization, a magnet was applied to concentrate the hybridization sandwiches at a detection spot for SERS measurements. The ultrabright SERS nanorattles, composed of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for signal detection. Using this method, a specific DNA sequence of the malaria parasite Plasmodium falciparum could be detected with a detection limit of approximately 100 attomoles. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. These test models demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. Furthermore, the method's simplicity makes it a suitable candidate for integration into portable platforms for POC and in resource-limited settings applications. Copyright © 2016. Published by Elsevier B.V.
Funk, Christopher C.; Michaelsen, Joel C.
2004-01-01
An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine the velocity profile, with either sinusoidal or vertically decaying (evanescent) solutions possible. These velocity profiles replace the parameterized functions in the original VDEL, creating VDELB, a diagnostic accounting for buoyancy effects. A further extension (VDELB*) uses an on/off constraint derived from reanalysis precipitation fields. A validation study over 365 days in the Pacific Northwest suggests that VDELB* can best capture seasonal and geographic variations. A new statistical data-fusion technique is presented and is used to combine VDELB*, reanalysis, and satellite rainfall estimates in southern Africa. The technique, matched filter regression (MFR), sets the variance of the predictors equal to their squared correlation with observed gauge data and predicts rainfall based on the first principal component of the combined data. In the test presented here, mean absolute errors from the MFR technique were 35% lower than the satellite estimates alone. VDELB assumes a linear solution to the wave equations and a Boussinesq atmosphere, and it may give unrealistic responses under extreme conditions. Nonetheless, the results presented here suggest that diagnostic models, driven by reanalysis data, can be used to improve satellite rainfall estimates in data-sparse regions.
Adamczewski, Zbigniew; Stasiołek, Mariusz; Dedecjus, Marek; Smolewski, Piotr; Lewiński, Andrzej
2015-01-01
A combination of traditional cytology methods with fluorescence activated cell sorting (FACS) analysis of fine-needle aspiration biopsy (FNAB) material is considered a powerful diagnostic tool in the differential diagnosis of thyroid lesions suspected of mucosa-associated lymphoid tissue lymphoma (MALT-L). The aim of this study was to demonstrate the FACS-based diagnostic process of thyroid lesions in a clinical situation where ultrasound and cytological examinations did not allow differentiation between Hashimoto's thyroiditis (HT) and MALT-L. The patients analysed in this study presented significantly different clinical courses of thyroid disease: quickly enlarging painless tumour of the thyroid right lobe in the first case, and chronic HT with palpable tumour in the thyroid isthmus in the second patient. Due to the suspicion of MALT-L resulting from indeterminate ultrasound and FNAB-cytology results, FNAB material was obtained from all the previously examined thyroid lesions and directly subjected to FACS assessment, encompassing κ/λ light chain restriction analysis, as well as measurements of B and T cell surface antigens. The FACS analysis of FNAB material obtained from our patients did not show any definite signs of light chain restriction. Although one of the samples showed a borderline value of κ/λ ratio (κ/λ = 0.31), further immunophenotyping confirmed clonal expansion in none of the examined thyroid regions. Histopathological findings documented the diagnosis of HT in both clinical cases. We believe that FACS represents a useful and reliable complementary diagnostic measure in FNAB-based differential diagnosis of lymphoproliferative thyroid disorders.
Can and should value-based pricing be applied to molecular diagnostics?
Garau, Martina; Towse, Adrian; Garrison, Louis; Housman, Laura; Ossa, Diego
2013-01-01
Current pricing and reimbursement systems for diagnostics are not efficient. Prices for diagnostics are often driven by administrative practices and expected production cost. The purpose of the paper is to discuss how a value-based pricing framework being used to ensure efficient use and price of medicines could also be applied to diagnostics. Diagnostics not only facilitates health gain and cost savings, but also information to guide patients' decisions on interventions and their future 'behaviors'. For value assessment processes we recommend a two-part approach. Companion diagnostics introduced at the launch of the drug should be assessed through new drug assessment processes considering a broad range of value elements and a balanced analysis of diagnostic impacts. A separate diagnostic-dedicated committee using value-based pricing principles should review other diagnostics lying outside the companion diagnostics-and-drug 'at-launch' situation.
Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water
NASA Astrophysics Data System (ADS)
Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji
2013-03-01
New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.
Liu, Chang; Yang, Yunchen; Wu, Yun
2018-03-08
Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.
Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan
2015-01-01
The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares–discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares–discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer. PMID:25609959
A cell-laden microfluidic hydrogel.
Ling, Yibo; Rubin, Jamie; Deng, Yuting; Huang, Catherine; Demirci, Utkan; Karp, Jeffrey M; Khademhosseini, Ali
2007-06-01
The encapsulation of mammalian cells within the bulk material of microfluidic channels may be beneficial for applications ranging from tissue engineering to cell-based diagnostic assays. In this work, we present a technique for fabricating microfluidic channels from cell-laden agarose hydrogels. Using standard soft lithographic techniques, molten agarose was molded against a SU-8 patterned silicon wafer. To generate sealed and water-tight microfluidic channels, the surface of the molded agarose was heated at 71 degrees C for 3 s and sealed to another surface-heated slab of agarose. Channels of different dimensions were generated and it was shown that agarose, though highly porous, is a suitable material for performing microfluidics. Cells embedded within the microfluidic molds were well distributed and media pumped through the channels allowed the exchange of nutrients and waste products. While most cells were found to be viable upon initial device fabrication, only those cells near the microfluidic channels remained viable after 3 days, demonstrating the importance of a perfused network of microchannels for delivering nutrients and oxygen to maintain cell viability in large hydrogels. Further development of this technique may lead to the generation of biomimetic synthetic vasculature for tissue engineering, diagnostics, and drug screening applications.
Acoustic Holography of the Solar Convection Zone with SOHO-MDI Observations
NASA Technical Reports Server (NTRS)
Lindsey, Charles
2005-01-01
The original grant with the title stated above was NAG5-10984, awarded to the Solar Physics Research Corporation (SPRC) in July, 2001, and was to be a three-year project. The basic theme of the project was the development and application of computational seismic holography for imaging, diagnostics, and monitoring of magnetic anomalies beneath active regions, in the deep solar interior, and on the Sun's far surface. The project was roughly separated into the following five tasks: (1) A holographic survey of active regions. (2) p-Mode absorption diagnostics of magnetic regions. (3) Acoustic modeling of the shallow subphotospheres of active regions and the quiet-Sun supergranulation based on phase-correlation seismic holography. (4) Seismic holography of the deep convection zone. (5) Improvements in holographic imaging of the far surface of the Sun. Following the death of Karen Harvey, President of SPRC, during the first year, the grant was transferred to Northwest Research Associates as NAG5-12901. Substantial but progress had been made on most of the above tasks in the first year under NAG5-10984, but none were completed. This work was continued under NAG5-12901.
NASA Astrophysics Data System (ADS)
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2018-01-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.
Laser diagnostics for characterization of sprays formed by a collapsing non-equilibrium bubble
NASA Astrophysics Data System (ADS)
Kannan, Y. S.; Balusamy, S.; Karri, B.
2015-12-01
In this paper, we investigate the use of laser diagnostic tools for in-plane imaging of bubble induced spray using a laser sheet and Mie scattering technique. A perspex plate of thickness 10 mm with a hole of diameter 1 mm in the center is placed in the middle of a glass tank filled with water such that the top surface of the plate coincides with the water surface. A bubble is created just below the hole using a low-voltage spark circuit such that it expands against the hole. This leads to the formation of two jets which impact leading to a spray and break-up into droplets. The spray evolution is observed using a laser sheet directed in a plane through the center of the hole. The illuminated plane is imaged using a high-speed camera based on the Mie scattering from glass beads suspended in the liquid. Results show that Mie scattering technique has potential in studying bubble-induced sprays with applications such as in fuel sprays, drug-delivery etc, and also for validation of numerical codes. We present results from our ongoing experiments in this paper.
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven
2016-07-01
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors
NASA Astrophysics Data System (ADS)
Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine
2013-03-01
The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.
Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist
NASA Astrophysics Data System (ADS)
Tummala, Sudhakar; Dam, Erik B.
2010-03-01
Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.
A Robust Definition for the Turbulent Langmuir Number
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Breivik, O.; Sutherland, G.; Belcher, S. E.; Gargett, A.
2016-02-01
The turbulent Langmuir number combines the water side friction velocity and the surface value of the Stokes drift, and is central to parameterizations of mixing by Langmuir turbulence. Making a direct comparison between such parameterizations and observations is difficult since the surface Stokes drift is sensitive to both the spectral tail and the directional spread of the waves. We propose a new definition for the turbulent Langmuir number based on low order moments of the one-dimensional frequency spectrum, hence eliminating most of the uncertainties associated with the diagnostic spectral tail. Comparison is made between the old and the new definitions using both observed and modeled wave spectra. The new definition has a higher variation around the mean and is better at resolving typical oceanic conditions. In addition, it is backwards compatible with the old definition for monochromatic waves, which means that scalings based on large eddy simulations with monochromatic wave forcing are still valid.
NASA Astrophysics Data System (ADS)
Zhang, Yunjiao; Zheng, Fang; Yang, Tianlong; Zhou, Wei; Liu, Yun; Man, Na; Zhang, Li; Jin, Nan; Dou, Qingqing; Zhang, Yong; Li, Zhengquan; Wen, Long-Ping
2012-09-01
The induction of autophagy on exposure of cells to a variety of nanoparticles represents both a safety concern and an application niche for engineered nanomaterials. Here, we show that a short synthetic peptide, RE-1, identified by means of phage display, binds to lanthanide (LN) oxide and upconversion nanocrystals (UCN), forms a stable coating layer on the nanoparticles’ surface, and effectively abrogates their autophagy-inducing activity. Furthermore, RE-1 peptide variants exhibit a differentially reduced binding capability, and correspondingly, a varied ability to reduce the autophagic response. We also show that the addition of an arginine-glycine-aspartic acid (RGD) motif to RE-1 enhances autophagy for LN UCN through the interaction with integrins. RE-1 and its variants provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy, and may prove useful for the various diagnostic and therapeutic applications of LN-based nanomaterials and nanodevices.
Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A
2018-06-06
A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.
NASA Astrophysics Data System (ADS)
More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.
2018-01-01
Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.
NASA Astrophysics Data System (ADS)
Berg, Alexis
2017-04-01
In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center for... used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen. [40 FR...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
DNA decontamination methods for internal quality management in clinical PCR laboratories.
Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen
2018-03-01
The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.
Dorvel, Brian R.; Reddy, Bobby; Go, Jonghyun; Guevara, Carlos Duarte; Salm, Eric; Alam, Muhammad Ashraful; Bashir, Rashid
2012-01-01
Nanobiosensors based on silicon nanowire field effect transistors offer advantages of low cost, label-free detection, and potential for massive parallelization. As a result, these sensors have often been suggested as an attractive option for applications in Point-of-care (POC) medical diagnostics. Unfortunately, a number of performance issues such as gate leakage and current instability due to fluid contact, have prevented widespread adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide (HfO2), have the known ability to address these challenges by passivating the exposed surfaces against destabilizing concerns of ion transport. With these fundamental stability issues addressed, a promising target for POC diagnostics and SiNWFET’s has been small oligonucleotides, more specifically microRNA (miRNA). MicroRNA’s are small RNA oligonucleotides which bind to messenger RNA’s, causing translational repression of proteins, gene silencing, and expressions are typically altered in several forms of cancer. In this paper, we describe a process for fabricating stable HfO2 dielectric based silicon nanowires for biosensing applications. Here we demonstrate sensing of single stranded DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, both known to be upregulated in breast cancer. We characterize the effect of surface functionalization on device performance using the miR-10b DNA analogue as the target sequence and different molecular weight poly-l-lysine as the functionalization layer. By optimizing the surface functionalization and fabrication protocol, we were able to achieve <100fM detection levels of miR-10b DNA analogue, with a theoretical limit of detection of 1fM. Moreover, the non-complementary DNA target strand, based on miR-21, showed very little response, indicating a highly sensitive and highly selective biosensing platform. PMID:22695179
Climate Prediction Center - Monitoring and Data Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices
Design advances of the Core Plasma Thomson Scattering diagnostic for ITER
NASA Astrophysics Data System (ADS)
Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.
2017-11-01
The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan
NASA Astrophysics Data System (ADS)
Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.
2017-10-01
A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.
Status of Real-Time Laser Based Ion Engine Diagnostics at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Williams, George J., Jr.
2001-01-01
The development status of laser based erosion diagnostics for ion engines at the NASA Glenn Research Center is discussed. The diagnostics are being developed to enhance component life-prediction capabilities. A direct measurement of the erosion product density using laser induced fluorescence (LIF) is described. Erosion diagnostics based upon evaluation of the ion dynamics are also under development, and the basic approach is presented. The planned implementation of the diagnostics is discussed.
Costa, M N; Veigas, B; Jacob, J M; Santos, D S; Gomes, J; Baptista, P V; Martins, R; Inácio, J; Fortunato, E
2014-03-07
There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above-mentioned proof-of-concept sensors are thus promising towards the future development of simple and cost-effective paper-based diagnostic devices.
NASA Astrophysics Data System (ADS)
Costa, M. N.; Veigas, B.; Jacob, J. M.; Santos, D. S.; Gomes, J.; Baptista, P. V.; Martins, R.; Inácio, J.; Fortunato, E.
2014-03-01
There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above-mentioned proof-of-concept sensors are thus promising towards the future development of simple and cost-effective paper-based diagnostic devices.
NASA Astrophysics Data System (ADS)
Vainer, Boris G.; Morozov, Vitaly V.
A peculiar branch of biophotonics is a measurement, visualisation and quantitative analysis of infrared (IR) radiation emitted from living object surfaces. Focal plane array (FPA)-based IR cameras make it possible to realize in medicine the so called interventional infrared thermal diagnostics. An integrated technique aimed at the advancement of this new approach in biomedical science and practice is described in the paper. The assembled system includes a high-performance short-wave (2.45-3.05 μm) or long-wave (8-14 μm) IR camera, two laser Doppler flowmeters (LDF) and additional equipment and complementary facilities implementing the monitoring of human cardiovascular status. All these means operate synchronously. It is first ascertained the relationship between infrared thermography (IRT) and LDF data in humans in regard to their systemic cardiovascular reactivity. Blood supply real-time dynamics in a narcotized patient is first visualized and quantitatively represented during surgery in order to observe how the general hyperoxia influences thermoregulatory mechanisms; an abrupt increase in temperature of the upper limb is observed using IRT. It is outlined that the IRT-based integrated technique may act as a take-off runway leading to elaboration of informative new methods directly applicable to medicine and biomedical sciences.
Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum.
Gutiérrez-Sanz, Óscar; Andoy, Nesha M; Filipiak, Marcin S; Haustein, Natalie; Tarasov, Alexey
2017-09-22
Transistor-based biosensors fulfill many requirements posed upon transducers for future point-of-care diagnostic devices such as scalable fabrication and label-free and real-time quantification of chemical and biological species with high sensitivity. However, the short Debye screening length in physiological samples (<1 nm) has been a major drawback so far, preventing direct measurements in serum. In this work, we demonstrate how tailoring the sensing surface with short specific biological receptors and a polymer polyethylene glycol (PEG) can strongly enhance the sensor response. In addition, the sensor performance can be dramatically improved if the measurements are performed at elevated temperatures (37 °C instead of 21 °C). With this novel approach, highly sensitive and selective detection of a representative immunosensing parameter-human thyroid-stimulating hormone-is shown over a wide measuring range with subpicomolar detection limits in whole serum. To the best of our knowledge, this is the first demonstration of direct immunodetection in whole serum using transistor-based biosensors, without the need for sample pretreatment, labeling, or washing steps. The presented sensor is low-cost, can be easily integrated into portable diagnostics devices, and offers a competitive performance compared to state-of-the-art central laboratory analyzers.
Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.
Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M
2017-01-01
The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.
Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2005-01-01
Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.
Sensing a heart infarction marker with surface plasmon resonance spectroscopy
NASA Astrophysics Data System (ADS)
Kunz, Ulrich; Katerkamp, Andreas; Renneberg, Reinhard; Spener, Friedrich; Cammann, Karl
1995-02-01
In this study a direct immunosensor for heart-type fatty acid binding protein (FABP) based on surface plasmon resonance spectroscopy (SPRS) is presented. FABP can be used as a heart infarction marker in clinical diagnostics. The development of a simple and cheap direct optical sensor device is reported in this paper as well as immobilization procedures and optimization of the measuring conditions. The correct working of the SPRS device is controlled by comparing the signals with theoretical calculated values. Two different immunoassay techniques were optimized for a sensitive FABP-analysis. The competitive immunoassay was superior to the sandwich configuration as it had a lower detection limit (100 ng/ml), needed less antibodies and could be carried out in one step.
Study on nasopharyngeal cancer tissue using surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Xiaosong; Lin, Xueliang; Xu, Zhihong; Wei, Guoqiang; Huang, Wei; Lin, Duo
2016-10-01
Surface-enhanced Raman spectroscopy (SERS) can provide detailed molecular structure and composition information, and has demonstrated great potential in biomedical filed. This spectroscopy technology has become one of the most important optical techniques in the early diagnosis of cancer. Nasopharyngeal cancer (NPC) is a malignant neoplasm arising in the nasopharyngeal epithelial lining, which has relatively high incidence and death rate in Southeast Asia and southern China. This paper reviews the current progress of SERS in the field of cancer diagnostics, including gastric cancer, colorectal cancer, cervical cancer and nasopharyngeal cancer. In addition to above researches, we recently develop a novel NPC detection method based on tissue section using SERS, and obtain primary results. The proposed method has promising potential for the detection of nasopharyngeal carcinoma.
A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.
Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas
2017-03-01
While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.
Lee, Sanghwa; Lee, Seung Ho; Paulson, Bjorn; Lee, Jae-Chul; Kim, Jun Ki
2018-06-20
The development of size-selective and non-destructive detection techniques for nanosized biomarkers has many reasons, including the study of living cells and diagnostic applications. We present an approach for Raman signal enhancement on biocompatible sensing chips based on surface enhancement Raman spectroscopy (SERS). A sensing chip was fabricated by forming a ZnO-based nanorod structure so that the Raman enhancement occurred at a gap of several tens to several hundred nanometers. The effect of coffee-ring formation was eliminated by introducing the porous ZnO nanorods for the bio-liquid sample. A peculiarity of this approach is that the gold sputtered on the ZnO nanorods initially grows at their heads forming clusters, as confirmed by secondary electron microscopy. This clustering was verified by finite element analysis to be the main factor for enhancement of local surface plasmon resonance (LSPR). This clustering property and the ability to adjust the size of the nanorods enabled the signal acquisition points to be refined using confocal based Raman spectroscopy, which could be applied directly to the sensor chip based on the optimization process in this experiment. It was demonstrated by using common cancer cell lines that cell growth was high on these gold-clad ZnO nanorod-based surface-enhanced Raman substrates. The porosity of the sensing chip, the improved structure for signal enhancement, and the cell assay make these gold-coated ZnO nanorods substrates promising biosensing chips with excellent potential for detecting nanometric biomarkers secreted by cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.
Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M
2013-01-01
Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.
Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong
2016-01-01
Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.
Wafer-scale plasmonic and photonic crystal sensors
NASA Astrophysics Data System (ADS)
George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.
2015-08-01
200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.
A Coffee Ring Aptasensor for Rapid Protein Detection
Wen, Jessica T.; Ho, Chih-Ming; Lillehoj, Peter B.
2013-01-01
We introduce a new biosensing platform for rapid protein detection that combines one of the simplest methods for biomolecular concentration, coffee ring formation, with a sensitive aptamer-based optical detection scheme. In this approach, aptamer beacons are utilized for signal transduction where a fluorescence signal is emitted in the presence of the target molecule. Signal amplification is achieved by concentrating aptamer-target complexes within liquid droplets, resulting in the formation of coffee ring “spots”. Surfaces with various chemical coatings were utilized to investigate the correlation between surface hydrophobicity, concentration efficiency and signal amplification. Based on our results, we found that the increase in coffee ring diameter with larger droplet volumes is independent of surface hydrophobicity. Furthermore, we show that highly hydrophobic surfaces produce enhanced particle concentration, via coffee ring formation, resulting in signal intensities 6-fold greater than those on hydrophilic surfaces. To validate this biosensing platform for the detection of clinical samples, we detected α-thrombin in human serum and 4x diluted whole blood. Based on our results, coffee ring spots produced detection signals 40x larger than samples in liquid droplets. Additionally, this biosensor exhibits a lower limit of detection of 2 ng/mL (54 pM) in serum, and 4 ng/mL (105 pM) in blood. Based on its simplicity and high performance, this platform demonstrates immense potential as an inexpensive diagnostic tool for the detection of disease biomarkers, particularly for use in developing countries that lack the resources and facilities required for conventional biodetection practices. PMID:23540796
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
[Recent progress of research and applications of fractal and its theories in medicine].
Cai, Congbo; Wang, Ping
2014-10-01
Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.
Improvement in the amine glass platform by bubbling method for a DNA microarray
Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo
2015-01-01
A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. PMID:26468293
Improvement in the amine glass platform by bubbling method for a DNA microarray.
Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo
2015-01-01
A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.
Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films
NASA Astrophysics Data System (ADS)
Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan
2012-02-01
For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.
Development of infrared thermal imager for dry eye diagnosis
NASA Astrophysics Data System (ADS)
Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.
2006-08-01
This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.
Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian
2014-11-01
The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.
Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute
2018-01-01
Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.
Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.
2003-01-01
An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr
1999-10-01
A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.
IT-based diagnostic instrumentation systems for personalized healthcare services.
Chun, Honggu; Kang, Jaemin; Kim, Ki-Jung; Park, Kwang Suk; Kim, Hee Chan
2005-01-01
This paper describes recent research and development activities on the diagnostic instruments for personalized healthcare services in Seoul National University. Utilizing the state-of-the-art information technologies (IT), various diagnostic medical instruments have been integrated into a personal wearable device and a home telehealthcare system. We developed a wrist-worn integrated health monitoring device (WIHMD) which performs the measurements of non-invasive blood pressure (NIBP), pulse oximetry (SpO2), electrocardiogram (ECG), respiration rate, heart rate, and body surface temperature and the detection of falls to determine the onset of emergency situation. The WIHMD also analyzes the acquired bio-signals and transmits the resultant data to a healthcare service center through a commercial cellular phone. Two different kinds of IT-based blood glucometer have been developed using a cellular phone and PDA(personal digital assistant) as a main unit. A blood glucometer was also integrated within a wrist pressure measurement module which is interfaced with a cellular phone via Telecommunications Technology Association (TTA) standard in order to provide users with easiness in measuring and handling two important health parameters. Non-intrusive bio-signal measurement systems were developed for the ease of home use. One can measure his ECG on a bed while he is sleeping; measure his ECG, body temperature, bodyfat ratio and weight on a toilet seat; measure his ECG on a chair; and estimate the degree of activity by motion analysis using a camera. Another integrated diagnostic system for home telehealthcare services has been developed to include a 12 channels ECG, a pressure meter for NIBP, a blood glucometer, a bodyfat meter and a spirometer. It is an expert system to analyze the measured health data and based on the diagnostic result, the system provides an appropriate medical consultation. The measured data can be either stored on the system or transmitted to the central server through the internet. We have installed the developed systems on a model house for the performance evaluation and confirmed the possibility of the system as an effective tool for the personalized healthcare services.
NASA Astrophysics Data System (ADS)
Brazhnik, Kristina; Grinevich, Regina; Efimov, Anton E.; Nabiev, Igor; Sukhanova, Alyona
2014-05-01
Advanced multiplexed assays have recently become an indispensable tool for clinical diagnostics. These techniques provide simultaneous quantitative determination of multiple biomolecules in a single sample quickly and accurately. The development of multiplex suspension arrays is currently of particular interest for clinical applications. Optical encoding of microparticles is the most available and easy-to-use technique. This technology uses fluorophores incorporated into microbeads to obtain individual optical codes. Fluorophore-encoded beads can be rapidly analyzed using classical flow cytometry or microfluidic techniques. We have developed a new generation of highly sensitive and specific diagnostic systems for detection of cancer antigens in human serum samples based on microbeads encoded with fluorescent quantum dots (QDs). The designed suspension microarray system was validated for quantitative detection of (1) free and total prostate specific antigen (PSA) in the serum of patients with prostate cancer and (2) carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA 15-3) in the serum of patients with breast cancer. The serum samples from healthy donors were used as a control. The antigen detection is based on the formation of an immune complex of a specific capture antibody (Ab), a target antigen (Ag), and a detector Ab on the surface of the encoded particles. The capture Ab is bound to the polymer shell of microbeads via an adapter molecule, for example, protein A. Protein A binds a monoclonal Ab in a highly oriented manner due to specific interaction with the Fc-region of the Ab molecule. Each antigen can be recognized and detected due to a specific microbead population carrying the unique fluorescent code. 100 and 231 serum samples from patients with different stages of prostate cancer and breast cancer, respectively, and those from healthy donors were examined using the designed suspension system. The data were validated by comparing with the results of the "gold standard" enzyme-linked immunosorbent assay (ELISA). They have shown that our approach is a good alternative to the diagnostics of cancer markers using conventional assays, especially in early diagnostic applications.
Cell separation using tilted-angle standing surface acoustic waves
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-01-01
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150
Cell separation using tilted-angle standing surface acoustic waves.
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-09-09
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
On-the-fly detection of images with gastritis aspects in magnetically guided capsule endoscopy
NASA Astrophysics Data System (ADS)
Mewes, P. W.; Neumann, D.; Juloski, A. L.; Angelopoulou, E.; Hornegger, J.
2011-03-01
Capsule Endoscopy (CE) was introduced in 2000 and has since become an established diagnostic procedure for the small bowel, colon and esophagus. For the CE examination the patient swallows the capsule, which then travels through the gastrointestinal tract under the influence of the peristaltic movements. CE is not indicated for stomach examination, as the capsule movements can not be controlled from the outside and the entire surface of the stomach can not be reliably covered. Magnetically-guided capsule endoscopy (MGCE) was introduced in 2010. For the MGCE procedure the stomach is filled with water and the capsule is navigated from the outside using an external magnetic field. During the examination the operator can control the motion of the capsule in order to obtain a sufficient number of stomach-surface images with diagnostic value. The quality of the examination depends on the skill of the operator and his ability to detect aspects of interest in real time. We present a novel computer-assisted diagnostic-procedure (CADP) algorithm for indicating gastritis pathologies in the stomach during the examination. Our algorithm is based on pre-processing methods and feature vectors that are suitably chosen for the challenges of the MGCE imaging (suspended particles, bubbles, lighting). An image is classified using an ada-boost trained classifier. For the classifier training, a number of possible features were investigated. Statistical evaluation was conducted to identify relevant features with discriminative potential. The proposed algorithm was tested on 12 video sequences stemming from 6 volunteers. A mean detection rate of 91.17% was achieved during leave-one out cross-validation.
Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette
Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.
Kubanov, Aleksey; Runina, Anastassia
2017-01-01
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized. PMID:28523273
NASA Astrophysics Data System (ADS)
Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.
2017-12-01
Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.
Diagnostic reliability of MMPI-2 computer-based test interpretations.
Pant, Hina; McCabe, Brian J; Deskovitz, Mark A; Weed, Nathan C; Williams, John E
2014-09-01
Reflecting the common use of the MMPI-2 to provide diagnostic considerations, computer-based test interpretations (CBTIs) also typically offer diagnostic suggestions. However, these diagnostic suggestions can sometimes be shown to vary widely across different CBTI programs even for identical MMPI-2 profiles. The present study evaluated the diagnostic reliability of 6 commercially available CBTIs using a 20-item Q-sort task developed for this study. Four raters each sorted diagnostic classifications based on these 6 CBTI reports for 20 MMPI-2 profiles. Two questions were addressed. First, do users of CBTIs understand the diagnostic information contained within the reports similarly? Overall, diagnostic sorts of the CBTIs showed moderate inter-interpreter diagnostic reliability (mean r = .56), with sorts for the 1/2/3 profile showing the highest inter-interpreter diagnostic reliability (mean r = .67). Second, do different CBTIs programs vary with respect to diagnostic suggestions? It was found that diagnostic sorts of the CBTIs had a mean inter-CBTI diagnostic reliability of r = .56, indicating moderate but not strong agreement across CBTIs in terms of diagnostic suggestions. The strongest inter-CBTI diagnostic agreement was found for sorts of the 1/2/3 profile CBTIs (mean r = .71). Limitations and future directions are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mast cell activation test in the diagnosis of allergic disease and anaphylaxis.
Bahri, Rajia; Custovic, Adnan; Korosec, Peter; Tsoumani, Marina; Barron, Martin; Wu, Jiakai; Sayers, Rebekah; Weimann, Alf; Ruiz-Garcia, Monica; Patel, Nandinee; Robb, Abigail; Shamji, Mohamed H; Fontanella, Sara; Silar, Mira; Mills, E N Clare; Simpson, Angela; Turner, Paul J; Bulfone-Paus, Silvia
2018-03-05
Food allergy is an increasing public health issue and the most common cause of life-threatening anaphylactic reactions. Conventional allergy tests assess for the presence of allergen-specific IgE, significantly overestimating the rate of true clinical allergy and resulting in overdiagnosis and adverse effect on health-related quality of life. To undertake initial validation and assessment of a novel diagnostic tool, we used the mast cell activation test (MAT). Primary human blood-derived mast cells (MCs) were generated from peripheral blood precursors, sensitized with patients' sera, and then incubated with allergen. MC degranulation was assessed by means of flow cytometry and mediator release. We compared the diagnostic performance of MATs with that of existing diagnostic tools to assess in a cohort of peanut-sensitized subjects undergoing double-blind, placebo-controlled challenge. Human blood-derived MCs sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D 2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the MAT was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. Using functional principle component analysis, we identified 5 clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge. The MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A highly sensitive and selective diagnostic assay based on virus nanoparticles
NASA Astrophysics Data System (ADS)
Park, Jin-Seung; Cho, Moon Kyu; Lee, Eun Jung; Ahn, Keum-Young; Lee, Kyung Eun; Jung, Jae Hun; Cho, Yunjung; Han, Sung-Sik; Kim, Young Keun; Lee, Jeewon
2009-04-01
Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction can reduce the risk of death from heart attacks. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.
Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad
2015-04-01
Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Recent progress in the therapeutic applications of nanotechnology.
Solomon, Melani; D'Souza, Gerard G M
2011-04-01
The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.
Time-diagnostics for improved dynamics experiments at XUV FELs
NASA Astrophysics Data System (ADS)
Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek
2010-10-01
Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.
A VLT/UVES spectroscopy study of O2 stars in the LMC
NASA Astrophysics Data System (ADS)
Doran, Emile I.; Crowther, Paul A.
2011-01-01
We have analysed VLT/UVES spectra of six O2 stars within the Large Magellanic Cloud using the non-LTE atmospheric code CMFGEN. A range of physical properties was determined by employing a temperature calibration based upon N IV - N V diagnostics. Wind properties were also obtained from the Hα line, while CNO surface abundances were supplied through various diagnostics. Our results reveal effective temperatures in excess of T_{eff} ˜50 kK in all cases. We also addressed their evolutionary status and favour a mass dependent division. For lower masses ≤100 M⊙Mar, an O2 star follows the classical sequence, evolving from dwarf on to giant, through to supergiant. At higher masses, the dwarf phase may be circumvented and instead O2 stars begin their lives as giants or supergiants, evolving to the H-rich WN stage within ˜1.5 Myr.
Clinical potential of proteomics in the diagnosis of ovarian cancer.
Ardekani, Ali M; Liotta, Lance A; Petricoin, Emanuel F
2002-07-01
The need for specific and sensitive markers of ovarian cancer is critical. Finding a sensitive and specific test for its detection has an important public health impact. Currently, there are no effective screening options available for patients with ovarian cancer. CA-125, the most widely used biomarker for ovarian cancer, does not have a high positive predictive value and it is only effective when used in combination with other diagnostic tests. However, pathologic changes taking place within the ovary may be reflected in biomarker patterns in the serum. Combination of mass spectra generated by new proteomic technologies, such as surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF) and artificial-intelligence-based informatic algorithms, have been used to discover a small set of key protein values and discriminate normal from ovarian cancer patients. Serum proteomic pattern analysis might be applied ultimately in medical screening clinics, as a supplement to the diagnostic work-up and evaluation.
Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.
van Zalinge, Harm; Ramsey, Laurence C; Aveyard, Jenny; Persson, Malin; Mansson, Alf; Nicolau, Dan V
2015-08-04
The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can be used to gain fundamental insights into the functioning of protein molecular motors, such as the force exerted by the motors under different operational conditions.
Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe
2018-01-01
The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.
Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe
2018-01-01
The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.
NASA Astrophysics Data System (ADS)
Nabiev, I. R.
2017-01-01
Molecules recognizing biomarkers of diseases (monoclonal antibodies (monoABs)) are often too large for biomedical applications, and the conditions that are used to bind them with nanolabels lead to disordered orientation of monoABs with respect to the nanoparticle surface. Extremely small nanoprobes, designed via oriented conjugation of quantum dots (QDs) with single-domain antibodies (sdABs) derived from the immunoglobulin of llama and produced in the E. coli culture, have a hydrodynamic diameter less than 12 nm and contain equally oriented sdAB molecules on the surface of each QD. These nanoprobes exhibit excellent specificity and sensitivity in quantitative determination of a small number of cells expressing biomarkers. In addition, the higher diffusion coefficient of sdABs makes it possible to perform immunohistochemical analysis in bulk tissue, inaccessible for conventional monoABs. The necessary conditions for implementing high-quality immunofluorescence diagnostics are a high specificity of labeling and clear differences between the fluorescence of nanoprobes and the autofluorescence of tissues. Multiphoton micros-copy with excitation in the near-IR spectral range, which is remote from the range of tissue autofluorescence excitation, makes it possible to solve this problem and image deep layers in biological tissues. The two-photon absorption cross sections of CdSe/ZnS QDs conjugated with sdABs exceed the corresponding values for organic fluorophores by several orders of magnitude. These nanoprobes provide clear discrimination between the regions of tumor and normal tissues with a ratio of the sdAB fluorescence to the tissue autofluorescence upon two-photon excitation exceeding that in the case of single-photon excitation by a factor of more than 40. The data obtained indicate that the sdAB-QD conjugates used as labels provide the same, or even better, quality as the "gold standard" of immunohistochemical diagnostics. The developed nanoprobes are expected to find wide application in high-efficiency imaging of tumor and multiparameter diagnostics.
Descriptive epidemiology of joint injuries in Thoroughbred racehorses in training.
Reed, S R; Jackson, B F; Mc Ilwraith, C W; Wright, I M; Pilsworth, R; Knapp, S; Wood, J L N; Price, J S; Verheyen, K L P
2012-01-01
No large scale epidemiological studies have previously quantified the occurrence of carpal, metacarpo- and metatarsophalangeal (MCP/MTP) joint injuries in Thoroughbred racehorses. To develop an objective classification system for carpal and MCP/MTP joint injuries and estimate the incidence of these injuries in young Thoroughbreds in flat race training. In a prospective cohort study, data on daily exercise and veterinary-diagnosed carpal and MCP/MTP joint injuries were collected from Thoroughbreds monitored since starting training as yearlings, for up to 2 years. Cases were classified in one of 4 categories: 1) localised to a carpal or MCP/MTP joint based on clinical examination and/or diagnostic analgesia; no diagnostic imaging performed; 2) localised to a carpal or MCP/MTP joint based on clinical examination and/or diagnostic analgesia; radiographs taken but no abnormalities detected; 3) evidence of abnormality of subchondral bone and/or articular margin(s) on diagnostic imaging and 4) evidence of discontinuity of the articular surface on diagnostic imaging. Incidence rates and rate ratios were estimated using Poisson regression, adjusting for trainer-level clustering. A total of 647 horses from 13 trainers throughout England contributed 7785 months at risk of joint injury. One-hundred-and-eighty-four cases of carpal (n = 82) or MCP/MTP (n = 102) joint injury were reported in 165 horses and classified in Category 1 (n = 21), Category 2 (n = 21), Category 3 (n = 72) or Category 4 (n = 70). The overall joint injury rate was 1.8 per 100 horse months (95% CI = 1.2, 2.8); rates did not differ significantly between 2- and 3-year-olds but females sustained Category 1 injuries at triple the rate of males (P = 0.03). Joint injury rates differed significantly between trainers (P<0.001) and there was trainer variation in anatomical site and severity of injury. Carpal and MCP/MTP joint injuries are an important cause of morbidity in Thoroughbred racehorses. Identification of modifiable risk factors for these injuries may reduce their incidence. © 2011 EVJ Ltd.
ERIC Educational Resources Information Center
Bramao, Ines; Faisca, Luis; Forkstam, Christian; Inacio, Filomena; Araujo, Susana; Petersson, Karl Magnus; Reis, Alexandra
2012-01-01
In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks--a surface and a knowledge verification task--using high color diagnostic objects; both typical and atypical color versions of the same…
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Cunitz, B.
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however,more » nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.« less
SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Zakamska, Nadia L.; Greene, Jenny E.; Riffel, Rogemar A.; Drory, Niv; Andrews, Brett H.; Merloni, Andrea; Thomas, Daniel
2018-02-01
In this paper, we investigate 2727 galaxies observed by MaNGA as of 2016 June to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGNs). We identify 303 AGN candidates. The additional spatial dimension imposes challenges in identifying AGNs due to contamination from diffuse ionized gas, extraplanar gas and photoionization by hot stars. We show that the combination of spatially resolved line diagnostic diagrams and additional cuts on H α surface brightness and H α equivalent width can distinguish between AGN-like signatures and high-metallicity galaxies with low-ionization nuclear emission-line regions-like spectra. Low-mass galaxies with high specific star formation rates are particularly difficult to diagnose and routinely show diagnostic line ratios outside of the standard star formation locus. We develop a new diagnostic - the distance from the standard diagnostic line in the line-ratio space - to evaluate the significance of the deviation from the star formation locus. We find 173 galaxies that would not have been selected as AGN candidates based on single-fibre spectral measurements but exhibit photoionization signatures suggestive of AGN activity in the Mapping Nearby Galaxies at APO resolved observations, underscoring the power of large integral field unit surveys. A complete census of these new AGN candidates is necessary to understand their nature and probe the complex co-evolution of supermassive black holes and their hosts.
Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.; Osipov, Vyatcheslav V.; Timucin, Dogan A.; Uckun, Serdar
2009-01-01
We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.
Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.
2003-01-01
A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.
Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E
2010-01-01
Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.
Determination of neuronal antibodies in suspected and definite Creutzfeldt-Jakob disease.
Grau-Rivera, Oriol; Sánchez-Valle, Raquel; Saiz, Albert; Molinuevo, José Luis; Bernabé, Reyes; Munteis, Elvira; Pujadas, Francesc; Salvador, Antoni; Saura, Júlia; Ugarte, Antonio; Titulaer, Maarten; Dalmau, Josep; Graus, Francesc
2014-01-01
Creutzfeldt-Jakob disease (CJD) and autoimmune encephalitis with antibodies against neuronal surface antigens (NSA-abs) may present with similar clinical features. Establishing the correct diagnosis has practical implications in the management of care for these patients. To determine the frequency of NSA-abs in the cerebrospinal fluid of patients with suspected CJD and in patients with pathologically confirmed (ie, definite) CJD. A mixed prospective (suspected) and retrospective (definite) CJD cohort study was conducted in a reference center for detection of NSA-abs. The population included 346 patients with suspected CJD and 49 patients with definite CJD. Analysis of NSA-abs in cerebrospinal fluid with brain immunohistochemistry optimized for cell-surface antigens was performed. Positive cases in the suspected CJD group were further studied for antigen specificity using cell-based assays. All definite CJD cases were comprehensively tested for NSA-abs, with cell-based assays used for leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), N-methyl-d-aspartate (NMDA), and glycine (GlY) receptors. Neuronal surface antigens were detected in 6 of 346 patients (1.7%) with rapid neurologic deterioration suggestive of CJD. None of these 6 patients fulfilled the diagnostic criteria for probable or possible CJD. The target antigens included CASPR2, LGI1, NMDAR, aquaporin 4, Tr (DNER [δ/notch-like epidermal growth factor-related receptor]), and an unknown protein. Four of the patients developed rapidly progressive dementia, and the other 2 patients had cerebellar ataxia or seizures that were initially considered to be myoclonus without cognitive decline. The patient with Tr-abs had a positive 14-3-3 test result. Small cell lung carcinoma was diagnosed in the patient with antibodies against an unknown antigen. All patients improved or stabilized after appropriate treatment. None of the 49 patients with definite CJD had NSA-abs. A low, but clinically relevant, number of patients with suspected CJD had potentially treatable disorders associated with NSA-abs. In contrast, none of 49 patients with definite CJD had NSA-abs, including NMDAR-abs, GlyR-abs, LGI1-abs, or CASPR2-abs. These findings suggest that cerebrospinal fluid NSA-abs analysis should be included in the diagnostic workup of patients with rapidly progressive central nervous system syndromes, particularly when they do not fulfill the diagnostic criteria of probable or possible CJD.
NASA Astrophysics Data System (ADS)
Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.
2014-03-01
Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model
NASA Astrophysics Data System (ADS)
Vira, J.; Sofiev, M.
2015-02-01
This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-07-08
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a '3D well' was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
Müller, Stephan; Preische, Oliver; Heymann, Petra; Elbing, Ulrich; Laske, Christoph
2017-01-01
There is a considerable delay in the diagnosis of dementia, which may reduce the effectiveness of available treatments. Thus, it is of great interest to develop fast and easy to perform, non-invasive and non-expensive diagnostic measures for the early detection of cognitive impairment and dementia. Here we investigate movement kinematics between 20 patients with early dementia due to Alzheimer's disease (eDAT), 30 patients with amnestic mild cognitive impairment (aMCI), and 20 cognitively healthy control (HC) individuals while copying a three-dimensional house using a digitizing tablet. Receiver-operating characteristic (ROC) curves and logistic regression analyzes have been conducted to explore whether alterations in movement kinematics could be used to discriminate patients with aMCI and eDAT from healthy individuals. Time-in-air (i.e., transitioning from one stroke to the next without touching the surface) differed significantly between patients with aMCI, eDAT, and HCs demonstrating an excellent sensitivity and a moderate specificity to discriminate aMCI subjects from normal elderly and an excellent sensitivity and specificity to discriminate patients affected by mild Alzheimer's disease from healthy individuals. Time-on-surface (i.e., time while stylus is touching the surface) differed only between HCs and patients with eDAT but not between HCs and patients with aMCI. Furthermore, total-time (i.e., time-in-air plus time-on-surface) did not differ between patients with aMCI and early dementia due to AD. Modern digitizing devices offer the opportunity to measure a broad range of visuoconstructive abilities that may be used as a fast and easy to perform screening instrument for the early detection of cognitive impairment and dementia in primary care.
Physical approaches to biomaterial design
Mitragotri, Samir; Lahann, Joerg
2009-01-01
The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389
Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.
Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid
2013-03-01
Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.
The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang
2016-01-01
Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448
Near-Field Resonance Microwave Tomography and Holography
NASA Astrophysics Data System (ADS)
Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.
2018-02-01
We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.
Shultz, Jeffrey W
2018-01-09
A new species of leiobunine harvestman from the Chiricahua Mountains of Arizona is described. The species lacks pro- and retrolateral submarginal rows of coxal denticles, a feature often considered diagnostic for the polyphyletic Nelima, and has greatly reduced ventral dentition on the palpal claw, as in the monotypic Leuronychus. In most other respects, the species is uniquely similar to members of a clade from central and western Mexico currently in the poly- and/or paraphyletic Leiobunum. These traits include a supracheliceral lamina with a wide transverse plate and a canaliculate ocularium, with an anterior surface that slopes dorsoposteriorly and a posterior surface that bulges rearward and is constricted at its base. There is thus a conflict between classification using traditional diagnostic characters and classification using unique similarity of non-traditional characters. The problem is exacerbated by the problematic status of each candidate genus. Here the species is placed in Leiobunum as L. silum sp. nov., a decision that gives weight to probable phylogenetic affinity with species currently placed in that genus. Leiobunum silum provides an excellent example of the limits of traditional typological classification and the need for a broad-scale morphological and molecular revision of sclerosomatid harvestmen.
Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun
2016-01-01
Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593
Reflection spectra and magnetochemistry of iron oxides and natural surfaces
NASA Technical Reports Server (NTRS)
Wasilewski, P.
1978-01-01
The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.
Detection of explosives in soils
Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.
2002-01-01
An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul
2008-01-01
We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332
Surface Spectroscopy Center Of Excellence Project
NASA Technical Reports Server (NTRS)
Wooden, Diane
2014-01-01
We propose to develop a national center of excellence in Regolith Radiative Transfer (RRT), i.e., in modeling spectral reflectivity and emissivity of grainy or structured surfaces. The focus is the regime where the structural elements of grainy surfaces have grain sizes and separations of tens of microns, comparable to the wavelengths carrying diagnostic compositional information. This regime is of fundamental interest to remote sensing of planetary and terrestrial surfaces.
GIS diagnostics: thermal imaging systems used for poor contact detection
NASA Astrophysics Data System (ADS)
Avital, Doron; Brandenbursky, V.; Farber, A.
2004-04-01
The reliability of GIS is very high but any failure that occurs can cause extensive damage result and the repair times are considerably long. The consequential losses to system security and economically can be high, especially if the nominal GIS voltage is 420 kV and above. In view of these circumstances, increasing attention is being given to diagnostic techniques for in-service maintenance undertaken to improve the reliability and availability of GIS. Recently considerable progress has been made in diagnostic techniques and they are now used successfully during the service life of the equipment. These diagnostic techniques in general focus on the GIS insulation system and are based on partial discharge (PD) measurements in GIS. There are three main methods for in-service PD detection in GIS: - the chemical method that rely on the detection of cracked gas caused by PD, the acoustic method designed to detect the acoustic emission excited by PD, and, the electrical method which is based on detection of electrical resonance at ultra high frequencies (UHF) up to 1.5 GHz caused by PD excitation in GIS chambers (UHF method). These three dielectric diagnostic methods cannot be used for the detection of poor current carrying contacts in GIS. This problem does not always produce partial discharges and at early stages it does not cause gas cracking. An interesting solution to use two techniques - the current unbalance alarm scheme and partial discharge monitoring was advised by A. Salinas from South California Edison Co. Unfortunately this way is complicated and very expensive. The investigations performed in Japan on standing alone SF6 breaker showed that joule heating of the contact accompanied by released power of 1600 Watt produce temperature difference on the enclosure up to 7 degrees centigrade that could be detected by infra-red Thermal Imaging System. According to CIGRE Joint Working Group 33/23.12 Report, 11% of all GIS failures are due to poor current carrying contacts in GIS. The Israel Electric Company (IEC) in seeking a solution to this problem have undertaken experimental work to examine the possibility of in-service diagnostic of poor contact problem in GIS via direct local heating detection, using a Thermal Imaging System. The experiments were carried out on the part of the GIS with nominal SF6 pressure. The following aspects of the problem were examined: - the range of power released in the defective contact that could give the practical temperature rise on the surface of enclosure; - temperature distribution on the surface of enclosure; - the influence of spacer type (with holes or without) on the heat transfer process; - the influence of the length of SF6 tubes and there position (horizontal or vertical); - the temperature difference between upper and lower parts of the tubes in horizontal position; - practical use of the Thermal Imaging System for detecting poor contact problem in GIS.
NASA Astrophysics Data System (ADS)
Abadias, G.; Simonot, L.; Colin, J. J.; Michel, A.; Camelio, S.; Babonneau, D.
2015-11-01
The Volmer-Weber growth of high-mobility metal films is associated with the development of a complex compressive-tensile-compressive stress behavior as the film deposition proceeds through nucleation of islands, coalescence, and formation of a continuous layer. The tensile force maximum has been attributed to the end of the islands coalescence stage, based on ex situ morphological observations. However, microstructural rearrangements are likely to occur in such films during post-deposition, somewhat biasing interpretations solely based on ex situ analysis. Here, by combining two simultaneous in situ and real-time optical sensing techniques, based on surface differential reflectance spectroscopy (SDRS) and change in wafer curvature probed by multibeam optical stress sensor (MOSS), we provide direct evidence that film continuity does coincide with tensile stress maximum during sputter deposition of a series of metal (Ag, Au, and Pd) films on amorphous SiOx. Stress relaxation after growth interruption was testified from MOSS, whose magnitude scaled with adatom mobility, while no change in SDRS signal could be revealed, ruling out possible changes of the surface roughness at the micron scale.
Isolation of circulating tumor cells from pancreatic cancer by automated filtration
Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C.; Neves, Rui P.; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U.; Stoecklein, Nikolas H.; von Ahsen, Oliver
2017-01-01
It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration. PMID:29156783
Isolation of circulating tumor cells from pancreatic cancer by automated filtration.
Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C; Neves, Rui P; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U; Stoecklein, Nikolas H; von Ahsen, Oliver
2017-10-17
It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.
Darain, Farzana; Gan, Kai Ling; Tjin, Swee Chuan
2009-06-01
A simple microfluidic immunoassay card was developed based on polystyrene (PS) substrate for the detection of horse IgG, an inexpensive model analyte using fluorescence microscope. The primary antibody was captured onto the PS based on covalent bonding via a self-assembled monolayer (SAM) of thiol to pattern the surface chemistry on a gold-coated PS. The immunosensor chip layers were fabricated from sheets by CO(2) laser ablation. The functionalized PS surfaces after each step were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After the antibody-antigen interaction as a sandwich immunoassay with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody, the intensity of fluorescence was measured on-chip to determine the concentration of the target analyte. The present immunosensor chip showed a linear response range for horse IgG between 1 microg/ml and 80 microg/ml (r = 0.971, n = 3). The detection limit was found to be 0.71 microg/ml. The developed microfluidic system can be extended for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.
Piezoelectric characterization of ejecta from shocked tin surfaces
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; Hammerberg, J. E.; King, N. S. P.; Lamoreaux, S. K.; Macrum, G.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Buttler, W. T.
2005-12-01
Using piezoelectric diagnostics, we have measured densities and velocities of ejected particulate as well as "free-surface velocities" of bulk tin targets shock loaded with high explosive. The targets had finely grooved, machined finishes ranging from 10 to 250μin. Two types of piezoelectric sensor ("piezopins"), lithium niobate and lead zirconate titanate, were compared for durability and repeatability; in addition, some piezopins were "shielded" with foam and metal foil in order to mitigate premature failure of the pins in high ejecta regimes. These experiments address questions about ejecta production at a given shock pressure as a function of surface finish; piezopin results are compared with those from complementary diagnostics such as x-ray radiography and time-resolved optical transmission techniques. The mass ejection shows a marked dependence on groove characteristics and cannot be described by a groove defect theory alone.
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Nanoparticles for Imaging: Top or Flop?
Mertens, Marianne E.; Grimm, Jan; Lammers, Twan
2014-01-01
Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential. PMID:25247562
Method and apparatus for holographic wavefront diagnostics
Toeppen, J.S.
1995-04-25
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.
Method and apparatus for holographic wavefront diagnostics
Toeppen, John S.
1995-01-01
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.
A neutron diagnostic for high current deuterium beams.
Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G
2012-02-01
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.
Visualization and analysis of pulsed ion beam energy density profile with infrared imaging
NASA Astrophysics Data System (ADS)
Isakova, Y. I.; Pushkarev, A. I.
2018-03-01
Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.
A neutron diagnostic for high current deuterium beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M.; Perelli Cippo, E.; Cavenago, M.
2012-02-15
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean P.; Grasser, Thomas W.
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
An ultrasensitive universal detector based on neutralizer displacement
NASA Astrophysics Data System (ADS)
Das, Jagotamoy; Cederquist, Kristin B.; Zaragoza, Alexandre A.; Lee, Paul E.; Sargent, Edward H.; Kelley, Shana O.
2012-08-01
Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
Kearney, Sean P.; Grasser, Thomas W.
2017-08-10
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching.
Yao, Wu; Wang, Lun; Wang, Haiyan; Zhang, Xiaolei; Li, Ling; Zhang, Na; Pan, Le; Xing, Nannan
2013-02-15
An electrochemiluminescent DNA (ECL-DNA) sensor based on nano-gold signal enhancement (i.e. gold nanoparticles, GNP) and ferrocene signal quenching was investigated. The Au electrode was first modified with GNPs through electrodeposition method, followed by subsequent immobilization of single-stranded probe DNA labeled with ruthenium complex. The resulting sensor produced a higher ECL signal due to its higher density of self-assembled probe DNAs on the surface. Upon the hybridization of probe DNA with complementary target DNA labeled with ferrocene, ECL intensity decreased significantly due to spatial separation of ECL label from the electrode surface. As a result, the ECL signal was simultaneously quenched by ferrocene. The effects of both nano-gold electrodeposition time and ferrocene on the performance of ECL-DNA sensor were studied in detail and possible reasons for these effects were suggested as well. The reported ECL-DNA sensor showed great sensitivity and may provide an alternative approach for DNA detection in diagnostics and gene analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong
2015-06-02
Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.
A 4D global respiratory motion model of the thorax based on CT images: A proof of concept.
Fayad, Hadi; Gilles, Marlene; Pan, Tinsu; Visvikis, Dimitris
2018-05-17
Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition. The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other. Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented surfaces, expert validation indicates an error of 2.35 ± 0.26 mm compared to 6.07 ± 0.76 mm when using a simple interpolation between full inspiration (FI) and full expiration (FE) CT only; i.e., without specific modeling of the respiratory motion. For the two patients with acquired surfaces, this error was of 2.48 ± 0.18 mm. In terms of reproducibility, model error changes of 0.12 and 0.17 mm were measured for the two patients concerned. The framework for the derivation of a global respiratory motion model was developed. A single or two static CT images and associated patient surface motion, as a surrogate measure, are only needed to personalize the model. This model accuracy and reproducibility were assessed by comparing acquired vs model generated 4D CT images. Future work will consist of assessing extensively the proposed model for radiotherapy applications. © 2018 American Association of Physicists in Medicine.
Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes
NASA Astrophysics Data System (ADS)
Mataras, Dimitrios
2001-10-01
In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.
Laser speckle imaging for lesion detection on tooth
NASA Astrophysics Data System (ADS)
Gavinho, Luciano G.; Silva, João. V. P.; Damazio, João. H.; Sfalcin, Ravana A.; Araujo, Sidnei A.; Pinto, Marcelo M.; Olivan, Silvia R. G.; Prates, Renato A.; Bussadori, Sandra K.; Deana, Alessandro M.
2018-02-01
Computer vision technologies for diagnostic imaging applied to oral lesions, specifically, carious lesions of the teeth, are in their early years of development. The relevance of this public problem, dental caries, worries countries around the world, as it affects almost the entire population, at least once in the life of each individual. The present work demonstrates current techniques for obtaining information about lesions on teeth by segmentation laser speckle imagens (LSI). Laser speckle image results from laser light reflection on a rough surface, and it was considered a noise but has important features that carry information about the illuminated surface. Even though these are basic images, only a few works have analyzed it by application of computer vision methods. In this article, we present the latest results of our group, in which Computer vision techniques were adapted to segment laser speckle images for diagnostic purposes. These methods are applied to the segmentation of images between healthy and lesioned regions of the tooth. These methods have proven to be effective in the diagnosis of early-stage lesions, often imperceptible in traditional diagnostic methods in the clinical practice. The first method uses first-order statistical models, segmenting the image by comparing the mean and standard deviation of the intensity of the pixels. The second method is based on the distance of the chi-square (χ2 ) between the histograms of the image, bringing a significant improvement in the precision of the diagnosis, while a third method introduces the use of fractal geometry, exposing, through of the fractal dimension, more precisely the difference between lesioned areas and healthy areas of a tooth compared to other methods of segmentation. So far, we can observe efficiency in the segmentation of the carious regions. A software was developed for the execution and demonstration of the applicability of the models
Quantitative 3-D imaging topogrammetry for telemedicine applications
NASA Technical Reports Server (NTRS)
Altschuler, Bruce R.
1994-01-01
The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with precision micro-sewing machines, splice neural connections with laser welds, micro-bore through constricted vessels, and computer combine ultrasound, microradiography, and 3-D mini-borescopes to quickly assess and trace vascular problems in situ. The spatial relationships between organs, robotic arms, and end-effector diagnostic, manipulative, and surgical instruments would be constantly monitored by the robot 'brain' using inputs from its multiple 3-D quantitative 'eyes' remote sensing, as well as by contact and proximity force measuring devices. Methods to create accurate and quantitative 3-D topograms at continuous video data rates are described.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
First flux surface measurements on W7-X
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Sunn; Otte, Matthias; Biedermann, Christoph; Bozhenkov, Sergey; Braeuer, Torsten; Lazerson, Samuel; W7-X Team
2015-11-01
Wendelstein 7-X is rapidly approaching first plasma operation. The full operational B-field of 2.5 T has been reached using the 70 superconducting coils. The first flux surface measurements have recently been successfully performed. This talk will describe the W7-X flux surface measurement system, and show and analyze the first results from this diagnostic, which, at the time of writing this abstract, can be summarized as follows: Confirmation of the existence of nested, closed flux surfaces, first measurements of iota, and detection of the expected internal 5/6 island chain of the OP1.1 configuration. The data obtained so far agree with expectations, and provide a first confirmation of the accuracy of the coil geometry and assembly, as well as diagnostic installation. They also confirm that, with respect to the magnetic topology, plasma operation can start. Plans for, and potentially first results of, measurements of any remnant field errors, will be reported separately at this meeting.
Yiannoutsos, Constantin T.; Nakas, Christos T.; Navia, Bradford A.
2013-01-01
We present the multi-dimensional Receiver Operating Characteristic (ROC) surface, a plot of the true classification rates of tests based on levels of biological markers, for multi-group discrimination, as an extension of the ROC curve, commonly used in two-group diagnostic testing. The volume under this surface (VUS) is a global accuracy measure of a test to classify subjects in multiple groups and useful to detect trends in marker measurements. We used three-dimensional ROC surfaces, and associated VUS, to discriminate between HIV-negative (NEG), HIV-positive neurologically asymptomatic (NAS) subjects and patients with AIDS demential complex (ADC), using brain metabolites measured by proton MRS. These were ratios of markers of inflammation, Choline (Cho) and myoinositol (MI), and brain injury, N-acetyl aspartate (NAA), divided by Creatine (Cr), measured in the basal ganglia and the frontal white matter. Statistically significant trends were observed in the three groups with respect to MI/Cr (VUS=0.43; 95% confidence interval (CI) 0.33-0.53), Cho/Cr (0.36; 0.27-0.45) in the basal ganglia and NAA/Cr in the frontal white matter (FWM) (0.29; 0.20-0.38), suggesting a continuum of injury during the neurologically asymptomatic stage of HIV infection, particularly with respect to brain inflammation. Adjusting for age increased the combined classification accuracy of age and NAA/Cr (p=0.053). Pairwise comparisons suggested that neuronal damage associated with NAA/Cr decreases was mainly observed in individuals with ADC, raising issues of synergism between HIV infection and age and possible acceleration of neurological deterioration in an aging HIV-positive population. The three-dimensional ROC surface and its associated VUS are useful for assessing marker accuracy, detecting data trends and offering insight in disease processes affecting multiple groups. PMID:18191586
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
A Primer on Vibrational Ball Bearing Feature Generation for Prognostics and Diagnostics Algorithms
2015-03-01
Atlas -Marks (Cone-Shaped Kernel) ........................................................36 8.7.7 Hilbert-Huang Transform...bearing surface and eventually progress to the surface where the material will separate. Also known as pitting, spalling, or flaking. • Wear ...normal degradation caused by dirt and foreign particles causing abrasion of the contact surfaces over time resulting in alterations in the raceway and
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
Yang, Minghui; Kostov, Yordan; Bruck, Hugh A; Rasooly, Avraham
2009-08-15
Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody-gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a "sandwich-type" ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be approximately 0.01 ng/mL, which is approximately 10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics.
Yang, Minghui; Kostov, Yordan; Bruck, Hugh A.; Rasooly, Avraham
2010-01-01
Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody–gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a “sandwich-type” ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be ~0.01 ng/mL, which is ~10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics. PMID:19540011
Real-time plasma control in a dual-frequency, confined plasma etcher
NASA Astrophysics Data System (ADS)
Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.
2008-04-01
The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
Application of nanomaterials in the bioanalytical detection of disease-related genes.
Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu
2015-12-15
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kovalskyy, V.; Henebry, G. M.
2012-01-01
Phenologies of the vegetated land surface are being used increasingly for diagnosis and prognosis of climate change consequences. Current prospective and retrospective phenological models stand far apart in their approaches to the subject. We report on an exploratory attempt to implement a phenological model based on a new event driven concept which has both diagnostic and prognostic capabilities in the same modeling framework. This Event Driven Phenological Model (EDPM) is shown to simulate land surface phenologies and phenophase transition dates in agricultural landscapes based on assimilation of weather data and land surface observations from spaceborne sensors. The model enables growing season phenologies to develop in response to changing environmental conditions and disturbance events. It also has the ability to ingest remotely sensed data to adjust its output to improve representation of the modeled variable. We describe the model and report results of initial testing of the EDPM using Level 2 flux tower records from the Ameriflux sites at Mead, Nebraska, USA, and at Bondville, Illinois, USA. Simulating the dynamics of normalized difference vegetation index based on flux tower data, the predictions by the EDPM show good agreement (RMSE < 0.08; r2 > 0.8) for maize and soybean during several growing seasons at different locations. This study presents the EDPM used in the companion paper (Kovalskyy and Henebry, 2011) in a coupling scheme to estimate daily actual evapotranspiration over multiple growing seasons.
NASA Astrophysics Data System (ADS)
Kovalskyy, V.; Henebry, G. M.
2011-05-01
Phenologies of the vegetated land surface are being used increasingly for diagnosis and prognosis of climate change consequences. Current prospective and retrospective phenological models stand far apart in their approaches to the subject. We report on an exploratory attempt to implement a phenological model based on a new event driven concept which has both diagnostic and prognostic capabilities in the same modeling framework. This Event Driven Phenological Model (EDPM) is shown to simulate land surface phenologies and phenophase transition dates in agricultural landscapes based on assimilation of weather data and land surface observations from spaceborne sensors. The model enables growing season phenologies to develop in response to changing environmental conditions and disturbance events. It also has the ability to ingest remotely sensed data to adjust its output to improve representation of the modeled variable. We describe the model and report results of initial testing of the EDPM using Level 2 flux tower records from the Ameriflux sites at Mead, Nebraska, USA, and at Bondville, Illinois, USA. Simulating the dynamics of normalized difference vegetation index based on flux tower data, the predictions by the EDPM show good agreement (RMSE < 0.08; r2>0.8) for maize and soybean during several growing seasons at different locations. This study presents the EDPM used in the companion paper (Kovalskyy and Henebry, 2011) in a coupling scheme to estimate daily actual evapotranspiration over multiple growing seasons.
Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor
NASA Astrophysics Data System (ADS)
Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.
2018-05-01
Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.
NASA Astrophysics Data System (ADS)
Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan
2011-09-01
Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.
Laser Diagnostic Analyses of Sooting Flames.
1984-11-29
flame front as expected. However the fuel flame length is considerably shorter than the luminous height, and the flame surface must cross the soot surface...very useful in understanding this behaviour and the fact that the fuel flame length increases only slightly on addition of diluent--while the visible
Fructose 1,6-Bisphosphate aldolase, a novel immunogenic surface protein on Listeria species
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Yeargan, Michelle; de Assis Rocha, Izabela; Morrow, Jennifer; Graves, Amy; Reed, Stephen M; Howe, Daniel K
2015-05-01
Enzyme-linked immunosorbent assays (ELISAs) based on the SnSAG surface antigens of Sarcocystis neurona provide reliable detection of infection by the parasite. Moreover, accurate serodiagnosis of equine protozoal myeloencephalitis (EPM) is achieved with the SnSAG ELISAs by measuring antibodies in serum and cerebrospinal fluid (CSF) to reveal active infection in the central nervous system. Two independent ELISAs based on recombinant (r)SnSAG2 or a chimeric fusion of SnSAG3 and SnSAG4 (rSnSAG4/3) are currently used together for EPM serodiagnosis to overcome varied antibody responses in different horses. To achieve reliable antibody detection with a single ELISA instead of 2 separate ELISAs, rSnSAG2 was fused with rSnSAG4/3 into a single trivalent protein, designated rSnSAG2/4/3. Paired serum and CSF from 163 horses were tested with all 3 ELISAs. When the consensus antibody titers obtained with the rSnSAG2 and rSnSAG4/3 ELISAs were compared to the single SAG2/4/3 ELISA titers, Spearman rank correlation coefficients of ρ = 0.74 and ρ = 0.90 were obtained for serum and CSF, respectively, indicating strong agreement between the tests. When the rSnSAG2 and rSnSAG4/3 consensus serum-to-CSF titer ratio was compared to the rSnSAG2/4/3 serum-to-CSF titer ratio, the Spearman correlation coefficient was ρ = 0.87, again signifying strong agreement. Importantly, comparing the diagnostic interpretation of the serum-to-CSF titer ratios yielded a Cohen kappa value of 0.77. These findings suggest that the single ELISA based on the trivalent rSnSAG2/4/3 will provide serologic and diagnostic results that are highly comparable to the consensus of the 2 independent ELISAs based on rSnSAG2 and rSnSAG4/3. © 2015 The Author(s).
An efficient method for unfolding kinetic pressure driven VISAR data
Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James
2015-08-18
Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys.43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater.29, 181 (1998)] or a magnetic pressure [Lemkeet al., Intl J. Impact Eng.38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide amore » precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. As a result, the purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.« less
Tomographic diagnostic of the hydrogen beam from a negative ion source
NASA Astrophysics Data System (ADS)
Agostini, M.; Brombin, M.; Serianni, G.; Pasqualotto, R.
2011-10-01
In this paper the tomographic diagnostic developed to characterize the 2D density distribution of a particle beam from a negative ion source is described. In particular, the reliability of this diagnostic has been tested by considering the geometry of the source for the production of ions of deuterium extracted from an rf plasma (SPIDER). SPIDER is a low energy prototype negative ion source for the international thermonuclear experimental reactor (ITER) neutral beam injector, aimed at demonstrating the capability to create and extract a current of D- (H-) ions up to 50 A (60 A) accelerated at 100 kV. The ions are extracted over a wide surface (1.52×0.56m2) with a uniform plasma density which is prescribed to remain within 10% of the mean value. The main target of the tomographic diagnostic is the measurement of the beam uniformity with sufficient spatial resolution and of its evolution throughout the pulse duration. To reach this target, a tomographic algorithm based on the simultaneous algebraic reconstruction technique is developed and the geometry of the lines of sight is optimized so as to cover the whole area of the beam. Phantoms that reproduce different experimental beam configurations are simulated and reconstructed, and the role of the noise in the signals is studied. The simulated phantoms are correctly reconstructed and their two-dimensional spatial nonuniformity is correctly estimated, up to a noise level of 10% with respect to the signal.
Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.
Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan
2015-06-01
Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Conerty, Michelle D.; Castracane, James; Cacace, Anthony T.; Parnes, Steven M.; Gardner, Glendon M.; Miller, Mitchell B.
1995-05-01
Electronic Speckle Pattern Interferometry (ESPI) is a nondestructive optical evaluation technique that is capable of determining surface and subsurface integrity through the quantitative evaluation of static or vibratory motion. By utilizing state of the art developments in the areas of lasers, fiber optics and solid state detector technology, this technique has become applicable in medical research and diagnostics. Based on initial support from NIDCD and continued support from InterScience, Inc., we have been developing a range of instruments for improved diagnostic evaluation in otolaryngological applications based on the technique of ESPI. These compact fiber optic instruments are capable of making real time interferometric measurements of the target tissue. Ongoing development of image post- processing software is currently capable of extracting the desired quantitative results from the acquired interferometric images. The goal of the research is to develop a fully automated system in which the image processing and quantification will be performed in hardware in near real-time. Subsurface details of both the tympanic membrane and vocal cord dynamics could speed the diagnosis of otosclerosis, laryngeal tumors, and aid in the evaluation of surgical procedures.
DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.
Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao
2017-09-19
The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.
Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy
Stewart, Fraser R.; Qiu, Yongqiang; Newton, Ian P.; Cox, Benjamin F.; Al-Rawhani, Mohammed A.; Beeley, James; Liu, Yangminghao; Huang, Zhihong; Cumming, David R. S.; Näthke, Inke
2017-01-01
Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work. PMID:28671642
Ieva, Antonio Di; Audigé, Laurent; Kellman, Robert M.; Shumrick, Kevin A.; Ringl, Helmut; Prein, Joachim; Matula, Christian
2014-01-01
The AOCMF Classification Group developed a hierarchical three-level craniomaxillofacial classification system with increasing level of complexity and details. The highest level 1 system distinguish four major anatomical units, including the mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). This tutorial presents the level 2 and more detailed level 3 systems for the skull base and cranial vault units. The level 2 system describes fracture location outlining the topographic boundaries of the anatomic regions, considering in particular the endocranial and exocranial skull base surfaces. The endocranial skull base is divided into nine regions; a central skull base adjoining a left and right side are divided into the anterior, middle, and posterior skull base. The exocranial skull base surface and cranial vault are divided in regions defined by the names of the bones involved: frontal, parietal, temporal, sphenoid, and occipital bones. The level 3 system allows assessing fracture morphology described by the presence of fracture fragmentation, displacement, and bone loss. A documentation of associated intracranial diagnostic features is proposed. This tutorial is organized in a sequence of sections dealing with the description of the classification system with illustrations of the topographical skull base and cranial vault regions along with rules for fracture location and coding, a series of case examples with clinical imaging and a general discussion on the design of this classification. PMID:25489394
Zhou, Zijian; Wu, Changqiang; Liu, Hanyu; Zhu, Xianglong; Zhao, Zhenghuan; Wang, Lirong; Xu, Ye; Ai, Hua; Gao, Jinhao
2015-03-24
Magnetic resonance angiography using gadolinium-based molecular contrast agents suffers from short diagnostic window, relatively low resolution and risk of toxicity. Taking into account the chemical exchange between metal centers and surrounding protons, magnetic nanoparticles with suitable surface and interfacial features may serve as alternative T1 contrast agents. Herein, we report the engineering on surface structure of iron oxide nanoplates to boost T1 contrast ability through synergistic effects between exposed metal-rich Fe3O4(100) facets and embedded Gd2O3 clusters. The nanoplates show prominent T1 contrast in a wide range of magnetic fields with an ultrahigh r1 value up to 61.5 mM(-1) s(-1). Moreover, engineering on nanobio interface through zwitterionic molecules adjusts the in vivo behaviors of nanoplates for highly efficient magnetic resonance angiography with steady-state acquisition window, superhigh resolution in vascular details, and low toxicity. This study provides a powerful tool for sophisticated design of MRI contrast agents for diverse use in bioimaging applications.
Ignition and combustion of bulk metals in a microgravity environment
NASA Technical Reports Server (NTRS)
Branch, Melvyn C.; Daily, J. W.; Abbud-Madrid, Angel
1994-01-01
Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This report summarizes research under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal gravity combustion data on ten different pure metals. Metal specimens were ignited using a xenon short-arc lamp and measurements were made of the radiant energy flux, surface temperature history, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity was provided by the University of Colorado Geotechnical Centrifuge.
Automated digital magnetofluidics
NASA Astrophysics Data System (ADS)
Schneider, J.; Garcia, A. A.; Marquez, M.
2008-08-01
Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Radar analysis of free oscillations of rail for diagnostics defects
NASA Astrophysics Data System (ADS)
Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.
2018-05-01
One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.
Final case for a stainless steel diagnostic first wall on ITER
NASA Astrophysics Data System (ADS)
Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.
2015-08-01
In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.
Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study
NASA Astrophysics Data System (ADS)
Mayer, W. O. H.
1994-05-01
Coaxial injectors have proven to be advantageous for the injection, atomization and mixing of propellants in cryogenic H2/O2 rocket engines. Thereby, a round liquid oxygen jet is atomized by a fast, coaxial gaseous hydrogen jet. This article summarizes phenomenological studies of coaxial spray generation under a broad variation of influencing parameters including injector design, inflow, and fluid conditions. The experimental investigations, performed using spark light photography and high speed cinematography in a shadow graph setup as main diagnostic means, illuminate the most important processes leading to atomization. These are identified as turbulence in the liquid jet, surface instability, surface wave growth and droplet detachment. Numerical simulations including free surface flow phenomena are a further diagnostic tool to elucidate some atomization particulars. The results of the study are of general importance in the field of liquid atomization.
Shi, Jie; Thompson, Paul M.; Gutman, Boris; Wang, Yalin
2013-01-01
In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistentsurface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometrydifference between diagnostic groups. Experimental results show that the new system has better performance than two publically available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E ε4 allele (ApoE4),which is considered as the most prevalent risk factor for AD.Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our workprovides a new MRI analysis tool that may help presymptomatic AD research. PMID:23587689
The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.
Volk, Alexander E; Kubisch, Christian
2017-10-01
The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.
Surface tension in human pathophysiology and its application as a medical diagnostic tool
Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem
2015-01-01
Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Peters-Lidard, Christa D.; Kennedy, Aaron D.; Kumar, Sujay; Dong, Xiquan
2011-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
Measurements and Diagnostics of Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.
1999-01-01
The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
Performance of nanocomposites for preservation of artistic stones
NASA Astrophysics Data System (ADS)
Giancristofaro, Cristina; D'Amato, Rosaria; Caneve, Luisa; Pilloni, Luciano; Rinaldi, Antonio; Persia, Franca
2014-06-01
In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering.
Scanning lidar fluorosensor for remote diagnostic of surfaces
NASA Astrophysics Data System (ADS)
Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fiorani, Luca
2013-08-01
Scanning hyperspectral systems based on laser induced fluorescence (LIF) have been developed and realized at the ENEA allowing to obtain information of analytical and qualitative interest on different materials by the study of the emission of fluorescence. This technique, for a surface analysis, is fast, remote, not invasive and specific. A new compact setup capable of fast 2D monochromatic images acquisition on up to 90 different spectral channels in the visible/UV range will be presented. It has been recently built with the aim to increase the performances in terms of space resolution, time resolved capabilities and data acquisition speed. Major achievements have been reached by a critical review of the optical design. The results recently obtained with in-situ measurements of interest for applications in the field of cultural heritage will be shown. 2001 Elsevier Science. All rights reserved
The Moon mineralogy mapper (M3) on Chandrayaan-1
Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.
2009-01-01
The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.
Response of deep and shallow tropical maritime cumuli to large-scale processes
NASA Technical Reports Server (NTRS)
Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.
1976-01-01
The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
Update in Current Diagnostics and Therapeutics of Dry Eye Disease.
Thulasi, Praneetha; Djalilian, Ali Reza
2017-11-01
Dry eye disease (DED) represents a heterogeneous group of conditions with tear film insufficiency and signs and/or symptoms of ocular surface irritation. The clinical manifestations of DED can be highly variable; hence the diagnosis is often based on a combination of symptoms, signs, and clinical tests, given that any one of these alone would miss a significant number of patients. Similarly, the treatment must often be tailored to each patient by targeting the specific mechanisms involved in his or her disease. The purpose of this review is to summarize recent advances that have allowed us to better recognize, categorize, and treat patients with DED. The most notable new diagnostic tests in DED are tear film osmolarity, inflammatory biomarkers, and meibomian gland imaging. Therapeutically, anti-inflammatory therapy, meibomian gland heating and expression, and scleral contact lenses are some of the latest options available for treating DED. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Orczyk, Krzysztof; Świdrowska-Jaros, Joanna; Smolewska, Elżbieta
2017-05-08
The Lyme arthritis is a common manifestation of infection with Borrelia burgdorferi spirochete. Despite its infectious background, the inflammation clinically and histopatologically resembles juvenile idiopathic arthritis. As it affects a considerable number of Lyme disease patients, it should be routinely considered in differential diagnosis. Development of arthritis is partially dependent on spirochetal factors, including the ribosomal spacer type and the sequence of outer surface protein C. Immunological background involves Th1-related response, but IL-17 provides an additional route of developing arthritis. Autoimmune mechanisms may lead to antibiotic-refractory arthritis. The current diagnostic standard is based on a 2-step testing: ELISA screening and immunoblot confirmation. Other suggested methods contain modified two-tier test with C6 ELISA instead of immunoblot. An initial 28-day course of oral antibiotics (doxycycline, cefuroxime axetil or amoxicillin) is a recommended treatment. Severe cases require further anti-inflammatory management. Precise investigation of new diagnostic and therapeutic approaches is advisable.
eap Gene as novel target for specific identification of Staphylococcus aureus.
Hussain, Muzaffar; von Eiff, Christof; Sinha, Bhanu; Joost, Insa; Herrmann, Mathias; Peters, Georg; Becker, Karsten
2008-02-01
The cell surface-associated extracellular adherence protein (Eap) mediates adherence of Staphylococcus aureus to host extracellular matrix components and inhibits inflammation, wound healing, and angiogenesis. A well-characterized collection of S. aureus and non-S. aureus staphylococcal isolates (n = 813) was tested for the presence of the Eap-encoding gene (eap) by PCR to investigate the use of the eap gene as a specific diagnostic tool for identification of S. aureus. Whereas all 597 S. aureus isolates were eap positive, this gene was not detectable in 216 non-S. aureus staphylococcal isolates comprising 47 different species and subspecies of coagulase-negative staphylococci and non-S. aureus coagulase-positive or coagulase-variable staphylococci. Furthermore, non-S. aureus isolates did not express Eap homologs, as verified on the transcriptional and protein levels. Based on these data, the sensitivity and specificity of the newly developed PCR targeting the eap gene were both 100%. Thus, the unique occurrence of Eap in S. aureus offers a promising tool particularly suitable for molecular diagnostics of this pathogen.
Nucleic acid-based diagnostics for infectious diseases in public health affairs.
Yu, Albert Cheung-Hoi; Vatcher, Greg; Yue, Xin; Dong, Yan; Li, Mao Hua; Tam, Patrick H K; Tsang, Parker Y L; Wong, April K Y; Hui, Michael H K; Yang, Bin; Tang, Hao; Lau, Lok-Ting
2012-06-01
Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.
Overcoming limitations of model-based diagnostic reasoning systems
NASA Technical Reports Server (NTRS)
Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.
1989-01-01
The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
Infrared Camera Diagnostic for Heat Flux Measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Mastrovito; R. Maingi; H.W. Kugel
2003-03-25
An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.
Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas
Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R.; Zhu, Guoqiang
2017-01-01
The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer. PMID:27829225
Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas.
Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R; Zhu, Guoqiang
2017-02-21
The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer.
Pyrohova, L V; Starodub, M F; Nahaeva, L I
2005-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. Sensor used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the milk serum. It was shown that immune sensor analysis is more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor may be used for performance of screening of bovine leucosis at the farms and the minimal dilution of the milk serum should be 1:20.
Small angle scattering polarization biopsy: a comparative analysis of various skin diseases
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Alonova, M. V.; Yermolenko, S. B.; Ivashko, P. V.; Reshetnikova, E. M.; Galkina, E. M.; Utz, S. R.
2013-12-01
An approach to differentiation of the morphological features of normal and pathological human epidermis on the base of statistical analysis of the local polarization states of laser light forward scattered by in-vitro tissue samples is discussed. The eccentricity and the azimuth angle of local polarization ellipses retrieved for various positions of the focused laser beam on the tissue surface, and the coefficient of collimated transmittance are considered as the diagnostic parameters for differentiation. The experimental data obtained with the psoriasis, discoid lupus erythematosus, alopecia, lichen planus, scabies, demodex, and normal skin samples are presented.
Accelerating the Development and Validation of New Value-Based Diagnostics by Leveraging Biobanks.
Schneider, Daniel; Riegman, Peter H J; Cronin, Maureen; Negrouk, Anastassia; Moch, Holger; Balling, Rudi; Penault-Llorca, Frederiques; Zatloukal, Kurt; Horgan, Denis
The challenges faced in developing value-based diagnostics has resulted in few of these tests reaching the clinic, leaving many treatment modalities without matching diagnostics to select patients for particular therapies. Many patients receive therapies from which they are unlikely to benefit, resulting in worse outcomes and wasted health care resources. The paucity of value-based diagnostics is a result of the scientific challenges in developing predictive markers, specifically: (1) complex biology, (2) a limited research infrastructure supporting diagnostic development, and (3) the lack of incentives for diagnostic developers to invest the necessary resources. Better access to biospecimens can address some of these challenges. Methodologies developed to evaluate biomarkers from biospecimens archived from patients enrolled in randomized clinical trials offer the greatest opportunity to develop and validate high-value molecular diagnostics. An alternative opportunity is to access high-quality biospecimens collected from large public and private longitudinal observational cohorts such as the UK Biobank, the US Million Veteran Program, the UK 100,000 Genomes Project, or the French E3N cohort. Value-based diagnostics can be developed to work in a range of samples including blood, serum, plasma, urine, and tumour tissue, and better access to these high-quality biospecimens with clinical data can facilitate biomarker research. © 2016 S. Karger AG, Basel.
Utility of Gram stain for the microbiological analysis of burn wound surfaces.
Elsayed, Sameer; Gregson, Daniel B; Lloyd, Tracie; Crichton, Marilyn; Church, Deirdre L
2003-11-01
Surface swab cultures have attracted attention as a potential alternative to biopsy histology or quantitative culture methods for microbiological burn wound monitoring. To our knowledge, the utility of adding a Gram-stained slide in this context has not been evaluated previously. To determine the degree of correlation of Gram stain with culture for the microbiological analysis of burn wound surfaces. Prospective laboratory analysis. Urban health region/centralized diagnostic microbiology laboratory. Burn patients hospitalized in any Calgary Health Region burn center from November 2000 to September 2001. Gram stain plus culture of burn wound surface swab specimens obtained during routine dressing changes or based on clinical signs of infection. Degree of correlation (complete, high, partial, none), including weighted kappa statistic (kappa(w)), of Gram stain with culture based on quantitative microscopy and degree of culture growth. A total of 375 specimens from 50 burn patients were evaluated. Of these, 239 were negative by culture and Gram stain, 7 were positive by Gram stain only, 89 were positive by culture only, and 40 were positive by both methods. The degree of complete, high, partial, and no correlation of Gram stain with culture was 70.9% (266/375), 1.1% (4/375), 2.4% (9/375), and 25.6% (96/375), respectively. The degree of correlation for all 375 specimens, as expressed by the weighted kappa statistic, was found to be fair (kappa(w) = 0.32).Conclusion.-The Gram stain is not suitable for the microbiological analysis of burn wound surfaces.
NASA Astrophysics Data System (ADS)
Parente, M.; Bishop, J. L.
2008-12-01
Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al-rich phyllosilicates in regions around the MSL landing sites. Another test was the discrimination of montmorillonite and nontronite in Mawrth Vallis that can be successfully accomplished by band depths summary products near 2.2 and 2.3 μm. The new technique produces improved maps with lower noise levels and lower percentage of false detections.
Hardie, Diana Ruth; Korsman, Stephen N; Hsiao, Nei-Yuan; Morobadi, Molefi Daniel; Vawda, Sabeehah; Goedhals, Dominique
2017-01-01
In South Africa where the prevalence of HIV infection is very high, 4th generation HIV antibody/p24 antigen combo immunoassays are the tests of choice for laboratory based screening. Testing is usually performed in clinical pathology laboratories on automated analysers. To investigate the cause of false positive results on 4th generation HIV testing platforms in public sector laboratories, the performance of two automated platforms was compared in a clinical pathology setting, firstly on routine diagnostic specimens and secondly on known sero-negative samples. Firstly, 1181 routine diagnostic specimens were sequentially tested on Siemens and Roche automated 4th generation platforms. HIV viral load, western blot and follow up testing were used to determine the true status of inconclusive specimens. Subsequently, known HIV seronegative samples from a single donor were repeatedly tested on both platforms and an analyser was tested for surface contamination with HIV positive serum to identify how suspected specimen contamination could be occurring. Serial testing of diagnostic specimens yielded 163 weakly positive or discordant results. Only 3 of 163 were conclusively shown to indicate true HIV infection. Specimen contamination with HIV antibody was suspected, based on the following evidence: the proportion of positive specimens increased on repeated passage through the analysers; viral loads were low or undetectable and western blots negative or indeterminate on problem specimens; screen negative, 2nd test positive specimens tested positive when reanalysed on the screening assay; follow up specimens (where available) were negative. Similarly, an increasing number of known negative specimens became (repeatedly) sero-positive on serial passage through one of the analysers. Internal and external analyser surfaces were contaminated with HIV serum, evidence that sample splashes occur during testing. Due to the extreme sensitivity of these assays, contamination with minute amounts of HIV antibody can cause a negative sample to test positive. Better contamination control measures are needed on analysers used in clinical pathology environments, especially in regions where HIV sero-prevalence is high.
Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics.
Choi, Jane Ru; Tang, Ruihua; Wang, ShuQi; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng
2015-12-15
Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.
[Is evidence-based assessment fact or fiction? A bibliometric analysis of three German journals].
Petermann, Franz; Schüssler, Gerhard; Glaesmer, Heide
2008-01-01
Despite the ongoing process for the development and dissemination of empirically supported treatments, little attention has been paid to the development of evidence-based diagnostics. The article aims at evaluating diagnostic procedures and instruments in current clinical research in terms of evidence-based assessment. Volumes 2006 and 2007 of three German psychological journals "Psychotherapeut," "Psychotherapie, Psychosomatik und Medizinische Psychologie," and "Zeitschrift für Psychiatrie, Psychologie und Psychotherapie" were screened for empirical reports and articles dealing with diagnostic issues. 93 articles were identified and evaluated. Most studies used psychometrically valid and established instruments for assessment. However, diagnostic interviews were relatively scarce, as were multimodal assessments. Measures used for outcome evaluation often lacked evidence of sensitivity to change. Clinical assessment to date does not meet criteria for evidence-based diagnostics. Implications for research and guideline development are discussed.
Medical and non-medical protection standards for ultrasound and infrasound.
Duck, Francis A
2007-01-01
Protection from inappropriate or hazardous exposure to ultrasound is controlled through international standards and national regulations. IEC standard 60601 part 1 establishes requirements for the mechanical, electrical, chemical and thermal safety for all electro-medical equipment. The associated part 2 standard for diagnostic medical ultrasonic equipment sets no upper limits on ultrasonic exposure. Instead, safety indices are defined that are intended to advise users on the degree of thermal and mechanical hazard. At present the display of these safety indices satisfies regulatory requirements in both the USA and Europe. Nevertheless there are reservations about the effectiveness of this approach to protection management. In the USA, there are national regulatory limits on diagnostic exposure, based on acoustic output from clinical equipment in use over 20 years ago. The IEC 60601 part 2 standard for therapeutic equipment sets 3 W cm(-2) as the limit on acoustic intensity. Transducer surface temperature is controlled for both diagnostic and therapy devices. For airborne ultrasound, interim guidelines on limits of human exposure published by the IRPA are now 2 decades old. A limit on sound pressure level of 100 dB for the general population is recommended. The absence of protection standards for infrasound relates to difficulties in measurement at these low frequencies.
2014-01-01
Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections. PMID:25328501
NASA Astrophysics Data System (ADS)
Zhu, Min; Hu, Yonghong; Li, Guirong; Ou, Weijun; Mao, Panyong; Xin, Shaojie; Wan, Yakun
2014-09-01
Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.
NASA Astrophysics Data System (ADS)
Ojaghi, Ashkan; Parkhimchyk, Artur; Tabatabaei, Nima
2016-09-01
Early detection of the most prevalent oral disease worldwide, i.e., dental caries, still remains as one of the major challenges in dentistry. The current dental standard of care relies on caries detection methods, such as visual inspection and x-ray radiography, which lack the sufficient specificity and sensitivity to detect caries at early stages of formation when they can be healed. We report on the feasibility of early caries detection in a clinically and commercially viable thermophotonic imaging system. The system incorporates intensity-modulated laser light along with a low-cost long-wavelength infrared (LWIR; 8 to 14 μm) camera, providing diagnostic contrast based on the enhanced light absorption of early caries. The LWIR camera is highly suitable for integration into clinical platforms because of its low weight and cost. In addition, through theoretical modeling, we show that LWIR detection enhances the diagnostic contrast due to the minimal LWIR transmittance of enamel and suppression of the masking effect of the direct thermal Planck emission. Diagnostic performance of the system and its detection threshold are experimentally evaluated by monitoring the inception and progression of artificially induced occlusal and smooth surface caries. The results are suggestive of the suitability of the developed LWIR system for detecting early dental caries.
Visual method for detecting critical damage in railway contact strips
NASA Astrophysics Data System (ADS)
Judek, S.; Skibicki, J.
2018-05-01
Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
NASA Technical Reports Server (NTRS)
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Habova, K; Smirenin, Eksp; Fetisov, D; Tamberg, Eksp
2015-01-01
The objective of the present study was to determine the diagnostic coefficients (DC) for the injuries to the upper and lower extremities of the vehicle drivers inflicted inside the passenger compartment in the case of a traffic accident. We have analysed the archival expert documents collected from 45 regional bureaus of forensic medical expertise during the period from 1995 to 2014 that contained the results of examination of 200 corpses and 300 survivors who had suffered injuries in the traffic accidents. The statistical and mathematical treatment of these materials with the use of sequential mathematical analysis based on the Bayes and Wald formulas yielded diagnostic coefficients that make it possible to elucidate the most informative features characterizing the driver of a vehicle. In case of a lethal outcome, the most significant injuries include bleeding from the posterior left elbow region (DC +7.6), skin scratches on the palm surface of the right wrist (DC +7.6), bleeding from the postrerior region of the left lower leg (DC +7.6), wounds on the dorsal surface of the left wrist (DC +6.3), bruises at the anterior surface of the left knee (DC +6.3), etc. The most informative features in the survivals of the traffic accidents are bone fractures (DC +7.0), tension of ligaments and dislocation of the right talocrural joint (DC +6.5), fractures of the left kneecap and left tibial epiphysis (DC +5.4), hemorrhage and bruises in the anterior right knee region (DC + 5.4 each), skin scratches in the right posterior carpal region (DC +5.1). It is concluded that the use of the diagnostic coefficients makes it possible to draw the attention of the experts to the above features and to objectively determine the driver's seat position inside the car passenger compartment in the case of a traffic accident. Moreover such an approach contributes to the improvement of the quality of expert conclusions and the results of forensic medical expertise of the circumstance of traffic accidents.
Liu, Xu; Huang, Xiwei; Jiang, Yu; Xu, Hang; Guo, Jing; Hou, Han Wei; Yan, Mei; Yu, Hao
2017-08-01
Based on a 3.2-Megapixel 1.1- μm-pitch super-resolution (SR) CMOS image sensor in a 65-nm backside-illumination process, a lens-free microfluidic cytometer for complete blood count (CBC) is demonstrated in this paper. Backside-illumination improves resolution and contrast at the device level with elimination of surface treatment when integrated with microfluidic channels. A single-frame machine-learning-based SR processing is further realized at system level for resolution correction with minimum hardware resources. The demonstrated microfluidic cytometer can detect the platelet cells (< 2 μm) required in CBC, hence is promising for point-of-care diagnostics.
Shape-Dependent Optoelectronic Cell Lysis**
Kremer, Clemens; Witte, Christian; Neale, Steven L; Reboud, Julien; Barrett, Michael P; Cooper, Jonathan M
2014-01-01
We show an electrical method to break open living cells amongst a population of different cell types, where cell selection is based upon their shape. We implement the technique on an optoelectronic platform, where light, focused onto a semiconductor surface from a video projector creates a reconfigurable pattern of electrodes. One can choose the area of cells to be lysed in real-time, from single cells to large areas, simply by redrawing the projected pattern. We show that the method, based on the “electrical shadow” that the cell casts, allows the detection of rare cell types in blood (including sleeping sickness parasites), and has the potential to enable single cell studies for advanced molecular diagnostics, as well as wider applications in analytical chemistry. PMID:24402800
Customization of a generic 3D model of the distal femur using diagnostic radiographs.
Schmutz, B; Reynolds, K J; Slavotinek, J P
2008-01-01
A method for the customization of a generic 3D model of the distal femur is presented. The customization method involves two steps: acquisition of calibrated orthogonal planar radiographs; and linear scaling of the generic model based on the width of a subject's femoral condyles as measured on the planar radiographs. Planar radiographs of seven intact lower cadaver limbs were obtained. The customized generic models were validated by comparing their surface geometry with that of CT-reconstructed reference models. The overall mean error was 1.2 mm. The results demonstrate that uniform scaling as a first step in the customization process produced a base model of accuracy comparable to other models reported in the literature.
Developing a modular architecture for creation of rule-based clinical diagnostic criteria.
Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian
2016-01-01
With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.
Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa; Kennedy, Aaron D.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
New diagnostic technique for the study of turbulent boundary-layer separation
NASA Technical Reports Server (NTRS)
Horstman, C. C.; Owen, F. K.
1974-01-01
Description of a diagnostic technique for determining the unsteady character of turbulent boundary-layer separation. The technique uses thin platinum films mounted flush with the model surface. Voltages from these films provide measurements related to the flow character above the film. For illustration, results obtained by this technique are presented for the interaction of a hypersonic shock wave and a turbulent boundary layer, with and without separation.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi
2017-10-01
A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
Lunar Surface Reference Missions: A Description of Human and Robotic Surface Activities
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Hoffman, Stephen J.; Snook, Kelly
2003-01-01
Most medical equipment to the International Space Station (ISS) is manisfested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical siruations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-opertor during an exam to facilitate the diagnosis in a timely fashion.
Kaplan, Daniel M
2010-10-01
The author argues that the well-formulated problem list is essential for both organizing and evaluating diagnostic thinking. He considers evidence of deficiencies in problem lists in the medical record. He observes a trend among medical trainees toward organizing notes in the medical record according to lists of organ systems or medical subspecialties and hypothesizes that system-based documentation may undermine the art of problem formulation and diagnostic synthesis. Citing research linking more sophisticated problem representation with diagnostic success, he suggests that documentation style and clinical reasoning are closely connected and that organ-based documentation may predispose trainees to several varieties of cognitive diagnostic error and deficient synthesis. These include framing error, premature or absent closure, failure to integrate related findings, and failure to recognize the level of diagnostic resolution attained for a given problem. He acknowledges the pitfalls of higher-order diagnostic resolution, including the application of labels unsupported by firm evidence, while maintaining that diagnostic resolution as far as evidence permits is essential to both rational care of patients and rigorous education of learners. He proposes further research, including comparison of diagnostic efficiency between organ- and problem-oriented thinkers. He hypothesizes that the subspecialty-based structure of academic medical services helps perpetuate organ-system-based thinking, and calls on clinical educators to renew their emphasis on the formulation and documentation of complete and precise problem lists and progressively refined diagnoses by trainees.
Skin microrelief as a diagnostic tool (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Phillips, Jamie; Zeng, Haishan; McLean, David; Lui, Harvey; Lee, Tim K.
2017-02-01
Skin surface roughness is an important property for differentiating skin diseases. Recently, roughness has also been identified as a potential diagnostic indicator in the early detection of skin cancer. Objective quantification is usually carried out by creating silicone replicas of the skin and then measuring the replicas. We have developed an alternative in-vivo technique to measure skin roughness based on laser speckle. Laser speckle is the interference pattern produced when coherent light is used to illuminate a rough surface and the backscattered light is imaged. Acquiring speckle contrast measurements from skin phantoms with controllable roughness, we created a calibration curve by linearly interpolating between measured points. This calibration curve accounts for internal scattering and is designed to evaluate skin microrelief whose root-mean-square roughness is in the range of 10-60 micrometers. To validate the effectiveness of our technique, we conducted a study to measure 243 skin lesions including actinic keratosis (8), basal cell carcinoma (24), malignant melanoma (31), nevus (73), squamous cell carcinoma (19), and seborrheic keratosis (79). The average roughness values ranged from 26 to 57 micrometers. Malignant melanoma was ranked as the smoothest and squamous cell carcinoma as the roughest lesion. An ANOVA test confirmed that malignant melanoma has significantly smaller roughness than other lesion types. Our results suggest that skin microrelief can be used to detect malignant melanoma from other skin conditions.
Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.
Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P
2016-09-30
Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research. Copyright © 2016 Elsevier B.V. All rights reserved.
Vrešak, Martina; Halkjaer Olesen, Merete; Gislum, René; Bavec, Franc; Ravn Jørgensen, Johannes
2016-01-01
Application of rapid and time-efficient health diagnostic and identification technology in the seed industry chain could accelerate required analysis, characteristic description and also ultimately availability of new desired varieties. The aim of the study was to evaluate the potential of multispectral imaging and single kernel near-infrared spectroscopy (SKNIR) for determination of seed health and variety separation of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm. & Camus). The analysis, carried out in autumn 2013 at AU-Flakkebjerg, Denmark, included nine winter triticale varieties and 27 wheat varieties provided by the Faculty of Agriculture and Life Sciences Maribor, Slovenia. Fusarium sp. and black point disease-infected parts of the seed surface could successfully be distinguished from uninfected parts with use of a multispectral imaging device (405–970 nm wavelengths). SKNIR was applied in this research to differentiate all 36 involved varieties based on spectral differences due to variation in the chemical composition. The study produced an interesting result of successful distinguishing between the infected and uninfected parts of the seed surface. Furthermore, the study was able to distinguish between varieties. Together these components could be used in further studies for the development of a sorting model by combining data from multispectral imaging and SKNIR for identifying disease(s) and varieties. PMID:27010656
NASA Astrophysics Data System (ADS)
Morais, A. P.; Pino, A. V.; Souza, M. N.
2016-08-01
This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.
NASA Astrophysics Data System (ADS)
Chen, Jia-Wen; Lin, Chuen-Fu; Wang, Shyang-Guang; Lee, Yi-Chieh; Chiang, Chung-Han; Huang, Min-Hui; Lee, Yi-Hsiung; Vitrant, Guy; Pan, Ming-Jeng; Lee, Horng-Mo; Liu, Yi-Jui; Baldeck, Patrice L.; Lin, Chih-Lang
2013-09-01
Measurements of optical tweezers forces on biological micro-objects can be used to develop innovative biodiagnostics methods. In the first part of this report, we present a new sensitive method to determine A, B, D types of red blood cells. Target antibodies are coated on glass surfaces. Optical forces needed to pull away RBC from the glass surface increase when RBC antigens interact with their corresponding antibodies. In this work, measurements of stripping optical forces are used to distinguish the major RBC types: group O Rh(+), group A Rh(+) and group B Rh(+). The sensitivity of the method is found to be at least 16-folds higher than the conventional agglutination method. In the second part of this report, we present an original way to measure in real time the wall thickness of bacteria that is one of the most important diagnostic parameters of bacteria drug resistance in hospital diagnostics. The optical tweezers force on a shell bacterium is proportional to its wall thickness. Experimentally, we determine the optical tweezers force applied on each bacteria family by measuring their escape velocity. Then, the wall thickness of shell bacteria can be obtained after calibrating with known bacteria parameters. The method has been successfully applied to indentify, from blind tests, Methicillinresistant Staphylococcus aureus (MRSA), including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3)
20 CFR 404.1579 - How we will determine whether your disability continues or ends.
Code of Federal Regulations, 2012 CFR
2012-04-01
... application. (2) Substantial evidence shows that based on new or improved diagnostic or evaluative techniques... favorable decision. Changing methodologies and advances in medical and other diagnostic or evaluative... subpart will be based on new or improved diagnostic or evaluative techniques. Such listing changes will...
20 CFR 404.1579 - How we will determine whether your disability continues or ends.
Code of Federal Regulations, 2014 CFR
2014-04-01
... application. (2) Substantial evidence shows that based on new or improved diagnostic or evaluative techniques... favorable decision. Changing methodologies and advances in medical and other diagnostic or evaluative... subpart will be based on new or improved diagnostic or evaluative techniques. Such listing changes will...
20 CFR 404.1579 - How we will determine whether your disability continues or ends.
Code of Federal Regulations, 2010 CFR
2010-04-01
... application. (2) Substantial evidence shows that based on new or improved diagnostic or evaluative techniques... favorable decision. Changing methodologies and advances in medical and other diagnostic or evaluative... subpart will be based on new or improved diagnostic or evaluative techniques. Such listing changes will...
20 CFR 404.1579 - How we will determine whether your disability continues or ends.
Code of Federal Regulations, 2011 CFR
2011-04-01
... application. (2) Substantial evidence shows that based on new or improved diagnostic or evaluative techniques... favorable decision. Changing methodologies and advances in medical and other diagnostic or evaluative... subpart will be based on new or improved diagnostic or evaluative techniques. Such listing changes will...
20 CFR 404.1579 - How we will determine whether your disability continues or ends.
Code of Federal Regulations, 2013 CFR
2013-04-01
... application. (2) Substantial evidence shows that based on new or improved diagnostic or evaluative techniques... favorable decision. Changing methodologies and advances in medical and other diagnostic or evaluative... subpart will be based on new or improved diagnostic or evaluative techniques. Such listing changes will...
Rimawi, Bassam H; Green, Victoria; Lindsay, Michael
2016-06-01
The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.
Cancer theranostics: Multifunctional gold nanoparticles for diagnostics and therapy
NASA Astrophysics Data System (ADS)
Conde, Joao Diogo Osorio de Castro
The use of gold nanoparticles (AuNPs) has been gaining momentum in molecular diagnostics due to their unique physico-chemical properties these systems present huge advantages, such as increased sensitivity, reduced cost and potential for single-molecule characterisation. Because of their versatility and easy of functionalisation, multifunctional AuNPs have also been proposed as optimal delivery systems for therapy (nanovectors). Being able to produce such systems would mean the dawn of a new age in theranostics (diagnostics and therapy)driven by nanotechnology vehicles. Nanotechnology can be exploit for cancer theranostics via the development of diagnostics systems such as colorimetric and imunoassays, and in therapy approaches through gene therapy, drug delivery and tumour targeting systems. The unique characteristics of nanoparticles in the nanometre range, such as high surface-tovolume ratio or shape/size-dependent optical properties, are drastically different from those of their bulk materials and hold pledge in the clinical field for disease therapeutics. This PhD project intends to optimise a gold-nanoparticle based technique for the detection of oncogenes' transcripts (c-Myc and BCR-ABL) that can be used for the evaluation of the expression profile in cancer cells, while simultaneously developing an innovative platform of multifunctional gold nanoparticles (tumour markers, cell penetrating peptides, fluorescent dyes) loaded with siRNA capable of silencing the selected proto-oncogenes, which can be used to evaluate the level of expression and determine the efficiency of silencing. In order to achieve this goal we developed effective conjugation strategies to combine, in a highly controlled way, biomolecules to the surface of AuNPs with specific functions such as: ssDNA oligos to detect specific sequences and for mRNA quantification; Biofunctional spacers: Poly(ethylene glycol) (PEG) spacers used to increase solubility and biocompatibility and confer chemical functionality; Cell penetrating peptides: to overcome the lipophilic barrier of the cellular membranes and deliver molecules into cells using TAT peptide to achieve cytoplasm and nucleus; Quaternary ammonium: to introduce stable positively charged in gold nanoparticles surface; and RNA interference: siRNA complementary to a master regulator gene, the proto-oncogene c-Myc, that is implicated in cell growth, proliferation, loss of differentiation, and cell death. In order to establish that they are viable alternatives to the available methods, these innovative nanoparticles were extensively characterized on their chemical functionalization, ease of uptake, cellular toxicity and inflammation, and knockdown of MYC protein expression in several cancer cell lines and in in vivo models.
Dental enamel defect diagnosis through different technology-based devices.
Kobayashi, Tatiana Yuriko; Vitor, Luciana Lourenço Ribeiro; Carrara, Cleide Felício Carvalho; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini
2018-06-01
Dental enamel defects (DEDs) are faulty or deficient enamel formations of primary and permanent teeth. Changes during tooth development result in hypoplasia (a quantitative defect) and/or hypomineralisation (a qualitative defect). To compare technology-based diagnostic methods for detecting DEDs. Two-hundred and nine dental surfaces of anterior permanent teeth were selected in patients, 6-11 years of age, with cleft lip with/without cleft palate. First, a conventional clinical examination was conducted according to the modified Developmental Defects of Enamel Index (DDE Index). Dental surfaces were evaluated using an operating microscope and a fluorescence-based device. Interexaminer reproducibility was determined using the kappa test. To compare groups, McNemar's test was used. Cramer's V test was used for comparing the distribution of index codes obtained after classification of all dental surfaces. Cramer's V test revealed statistically significant differences (P < .0001) in the distribution of index codes obtained using the different methods; the coefficients were 0.365 for conventional clinical examination versus fluorescence, 0.961 for conventional clinical examination versus operating microscope and 0.358 for operating microscope versus fluorescence. The sensitivity of the operating microscope and fluorescence method was statistically significant (P = .008 and P < .0001, respectively). Otherwise, the results did not show statistically significant differences in accuracy and specificity for either the operating microscope or the fluorescence methods. This study suggests that the operating microscope performed better than the fluorescence-based device and could be an auxiliary method for the detection of DEDs. © 2017 FDI World Dental Federation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
2016-08-03
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Emerging Human Fetuin A Assays for Biomedical Diagnostics.
Vashist, Sandeep Kumar; Schneider, E Marion; Venkatesh, A G; Luong, John H T
2017-05-01
Human fetuin A (HFA) plays a prominent pathophysiological role in numerous diseases and pathophysiological conditions with considerable biomedical significance; one example is the formation of calciprotein particles in osteoporosis and impaired calcium metabolisms. With impressive advances in in vitro diagnostic assays during the last decade, ELISAs have become a workhorse in routine clinical diagnostics. Recent diagnostic formats involve high-sensitivity immunoassay procedures, surface plasmon resonance, rapid immunoassay chemistries, signal enhancement, and smartphone detection. The current trend is toward fully integrated lab-on-chip platforms with smartphone readouts, enabling health-care practitioners and even patients to monitor pathological changes in biomarker levels. This review provides a critical analysis of advances made in HFA assays along with the challenges and future prospects. Copyright © 2016 Elsevier Ltd. All rights reserved.
The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER
NASA Astrophysics Data System (ADS)
Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby
2014-01-01
The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.
Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2016-03-08
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2017-12-26
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei
This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology basedmore » on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was systematically developed and tested for through holes with diameters 1 mm to 2 mm, and diagonal lines of 0.5 mm width at different camera-wall distances of 46 cm to 200 cm, under different pressure differences from 5 Pa to 20 Pa, and under different wind conditions. The PECIT technique had either met or exceeded the goals proposed in the project. For exfiltration, we achieved 100% accuracy under a much lower pressure difference of 10 Pa (proposed one: 50 Pa with stretch goal of 15 Pa). For infiltration, we achieved >90% accuracy under a much lower pressure difference of 10 Pa (proposed one: 50 Pa with stretch goal of 15Pa). For exfiltration, we achieved 100% accuracy under a much lower pressure difference of 10 Pa. For infiltration, we achieved 100% accuracy under a much lower pressure difference of 10 Pa. The PECIT technique can reach a throughput of 120 m2/h, which is 4 times the proposed goal for the laser line-scanning and simultaneous infrared temperature imaging approach. For commercialization and market penetration, we had meetings with two companies for feedback collection and further improvement for practical use. Also, we have interacted with Office of Intellectual Property and Technology Transfer of Iowa State University for idea disclosure and patent application.« less
Current opinion in Alzheimer's disease therapy by nanotechnology-based approaches.
Ansari, Shakeel Ahmed; Satar, Rukhsana; Perveen, Asma; Ashraf, Ghulam Md
2017-03-01
Nanotechnology typically deals with the measuring and modeling of matter at nanometer scale by incorporating the fields of engineering and technology. The most prominent feature of these engineered materials involves their manipulation/modification for imparting new functional properties. The current review covers the most recent findings of Alzheimer's disease (AD) therapeutics based on nanoscience and technology. Current studies involve the application of nanotechnology in developing novel diagnostic and therapeutic tools for neurological disorders. Nanotechnology-based approaches can be exploited for limiting/reversing these diseases for promoting functional regeneration of damaged neurons. These strategies offer neuroprotection by facilitating the delivery of drugs and small molecules more effectively across the blood-brain barrier. Nanotechnology based approaches show promise in improving AD therapeutics. Further replication work on synthesis and surface modification of nanoparticles, longer-term clinical trials, and attempts to increase their impact in treating AD are required.
Tong, Qunbo; Chen, Rui; Kong, Qingming; Goossens, Julie; Radwanska, Magdalena; Lou, Di; Ding, Jianzu; Zheng, Bin; Fu, Yixiu; Wang, Tianping; Stefan, Magez; Lu, Shaohong
2018-01-30
Trypanosoma evansi (T. evansi) is the most widely spread pathogenic trypanosome in the world. The control of trypanosomiasis depends on accurate diagnosis and effective treatment. Focusing on the presence of T. evansi in Asia, we developed a detection assay based on tracing phosphate ions (Pi) generated during LAMP targeting the variant surface glycoprotein (VSG) gene of Rode Trypanozoon antigenic type 1.2 (RoTat 1.2 VSG). The diagnostic potential as well as the use of the assay as a test-of-cure method after berenil treatment, was assessed in mice at different time points of infection. In addition, 67 buffalo blood collected from Tongling county, Anhui province, as well as 42 cattle sera from the Shanghai area, were used to evaluate the diagnostic validity of the test. The detection limit of the novel LAMP assay was determined to be as low as 1 fg of T. evansi DNA, while the reaction time for the test was only 30min. Hence it outperforms both microscopy and PCR. In the test-of-cure assessment, successful berenil mediated cure could be confirmed within 48h after treatment. This offers a tremendous advantage over conventional antibody-based diagnostic tools in which successful cure only can be confirmed after months. In the cattle and buffalo screening, the LAMP was able to detect a false-negative determined sample, wrongly classified in a conventional microscopy and PCR screening. Finally, no cross-reactivity was observed with other zoonotic parasites, such as T. evansi type B, T. congolense, T. brucei, Schistosoma japonicum, Plasmodium falciparum, Leishmania donovani, Toxoplasma gondii and Angiostrongylus cantonensis. We conclude that the novel LAMP assay is sensitive, specific and convenient for field use, particularly in areas where infection incidence has become extremely low. The LAMP assay could be used as a tool for trypanosomiasis control and elimination strategies in areas where T. evansi Type A infections are causing a threat to livestock farming. Copyright © 2017 Elsevier B.V. All rights reserved.