Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne
2012-12-01
We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.
21 CFR 660.2 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...
21 CFR 660.2 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...
21 CFR 660.2 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...
21 CFR 660.2 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...
21 CFR 660.2 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...
Final case for a stainless steel diagnostic first wall on ITER
NASA Astrophysics Data System (ADS)
Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.
2015-08-01
In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.
Molecular diagnostics using magnetic nanobeads
NASA Astrophysics Data System (ADS)
Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria
2010-01-01
In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.
Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...
2015-06-11
In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
Shi, Huantong; Zou, Xiaobing; Wang, Xinxin
2017-12-01
The physical process of electrical explosion of wires in vacuum is featured with the surface discharge along the wire, which generates the corona plasma layer and terminates the Joule heating of the wire core. In this paper, a fiber-array probe was designed to directly measure the radiation of surface arc with spatial and temporal resolution. The radiation of the exploding wire was casted to the section of an optical-fiber-array by a lens and transmitted to PIN diodes and finally collected with an oscilloscope. This probe enables direct diagnostics of the evolution of surface discharge with high temporal resolution and certain spatial resolution. The radiation of a tungsten wire driven by a positive current pulse was measured, and results showed that surface discharge initiates near the cathode and propagates toward the anode with a speed of 7.7 ± 1.6 mm/ns; further estimations showed that this process is responsible for the "conical" structure of the exploding wire.
NASA Astrophysics Data System (ADS)
Shi, Huantong; Zou, Xiaobing; Wang, Xinxin
2017-12-01
The physical process of electrical explosion of wires in vacuum is featured with the surface discharge along the wire, which generates the corona plasma layer and terminates the Joule heating of the wire core. In this paper, a fiber-array probe was designed to directly measure the radiation of surface arc with spatial and temporal resolution. The radiation of the exploding wire was casted to the section of an optical-fiber-array by a lens and transmitted to PIN diodes and finally collected with an oscilloscope. This probe enables direct diagnostics of the evolution of surface discharge with high temporal resolution and certain spatial resolution. The radiation of a tungsten wire driven by a positive current pulse was measured, and results showed that surface discharge initiates near the cathode and propagates toward the anode with a speed of 7.7 ± 1.6 mm/ns; further estimations showed that this process is responsible for the "conical" structure of the exploding wire.
Multisource Estimation of Long-term Global Terrestrial Surface Radiation
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.
2017-12-01
Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
Development of Surface Eroding Thermocouples in DIII-D
NASA Astrophysics Data System (ADS)
Ren, Jun; Donovan, David; Watkins, Jon; Wang, Huiqian; Rudakov, Dmitry; Murphy, Christopher; Unterberg, Ezekial; Thomas, Dan; Boivin, Rejean
2017-10-01
The Surface Eroding Thermocouple (SETC) is a specialized diagnostic for characterizing the surface temperature evolution with a high temporal resolution ( 1ms) which is especially useful in areas unobservable by line-of-sight diagnostics (e.g. IR cameras). Recently, SETCs were tested in DiMES and successfully acquired temperature signals during strike point sweeps on the lower divertor shelf. We observed that the SETCs have a sub-10 ms time response and is sufficient to resolve ELM heat pulses. Preliminary analysis shows heat fluxes measured by SETCs and IR camera agree within 20%. Comparison of SETCs, calorimeters and Langmuir probe also show good agreement. We plan to implement an array of SETCs embedded in the tiles forming the new DIII-D small angle slot (SAS) divertor. Strategies to improve the SNR of these SETCs through testing in DiMES before the final installation will be discussed. This work was supported by the US Department of Energy under DE-SC0016318 (UTK), DE-AC05-00OR22725 (ORNL), DE-FG02-07ER54917 (UCSD), DE-FC02-04ER54698 (GA), DE-AC04-94AL85000 (SNL).
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura
2015-01-01
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727
3D morphometry of red blood cells by digital holography.
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro
2014-12-01
Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.
Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer
Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A
2016-01-01
Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582
2014-01-01
Background Fractal geometry has been the basis for the development of a diagnosis of preneoplastic and neoplastic cells that clears up the undetermination of the atypical squamous cells of undetermined significance (ASCUS). Methods Pictures of 40 cervix cytology samples diagnosed with conventional parameters were taken. A blind study was developed in which the clinic diagnosis of 10 normal cells, 10 ASCUS, 10 L-SIL and 10 H-SIL was masked. Cellular nucleus and cytoplasm were evaluated in the generalized Box-Counting space, calculating the fractal dimension and number of spaces occupied by the frontier of each object. Further, number of pixels occupied by surface of each object was calculated. Later, the mathematical features of the measures were studied to establish differences or equalities useful for diagnostic application. Finally, the sensibility, specificity, negative likelihood ratio and diagnostic concordance with Kappa coefficient were calculated. Results Simultaneous measures of the nuclear surface and the subtraction between the boundaries of cytoplasm and nucleus, lead to differentiate normality, L-SIL and H-SIL. Normality shows values less than or equal to 735 in nucleus surface and values greater or equal to 161 in cytoplasm-nucleus subtraction. L-SIL cells exhibit a nucleus surface with values greater than or equal to 972 and a subtraction between nucleus-cytoplasm higher to 130. L-SIL cells show cytoplasm-nucleus values less than 120. The rank between 120–130 in cytoplasm-nucleus subtraction corresponds to evolution between L-SIL and H-SIL. Sensibility and specificity values were 100%, the negative likelihood ratio was zero and Kappa coefficient was equal to 1. Conclusions A new diagnostic methodology of clinic applicability was developed based on fractal and euclidean geometry, which is useful for evaluation of cervix cytology. PMID:24742118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
Design and testing of a magnetically driven implosion peak current diagnostic
NASA Astrophysics Data System (ADS)
Hess, M. H.; Peterson, K. J.; Ampleford, D. J.; Hutsel, B. T.; Jennings, C. A.; Gomez, M. R.; Dolan, D. H.; Robertson, G. K.; Payne, S. L.; Stygar, W. A.; Martin, M. R.; Sinars, D. B.
2018-04-01
A critical component of the magnetically driven implosion experiments at Sandia National Laboratories is the delivery of high-current, 10s of MA, from the Z pulsed power facility to a target. In order to assess the performance of the experiment, it is necessary to measure the current delivered to the target. Recent Magnetized Liner Inertial Fusion (MagLIF) experiments have included velocimetry diagnostics, such as PDV (Photonic Doppler Velocimetry) or Velocity Interferometer System for Any Reflector, in the final power feed section in order to infer the load current as a function of time. However, due to the nonlinear volumetrically distributed magnetic force within a velocimetry flyer, a complete time-dependent load current unfold is typically a time-intensive process and the uncertainties in the unfold can be difficult to assess. In this paper, we discuss how a PDV diagnostic can be simplified to obtain a peak current by sufficiently increasing the thickness of the flyer. This effectively keeps the magnetic force localized to the flyer surface, resulting in fast and highly accurate measurements of the peak load current. In addition, we show the results of experimental peak load current measurements from the PDV diagnostic in recent MagLIF experiments.
Chae, Myung-Sic; Kim, Jinsik; Jeong, Dahye; Kim, YoungSoo; Roh, Jee Hoon; Lee, Sung Min; Heo, Youhee; Kang, Ji Yoon; Lee, Jeong Hoon; Yoon, Dae Sung; Kim, Tae Geun; Chang, Suk Tai; Hwang, Kyo Seon
2017-06-15
We performed oxygen plasma treatment on reduced graphene oxide (rGO) to improve its surface reactivity with respect to biomolecular interactions. Oxygen-plasma-treated rGO surfaces were employed as reactive interfaces for the detection of amyloid-beta (Aβ) peptides, the pathological hallmarks of Alzheimer's disease (AD), as the target analytes. By measuring the changes in electrical characteristics and confirmation through topographic analysis, the oxygen-plasma-treated rGO sensors had enhanced surface functionality for better antibody immobilization and sensing performance, with a 3.33-fold steeper slope for the electrical responses versus analyte concentration curve (logarithmic scale) compared to the untreated. The elicited biomolecular reactivity of the rGO surfaces with the oxygen plasma treatment remained at 46-51% of the initial value even after aging for 6h in ambient conditions. This phenomenon was also confirmed by pretreating the rGO surfaces with a blocking agent and subsequently subjecting them to antibody immobilization. Finally, the feasibility of the oxygen-plasma-treated rGO sensors as a diagnostic tool was evaluated with clinical samples of neural-derived exosomal Aβ peptides extracted from apparent AD patients and normal controls (NC). In contrast to the untreated sensors (p=0.0460), the oxygen-plasma-treated rGO sensors showed a significant p-value in the identification of clinical samples of AD and NC subjects (p<0.001). These results suggest that oxygen plasma treatment improves sensor performance without complicated fabrication procedures and should aid in the development of novel diagnostic tools based on carbon nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
Electron Microscopy and Image Analysis for Selected Materials
NASA Technical Reports Server (NTRS)
Williams, George
1999-01-01
This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.
Progress on development of SPIDER diagnostics
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Bernardi, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Palma, M. Dalla; Delogu, R. S.; Gorini, G.; Lotto, L.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rizzolo, A.; Serianni, G.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-08-01
SPIDER experiment, the full size prototype of the beam source for the ITER heating neutral beam injector, has to demonstrate extraction and acceleration to 100 kV of a large negative ion hydrogen or deuterium beam with co-extracted electron fraction e-/D- <1 and beam uniformity within 10%, for up to one hour beam pulses. Main RF source plasma and beam parameters are measured with different complementary techniques to exploit the combination of their specific features. While SPIDER plant systems are being installed, the different diagnostic systems are in the procurement phase. Their final design is described here with a focus on some key solutions and most original and cost effective implementations. Thermocouples used to measure the power load distribution in the source and over the beam dump front surface will be efficiently fixed with proven technique and acquired through commercial and custom electronics. Spectroscopy needs to use well collimated lines of sight and will employ novel design spectrometers with higher efficiency and resolution and filtered detectors with custom built amplifiers. The electrostatic probes will be operated through electronics specifically developed to cope with the challenging environment of the RF source. The instrumented calorimeter STRIKE will use new CFC tiles, still under development. Two linear cameras, one built in house, have been tested as suitable for optical beam tomography. Some diagnostic components are off the shelf, others are custom developed: some of these are being prototyped or are under test before final production and installation, which will be completed before start of SPIDER operation.
Surface Diagnostics in Tribology Technology and Advanced Coatings Development
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.
1986-02-19
Food and Drug Administration (FDA) is announcing the availability of final recommendations to minimize diagnostic nuclear medicine exposure to the embryo, fetus, and breastfeeding infant. The final recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), include the agency's rationale for the recommendations as well as the endorsement of the recommendations by several professional organizations. The final recommendations are being published in a pamphlet that is being made available to interested persons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.
1995-12-12
The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less
From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions
NASA Astrophysics Data System (ADS)
Cheung, Mark
2017-08-01
The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.
Magnetic nanomaterials and sensors for biological detection.
Sobczak-Kupiec, Agnieszka; Venkatesan, Jayachandran; Alhathal AlAnezi, Adnan; Walczyk, Dorota; Farooqi, Ammad; Malina, Dagmara; Hosseini, Seyed Hossein; Tyliszczak, Bozena
2016-11-01
It is becoming progressively more understandable that sensitivity and versatility of magnetic biosensors provides unique platform for high performance diagnostics in clinical settings. Confluence of information suggested that magnetic biosensors required well-tailored magnetic particles as probes for detection that generate large and specific biological signal with minimum possible nonspecific binding. However, there are visible knowledge gaps in our understanding of the strategies to overcome existing challenges related to even smaller size of intracellular targets and lower signal-to-noise ratio than that in whole-cell studies, therefore tool designing and development for intracellular measurement and manipulation is problematic. In this review we describe magnetic nanoparticles, synthesis and sensing principles of magnetic nanoparticles as well as surface functionalization and modification and finally magnetic nanoparticles for medical diagnostics. This review gathers important and up-to-date information and may help to develop the method of obtaining magnetic materials especially for medical application. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kumar, Sujay; Santanello, Joseph; Peters-Lidard, Christa; Harrison, Ken
2011-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.
NASA Astrophysics Data System (ADS)
Manzo, Anthony J.; Helvajian, Henry
2018-04-01
An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.
Development and use of culture systems to modulate specific cell responses
NASA Astrophysics Data System (ADS)
Martin, Yves
Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.
NASA Technical Reports Server (NTRS)
Hunthausen, Roger J.
1988-01-01
Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.
Diagnostic guide for evaluating surface distortions in veneered furniture and cabinetry
Alfred W. Christiansen; Mark Knaebe
2004-01-01
Manufacturers and installers of wood-veneered furniture and cabinetry sometimes find that their products eventually develop surface distortions, characterized by either buckling or cracking of the surface finish. The veneer itself sometimes buckles or cracks. Most surface distortions are caused by moisture changes in the product. This guide is a diagnostic tool for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Diagnostic and Hardware Upgrades for the US-PRC PMI Collaboration on EAST
NASA Astrophysics Data System (ADS)
Tritz, Kevin; Maingi, R.; Andruczyk, D.; Canik, J.; Wang, Z.; Wirth, B.; Zinkle, S.; Woller, K.; Hu, J. S.; Luo, G. N.; Gong, X. Z.; EAST Team
2017-10-01
Several collaborative diagnostic and hardware upgrades are planned to improve understanding and control of Plasma-Material Interactions on EAST, as part of the US-PRC PMI collaboration. Dual-band thermography adapters, designed by UT-K and ORNL, are being designed for existing IR cameras to improve the accuracy of the divertor heat flux measurements by reducing sensitivity to surface emissivity. These measurements should improve power accounting for EAST discharges, which can show a large gap between input power and divertor exhaust power. MIT is preparing tungsten tiles with fluorine depth markers to measure net erosion of PFC tiles. JHU plans to improve the electronics of the Multi-Energy Soft X-ray diagnostic as well as expand the present edge system to a full core-edge measurement; this will enhance the assessment of the effect of Li injection on tungsten accumulation and transport. In addition to PPPL-developed upgrades to the lithium granule and pellet delivery systems, LANL is assessing core-shell micropellets for pellet ablation analysis. Finally, UIUC and PPPL are developing flowing liquid lithium limiters, both with and without LiMIT tile features, for deployment on EAST. Work supported by DoE award DE-SC0016553.
Swadling, G. F.; Ross, J. S.; Datte, P.; ...
2016-07-21
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Surface grafted antibodies: controlled architecture permits enhanced antigen detection.
Sebra, Robert P; Masters, Kristyn S; Bowman, Christopher N; Anseth, Kristi S
2005-11-22
The attachment of antibodies to substrate surfaces is useful for achieving specific detection of antigens and toxins associated with clinical and field diagnostics. Here, acrylated whole antibodies were produced through conjugation chemistry, with the goal of covalently photografting these proteins from surfaces in a controlled fashion, to facilitate rapid and sensitive antigenic detection. A living radical photopolymerization chemistry was used to graft the acrylated whole antibodies on polymer surfaces at controlled densities and spatial locations by controlling the exposure time and area, respectively. Copolymer grafts containing these antibodies were synthesized to demonstrate two principles. First, PEG functionalities were introduced to prevent nonspecific protein interactions and improve the reaction kinetics by increasing solvation and mobility of the antibody-containing chains. Both of these properties lead to sensitive (pM) and rapid (<20 min) detection of antigens with this surface modification technique. Second, graft composition was tailored to include multiple antibodies on the same grafted chains, establishing a means for simultaneously detecting multiple antigens on one grafted surface area. Finally, the addition of PEG spacers between the acrylate functionality and the pendant detection antibodies was tuned to enhance the detection of a short-half-life molecule, glucagon, in a complex biological environment, plasma.
Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G
2013-12-01
This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
Krychowiak, M.
2016-10-27
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered amore » MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. Finally, an overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.« less
[Pathogenesis, diagnosis and therapy of Legionella infections].
Lück, P C; Steinert, M
2006-05-01
Legionella species are ubiquitous in aquatic environments. About 50 years ago they entered the engineered (technical) environment, i.e. warm water systems with zones of stagnation. Since that time they represent a hygienic problem. After transmission to humans via aerosols legionellae might cause Legionella pneumonia (legionnaires' disease) or influenza-like respiratory infections (Pontiac fever). Epidemiological data suggest that Legionella strains might differ substantially in their virulence properties. Although the molecular basis is not understood L. pneumophila serogroup 1 especially MAb 3/1-positive strains cause the majority of infections. The main virulence feature is the ability to multiply intracellularly. After uptake into macrophages legionellae multiply in a specialized vacuole and finally lyse their host cells. Several bacterial factors like surface components, secretion systems and iron uptake systems are involved in this process. Since the clinical picture of Legionella pneumonia does not allow differentiation from pneumoniae caused by other pathogens, microbiological diagnostic methods are needed to establish the diagnosis. Cultivation of legionellae from clinical specimens, detection of antigens and DNA in patients' samples and detection of antibodies in serum samples are suitable methods. However, none of the diagnostic tests presently available offers the desired quality with respect to sensitivity and specificity. Therefore, the standard technique is to use several diagnostic tests in parallel. Advantages and disadvantages of the diagnostic procedures are discussed. Therapeutic options for Legionella infections are newer macrolides like azithromycin and chinolones (ciprofloxacin, levofloxacin and moxifloxacin).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krychowiak, M.
Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered amore » MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. Finally, an overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns.« less
Cell separation using tilted-angle standing surface acoustic waves
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-01-01
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150
Cell separation using tilted-angle standing surface acoustic waves.
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-09-09
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
NASA Astrophysics Data System (ADS)
Chon, H.; Lee, S.; Wang, R.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-C.; Hong, S. H.; Yoon, Y. H.; Lim, D.; Choo, J.
2015-07-01
We report a highly sensitive anti-cyclic citrullinated peptide (anti-CCP) detection method for early diagnosis of rheumatoid arthritis (RA) using surface-enhanced Raman scattering (SERS)-based immunoassay. Herein, cyclic citrullinated peptide (CCP)-conjugated magnetic beads and anti-human IgG-conjugated hollow gold nanospheres (HGNs) were used as substrates and SERS nano-tags, respectively. First, its detection sensitivity was evaluated using anti-CCP standard solutions. Then quantitative anti-CCP levels, determined by the SERS-based assay, were compared with those obtained from three commercially available anti-CCP assay kits (Immunoscan CCPlus, ImmunnLisa™ CCP and BioPlex™ 2200) to assess its potential utility as a clinical tool. Finally, clinical samples from 20 RA patients were investigated using them. In the SERS-based assay, the anti-CCP level in human serum was successfully determined by monitoring the characteristic Raman peak intensity of SERS nano-tags. The diagnostic performance of our SERS-based immunoassay for clinical samples shows a good agreement with those measured by three commercial anti-CCP kits. In addition, our SERS-based assay results are more consistent in the low concentration range (0-25 U/mL) than those achieved by the commercial kits. Accordingly, it is estimated that the SERS-based assay is a potentially useful diagnostic tool for early diagnosis of RA.
ERIC Educational Resources Information Center
Nelson, Orville; And Others
These appendixes are to the final report of an action research Project conducted to determine the teacher competencies needed in order to develop valid and effective occupational learning experiences for educable mentally retarded (EMR) students based on available diagnostic test data and information. Included are (1) participant vitas and…
Nanosensors and nanomaterials for monitoring glucose in diabetes
Cash, Kevin J.; Clark, Heather A.
2010-01-01
Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Herein, we discuss developments in the past several years on both nanosensors that directly measure glucose as well as nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. PMID:20869318
To Duc, Khanh
2017-11-18
Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .
Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M
2017-10-13
Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.
Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...
2017-01-06
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less
Final-year diagnostic radiography students' perception of role models within the profession.
Conway, Alinya; Lewis, Sarah; Robinson, John
2008-01-01
Within a clinical education setting, the value of role models and prescribed mentors can be seen as an important influence in shaping the student's future as a diagnostic radiographer. A study was undertaken to create a new understanding of how diagnostic radiography students perceive role models and professional behavior in the workforce. The study aimed to determine the impact of clinical education in determining modeling expectations, role model identification and attributes, and the integration of academic education and "hands-on" clinical practice in preparing diagnostic radiography students to enter the workplace. Thirteen final-year (third-year) diagnostic radiography students completed an hour-long interview regarding their experiences and perceptions of role models while on clinical placement. The key concepts that emerged illustrated that students gravitate toward radiographers who enjoy sharing practical experiences with students and are good communicators. Unique to diagnostic radiography, students made distinctions about the presence of role models in private versus public service delivery. This study gives insight to clinical educators in diagnostic radiography and wider allied health into how students perceive role models, interact with preceptors, and combine real-life experiences with formal learning.
Point of Injury Sampling Technology for Battlefield Molecular Diagnostics
2011-11-14
Injury" Sampling Technology for Battlefield Molecular Diagnostics November 14, 2011 Sponsored by Defense Advanced Research Projects Agency (DOD...Date of Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract...PHASE I FINAL REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-11-C-0222 (UNCLASSIFIED) P.I: Bernardo
Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes
NASA Astrophysics Data System (ADS)
Mataras, Dimitrios
2001-10-01
In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.
Huettig, Falk; Altmann, Gerry T M
2011-01-01
Three eye-tracking experiments investigated the influence of stored colour knowledge, perceived surface colour, and conceptual category of visual objects on language-mediated overt attention. Participants heard spoken target words whose concepts are associated with a diagnostic colour (e.g., "spinach"; spinach is typically green) while their eye movements were monitored to (a) objects associated with a diagnostic colour but presented in black and white (e.g., a black-and-white line drawing of a frog), (b) objects associated with a diagnostic colour but presented in an appropriate but atypical colour (e.g., a colour photograph of a yellow frog), and (c) objects not associated with a diagnostic colour but presented in the diagnostic colour of the target concept (e.g., a green blouse; blouses are not typically green). We observed that colour-mediated shifts in overt attention are primarily due to the perceived surface attributes of the visual objects rather than stored knowledge about the typical colour of the object. In addition our data reveal that conceptual category information is the primary determinant of overt attention if both conceptual category and surface colour competitors are copresent in the visual environment.
Multimodal correlation and intraoperative matching of virtual models in neurosurgery
NASA Technical Reports Server (NTRS)
Ceresole, Enrico; Dalsasso, Michele; Rossi, Aldo
1994-01-01
The multimodal correlation between different diagnostic exams, the intraoperative calibration of pointing tools and the correlation of the patient's virtual models with the patient himself, are some examples, taken from the biomedical field, of a unique problem: determine the relationship linking representation of the same object in different reference frames. Several methods have been developed in order to determine this relationship, among them, the surface matching method is one that gives the patient minimum discomfort and the errors occurring are compatible with the required precision. The surface matching method has been successfully applied to the multimodal correlation of diagnostic exams such as CT, MR, PET and SPECT. Algorithms for automatic segmentation of diagnostic images have been developed to extract the reference surfaces from the diagnostic exams, whereas the surface of the patient's skull has been monitored, in our approach, by means of a laser sensor mounted on the end effector of an industrial robot. An integrated system for virtual planning and real time execution of surgical procedures has been realized.
Tomosynthesis in the Diagnostic Setting: Changing Rates of BI-RADS Final Assessment over Time.
Raghu, Madhavi; Durand, Melissa A; Andrejeva, Liva; Goehler, Alexander; Michalski, Mark H; Geisel, Jaime L; Hooley, Regina J; Horvath, Laura J; Butler, Reni; Forman, Howard P; Philpotts, Liane E
2016-10-01
Purpose To evaluate the effect of tomosynthesis in diagnostic mammography on the Breast Imaging Reporting and Data System (BI-RADS) final assessment categories over time. Materials and Methods This retrospective study was approved by the institutional review board. The authors reviewed all diagnostic mammograms obtained during a 12-month interval before (two-dimensional [2D] mammography [June 2, 2010, to June 1, 2011]) and for 3 consecutive years after (tomosynthesis year 1 [2012], tomosynthesis year 2 [2013], and tomosynthesis year 3 [2014]) the implementation of tomosynthesis. The requirement to obtain informed consent was waived. The rates of BI-RADS final assessment categories 1-5 were compared between the 2D and tomosynthesis groups. The positive predictive values after biopsy (PPV3) for BI-RADS category 4 and 5 cases were compared. The mammographic features (masses, architectural distortions, calcifications, focal asymmetries) of lesions categorized as probably benign (BI-RADS category 3) and those for which biopsy was recommended (BI-RADS category 4 or 5) were reviewed. The χ(2) test was used to compare the rates of BI-RADS final assessment categories 1-5 between the two groups, and multivariate logistic regression analysis was performed to compare all diagnostic studies categorized as BI-RADS 3-5. Results There was an increase in the percentage of cases reported as negative or benign (BI-RADS category 1 or 2) with tomosynthesis (58.7% with 2D mammography vs 75.8% with tomosynthesis at year 3, P < .0001). A reduction in the percentage of probably benign (BI-RADS category 3) final assessments also occurred (33.3% with 2D mammography vs 16.4% with tomosynthesis at year 3, P < .0001). Although the rates of BI-RADS 4 or 5 assessments did not change significantly with tomosynthesis (8.0% with 2D mammography vs 7.8% with tomosynthesis at year 3, P = .2), there was a significant increase in the PPV3 (29.6% vs 50%, respectively; P < .0001). These trends increased during the 3 years of tomosynthesis use. Conclusion Tomosynthesis in the diagnostic setting resulted in progressive shifts in the BI-RADS final assessment categories over time, with a significant increase in the proportion of studies classified as normal, a continued decrease in the rate of studies categorized as probably benign, and improved diagnostic confidence in biopsy recommendations. (©) RSNA, 2016.
Nanosensors and nanomaterials for monitoring glucose in diabetes.
Cash, Kevin J; Clark, Heather A
2010-12-01
Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Here, we discuss developments in the past several years on both nanosensors that directly measure glucose and nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. Copyright © 2010 Elsevier Ltd. All rights reserved.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro; Batra, Surinder K.; Krasnoslobodtsev, Alexey V.
2017-01-01
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. PMID:28085088
21 CFR 886.1390 - Flexible diagnostic Fresnel lens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has its surface a concentric series of increasingly refractive zones. The device is intended to be applied...
Final design of thermal diagnostic system in SPIDER ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.
The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements.more » This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.« less
Final design of thermal diagnostic system in SPIDER ion source
NASA Astrophysics Data System (ADS)
Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.
2016-11-01
The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.
2015-02-15
A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, andmore » we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.« less
Recent advances in the mechanical durability of superhydrophobic materials.
Milionis, Athanasios; Loth, Eric; Bayer, Ilker S
2016-03-01
Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics
Antiochia, Riccarda; Bollella, Paolo; Favero, Gabriele
2016-01-01
In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared. PMID:27594884
SHIELDS Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less
Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation
Choi, Hak Soo; Frangioni, John V.
2010-01-01
Because of their large size compared to small molecules, and their multi-functionality, nanoparticles (NPs) hold promise as biomedical imaging, diagnostic, and theragnostic agents. However, the key to their success hinges on a detailed understanding of their behavior after administration into the body. NP biodistribution, target binding, and clearance are a complex function of their physicochemical properties in serum, which include hydrodynamic diameter, solubility, stability, shape and flexibility, surface charge, composition, and formulation. Moreover, many materials used to construct NPs have real or potential toxicity, or may interfere with other medical tests. In this review, we discuss the design considerations that mediate NP behavior in the body and the fundamental principles that govern clinical translation. By analyzing those nanomaterials that have already received regulatory approval, most of which are actually therapeutic agents, we attempt to predict which types of NPs hold potential as diagnostic agents for biomedical imaging. Finally, using quantum dots as an example, we provide a framework for deciding whether an NP-based agent is the best choice for a particular clinical application. PMID:21084027
Trushkowsky, Richard; Arias, David Montalvo; David, Steven
Prior to initiating any treatment, it is necessary to visualize the desired outcomes. It then becomes possible to formulate the steps required to achieve this result. Digital Smile Design (DSD) utilizes patient input and information gathered through diagnostic procedures to create an esthetic treatment scheme. In the case presented here, the NYUCD Esthetic Evaluation Form, intraoral and extraoral photographs, mounted diagnostic casts, physical examination, and radiographs were the diagnostic modalities. The gathered information served as a starting point for a wax-up and intraoral mock-up. This case report demonstrates how the DSD served as a template for crown lengthening procedures and design of the final porcelain veneer restorations.
NASA Astrophysics Data System (ADS)
Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-02-01
Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.
Seong, Nak Jong; Kim, Bohyoung; Lee, Sungmin; Park, Hee Sun; Kim, Hyuk Jung; Woo, Hyunsik; Kang, Heung-Sik; Lee, Kyoung Ho
2014-07-01
The purpose of this study was to simulate a mobile consultation in patients with inconclusive diagnosis of appendicitis made by on-call radiologists, as well as to measure the diagnostic confidence and performance of the mobile consultation. Two off-site abdominal radiologists interpreted the CT images from 68 patients (including 29 patients with confirmed appendicitis) on a smart-phone for whom the preliminary CT reports by 25 in-house on-call radiologists were inconclusive. The smartphone readings were compared with the preliminary reports by on-call radiologists and with the original final reports by in-house abdominal radiologists. Heat maps, kappa statistics, Wilcoxon signed-rank tests, and ROC curves were used for data analysis. The heat maps and kappa statistics showed that the smartphone readings were more similar to the final reports than to the preliminary reports. In diagnosing or ruling out appendicitis, the smartphone readings were more confident than the preliminary reports (p ≤ 0.01) and did not significantly differ in diagnostic confidence from the final reports (p ≥ 0.19). The AUCs of the smartphone readings (0.91 and 0.92) did not differ significantly from those of the preliminary (0.85) or final (0.97) reports (p ≥ 0.09). With the given study sample, the diagnostic performance of the off-site smartphone readings did not differ significantly from that of the in-house preliminary reports. However, the smartphone readings provided higher diagnostic confidence than the preliminary reports.
Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, A. M.; DaSilva, L. B.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
2010-10-01
steps applied for generating the 3D ROC surface diagnostic metrics: 1. Obtain system data: Gain access to a suitable database of system data under...surface, VUSTPR and VUSCCR, can be calculated. This can be accomplished by partitioning the VUSTPR and VUSCCR volumes into polyhedrons as illustrated... polyhedron volumes to produce VUSTPR and VUSCCR. In the example given in Figures 7 and 8 a logarithmic scaling has been applied to the TL axis. This places
NASA Astrophysics Data System (ADS)
Lawrie, S. R.; Faircloth, D. C.; Smith, J. D.; Sarmento, T. M.; Whitehead, M. O.; Wood, T.; Perkins, M.; Macgregor, J.; Abel, R.
2018-05-01
A vessel for extraction and source plasma analyses is being used for Penning H- ion source development at the Rutherford Appleton Laboratory. A new set of optical elements including an einzel lens has been installed, which transports over 80 mA of H- beam successfully. Simultaneously, a 2X scaled Penning source has been developed to reduce cathode power density. The 2X source is now delivering a 65 mA H- ion beam at 10% duty factor, meeting its design criteria. The long-term viability of the einzel lens and 2X source is now being evaluated, so new diagnostic devices have been installed. A pair of electrostatic deflector plates is used to correct beam misalignment and perform fast chopping, with a voltage rise time of 24 ns. A suite of four quartz crystal microbalances has shown that the cesium flux in the vacuum vessel is only increased by a factor of two, despite the absence of a dedicated cold trap. Finally, an infrared camera has demonstrated good agreement with thermal simulations but has indicated unexpected heating due to beam loss on the downstream electrode. These types of diagnostics are suitable for monitoring all operational ion sources. In addition to experimental campaigns and new diagnostic tools, the high-performance VSim and COMSOL software packages are being used for plasma simulations of two novel ion thrusters for space propulsion applications. In parallel, a VSim framework has been established to include arbitrary temperature and cesium fields to allow the modeling of surface physics in H- ion sources.
A Systems Approach to Diagnostic Prescriptive Instruction.
ERIC Educational Resources Information Center
Kozma, Robert B.; And Others
This five-part document presents three approaches to research on instructional improvement, with the final two sections concentrating on problems and implications for diagnostic prescriptive instruction. Part 1 reviews comparative instructional effectiveness studies. Part 2 discusses the Trait-Treatment Interaction Approach (TTI) which is…
Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas
NASA Astrophysics Data System (ADS)
Shahbazi, S.; Wang, X.; Yang, J.-L.; Jiang, X. C.; Ryan, R.; Yu, A. B.
2015-06-01
The application of nano-science in cancer therapy has become one of the most attractive tools in scientific research because of its versatility in diagnosis and treatment. Among the different types of nanoparticles, iron oxide nanoparticles (IONPs) are renowned for their low toxicity and suitability for therapeutic and diagnostic, or `theragnostic,' approach against different types of cancers. Research investigating the effect of IONPs with different physiochemical characteristics in sarcoma is limited. In this study, we initially prepared IONPs of different sizes (200, 100, 20, and 10 nm) and modified their surface with different types of coatings (polyethylene glycol, d-glucose, and silica) under mild conditions. Various methods were used to illustrate and quantify cellular uptake of magnetic nanoparticles in sarcoma cell lines. Finally, the safety of the uptaken nanoparticles on diverse human sarcoma cell lines was investigated and found that the readily available IONPs can be taken up by synovial sarcoma and liposarcoma cell lines in the selective histological tumor types; however, they seem highly toxic for fibrous histiocytoma and fibrosarcoma.
Molecular Mechanisms Underlying Occult Hepatitis B Virus Infection
Samal, Jasmine; Kandpal, Manish
2012-01-01
Summary: Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section. PMID:22232374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.
2000-04-01
This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.
Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo
2017-01-01
Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Glover, R. C.; Kelley, B. A.; Tischer, A. E.
1986-01-01
The results of a review of the Space Shuttle Main Engine (SSME) failure data for the period 1980 through 1983 are presented. The data was collected, evaluated, and ranked according to procedures established during this study. A number of conclusions and recommendations are made based upon this failure data review. The results of a state-of-the-art diagnostic survey are also presented. This survey covered a broad range of diagnostic sensors and techniques and the findings were evaluated for application to the SSME. Finally, a discussion of the initial activities for the on-going SSME diagnostic evaluation is included.
Hiremath, Santhosh; Kale, Alka D; Hallikerimath, Seema
2015-01-01
Lichen planus and lichenoid lesions affecting the oral cavity show similar clinico-pathological features creating a diagnostic dilemma. Hence, the aim of the present study was to establish a clinical and histopathological correlation in the diagnosis of oral lichen planus, based on the modified WHO diagnostic criteria of oral lichen planus and oral lichenoid lesions proposed by Van der Meij and Van der Waal in 2003. In the present study, 100 cases of oral lichen planus were clinically and histopathologically analyzed. Out of the 100 cases, 50 were prospective and 50 were retrospective cases. Prospective cases were collected based on the clinical diagnosis of oral lichen planus and oral lichenoid lesion. Retrospective cases were collected based on the histopathological diagnosis of oral lichen planus. Both the clinical and histopathological analyses were performed based on a proposal for a set of modified diagnostic criteria of oral lichen planus and oral lichenoid lesion. A final diagnosis of oral lichen planus was made only after the correlation of the clinical diagnosis with the histopathological diagnosis. The interobserver agreement among three observers for both prospective and retrospective cases in the final diagnosis of oral lichen planus was found to be "good" to "very good" indicating high reproducibility. However, the final diagnoses of true oral lichen planus after clinico-pathological correlation in prospective and retrospective study groups appeared to be 38.0% and 54.0% respectively. The results of the present study revealed mild to moderate clinico-pathological correlation in the final diagnosis of oral lichen planus for the prospective and retrospective study groups respectively.
Diagnosing ion-beam targets, data acquisition, reactor conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendel, Jr., C. W.
1982-01-01
The final lecture will discuss diagnostics of the target. These are very difficult because of the short times, small spatial extent, and extreme values of temperature and pressure. Diagnostics for temperature, density profile, and neutron production will be discussed. A few minutes will be devoted to data acquisition needs. The lecture will end with a discussion of current areas where improvements are needed and future diagnostics that will be required for reactor conditions.
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
Blokhuis, Gijsbert J; Bleeker-Rovers, Chantal P; Diender, Marije G; Oyen, Wim J G; Draaisma, Jos M Th; de Geus-Oei, Lioe-Fee
2014-10-01
Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value.
ERIC Educational Resources Information Center
May, Donald M.; And Others
The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…
Validation of the Proficiency Examination for Diagnostic Radiologic Technology. Final Report.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
The validity of the Proficiency Examination for Diagnostic Radiologic Technology was investigated, using 140 radiologic technologists who took both the written Proficiency Examination and a performance test. As an additional criterion measure of job proficiency, supervisors' assessments were obtained for 128 of the technologists. The resulting…
Hui, Junmin; Li, Wenjuan; Guo, Yanlei; Yang, Zhu; Wang, Yingxiong; Yu, Chao
2014-03-01
A new electrochemical sensor based on a novel organic-inorganic material (PNFCTs) was proposed for detection of paracetamol in this paper. First, PNFCTs were prepared with multi-walled carbon nanotubes (MWNTs) and a derivative of 3,4,9,10-perylenetetracarboxylic dianhydride (PTC-NH2) via cross-linking method. Then, PNFCTs were coated onto the surface of the glassy carbon electrode (GCE) to form porous organic conducting polymer films (PNFCTs/GCE), which could not only increase the loading of paracetamol efficiently but also provide an interface with exceptional electrical conductivity for paracetamol. Finally, gold nanoparticles (GNPs) were attached to the electrode surface through electrodepositing method, which obtained GNPs/PNFCTs/GCE electrode. The electrochemical behavior of paracetamol on GNPs/PNFCTs/GCE was explored by cyclic voltammetrys (CVs) and differential pulse voltammograms (DPVs). The results showed that the GNPs/PNFCTs/GCE exhibited excellent electrocatalytic activity to paracetamol, which should be attributed to remarkable properties of the new composite nanomaterials with porous nanostructure and exceptional electrical conductivity. The wide liner range and detection limit were 0.3-575 and 0.1 μM, respectively. Finally, it was successfully used to detect paracetamol in dilution human serum and commercial tablets. The sensor shows great promise for simple, sensitive, and selective detection paracetamol and provides a promising approach in paracetamol clinical research and overdose diagnostic applications.
Diagnostic utility of abdominal ultrasonography in dogs with chronic vomiting.
Leib, M S; Larson, M M; Panciera, D L; Troy, G C; Monroe, W E; Rossmeisl, J H; Forrester, S D; Herring, E S
2010-01-01
Chronic vomiting is a common problem in dogs that has many causes. Ultrasonographic descriptions of many gastrointestinal (GI) diseases have been published. However, diagnostic utility of ultrasonography in dogs with chronic vomiting has not been investigated. Diagnostic utility of abdominal ultrasound will be highest in dogs with GI neoplasia and lowest in those with inflammatory disorders. Eighty-nine pet dogs with chronic vomiting. Medical records were reviewed and the contribution of abdominal ultrasound to the clinical diagnosis was subjectively scored. In 68.5% of dogs, the reviewers thought that the same diagnosis would have been reached without performing ultrasonography. In 22.5% of dogs, the ultrasound examination was considered to be vital or beneficial to the diagnosis. Univariable analysis identified that increased diagnostic utility was associated with increasing age, a greater number of vomiting episodes per week, presence of weight loss, a greater percentage of lost body weight, and a final diagnosis of GI lymphoma or gastric adenocarcinoma. However, multivariate analysis only identified increasing age and a final diagnosis of gastric adenocarcinoma or GI lymphoma to be associated with increased diagnostic utility. In 12.4% of dogs, additional benefits of ultrasonography to case management, excluding the contribution to the vomiting problem, were identified. The diagnostic utility of abdominal ultrasonography was high in 27% of dogs. The presence of factors that are associated with high diagnostic utility is an indication to perform abdominal ultrasonography in dogs with chronic vomiting.
NASA Astrophysics Data System (ADS)
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.
2014-05-01
The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.
Final Report: “Energetics of Nanomaterials”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodfield, Brian F.; navrotsky, alexandra; Ross, Nancy
2016-08-30
Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques—namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering—this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of compositionmore » and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.« less
Final Report: "Energetics of Nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian
2015-02-14
Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques—namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering—this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of compositionmore » and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.« less
Electromagnetic diagnostic system for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2017-09-01
A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.
Tomizawa, Yutaka; Iyer, Prasad G; Wongkeesong, Louis M; Buttar, Navtej S; Lutzke, Lori S; Wu, Tsung-Teh; Wang, Kenneth K
2013-01-01
AIM: To investigate a classification of endocytoscopy (ECS) images in Barrett’s esophagus (BE) and evaluate its diagnostic performance and interobserver variability. METHODS: ECS was applied to surveillance endoscopic mucosal resection (EMR) specimens of BE ex-vivo. The mucosal surface of specimen was stained with 1% methylene blue and surveyed with a catheter-type endocytoscope. We selected still images that were most representative of the endoscopically suspect lesion and matched with the final histopathological diagnosis to accomplish accurate correlation. The diagnostic performance and inter-observer variability of the new classification scheme were assessed in a blinded fashion by physicians with expertise in both BE and ECS and inexperienced physicians with no prior exposure to ECS. RESULTS: Three staff physicians and 22 gastroenterology fellows classified eight randomly assigned unknown still ECS pictures (two images per each classification) into one of four histopathologic categories as follows: (1) BEC1-squamous epithelium; (2) BEC2-BE without dysplasia; (3) BEC3-BE with dysplasia; and (4) BEC4-esophageal adenocarcinoma (EAC) in BE. Accuracy of diagnosis in staff physicians and clinical fellows were, respectively, 100% and 99.4% for BEC1, 95.8% and 83.0% for BEC2, 91.7% and 83.0% for BEC3, and 95.8% and 98.3% for BEC4. Interobserver agreement of the faculty physicians and fellows in classifying each category were 0.932 and 0.897, respectively. CONCLUSION: This is the first study to investigate classification system of ECS in BE. This ex-vivo pilot study demonstrated acceptable diagnostic accuracy and excellent interobserver agreement. PMID:24379583
NASA Astrophysics Data System (ADS)
Brown, C. G.; Ayers, J.; Felker, B.; Ferguson, W.; Holder, J. P.; Nagel, S. R.; Piston, K. W.; Simanovskaia, N.; Throop, A. L.; Chung, M.; Hilsabeck, T.
2012-10-01
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.
Modifications to the synthetic aperture microwave imaging diagnostic
Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...
2016-09-02
The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy
Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...
2016-01-05
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less
Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.
Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul
2016-02-01
To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.
New frontier in hypericin-mediated diagnosis of cancer with current optical technologies.
Olivo, Malini; Fu, Chit Yaw; Raghavan, Vijaya; Lau, Weber Kam On
2012-02-01
Photosensitizers (PSs) have shown great potentials as molecular contrast agents in photodynamic diagnosis (PDD) of cancer. While the diagnostic values of PSs have been proven previously, little efforts have been put into developing optical imaging and diagnostic algorithms. In this article, we review the recent development of optical probes that have been used in conjunction with a potent PS, hypericin (HY). Various fluorescence techniques such as laser confocal microscopy, fluorescence urine cytology, endoscopy and endomicroscopy are covered. We will also discuss about image processing and classification approaches employed for accurate PDD. We anticipate that continual efforts in these developments could lead to an objective PDD and complete surgical clearance of tumors. Recent advancements in nanotechnology have also opened new horizons for PSs. The use of biocompatible gold nanoparticles as carrier for enhanced targeted delivery of HY has been attained. In addition, plasmonic properties of nanoparticles were harnessed to induce localized hyperthermia and to manage the release of PS molecules, enabling a better therapeutic outcome of a combined photodynamic and photothermal therapy. Finally, we discuss how nanoparticles can be used as contrast agents for other optical techniques such as optical coherence tomography and surface-enhanced Raman scattering imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shu Ting; Wang Hui
2012-07-15
The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...
2015-07-10
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.
Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji
2014-01-01
The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.
2014-11-15
Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less
How valid are current diagnostic criteria for dental erosion?
2008-01-01
In principle, there is agreement about the clinical diagnostic criteria for dental erosion, basically defined as cupping and grooving of the occlusal/incisal surfaces, shallow defects on smooth surfaces located coronal from the enamel–cementum junction with an intact cervical enamel rim and restorations rising above the adjacent tooth surface. This lesion characteristic was established from clinical experience and from observations in a small group of subjects with known exposure to acids rather than from systematic research. Their prevalence is higher in risk groups for dental erosion compared to subjects not particularly exposed to acids, but analytical epidemiological studies on random or cluster samples often fail to find a relation between occurrence or severity of lesions and any aetiological factor. Besides other aspects, this finding might be due to lack of validity with respect to diagnostic criteria. In particular, cupping and grooving might be an effect of abrasion as well as of erosion and their value for the specific diagnosis of erosion must be doubted. Knowledge about the validity of current diagnostic criteria of different forms of tooth wear is incomplete, therefore further research is needed. PMID:18228062
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
O'Halloran, Jane A; Franklin, Alexander; Lainhart, William; Burnham, Carey-Ann; Powderly, William; Dubberke, Erik
2017-01-01
We report the case of a kidney transplantation patient on chronic immunosuppressive therapy presenting with subacute meningitis. The final diagnosis of cryptococcal meningitis was delayed due to 2 false-negative cryptococcal results on a molecular diagnostic panel. Caution with such platforms in suspected cryptococcal meningitis is needed.
Impact of the Diagnostic Process on Parents of Infants and Preschool Children. Final Report.
ERIC Educational Resources Information Center
Tice, Terrence N.; Hanson, Janice L.
In an investigation of the impact of the psychological/educational diagnostic process on the parents of young children at risk for developmental delay, 18 families completed questionnaires and were interviewed concerning their child's evaluation. Transcribed interviews conducted 1-2 weeks after the evaluation and 4 months after the evaluations…
Diagnostic Competence of Primary School Mathematics Teachers during Classroom Situations
ERIC Educational Resources Information Center
Hoth, Jessica; Döhrmann, Martina; Kaiser, Gabriele; Busse, Andreas; König, Johannes; Blömeke, Sigrid
2016-01-01
One of the main challenges for teachers during teaching in class is the diagnosis of students' learning and thinking processes. For this purpose, teachers must perceive relevant information, they need to interpret this information and finally, they need to respond and select suitable opportunities to learn. In this paper, diagnostic processes in…
ERIC Educational Resources Information Center
Pennsylvania State Univ., University Park. Computer-Assisted Instruction Lab.
The Computer Assisted Remedial Education (CARE) project developed two computer-assisted instructional (CAI) courses. The objective was to train educational personnel to use diagnostic teaching in working with preschool and primary grade children who exhibit learning problems. Emphasis was placed upon the use of new technology in providing…
Some historic and current aspects of plasma diagnostics using atomic spectroscopy
NASA Astrophysics Data System (ADS)
Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek
2010-07-01
In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.
Optical Diagnostic System for Solar Sails: Phase 1 Final Report
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.
2004-01-01
NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.
Stahl, Stephane; Hentschel, Pascal; Ketelsen, Dominik; Grosse, Ulrich; Held, Manuel; Wahler, Theodora; Syha, Roland; Schaller, Hans-Eberhard; Nikolaou, Konstantin; Grözinger, Gerd
2017-05-01
This prospective clinical study examined standard wrist magnetic resonance imaging (MRI) examinations and the incremental value of computed tomography (CT) in the diagnosis of Kienböck's disease (KD) with regard to reliability and precision in the different diagnostic steps during diagnostic work-up. Sixty-four consecutive patients referred between January 2009 and January 2014 with positive initial suspicion of KD according to external standard wrist MRI were prospectively included (step one). Institutional review board approval was obtained. Clinical examination by two handsurgeons were followed by wrist radiographs (step two), ultrathin-section CT, and 3T contrast-enhanced MRI (step three). Final diagnosis was established in a consensus conference involving all examiners and all examinations results available from step three. In 12/64 patients, initial suspicion was discarded at step two and in 34/64 patients, the initial suspicion of KD was finally discarded at step three. The final external MRI positive predictive value was 47%. The most common differential diagnoses at step three were intraosseous cysts (n=15), lunate pseudarthrosis (n=13), and ulnar impaction syndrome (n=5). A correlation between radiograph-based diagnoses (step two) with final diagnosis (step three) showed that initial suspicion of stage I KD had the lowest sensitivity for correct diagnosis (2/11). Technical factors associated with a false positive external MRI KD diagnosis were not found. Standard wrist MRI should be complemented with thin-section CT, and interdisciplinary interpretation of images and clinical data, to increase diagnostic accuracy in patients with suspected KD. Copyright © 2017. Published by Elsevier B.V.
Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives
NASA Astrophysics Data System (ADS)
Lee, Haeshin
The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as medical devices, adhesives, and diagnostics, nanotechnology, biointerface, and catalysis.
An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite
NASA Astrophysics Data System (ADS)
Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna
2018-06-01
Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, G K; Hendrix, J L; Rowe, J
1998-06-26
The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debrismore » barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4 th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm 2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.« less
Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Hall, Elise Munz
2017-06-01
Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.
Interceptive Beam Diagnostics - Signal Creation and Materials Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plum, Michael; Spallation Neutron Source, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN
2004-11-10
The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.
NASA Astrophysics Data System (ADS)
Belov, M. Ye.; Shayko-Shaykovskiy, O. G.; Makhrova, Ye. G.; Kramar, V. M.; Oleksuik, I. S.
2018-01-01
We represent here the theoretical justifications, block scheme and experimental sample of a new automated complex "Thermodyn" for remote contactless diagnostics of inflammatory processes of the surfaces and in subcutaneous areas of human body. Also we described here the methods and results of diagnostic measurements, and results of practical applications of this complex.
Pablant, N A; Bitter, M; Delgado-Aparicio, L; Goto, M; Hill, K W; Lazerson, S; Morita, S; Roquemore, A L; Gates, D; Monticello, D; Nielson, H; Reiman, A; Reinke, M; Rice, J E; Yamada, H
2012-08-01
First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar(16 +). The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.
Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses.
Zalewski, Nicholas L; Flanagan, Eoin P; Keegan, B Mark
2018-01-09
To evaluate specific myelopathy diagnoses made in patients with suspected idiopathic transverse myelitis (ITM). A total of 226 patients 18 years and older were referred to Mayo Clinic Neurology for suspected ITM from December 1, 2010, to December 31, 2015. Electronic medical records were reviewed for detailed clinical presentation and course, laboratory and electrophysiologic investigations, and neuroimaging to determine the etiology. Current diagnostic criteria for ITM and alternative myelopathy diagnoses were applied. All cases where any discrepancy was suspected from the final reported clinical diagnosis were reviewed by each author and a consensus final diagnosis was made. The diagnostic criteria for ITM were met in 41 of 226 patients (18.1%). In 158 patients (69.9%), an alternative specific myelopathy diagnosis was made: multiple sclerosis or clinically isolated syndrome, 75; vascular myelopathy, 41; neurosarcoidosis, 12; neuromyelitis optica spectrum disorder, 12; myelin oligodendrocyte glycoprotein myelopathy, 5; neoplastic, 4; compressive, 3; nutritional, 3; infectious, 2; and other, 2. A myelopathy was not confirmed in 27 patients. Time from symptom onset to final clinical diagnosis in patients without ITM was a median of 9 months (range 0-288). Fifty-five patients (24%) required treatment changes according to their final clinical diagnosis. The majority of patients with suspected ITM have an alternative specific myelopathy diagnosis. A presumptive diagnosis of ITM can lead to premature diagnostic conclusions affecting patient treatment. Copyright © 2017 American Academy of Neurology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shangang, E-mail: 1198685580@qq.com; Li, Chengli, E-mail: chenglilichina@yeah.net; Yu, Xuejuan, E-mail: yuxuejuan2011@126.com
2015-04-15
ObjectiveThe purpose of our study was to evaluate the diagnostic accuracy of MRI-guided percutaneous transthoracic needle biopsy (PTNB) of solitary pulmonary nodules (SPNs).MethodsRetrospective review of 69 patients who underwent MR-guided PTNB of SPNs was performed. Each case was reviewed for complications. The final diagnosis was established by surgical pathology of the nodule or clinical and imaging follow-up. Pneumothorax rate and diagnostic accuracy were compared between two groups according to nodule diameter (≤2 vs. >2 cm) using χ{sup 2} chest and Fisher’s exact test, respectively.ResultsThe success rate of single puncture was 95.6 %. Twelve (17.4 %) patients had pneumothorax, with 1 (1.4 %) requiring chestmore » tube insertion. Mild hemoptysis occurred in 7 (7.2 %) patients. All of the sample material was sufficient for histological diagnostic evaluation. Pathological analysis of biopsy specimens showed 46 malignant, 22 benign, and 1 nondiagnostic nodule. The final diagnoses were 49 malignant nodules and 20 benign nodules basing on postoperative histopathology and clinical follow-up data. One nondiagnostic sample was excluded from calculating diagnostic performance. A sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in diagnosing SPNs were 95.8, 100, 97.0, 100, and 90.9 %, respectively. Pneumothorax rate, diagnostic sensitivity, and accuracy were not significantly different between the two groups (P > 0.05).ConclusionsMRI-guided PTNB is safe, feasible, and high accurate diagnostic technique for pathologic diagnosis of pulmonary nodules.« less
Huckle, David
2015-06-01
Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.
Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija
2012-01-01
Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ayers, M J; Felker, B
2012-04-20
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less
CEACAM6 is upregulated by Helicobacter pylori CagA and is a biomarker for early gastric cancer
Srivastava, Supriya; Samanta, Animesh; Sharma, Neel; Tan, Kar Tong; Yang, Henry; Voon, Dominic C.; Pang, Brendan; Teh, Ming; Murata-Kamiya, Naoko; Hatakeyama, Masanori; Chang, Young-Tae; Yong, Wei Peng; Ito, Yoshiaki; Ho, Khek Yu; Tan, Patrick; Soong, Richie; Koeffler, Phillip H.; Yeoh, Khay Guan; Jeyasekharan, Anand D.
2016-01-01
Early detection of gastric cancers saves lives, but remains a diagnostic challenge. In this study, we aimed to identify cell-surface biomarkers of early gastric cancer. We hypothesized that a subset of plasma membrane proteins induced by the Helicobacter pylori oncoprotein CagA will be retained in early gastric cancers through non-oncogene addiction. An inducible system for expression of CagA was used to identify differentially upregulated membrane protein transcripts in vitro. The top hits were then analyzed in gene expression datasets comparing transcriptome of gastric cancer with normal tissue, to focus on markers retained in cancer. Among the transcripts enriched upon CagA induction in vitro, a significant elevation of CEACAM6 was noted in gene expression datasets of gastric cancer. We used quantitative digital immunohistochemistry to measure CEACAM6 protein levels in tissue microarrays of gastric cancer. We demonstrate an increase in CEACAM6 in early gastric cancers, when compared to matched normal tissue, with an AUC of 0.83 for diagnostic validity. Finally, we show that a fluorescently conjugated CEACAM6 antibody binds avidly to freshly resected gastric cancer xenograft samples and can be detected by endoscopy in real time. Together, these results suggest that CEACAM6 upregulation is a cell surface response to H. pylori CagA, and is retained in early gastric cancers. They highlight a novel link between CEACAM6 expression and CagA in gastric cancer, and suggest CEACAM6 to be a promising biomarker to aid with the fluorescent endoscopic diagnosis of early neoplastic lesions in the stomach. PMID:27421133
First measurements of error fields on W7-X using flux surface mapping
Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...
2016-08-03
Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less
[Diagnosis and treatment of thyroid storm].
Akamizu, Takashi
2012-11-01
Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.
Hard X-ray mirrors for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Brejnholt, N.; Hill, R.
Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less
[Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].
Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I
2009-01-01
The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.
Zhao, Hua; Wang, Xiaoting; Liu, Dawei; Zhang, Hongmin; He, Huaiwu; Long, Yun
2015-12-15
To evaluate the diagnostic value and potential therapeutic impact of Peking Union Medical College Hospital critical ultrasonic management (PCUM) in the early management of critically ill patients with acute respiratory failure (ARF). Patients admitted into the ICU of Peking Union Medical College Hospital for ARF were consecutively recruited over a 18-month period. Patients were randomly divided into conventional group and PCUM group (critical care ultrasonic examination was added in addition to conventional examinations). The two groups were compared with respect to time to preliminary diagnosis, time to final diagnosis, diagnostic accuracy, time to treatment response, time to other examination. A total of 187 patients were included in this study. The two groups showed no significant differences in general clinical information or final diagnosis (P > 0.05). The PCUM group had a shorter time to preliminary diagnosis, time to final diagnosis, time to treatment response, time to X-ray/CT examination, and a higher diagnostic accuracy than the conventional group (P < 0.001). PCUM had high sensitivity and specificity for the diagnosis of acute respiratory distress syndrome (ARDS) (sensitivity 92.0%, specificity 98.5%), acute pulmonary edema (sensitivity 94.7%, specificity 96.1%), pulmonary consolidation (sensitivity 85.7%, specificity 98.6%), COPD/asthma (sensitivity 84.2%, specificity 98.7%). The PCUM is seem to be an attractive complementary diagnostic tool and able to contribute to an early therapeutic decision for the patients with ARF.
Peralta, P.; Loomis, E.; Chen, Y.; ...
2015-04-09
Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less
Characterization of the Goubau line for testing beam diagnostic instruments
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.
2017-12-01
One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.
Laser speckle and skin cancer: skin roughness assessment
NASA Astrophysics Data System (ADS)
Lee, Tim K.; Tchvialeva, Lioudmila; Zeng, Haishan; McLean, David I.; Lui, Harvey
2009-10-01
Incidence of skin cancer has been increasing rapidly since the last few decades. Non-invasive optical diagnostic tools may improve the diagnostic accuracy. In this paper, skin structure, skin cancer statistics and subtypes of skin cancer are briefly reviewed. Among the subtypes, malignant melanoma is the most aggressive and dangerous; early detection dramatically improves the prognosis. Therefore, a non-invasive diagnostic tool for malignant melanoma is especially needed. In addition, in order for the diagnostic tool to be useful, it must be able to differentiate melanoma from common skin conditions such as seborrheic keratosis, a benign skin disease that resembles melanoma according to the well known clinical-assessment ABCD rule. The key diagnostic feature between these two diseases is surface roughness. Based on laser speckle contrast, our research team has recently developed a portable, optical, non-invasive, in-vivo diagnostic device for quantifying skin surface roughness. The methodology of our technique is described in details. Examining the preliminary data collected in a pilot clinical study for the prototype, we found that there was a difference in roughness between melanoma and seborrheic keratosis. In fact, there was a perfect cutoff value for the two diseases based on our initial data.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... observational research or research toward the development of diagnostic or outcome assessment tools. The... observational findings, and creating other sources of research-based information. This research stage may....133B-6] Final Priorities; National Institute on Disability and Rehabilitation Research--Rehabilitation...
Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications
Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh
2015-01-01
Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny
2010-02-21
Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.
Schmidt, H G; Van Gog, Tamara; Schuit, Stephanie Ce; Van den Berge, Kees; Van Daele, Paul L; Bueving, Herman; Van der Zee, Tim; Van den Broek, Walter W; Van Saase, Jan L; Mamede, Sílvia
2017-01-01
Literature suggests that patients who display disruptive behaviours in the consulting room fuel negative emotions in doctors. These emotions, in turn, are said to cause diagnostic errors. Evidence substantiating this claim is however lacking. The purpose of the present experiment was to study the effect of such difficult patients' behaviours on doctors' diagnostic performance. We created six vignettes in which patients were depicted as difficult (displaying distressing behaviours) or neutral. Three clinical cases were deemed to be diagnostically simple and three deemed diagnostically complex. Sixty-three family practice residents were asked to evaluate the vignettes and make the patient's diagnosis quickly and then through deliberate reflection. In addition, amount of time needed to arrive at a diagnosis was measured. Finally, the participants rated the patient's likability. Mean diagnostic accuracy scores (range 0-1) were significantly lower for difficult than for neutral patients (0.54 vs 0.64; p=0.017). Overall diagnostic accuracy was higher for simple than for complex cases. Deliberate reflection upon the case improved initial diagnostic, regardless of case complexity and of patient behaviours (0.60 vs 0.68, p=0.002). Amount of time needed to diagnose the case was similar regardless of the patient's behaviour. Finally, average likability ratings were lower for difficult than for neutral-patient cases. Disruptive behaviours displayed by patients seem to induce doctors to make diagnostic errors. Interestingly, the confrontation with difficult patients does however not cause the doctor to spend less time on such case. Time can therefore not be considered an intermediary between the way the patient is perceived, his or her likability and diagnostic performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Label-free surface plasmon sensing towards cancer diagnostics
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Goutham
The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.
Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu
2016-03-01
We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.
Similarities and Differences in Diagnostic Criterion.
Wei, Zhengde; Zhang, Xiaochu
2017-01-01
In this chapter, the main content is to discuss the similarities and differences in diagnostic criteria between substance and non-substance addictions. Firstly, diagnostic criteria of substance addiction were introduced, mainly focused on Diagnostic and Statistical Manual for the Mental Disorders, fifth edition (DSM-5). Then, we described the diagnostic criteria of several non-substance addictions, including gambling disorder, internet addiction, food addiction and hypersexual disorder. Depending on the proof, substance and non-substance addictions have many similarities in symptoms. Though the proposed diagnostic criteria of many non-substance addictions are currently most useful as survey instruments to access the prevalence of the problem, there is little or no validating proof for these diagnostic criteria. Finally, animal model is useful tool for addiction research. But, present animal models for gambling studying do not meet enough diagnostic criteria and could not be regarded as gambling disorder. By introducing the animal models evolved to resemble the diagnostic criteria of substance addiction and two classical paradigms for substance addiction, self-administration and conditioned place preference, we hope it is helpful to improve the validation of animal model of gambling disorder.
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
Medley, S S; Donné, A J H; Kaita, R; Kislyakov, A I; Petrov, M P; Roquemore, A L
2008-01-01
An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various geometrical combinations of both electric and magnetic fields to provide both energy and mass resolutions are reviewed. Finally, neutral particle diagnostics based on utilization of time-of-flight techniques are presented.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao
2014-09-01
This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.
Following is information for the proposed rule for the Modification of Federal On Board Diagnostic Regulations for Light-Duty Vehicles, Light-Duty Trucks, etc. Includes links to Federal Register and final rule.
CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses.
Iguchi, T; Hiraki, T; Matsui, Y; Fujiwara, H; Sakurai, J; Masaoka, Y; Uka, M; Tanaka, T; Gobara, H; Kanazawa, S
2018-02-01
To retrospectively evaluate the safety, diagnostic yield, and risk factors of diagnostic failure of computed tomography (CT) fluoroscopy-guided biopsies of anterior mediastinal masses. Biopsy procedures and results of anterior mediastinal masses in 71 patients (32 women/39 men; mean [±standard deviation] age, 53.8±20.0years; range, 14-88years) were analyzed. Final diagnoses were based on surgical outcomes, imaging findings, or clinical follow-up findings. The biopsy results were compared with the final diagnosis, and the biopsy procedures grouped by pathologic findings into diagnostic success and failure groups. Multiple putative risk factors for diagnostic failure were then assessed. Seventy-one biopsies (71 masses; mean size, 67.5±27.3mm; range 8.6-128.2mm) were analyzed. We identified 17 grade 1 and one grade 2 adverse events (25.4% overall) according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Sixty-nine biopsies (97.2%) provided samples fit for pathologic analysis. Diagnostic failure was found for eight (11.3%) masses; the 63 masses diagnosed successfully included thymic carcinoma (n=17), lung cancer (n=14), thymoma (n=12), malignant lymphoma (n=11), germ cell tumor (n=3), and others (n=6). Using a thinner needle (i.e., a 20-gauge needle) was the sole significant risk factor for diagnostic failure (P=0.039). CT fluoroscopy-guided biopsy of anterior mediastinal masses was safe and had a high diagnostic yield; however, using a thinner biopsy needle significantly increased the risk of a failed diagnosis. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Progress in diagnostics of the COMPASS tokamak
NASA Astrophysics Data System (ADS)
Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.
2017-12-01
The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.
Dry eye disease: pathophysiology, classification, and diagnosis.
Perry, Henry D
2008-04-01
Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C. Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B.; Nauck, Markus; Kaminski, Wolfgang E.
2017-01-01
The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated. PMID:28472040
Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E
2017-01-01
The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.
A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2006-07-01
In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.
Glucose-6-phosphate dehydrogenase laboratory assay: How, when, and why?
Minucci, Angelo; Giardina, Bruno; Zuppi, Cecilia; Capoluongo, Ettore
2009-01-01
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common defect of red blood cells. Although some different laboratory techniques or methods are employed for the biochemical screening, a strict relationship between biochemists, clinicians, and molecular biologists is necessary for a definitive diagnosis. This article represents an overview on the current laboratory tests finalized to the screening or to the definitive diagnosis of G6PD-deficiency, underlying the problems regarding the biochemical and molecular identification of heterozygote females other than those regarding the standardization of the clinical and laboratory diagnostic procedures. Finally, this review is aimed to give a flow-chart for the complete diagnostic approach of G6PD-deficiency.
Pereira, Flávio D E S; Bonatto, Cínthia C; Lopes, Cláudio A P; Pereira, Alex L; Silva, Luciano P
2015-09-01
Biofilms are microbial sessile communities attached to surfaces that are known for causing many medical problems. A bacterial biofilm of clinical relevance is formed by the gram-negative bacteria Pseudomonas aeruginosa. During the formation of a biofilm, the initial adhesion of the cells is of crucial importance, and the characteristics of the contact surface have great influence on this step. In the present study, we aimed to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling as a new methodology to monitor P. aeruginosa biofilm development. Biofilms were grown within polypropylene tubes containing a glass slide, and were harvested after 3, 5, 7, 9, or 12 days of inoculation. Planktonic cells were obtained separately by centrifugation as control. Two independent MALDI-TOF experiments were performed, one by collecting biofilms from both the glass slide and the polypropylene tube internal surface, and the other by acquiring biofilms from these surfaces separately. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphological progression of the biofilm. The molecular results showed that MALDI profiling is able not only to distinguish between different biofilm stages, but it is also appropriate to indicate when the biofilm cells are released at the dispersion stage, which occurred first on polypropylene surface. Finally, the present study pointed out that MALDI profiling may emerge as a promising tool for the clinical diagnostic and prognostic workup of biofilms formation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Autoimmune encephalitis in psychiatric institutions: current perspectives
Bost, Chloe; Pascual, Olivier; Honnorat, Jérôme
2016-01-01
Autoimmune encephalitis is a rare and newly described group of diseases involving autoantibodies directed against synaptic and neuronal cell surface antigens. It comprises a wide range of neuropsychiatric symptoms. Sensitive and specific diagnostic tests such as cell-based assay are primordial for the detection of neuronal cell surface antibodies in patients’ cerebrospinal fluid or serum and determine the treatment and follow-up of the patients. As neurological symptoms are fairly well described in the literature, this review focuses on the nature of psychiatric symptoms occurring at the onset or during the course of the diseases. In order to help the diagnosis, the main neurological symptoms of the most representative synaptic and neuronal cell surface autoantibodies were detailed. Finally, the exploration of these autoantibodies for almost a decade allowed us to present an overview of autoimmune encephalitis incidence in psychiatric disease and the general guidelines for the management of psychiatric manifestations. For the majority of autoimmune encephalitis, the prognosis depends on the rapidity of the detection, identification, and the management of the disease. Because the presence of pronounced psychiatric symptoms drives patients to psychiatric institutions and can hinder the diagnosis, the aim of this work is to provide clues to help earlier detection by physicians and thus provide better medical care to patients. PMID:27822050
Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman
2016-01-01
The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290
Strategies in biomimetic surface engineering of nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Gong, Yong-Kuan; Winnik, Françoise M.
2012-01-01
Engineered nanoparticles (NPs) play an increasingly important role in biomedical sciences and in nanomedicine. Yet, in spite of significant advances, it remains difficult to construct drug-loaded NPs with precisely defined therapeutic effects, in terms of release time and spatial targeting. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Upon injection in the blood stream or following oral administation, NPs have to bypass numerous barriers prior to reaching their intended target. A particularly successful design strategy consists in masking the NP to the biological environment by covering it with an outer surface mimicking the composition and functionality of the cell's external membrane. This review describes this biomimetic approach. First, we outline key features of the composition and function of the cell membrane. Then, we present recent developments in the fabrication of molecules that mimic biomolecules present on the cell membrane, such as proteins, peptides, and carbohydrates. We present effective strategies to link such bioactive molecules to the NPs surface and we highlight the power of this approach by presenting some exciting examples of biomimetically engineered NPs useful for multimodal diagnostics and for target-specific drug/gene delivery applications. Finally, critical directions for future research and applications of biomimetic NPs are suggested to the readers.
Development of a two-wavelength IR laser absorption diagnostic for propene and ethylene
NASA Astrophysics Data System (ADS)
Parise, T. C.; Davidson, D. F.; Hanson, R. K.
2018-05-01
A two-wavelength infrared laser absorption diagnostic for non-intrusive, simultaneous quantitative measurement of propene and ethylene was developed. To this end, measurements of absorption cross sections of propene and potential interfering species at 10.958 µm were acquired at high-temperatures. When used in conjunction with existing absorption cross-section measurements of ethylene and other species at 10.532 µm, a two-wavelength diagnostic was developed to simultaneously measure propene and ethylene, the two small alkenes found to generally dominate the final decomposition products of many fuel hydrocarbon pyrolysis systems. Measurements of these two species is demonstrated using this two-wavelength diagnostic scheme for propene decomposition between 1360 and 1710 K.
Molecular diagnostics of neurodegenerative disorders.
Agrawal, Megha; Biswas, Abhijit
2015-01-01
Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.
Thiel, M; Bossart, W; Bernauer, W
1997-01-01
BACKGROUND—For epidemiological and therapeutic reasons early diagnosis of superficial viral infections is crucial. Conventional microbiological techniques are expensive, time consuming, and not sufficiently sensitive. In this study impression cytology techniques were evaluated to analyse their diagnostic potential in viral infections of the ocular surface. METHOD—A Biopore membrane device instead of the original impression cytology technique was used to allow better quality and handling of the specimens. The impressions were processed, using monoclonal antibodies and immunoperoxidase or immunofluorescence techniques to assess the presence of herpes simplex virus, varicella zoster virus, or adenovirus antigens. Ocular surface specimens from healthy individuals (n=10) and from patients with suspected viral surface disease (n=19) were studied. Infected and non-infected cell cultures served as controls. RESULTS—This modified technique of impression cytology allowed the collection of large conjunctival and corneal epithelial cell layers with excellent morphology. Immunocytological staining of these samples provided diagnostic results for all three viruses in patients with viral surface disease. CONCLUSIONS—The use of Biopore membrane devices for the collection of ocular surface epithelia offers new diagnostic possibilities for external eye diseases. Immunopathological methods that are applied directly on these membrane devices can provide virological results within 1-4 hours. This contributes considerably to the clinical management of patients with infectious diseases of the ocular surface. PMID:9505824
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...
Hepatitis B virus genetic diversity and its impact on diagnostic assays.
Hollinger, F B
2007-11-01
Hepatitis B virus (HBV) circulates in blood as closely related, but genetically diverse molecules called quasispecies. During replication, HBV production may approach 10(11) molecules/day, although during peak activity this rate may increase 100-1000 times. Generally, DNA polymerases have excellent fidelity in reading DNA templates because they are associated with an exonuclease which removes incorrectly added nucleotides. However, the HBV-DNA polymerase lacks fidelity and proofreading function partly because exonuclease activity is either absent or deficient. Thus, the HBV genome and especially the envelope gene, is mutated with unusually high frequency. These mutations can affect more than one open reading frame because of overlapping genes. The S gene contains an exposed major hydrophilic region (residues 110-155), which encompasses the 'a' determinant that is important for inducing immunity. Nucleotide substitutions in this region are common and result in reduced binding or failure to detect hepatitis B surface antigen (HBsAg) in diagnostic assays. Adaptive immunity also depends on the recognition of HBsAg by specific antibody and variants pose a threat if they interfere with binding to antibody. Finally, genomic hypervariability allows HBV to escape selection pressures imposed by antiviral therapies, vaccines and the host immune system, and is responsible for creating genotypes, subgenotypes and subtypes.
Diagnostic Inspection of Pipelines for Estimating the State of Stress in Them
NASA Astrophysics Data System (ADS)
Subbotin, V. A.; Kolotilov, Yu. V.; Smirnova, V. Yu.; Ivashko, S. K.
2017-12-01
The diagnostic inspection used to estimate the technical state of a pipeline is described. The problems of inspection works are listed, and a functional-structural scheme is developed to estimate the state of stress in a pipeline. Final conclusions regarding the actual loading of a pipeline section are drawn upon a cross analysis of the entire information obtained during pipeline inspection.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
Synthetic diagnostics platform for fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, L.; Valeo, E. J.; Tobias, B. J.
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Synthetic diagnostics platform for fusion plasmas (invited)
Shi, L.; Valeo, E. J.; Tobias, B. J.; ...
2016-08-26
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Mandell, Jacob C; Rhodes, Jeffrey A; Shah, Nehal; Gaviola, Glenn C; Gomoll, Andreas H; Smith, Stacy E
2017-11-01
Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy. This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A. Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land- PBL coupling at the process-level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. Southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are applied to the dry/wet regimes exhibited in this region, and in the process a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling testbed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger towards the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g. reanalysis products) in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and in support of hydrological anomalies.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kennedy, Aaron; Kumar, Sujay V.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
The ichnogenus Curvolithus revisited
Buatois, L.A.; Mangano, M.G.; Mikulas, R.; Maples, C.G.
1998-01-01
The ichnogenus Curvolithus Fritsch, 1908, originally described from the Ordovician of the Prague Basin, typically comprises ribbonlike or tonguelike, flattened, endostratal traces with three rounded lobes on the upper surface. However, considerable confusion persists regarding the ichnotaxonomic status and diagnostic features of its ichnospecies. The type specimens of this ichnotaxon, overlooked in most subsequent reports, are redescribed herein. Curvolithus multiplex Fritsch, 1908, the type species, is retained for specimens with a trilobate upper surface and a quadralobate lower surface, in contrast to the criteria adopted by subsequent authors. The other ichnospecies originally proposed from the type locality, C. gregarius Fritsch, 1908, actually consists of a series of grouped parallel scratch marks forming ridges and should be removed from Curvolithus. Subsequently, four ichnospecies were defined: C.? davidis Webby 1970; C. annulatus Badve and Ghare 1978; C. aequus Walter et al. 1989; and C. manitouensis Maples and Suttner 1990. Curvolithus? davidis shows the typical trilobation of Curvolithus apparently in its lower surface, but the morphology of the upper surface is uncertain. Accordingly, it does not warrant ichnospecific assessment, and is regarded as a nomen dubium. The nature of the annulations on the trilobate upper surface of C. annulatus is unclear, and this ichnospecies is also best considered as a nomen dubium. Curvolithus aequus has a bilobate lower surface and probably represents washed out specimens of Didymaulichnus. Finally, C. manitouensis comprises specimens with a smooth, trilobate upper surface and a smooth, quadralobate lower surface, and is best regarded as a junior synonym of C. multiplex. Curvolithus multiplex has been used incorrectly for Curvolithus with a trilobate upper surface and a trilobate to unilobate lower surface. The new ichnospecies, Curvolithus simplex, is proposed herein for such traces. Curvolithus is interpreted as a locomotion trace (Repichnia) of endostratal carnivores, possibly gastropods, flatworms, or nemerteans. Curvolithus is a component of the Cruziana ichnofacies in shallow-marine facies, either of normal salinity or slightly brackish, in the latter case typically associated with fan deltas.
Zhang, Ying; Alonzo, Todd A
2016-11-01
In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...
Modification of the Integrated Sasang Constitutional Diagnostic Model
Nam, Jiho
2017-01-01
In 2012, the Korea Institute of Oriental Medicine proposed an objective and comprehensive physical diagnostic model to address quantification problems in the existing Sasang constitutional diagnostic method. However, certain issues have been raised regarding a revision of the proposed diagnostic model. In this paper, we propose various methodological approaches to address the problems of the previous diagnostic model. Firstly, more useful variables are selected in each component. Secondly, the least absolute shrinkage and selection operator is used to reduce multicollinearity without the modification of explanatory variables. Thirdly, proportions of SC types and age are considered to construct individual diagnostic models and classify the training set and the test set for reflecting the characteristics of the entire dataset. Finally, an integrated model is constructed with explanatory variables of individual diagnosis models. The proposed integrated diagnostic model significantly improves the sensitivities for both the male SY type (36.4% → 62.0%) and the female SE type (43.7% → 64.5%), which were areas of limitation of the previous integrated diagnostic model. The ideas of these new algorithms are expected to contribute not only to the scientific development of Sasang constitutional medicine in Korea but also to that of other diagnostic methods for traditional medicine. PMID:29317897
Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates
NASA Astrophysics Data System (ADS)
Poveromo, Scott Leonard
Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.
[Jaundice and pathological liver values].
Schwarzenbach, Hans-Rudolf
2013-06-05
Jaundice corresponds to elevated bilirubin- levels, whereat one has to distinguish between direct and indirect serum-bilirubin. In the present Mini Review causes and differential diagnosis of jaundice are outlined. Ultrasound-diagnostic plays a major role in identifying intrahepatic or extrahepatic jaundice. Attention is given to the differential diagnosis of elevated liver enzymes in presence of jaundice, pointing out the distinction between hepatocellular and cholestatic parameters as well as the differentiation in acute or chronic increase. Moreover, the consequences of liver enzyme elevations including further diagnostic procedures, are highlighted. Finally, possibilities and limitations of modern diagnostic tests for liver fibrosis are briefly overviewed.
Ren, Guomin; Krawetz, Roman
2015-01-01
The data explosion in the last decade is revolutionizing diagnostics research and the healthcare industry, offering both opportunities and challenges. These high-throughput "omics" techniques have generated more scientific data in the last few years than in the entire history of mankind. Here we present a brief summary of how "big data" have influenced early diagnosis of complex diseases. We will also review some of the most commonly used "omics" techniques and their applications in diagnostics. Finally, we will discuss the issues brought by these new techniques when translating laboratory discoveries to clinical practice.
1986-02-19
The Food and Drug Administration (FDA) is announcing the availability of a document entitled "Recommendations for Evaluation of Radiation Exposure from Diagnostic Radiology Examinations". The recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), encourage diagnostic radiology facilities to take voluntary action to: Become aware of the radiation levels experienced by patients undergoing the projections commonly given in the facility; compare their radiation levels to generally accepted levels for these projections; and bring the exposures back into line if their levels fall consistently outside these generally accepted levels.
NASA Astrophysics Data System (ADS)
Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve
1996-10-01
Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.
Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River Basin
USDA-ARS?s Scientific Manuscript database
Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance, or with spatially distributed prognostic models that simultaneously balance both the energy and water budgets over landscapes using predictive equations for land...
Point-of-care diagnostics: will the hurdles be overcome this time?
Huckle, David
2006-07-01
Point-of-care diagnostics have been proposed as the latest development in clinical diagnostics several times in the last 30 years; however, they have not yet fully developed into a business sector to match the projections. This perspective examines the reasons for past failures and the failure of technology to meet user needs. Advances have taken place in the last few years that effectively remove technology as a barrier to the development of point-of-care testing. Even regulatory issues regarding how products are developed and claims supported have been absorbed, understood and now accepted. The emphasis here is on the possible favorable aspects that are novel this time around. These changes have arisen as a result of the situation with global healthcare economics and the pressure from patients to be treated more like customers. The final hurdles relate to the conflict between diagnosis with the patient present and treated as soon as the point-of-care result is available and the entrenched positions of the central laboratory, the suppliers and their established distribution chains, and the way in which healthcare budgets are allocated. The ultimate hurdle that encapsulates all of these issues is reimbursement, which is the final barrier to a significant point-of-care diagnostics market--without reimbursement there will be no market.
Naess, Are; Nilssen, Siri Saervold; Mo, Reidun; Eide, Geir Egil; Sjursen, Haakon
2017-06-01
To study the role of the neutrophil:lymphocyte ratio (NLR) and monocyte:lymphocyte ratio (MLR) in discriminating between different patient groups hospitalized for fever due to infection and those without infection. For 299 patients admitted to hospital for fever with unknown cause, a number of characteristics including NLR and MLR were recorded. These characteristics were used in a multiple multinomial regression analysis to estimate the probability of a final diagnostic group of bacterial, viral, clinically confirmed, or no infection. Both NLR and MLR significantly predicted final diagnostic group. Being highly correlated, however, both variables could not be retained in the same model. Both variables also interacted significantly with duration of fever. Generally, higher values of NLR and MLR indicated larger probabilities for bacterial infection and low probabilities for viral infection. Patients with septicemia had significantly higher NLR compared to patients with other bacterial infections with fever for less than one week. White blood cell counts, neutrophil counts, and C-reactive proteins did not differ significantly between septicemia and the other bacterial infection groups. NLR is a more useful diagnostic tool to identify patients with septicemia than other more commonly used diagnostic blood tests. NLR and MLR may be useful in the diagnosis of bacterial infection among patients hospitalized for fever.
Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael
2011-01-01
Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
Nendaz, Mathieu R; Gut, Anne M; Perrier, Arnaud; Louis-Simonet, Martine; Blondon-Choa, Katherine; Herrmann, François R; Junod, Alain F; Vu, Nu V
2006-01-01
BACKGROUND Clinical experience, features of data collection process, or both, affect diagnostic accuracy, but their respective role is unclear. OBJECTIVE, DESIGN Prospective, observational study, to determine the respective contribution of clinical experience and data collection features to diagnostic accuracy. METHODS Six Internists, 6 second year internal medicine residents, and 6 senior medical students worked up the same 7 cases with a standardized patient. Each encounter was audiotaped and immediately assessed by the subjects who indicated the reasons underlying their data collection. We analyzed the encounters according to diagnostic accuracy, information collected, organ systems explored, diagnoses evaluated, and final decisions made, and we determined predictors of diagnostic accuracy by logistic regression models. RESULTS Several features significantly predicted diagnostic accuracy after correction for clinical experience: early exploration of correct diagnosis (odds ratio [OR] 24.35) or of relevant diagnostic hypotheses (OR 2.22) to frame clinical data collection, larger number of diagnostic hypotheses evaluated (OR 1.08), and collection of relevant clinical data (OR 1.19). CONCLUSION Some features of data collection and interpretation are related to diagnostic accuracy beyond clinical experience and should be explicitly included in clinical training and modeled by clinical teachers. Thoroughness in data collection should not be considered a privileged way to diagnostic success. PMID:17105525
NASA Astrophysics Data System (ADS)
More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.
2018-01-01
Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center for... used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen. [40 FR...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Imitation-tumor targeting based on continuous-wave near-infrared tomography.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei
2017-12-01
Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.
Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications.
Zarschler, Kristof; Rocks, Louise; Licciardello, Nadia; Boselli, Luca; Polo, Ester; Garcia, Karina Pombo; De Cola, Luisa; Stephan, Holger; Dawson, Kenneth A
2016-08-01
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review. Copyright © 2016 Elsevier Inc. All rights reserved.
Short-pulse laser interactions with disordered materials and liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, L.M.; Goldman, C.H.; Longtin, J.P.
High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less
Diagnostic laryngeal electromyography: The Wake Forest experience 1995-1999.
Koufman, J A; Postma, G N; Whang, C S; Rees, C J; Amin, M R; Belafsky, P C; Johnson, P E; Connolly, K M; Walker, F O
2001-06-01
Laryngeal electromyography (LEMG) is a valuable diagnostic/prognostic test for patients with suspected laryngeal neuromuscular disorders. To report our experience with diagnostic LEMG at the Center for Voice Disorders of Wake Forest University and to evaluate the impact of LEMG on clinical management. Retrospective chart review of 415 patients who underwent diagnostic LEMG over a 5-year period (1995-1999). Of 415 studies, 83% (346 of 415) were abnormal, indicating a neuropathic process. LEMG results altered the diagnostic evaluation (eg, the type of radiographic imaging) in 11% (46 of 415) of the patients. Unexpected LEMG findings (eg, contralateral neuropathy) were found in 26% (107 of 415) of the patients, and LEMG results differentiated vocal fold paralysis from fixation in 12% (49 of 415). Finally, LEMG results altered the clinical management (eg, changed the timing and/or type of surgical procedure) in 40% (166 of 415) of the patients. LEMG is a valuable diagnostic test that aids the clinician in the diagnosis and management of laryngeal neuromuscular disorders.
The Development of a Dental Diagnostic Terminology
Kalenderian, Elsbeth; Ramoni, Rachel L.; White, Joel M.; Schoonheim-Klein, Meta E.; Stark, Paul C.; Kimmes, Nicole S.; Zeller, Gregory G.; Willis, George P.; Walji, Muhammad F.
2011-01-01
There is no commonly accepted standardized terminology for oral diagnoses. The purpose of this article is to report the development of a standardized dental diagnostic terminology by a work group of dental faculty members. The work group developed guiding principles for decision making and adhered to principles of terminology development. The members used an iterative process to develop a terminology incorporating concepts represented in the Toronto/University of California, San Francisco/Creighton University and International Classification of Diseases (ICD)-9/10 codes and periodontal and endodontic diagnoses. Domain experts were consulted to develop a final list of diagnostic terms. A structure was developed, consisting of thirteen categories, seventy-eight subcategories, and 1,158 diagnostic terms, hierarchically organized and mappable to other terminologies and ontologies. Use of this standardized diagnostic terminology will reinforce the diagnosis-treatment link and will facilitate clinical research, quality assurance, and patient communication. Future work will focus on implementation and approaches to enhance the validity and reliability of diagnostic term utilization. PMID:21205730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan
USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons frommore » escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.« less
When Diagnostic Labels Mask Trauma
ERIC Educational Resources Information Center
Foltz, Robert; Dang, Sidney; Daniels, Brian; Doyle, Hillary; McFee, Scott; Quisenberry, Carolyn
2013-01-01
A growing body of research shows that many seriously troubled children and adolescents are reacting to adverse life experiences. Yet traditional diagnostic labels are based on checklists of surface symptoms. Distracted by disruptive behavior, the common response is to medicate, punish, or exclude rather than respond to needs of youth who have…
Climate Prediction Center - Monitoring and Data Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices
Soh, Jae Seung; Lee, Ho-Su; Lee, Seohyun; Bae, Jungho; Lee, Hyo Jeong; Park, Sang Hyoung; Yang, Dong-Hoon; Kim, Kyung-Jo; Ye, Byong Duk; Myung, Seung-Jae; Yang, Suk-Kyun; Kim, Jin-Ho
2015-01-01
Background/Aims Endoscopic ultrasound-guided fine needle aspiration and/or biopsy (EUS-FNA/B) have been used to diagnose subepithelial tumors (SETs) and extraluminal lesions in the gastrointestinal tract. Our group previously reported the usefulness of EUS-FNA/B for rectal and perirectal lesions. This study reports our expanded experience with EUS-FNA/B for rectal and perirectal lesions in terms of diagnostic accuracy and safety. We also included our new experience with EUS-FNB using the recently introduced ProCore needle. Methods From April 2009 to March 2014, EUS-FNA/B for rectal and perirectal lesions was performed in 30 consecutive patients. We evaluated EUS-FNA/B performance by comparing histological diagnoses with final results. We also investigated factors affecting diagnostic accuracy. Results Among 10 patients with SETs, EUS-FNA/B specimen results revealed a gastrointestinal stromal tumor in 4 patients and malignant lymphoma in 1 patient. The diagnostic accuracy of EUS-FNA/B was 50% for SETs (5/10). Among 20 patients with non-SET lesions, 8 patients were diagnosed with malignant disease and 7 were diagnosed with benign disease based on both EUS-FNA/B and the final results. The diagnostic accuracy of EUS-FNA/B for non-SET lesions was 75% (15/20). The size of lesions was the only factor related to diagnostic accuracy (P=0.027). Two complications of mild fever and asymptomatic pneumoperitoneum occurred after EUS-FNA/B. Conclusions The overall diagnostic accuracy of EUS-FNA/B for rectal and perirectal lesions was 67% (20/30). EUS-FNA/B is a clinically useful method for cytological and histological diagnoses of rectal and perirectal lesions. PMID:25931998
Soguktas, Suna; Cogendez, Ebru; Kayatas, Semra Eser; Asoglu, Mehmet Resit; Selcuk, Selcuk; Ertekin, Aktug
2012-03-01
The aim of this study was to compare the diagnostic effectiveness of transvaginal sonography (TVS), saline infusion sonohysterography (SIS), and diagnostic hysteroscopy (HS), with the pathologic specimen as a gold standard diagnostic method, in detecting endometrial pathology in premenopausal women with abnormal uterine bleeding. This prospective cohort study was conducted at Zeynep Kamil Education and Training Hospital, Istanbul, Turkey, and included 89 premenopausal women. All participants were examined first by TVS, further investigated with SIS and HS, and finally dilatation and curettage was performed when needed. The results obtained from these three methods were compared with the pathologic diagnoses. The positive and negative likelihood ratios (LR+ and LR-) of TVS, SIS and HS were calculated by comparison with the final pathological diagnosis. In addition, area under the curve (AUC) values were also calculated. Polypoid lesion was the most common abnormal pathology. LR+ and LR- of TVS, SIS, and HS were 3.13 and 0.15, 9.83 and 0.07, 13.7 and 0.02 respectively in detection of any abnormal pathology, and the AUCs of TVS, SIS, and HS were 0.804, 0.920, and 0.954 respectively. When the three procedures were compared with each other separately, HS had the best diagnostic accuracy, and the diagnostic accuracy of HS and SIS was superior to TVS (p(1)=0.000, p(2)=0.000). For the detection of polypoid lesions, HS was the most accurate diagnostic procedure (AUC=0.947), followed by SIS (AUC=0.894) and TVS (AUC=0.778). HS provides the most accurate diagnosis and allows treatment in the same session in premenopausal women with abnormal uterine bleeding. Published by Elsevier Ireland Ltd.
Panovský, Roman; Borová, Júlia; Pleva, Martin; Feitová, Věra; Novotný, Petr; Kincl, Vladimír; Holeček, Tomáš; Meluzín, Jaroslav; Sochor, Ondřej; Štěpánová, Radka
2017-06-28
Patients with chest pain, elevated troponin, and unobstructed coronary disease present a clinical dilemma. The purpose of this study was to investigate the incremental diagnostic value of cardiovascular magnetic resonance (CMR) in a cohort of patients with suspected acute coronary syndrome (ACS) and unobstructed coronary arteries. Data files of patients meeting the inclusion criteria in two cardiology centres were searched and analysed. The inclusion criteria included: 1) thoracic pain suspected with ACS; 2) a significant increase in the high-sensitive Troponin T value; 3) ECG changes; 4) coronary arteries without any significant stenosis; 5) a CMR examination included in the diagnostic process; 6) an uncertain diagnosis before the CMR exam; and 7) the absence of known CMR and contrast media contraindications. Special attention was paid to the benefits of CMR in determining the final diagnosis. In total, 136 patients who underwent coronary angiography for chest pain were analysed. The most frequent underlying causes were myocarditis (38%) and perimyocarditis (18%), followed by angiographically unrecognised acute myocardial infarction (18%) and Takotsubo cardiomyopathy (15%). The final diagnosis remained unclear in 6% of the patients. The contribution of CMR in determining the final diagnosis determination was crucial in 57% of the patients. In another 35% of the patients, CMR confirmed the suspicion and, only 8% of the CMR examinations did not help at all and had no influence on diagnosis or treatment. CMR provided a powerful incremental diagnostic value in the cohort of patients with suspected ACS and unobstructed coronary arteries. CMR is highly recommended to be incorporated as an inalienable part of the diagnostic algorithms in these patients.
Ud Din, Nasir; Memon, Aisha; Idress, Romana; Ahmad, Zubair; Hasan, Sheema
2011-01-01
Intraoperative consultation of CNS lesions provides accurate diagnosis to neurosurgeons. Some lesions, however, may cause diagnostic difficulty. In this study accuracy of intraoperative consultations of CNS lesions and discrepancies in diagnosis and deferrals were analysed. All CNS cases from May 1, 2004 to September 20, 2010 in which intraoperative frozen section had been performed, and which were reported in the Section of Histopathology, Aga Khan University Hospital, Karachi Pakistan were retrieved. The diagnoses given on FS were compared with the final diagnosis given on permanent sections (and additional material if received), as indicated in the frozen section and final pathology report. During the study period, 171 CNS cases were received for intraoperative consultation. In all cases, cryostat sections (FS) plus cytology smears were prepared. The ages of the patients ranged from 03 to 77 years. 106 were males and 65 were females. Out of these 171 cases, 160 cases (94.1 %) were concordant, 10 cases (5.8 %) were discrepant, and one case was deferred until permanent sections. The diagnostic accuracy of frozen section was 88.9%. The sensitivity and specificity were 94.8% and 87.5% respectively. The positive predictive value was 98.6% and negative predictive value was 63.6%. All our cases in which intraoperative consultation was requested were sent for primary diagnosis. Adequacy per se was not a criterion for sending cases for intraoperative consultation. Our results show a reasonably high percentage of accuracy in the intraoperative diagnosis of CNS lesions. However, there are limitations and some lesions pose a diagnostic challenge. There is a need to improve our own diagnostic skills and establish better communication with neurosurgeons.
Design advances of the Core Plasma Thomson Scattering diagnostic for ITER
NASA Astrophysics Data System (ADS)
Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.
2017-11-01
The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.
Endoscopy and histopathology in the examination of the nasal cavity in dogs.
Sapierzyński, R; Zmudzka, M
2009-01-01
Nasal diseases of chronic nature are a common clinical complaint in canine practice. However, precise diagnosis in these cases is often difficult and require the use of various, additional diagnostic methods. The aim of this study was to estimate the occurrence of diseases of the upper respiratory tracts in dogs, and to evaluate the usefulness of endoscopy in the diagnostic process as a method of obtaining a final diagnosis. In the group of dogs in which rhinoscopy was performed, the most common final diagnoses were nonspecific chronic rhinitis, followed by neoplasms and infectious rhinitis. It can be concluded that rhinoscopy should be considered mainly as a preliminary method of inspection of the nasal cavity, helpful in obtaining the most representative tissue specimen/specimens for histopathology. In some cases, especially foreign objects and congenital abnormalities rhinoscopy can give the possibility of obtaining a final diagnosis. However, even in these situations and also when any macroscopic lesion is found during endoscopy, microscopic examination of the mucosa specimen should be performed.
Hoffman, John M.; Ebara, Mitsuhiro; Lai, James J.; Hoffman, Allan S.; Folch, Albert
2011-01-01
We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to poly(dimethyl)siloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugate’s immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also was dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of a streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples. PMID:20882219
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan
NASA Astrophysics Data System (ADS)
Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.
2017-10-01
A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.
HIDRA-MAT: A Material Analysis Tool for Fusion Devices
NASA Astrophysics Data System (ADS)
Andruczyk, Daniel; Rizkallah, Rabel; Bedoya, Felipe; Kapat, Aveek; Schamis, Hanna; Allain, Jean Paul
2017-10-01
The former WEGA stellarator which is now operating as HIDRA at the University of Illinois will be almost exclusively used to study the intimate relationship between the plasma interacting with surfaces of different materials. A Material Analysis Tool (HIDRA-MAT) is being designed and will be built based on the successful Material Analysis and Particle Probe (MAPP) which is currently used on NSTX-U at PPPL. This will be an in-situ material diagnostic probe, meaning that all analysis can be done without breaking vacuum. This allows surface changes to be studied in real-time. HIDRA-MAT will consist of several in-situ diagnostics including Langmuir probes (LP), Thermal Desorption Spectroscopy (TDS), X-ray Photo Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). This presentation will outline the HIDRA-MAT diagnostic and initial design, as well as its integration into the HIDRA system.
Quantitative analysis of a scar's pliability, perfusion and metrology
NASA Astrophysics Data System (ADS)
Gonzalez, Mariacarla; Sevilla, Nicole; Chue-Sang, Joseph; Ramella-Roman, Jessica C.
2017-02-01
The primary effect of scarring is the loss of function in the affected area. Scarring also leads to physical and psychological problems that could be devastating to the patient's life. Currently, scar assessment is highly subjective and physician dependent. The examination relies on the expertise of the physician to determine the characteristics of the scar by touch and visual examination using the Vancouver scar scale (VSS), which categorizes scars depending on pigmentation, pliability, height and vascularity. In order to establish diagnostic guidelines for scar formation, a quantitative, accurate assessment method needs to be developed. An instrument capable of measuring all categories was developed; three of the aforementioned parameters will be explored. In order to look at pliability, a durometer which measures the amount of resistance a surface exerts to prevent the permanent indentation of the surface is used due to its simplicity and quantitative output. To look at height and vascularity, a profilometry system that collects the location of the scar in three-dimensions and laser speckle imaging (LSI), which shows the dynamic changes in perfusion, respectively, are used. Gelatin phantoms were utilized to measure pliability. Finally, dynamic changes in skin perfusion of volunteers' forearms undergoing pressure cuff occlusion were measured, along with incisional scars.
NASA Astrophysics Data System (ADS)
Gao, Guoqiang; Dong, Lei; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning
2017-01-01
Currently, great interests are paid to the surface dielectric barrier discharge due to the diverse and interesting application. In this paper, the influences of the electrode gap on the discharge characteristics have been studied. Aspects of the electrical parameters, the optical emission, and the discharge induced gas flow were considered. The electrode gap varied from 0 mm to 21 mm, while the applied AC voltage was studied in the range of 17 kV-27 kV. Results indicate that with the increase of the electrode gap, the variation of discharge voltage exhibits an increasing trend, while the other parameters (i.e., the current, power, and induced flow velocity) increase first, and then decrease once the gap exceeded the critical value. Mechanisms of the electrode gap influencing these key parameters were discussed from the point of equivalent circuit. The experimental results reveal that an optimal discharge gap can be obtained, which is closely related to the applied voltage. Visualization of the induced flow with different electrode gaps was realized by the Schlieren diagnostic technique. Finally, the velocities of induced gas flow determined by the pitot tube were compared with the results of intensity-integral method, and good agreements were found.
Influence of the arc plasma parameters on the weld pool profile in TIG welding
NASA Astrophysics Data System (ADS)
Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.
2014-11-01
Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
Ocular Pharmacology of Tear Film, Dry Eye, and Allergic Conjunctivitis.
Gulati, Shilpa; Jain, Sandeep
2017-01-01
Dry Eye Disease (DED) is "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear-film instability with potential damage to the ocular surface." DED comprises two etiologic categories: aqueous-deficient dry eye (ADDE) and evaporative dry eye (EDE). Diagnostic workup of DED should include clinical history, symptom questionnaire, fluorescein TBUT, ocular surface staining grading, Schirmer I/II, lid and meibomian pathology, meibomian expression, followed by other available tests. New diagnostic tests employ the Oculus Keratograph, which performs non-invasive tear-film analysis and a bulbar redness (BR). The TearLab Osmolarity Test enables rapid clinical evaluation of tear osmolarity. Lipiview is a recently developed diagnostic tool that uses interferometry to quantitatively evaluate tear-film thickness. In DED, epithelial and inflammatory cells produce a variety of inflammatory mediators. A stagnant tear film and decreased concentration of mucin result in the accumulation of inflammatory factors that can penetrate tight junctions and cause epithelial cell death. DED treatment algorithms are based on severity of clinical signs and symptoms, and disease etiology. Therapeutic approaches include lubricating artificial tears and immunomodulatory agents.
2015-12-21
SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer
ERIC Educational Resources Information Center
Severo, Milton; Silva-Pereira, Fernanda; Ferreira, Maria Amelia
2013-01-01
Several studies have shown that the standard error of measurement (SEM) can be used as an additional “safety net” to reduce the frequency of false-positive or false-negative student grading classifications. Practical examinations in clinical anatomy are often used as diagnostic tests to admit students to course final examinations. The aim of this…
Diagnostic approach to cardiac amyloidosis: A case report.
Fernandes, Andreia; Caetano, Francisca; Almeida, Inês; Paiva, Luís; Gomes, Pedro; Mota, Paula; Trigo, Joana; Botelho, Ana; Cachulo, Maria do Carmo; Alves, Joana; Francisco, Luís; Leitão Marques, António
2016-05-01
The authors present a case of systemic amyloidosis with cardiac involvement. We discuss the need for a high level of suspicion to establish a diagnosis, diagnostic techniques and treatment options. Our patient was a 78-year-old man with chronic renal disease and atrial fibrillation admitted with acute decompensated heart failure of unknown cause. The transthoracic echocardiogram revealed severely impaired left ventricular function with phenotypic overlap between hypertrophic and restrictive cardiomyopathy. After an extensive diagnostic workup, which included an abdominal fat pad biopsy, the final diagnosis was amyloidosis. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
On-chip purification and detection of hepatitis C virus RNA from human plasma.
Vaghi, V; Potrich, C; Pasquardini, L; Lunelli, L; Vanzetti, L; Ebranati, E; Lai, A; Zehender, G; Mombello, D; Cocuzza, M; Pirri, C F; Pederzolli, C
2016-01-01
Hepatitis C virus (HCV) is one of the main causes of chronic liver disease worldwide. The diagnosis and monitoring of HCV infection is a crucial need in the clinical management. The conventional diagnostic technologies are challenged when trying to address molecular diagnostics, especially because they require a complex and time-consuming sample preparation phase. Here, a new concept based on surface functionalization was applied to viral RNA purification: first of all polydimethylsiloxane (PDMS) flat surfaces were modified to hold RNA adsorption. After a careful chemical and morphological analysis of the modified surfaces, the functionalization protocols giving the best RNA adsorbing surfaces were applied to PDMS microdevices. The functionalized microdevices were then used for RNA purification from HCV infected human plasma samples. RNA purification and RT were successfully performed in the same microdevice chamber, saving time of analysis, reagents, and labor. The PCR protocol for HCV cDNA amplification was also implemented in the microdevice, demonstrating that the entire process of HCV analysis, from plasma to molecular readout, could be performed on-chip. Not only HCV but also other microdevice-based viral RNA detection could therefore result in a successful Point-of-Care (POC) diagnostics for resource-limited settings. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr
1999-10-01
A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.
2008-01-03
This final rule delays until January 1, 2009 the applicability of the anti-markup provisions in Sec. 414.50, as revised at 72 FR 66222, except with respect to the technical component of a purchased diagnostic test and with respect to any anatomic pathology diagnostic testing services furnished in space that: Is utilized by a physician group practice as a "centralized building" (as defined at Sec. 411.351 of this chapter) for purposes of complying with the physician self-referral rules; and does not qualify as a "same building" under Sec. 411.355(b)(2)(i) of this chapter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.; Uhl, J.E.; Engler, B.P.
Six hydraulic-fracture injections into a fluvial sandstone at a depth of 4300 ft were monitored with multi-level tri-axial seismic receivers in two wells and an inclinometer array in one well, resulting in maps of the growth and final geometry of each fracture injection. These diagnostic images show the progression of height and length growth with fluid volume, rate and viscosity. Complexities associated with shut downs and high treatment pressures can be observed. Validation of the seismic geometry was made with the inclinometers and diagnostic procedures in an intersecting well. Fracture information related to deformation, such as fracture closure pressure, residualmore » widths, and final prop distribution, were obtained from the inclinometer data.« less
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)
1995-01-01
Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.
Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette
Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.
Kubanov, Aleksey; Runina, Anastassia
2017-01-01
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized. PMID:28523273
NASA Astrophysics Data System (ADS)
Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.
2017-12-01
Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.
Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care
NASA Astrophysics Data System (ADS)
Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard
2017-06-01
Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys.
Akamizu, Takashi; Satoh, Tetsurou; Isozaki, Osamu; Suzuki, Atsushi; Wakino, Shu; Iburi, Tadao; Tsuboi, Kumiko; Monden, Tsuyoshi; Kouki, Tsuyoshi; Otani, Hajime; Teramukai, Satoshi; Uehara, Ritei; Nakamura, Yosikazu; Nagai, Masaki; Mori, Masatomo
2012-07-01
Thyroid storm (TS) is life threatening. Its incidence is poorly defined, few series are available, and population-based diagnostic criteria have not been established. We surveyed TS in Japan, defined its characteristics, and formulated diagnostic criteria, FINAL-CRITERIA1 and FINAL-CRITERIA2, for two grades of TS, TS1, and TS2 respectively. We first developed diagnostic criteria based on 99 patients in the literature and 7 of our patients (LIT-CRITERIA1 for TS1 and LIT-CRITERIA2 for TS2). Thyrotoxicosis was a prerequisite for TS1 and TS2 as well as for combinations of the central nervous system manifestations, fever, tachycardia, congestive heart failure (CHF), and gastrointestinal (GI)/hepatic disturbances. We then conducted initial and follow-up surveys from 2004 through 2008, targeting all hospitals in Japan, with an eight-layered random extraction selection process to obtain and verify information on patients who met LIT-CRITERIA1 and LIT-CRITERIA2. We identified 282 patients with TS1 and 74 patients with TS2. Based on these data and information from the Ministry of Health, Labor, and Welfare of Japan, we estimated the incidence of TS in hospitalized patients in Japan to be 0.20 per 100,000 per year. Serum-free thyroxine and free triiodothyroine concentrations were similar among patients with TS in the literature, Japanese patients with TS1 or TS2, and a group of patients with thyrotoxicosis without TS (Tox-NoTS). The mortality rate was 11.0% in TS1, 9.5% in TS2, and 0% in Tox-NoTS patients. Multiple organ failure was the most common cause of death in TS1 and TS2, followed by CHF, respiratory failure, arrhythmia, disseminated intravascular coagulation, GI perforation, hypoxic brain syndrome, and sepsis. Glasgow Coma Scale results and blood urea nitrogen (BUN) were associated with irreversible damages in 22 survivors. The only change in our final diagnostic criteria for TS as compared with our initial criteria related to serum bilirubin concentration >3 mg/dL. TS is still a life-threatening disorder with more than 10% mortality in Japan. We present newly formulated diagnostic criteria for TS and clarify its clinical features, prognosis, and incidence based on nationwide surveys in Japan. This information will help diagnose TS and in understanding the factors contributing to mortality and irreversible complications.
Ozge, Aynur; Aydinlar, Elif; Tasdelen, Bahar
2015-01-01
Exploring clinical characteristics and migraine covariates may be useful in the diagnosis of migraine without aura. To evaluate the diagnostic value of the International Classification of Headache Disorders (ICHD)-III beta-based diagnosis of migraine without aura; to explore the covariates of possible migraine without aura using an analysis of grey zones in this area; and, finally, to make suggestions for the final version of the ICHD-III. A total of 1365 patients (mean [± SD] age 38.5±10.4 years, 82.8% female) diagnosed with migraine without aura according to the criteria of the ICHD-III beta were included in the present tertiary care-based retrospective study. Patients meeting all of the criteria of the ICHD-III beta were classified as having full migraine without aura, while those who did not meet one, two or ≥3 of the diagnostic criteria were classified as zones I, II and III, respectively. The diagnostic value of the clinical characteristics and covariates of migraine were determined. Full migraine without aura was evident in 25.7% of the migraineurs. A higher likelihood of zone I classification was shown for an attack lasting 4 h to 72 h (OR 1.560; P=0.002), with pulsating quality (OR 4.096; P<0.001), concomitant nausea⁄vomiting (OR 2.300; P<0.001) and photophobia⁄phonophobia (OR 4.865; P<0.001). The first-rank determinants for full migraine without aura were sleep irregularities (OR 1.596; P=0.005) and periodic vomiting (OR 1.464; P=0.026). However, even if not mentioned in ICHD-III beta, the authors determined that motion sickness, abdominal pain or infantile colic attacks in childhood, associated dizziness and osmophobia have important diagnostic value. In cases that do not fulfill all of the diagnostic criteria although they are largely consistent with the characteristics of migraine in clinical terms, the authors believe that a history of infantile colic; periodic vomiting (but not periodic vomiting syndrome); recurrent abdominal pain; the presence of motion sickness or vertigo, dizziness or osmophobia accompanying the pain; and comorbid atopic disorder are characteristics that should to be discussed and considered as additional diagnostic criteria (covariates) in the preparation of the final version of ICHD-III.
ERIC Educational Resources Information Center
Bramao, Ines; Faisca, Luis; Forkstam, Christian; Inacio, Filomena; Araujo, Susana; Petersson, Karl Magnus; Reis, Alexandra
2012-01-01
In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks--a surface and a knowledge verification task--using high color diagnostic objects; both typical and atypical color versions of the same…
Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces
NASA Technical Reports Server (NTRS)
Marinelli, W. J.; Green, B. D.
1988-01-01
Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
Rapid bacterial diagnostics via surface enhanced Raman microscopy.
Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D
2012-06-01
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
Microfluidic Sample Preparation for Diagnostic Cytopathology
Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino
2014-01-01
The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972
Lu, Yanjun; Zhu, Yaowu; Shen, Na; Tian, Lei; Sun, Ziyong
2018-02-08
Limited data on the diagnostic accuracy of the Xpert MTB/RIF assay using bronchoalveolar lavage fluid from patients with suspected pulmonary tuberculosis (PTB) have been reported in China. Therefore, a retrospective study was designed to evaluate the diagnostic accuracy of this assay. Clinical, radiological, and microbiological characteristics of 238 patients with suspected PTB were reviewed retrospectively. The sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of active PTB were calculated for the Xpert MTB/RIF assay using TB culture or final diagnosis based on clinical and radiological evaluation as the reference standard. The sensitivity and specificity of the Xpert MTB/RIF assay were 84.5% and 98.9%, respectively, and those for smear microscopy were 36.2% and 100%, respectively, when compared to the culture method. However, compared with the sensitivity and specificity of final diagnosis based on clinical and radiological evaluation, the sensitivity and specificity of the assay were 72.9% and 98.7%, respectively, which were significantly higher than those for smear microscopy. The Xpert MTB/RIF assay on bronchoalveolar lavage fluid could serve as an additional rapid diagnostic tool for PTB in a high TB-burden country and improve the time to TB treatment initiation in patients with PTB. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Yilmaz, Nesrin Helvaci; Akbostanci, Muhittin Cenk; Oto, Aycan; Aykac, Ozlem
2013-09-01
The aim of this study was threefold: (1) to investigate the prevalence of restless legs syndrome (RLS), in Ankara, Turkey; (2) to determine the predictive values of diagnostic criteria; and (3) to determine the frequency of physician referrals and the frequency of getting the correct diagnosis. A total of 815 individuals, from randomly selected addresses, above the age of 15, were reached using the questionnaire composed of the four diagnostic criteria. Individuals who responded by answering 'yes' for at least one question were interviewed by neurologists for the diagnosis of RLS. Frequency of physician referrals and frequency of getting the correct diagnosis of RLS were also determined for patients getting the final diagnoses of RLS. Prevalence of RLS in Ankara was 5.52 %; 41.0 % of the individuals diagnosed with RLS had replied 'yes' to either one, two or three questions asked by interviewers. However, only 21.3 % of individuals who replied 'yes' to all four questions received the diagnosis of RLS. Among the patients who had the final diagnosis of RLS, 25.7 % had referred to a physician for the symptoms and 22.2 % got the correct diagnosis. The RLS prevalence in Ankara was somewhere between Western and Far East countries compatible with the geographical location. Diagnostic criteria may not be fully predictive when applied by non-physician pollsters. Physician's probability of correctly diagnosing RLS is still low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoshima, S.; Frey, K.A.; Koeppe, R.A.
1995-07-01
To improve the diagnostic performance of PET as an aid in evaluating patients suspected of having Alzheimer`s disease, the authors developed a fully automated method which generates comprehensive image presentations and objective diagnostic indices. Fluorine-18-fluorodeoxyglucose PET image sets were collected from 37 patients with probable Alzheimer`s disease (including questionable and mild dementia), 22 normal subjects and 5 patients with cerebrovascular disease. Following stereotactic anatomic standardization, metabolic activity on an individual`s PET image set was extracted to a set of predefined surface pixels (three-dimensional stereotactic surface projection, 3D-SSP), which was used in the subsequent analysis. A normal database was created bymore » averaging extracted datasets of the normal subjects. Patients` datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspections. Diagnostic indices were then generated based on averaged Z-scores for the association cortices. Patterns and severities of metabolic reduction in patients with probable Alzheimer`s disease were seen in the standard 3D-SSP views of extracted raw data and statistical Z-scores. When discriminating patients with probable Alzheimer`s disease from normal subjects, diagnostic indices of the parietal association cortex and unilaterally averaged parietal-temporal-frontal cortex showed sensitivities of 95% and 97%, respectively, with a specificity of 100%. Neither index yielded false-positive results for cerebrovascular disease. 3D-SSP enables quantitative data extraction and reliable localization of metabolic abnormalities by means of stereotactic coordinates. The proposed method is a promising approach for interpreting functional brain PET scans. 45 refs., 5 figs.« less
NASA Technical Reports Server (NTRS)
Szuszczewicz, Edward P.
1996-01-01
We have carried out a proof-of-concept development and test effort that not only promises the reduction of parasitic effects of surface contamination (therefore increasing the integrity of 'in situ' measurements in the 60-130 km regime), but promises a uniquely expanded measurement set that includes electron densities, plasma conductivities, charged-particle mobilities, and mass discrimination of positive and negative ion distributions throughout the continuum to free-molecular-flow regimes. Three different sensor configurations were designed, built and tested, along with specialized driving voltage, electrometer and channeltron control electronics. The individual systems were tested in a variety of simulated space environments ranging from pressures near the continuum limit of 100 mTorr to the collisionless regime at 10(exp -6) Torr. Swept modes were initially employed to better understand ion optics and ion 'beam' losses to end walls and to control electrodes. This swept mode also helped better understand and mitigate the influences of secondary electrons on the overall performance of the PIMS design concept. Final results demonstrated the utility of the concept in dominant single-ion plasma environments. Accumulated information, including theoretical concepts and laboratory data, suggest that multi-ion diagnostics are fully within the instrument capabilities and that cold plasma tests with minimized pre-aperture sheath acceleration are the key ingredients to multi-ion success.
Earthquake Archaeology: a logical approach?
NASA Astrophysics Data System (ADS)
Stewart, I. S.; Buck, V. A.
2001-12-01
Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.
Growth studies of CVD-MBE by in-situ diagnostics
NASA Astrophysics Data System (ADS)
Maracas, George N.; Steimle, Timothy C.
1992-10-01
This is the final technical report for the three year DARPA-URI program 'Growth Studies of CVD-MBE by in-situ Diagnostics'. The goals of the program were to develop non-invasive, real time epitaxial growth monitoring techniques and combine them to gain an understanding of processes that occur during MBE growth from gas sources. We have adapted these techniques to a commercially designed gas source MBE system (Vacuum Generators Inc.) to facilitate technology transfer out of the laboratory into industrial environments. The in-situ measurement techniques of spectroscopic ellipsometry (SE) and laser induced fluorescence (LIF) have been successfully implemented to monitor the optical and chemical properties of the growing epitaxial film and the gas phase reactants. The ellipsometer was jointly developed with the J. Woolam Co. and has become a commercial product. The temperature dependence of group 3 and 5 desorption from GaAs and InP has been measured as well as the incident effusion cell fluxes. The temporal evolution of the growth has also been measured both by SE and LIF to show the smoothing of heterojunction surfaces during growth interruption. Complicated microcavity optical device structures have been monitored by ellipsometry in real time to improve device quality. This data has been coupled with the structural information obtained from reflection high energy electron diffraction (RHEED) to understand the growth processes in binary and ternary bulk 3-5 semiconductors and heterojunctions.
NASA Astrophysics Data System (ADS)
Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid
2017-04-01
In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.
INRRI-EDM/2016: the first laser retroreflector on the surface of Mars
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Delle Monache, G.; Porcelli, L.; Boni, A.; Contessa, S.; Ciocci, E.; Martini, M.; Tibuzzi, M.; Intaglietta, N.; Salvatori, L.; Tuscano, P.; Patrizi, G.; Mondaini, C.; Lops, C.; Vittori, R.; Maiello, M.; Flamini, E.; Marchetti, E.; Bianco, G.; Mugnuolo, R.; Cantone, C.
2017-01-01
During Summer 2015 the SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and cube/microsat Characterization Facilities Laboratory, http://www.lnf.infn.it/esperimenti/etrusco, Team of INFN-LNF, with support by ASI, carried out an intense activity of final design, manufacturing and testing in order to construct, space qualify and finally integrate INRRI-EDM/2016 on ESA's ExoMars EDM spacecraft (also dubbed "Schiaparelli"), which was successfully launched on March 14, 2016. INRRI (INstrument for landing-Roving laser Retroreflector Investigation) for the EDM (Entry descent and landing Demonstration Module) 2016 mission is a compact, lightweight, passive, maintenance-free array of eight cube corner laser retroreflectors fixed to an aluminum alloy frame through the use of silicon rubber suitable for space applications. INRRI was installed on the top panel of the EDM Central Bay on October 14, 2015. It will enable the EDM to be laser-located from Mars orbiters, through laser ranging and altimetry, lidar atmospheric observations from orbit, laser flashes emitted by orbiters, and lasercom. One or all of the above means of observation can be supported by INRRI when there is an active, laser-equipped orbiter, especially after EDM end-of-life and for a long time. INRRI goals will cover science (Mars geodesy/geophysics, future Mars test of General Relativity, GR), technology and exploration. Concerning the latter two, INRRI will support mars-georeferencing of the EDM landing site, support potential precision lidar-based landing next to the EDM, support test & diagnostics of lasercom for data exchange among Mars orbit, Mars surface and Earth, and it will be a precursor for additional Mars surface retroreflectors, for example on exploration rovers. This paper describes in detail our innovative payload, hopefully the very first to be deployed safely with the lander Schiaparelli on the Mars surface, and its space qualification for the ExoMars EDM 2016 mission. Despite the fate of the Schiaparelli landing, which is still under the investigation of ESA and the industry, this paper remains a valuable reference for next INRRI-like laser retroreflectors arrays.
[SCAN system--semi-structured interview based on diagnostic criteria].
Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz
2006-01-01
This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient.
Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.
Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P
2015-12-01
Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Diagnostic criteria for schwannomatosis.
MacCollin, M; Chiocca, E A; Evans, D G; Friedman, J M; Horvitz, R; Jaramillo, D; Lev, M; Mautner, V F; Niimura, M; Plotkin, S R; Sang, C N; Stemmer-Rachamimov, A; Roach, E S
2005-06-14
The neurofibromatoses are a diverse group of genetic conditions that share a predisposition to the development of tumors of the nerve sheath. Schwannomatosis is a recently recognized third major form of neurofibromatosis (NF) that causes multiple schwannomas without vestibular tumors diagnostic of NF2. Patients with schwannomatosis represent 2.4 to 5% of all patients requiring schwannoma resection and approximately one third of patients with schwannomatosis have anatomically localized disease with tumors limited to a single limb or segment of spine. Epidemiologic studies suggest that schwannomatosis is as common as NF2, but that familial occurrence is inexplicably rare. Patients with schwannomatosis overwhelmingly present with pain, and pain remains the primary clinical problem and indication for surgery. Diagnostic criteria for schwannomatosis are needed for both clinicians and researchers, but final diagnostic certainly will await the identification of the schwannomatosis locus itself.
An architecture for the development of real-time fault diagnosis systems using model-based reasoning
NASA Technical Reports Server (NTRS)
Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday
1992-01-01
Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.
Petraco, Ricardo; Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P
2018-01-01
Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test's performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Chol rapid and Chol gold ) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard.
Vlahiotis, Anna; Griffin, Brian; Stavros, A Thomas; Margolis, Jay
2018-01-01
Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam. To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures. Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy) other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event), with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes. The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients), 6,987,399 breast ultrasounds (42.4% of patients), and 1,585,856 biopsies (10.3% of patients). Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD) costs for diagnostic mammograms of US$349 ($493), ultrasounds US$132 ($134), and biopsies US$1,938 ($2,343) contributed US$3.05 billion, US$0.92 billion, and US$3.07 billion, respectively, to annual diagnostic breast expenditures estimated at US$7.91 billion. The volume and expense of additional breast diagnostic testing, estimated at US$7.91 billion annually, underscores the need for technological improvements in the breast diagnostic landscape.
Wang, Shuqi; Hu, Wei
2014-01-01
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies. PMID:25018752
System of Mueller-Jones matrix polarizing mapping of blood plasma films in breast pathology
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Tarnovskiy, Mykola H.
2017-08-01
The combined method of Jones-Mueller matrix mapping and blood plasma films analysis based on the system that proposed in this paper. Based on the obtained data about the structure and state of blood plasma samples the diagnostic conclusions can be make about the state of breast cancer patients ("normal" or "pathology"). Then, by using the statistical analysis obtain statistical and correlational moments for every coordinate distributions; these indicators are served as diagnostic criterias. The final step is to comparing results and choosing the most effective diagnostic indicators. The paper presents the results of Mueller-Jones matrix mapping of optically thin (attenuation coefficient ,τ≤0,1) blood plasma layers.
Status of holographic interferometry at Wright Patterson Air Force Base
NASA Technical Reports Server (NTRS)
Seibert, George
1987-01-01
At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.
Peters, Timothy
2015-04-01
Recent studies have shown that the claim that King George III suffered from acute porphyria is seriously at fault. This article explores some of the causes of this misdiagnosis and the consequences of the misleading claims, also reporting on the nature of the king's recurrent mental illness according to computer diagnostics. In addition, techniques of cognitive archaeology are used to investigate the nature of the king's final decade of mental illness, which resulted in the appointment of the Prince of Wales as Prince Regent. The results of this analysis confirm that the king suffered from bipolar disorder type I, with a final decade of dementia, due, in part, to the neurotoxicity of his recurrent episodes of acute mania. © 2015 Royal College of Physicians.
Tsikata, Edem; Lee, Ramon; Shieh, Eric; Simavli, Huseyin; Que, Christian J.; Guo, Rong; Khoueir, Ziad; de Boer, Johannes; Chen, Teresa C.
2016-01-01
Purpose To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. Methods Neuroretinal rim parameters derived from three-dimensional (3D) volume scans were compared with the two-dimensional (2D) Spectralis retinal nerve fiber layer (RNFL) thickness scans for diagnostic capability. This study analyzed one eye per patient of 104 glaucoma patients and 58 healthy subjects. The shortest distances between the cup surface and the OCT-based disc margin were automatically calculated to determine the thickness and area of the minimum distance band (MDB) neuroretinal rim parameter. Traditional 150-μm reference surface–based rim parameters (volume, area, and thickness) were also calculated. The diagnostic capabilities of these five parameters were compared with RNFL thickness using the area under the receiver operating characteristic (AUROC) curves. Results The MDB thickness had significantly higher diagnostic capability than the RNFL thickness in the nasal (0.913 vs. 0.818, P = 0.004) and temporal (0.922 vs. 0.858, P = 0.026) quadrants and the inferonasal (0.950 vs. 0.897, P = 0.011) and superonasal (0.933 vs. 0.868, P = 0.012) sectors. The MDB area and the three neuroretinal rim parameters based on the 150-μm reference surface had diagnostic capabilities similar to RNFL thickness. Conclusions The 3D MDB thickness had a high diagnostic capability for glaucoma and may be of significant clinical utility. It had higher diagnostic capability than the RNFL thickness in the nasal and temporal quadrants and the inferonasal and superonasal sectors. PMID:27768203
Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun
2016-01-01
Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593
NASA Astrophysics Data System (ADS)
Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay
2014-09-01
This letter presents a method which employs surface acoustic wave induced acoustic streaming to differentially peel treated red blood cells (RBCs) off a substrate based on their adhesive properties and separate populations of pathological cells from normal ones. We demonstrate the principle of operation by comparing the applied power and time required to overcome the adhesion displayed by healthy, glutaraldehyde-treated or malaria-infected human RBCs. Our experiments indicate that the method can be used to differentiate between various cell populations contained in a 9 μl droplet within 30 s, suggesting potential for rapid diagnostics.
Detection of explosives in soils
Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.
2002-01-01
An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.
Boscarino, Joseph A; Hoffman, Stuart N; Han, John J
2015-01-01
Previously, we estimated the prevalence and risk factors for prescription opioid-use disorder among outpatients on opioid therapy using the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 and DSM-4 criteria. However, at the time, the DSM-5 criteria were not finalized. In the current study, we analyzed these data using the final DSM-5 criteria and compared these results. Using electronic records from a large US health care system, we identified outpatients receiving five or more prescription orders for opioid therapy in the past 12 months for noncancer pain (mean prescription orders =10.72; standard deviation =4.96). In 2008, we completed diagnostic interviews with 705 of these patients using the DSM-4 criteria. In the current study, we reassessed these results using the final DSM-5 criteria. The lifetime prevalence of DSM-5 opioid-use disorders using the final DSM-5 criteria was 58.7% for no or few symptoms (<2), 28.1% for mild symptoms (2-3), 9.7% for moderate symptoms (4-5), and 3.5% for severe symptoms (six or more). Thus, the lifetime prevalence of "any" prescription opioid-use disorder in this cohort was 41.3% (95% confidence interval [CI] =37.6-45.0). A comparison to the DSM-4 criteria indicated that the majority of patients with lifetime DSM-4 opioid dependence were now classified as having mild opioid-use disorder, based on the DSM-5 criteria (53.6%; 95% CI =44.1-62.8). In ordinal logistic regression predicting no/few, mild, moderate, and severe opioid-use disorder, the best predictors were age <65 years, current pain impairment, trouble sleeping, suicidal thoughts, anxiety disorders, illicit drug use, and history of substance abuse treatment. Given the final DSM-5 criteria, including the elimination of tolerance and withdrawal, inclusion of craving and abuse symptoms, and introduction of a new graded severity classification, the prevalence of opioid-use disorders has changed, while many of the DSM-4 risk factors for opioid dependence were similar. To our knowledge, this is one of the first studies to compare the final results for DSM-5 versus DSM-4 prescription opioid-use disorders among a high-risk patient population.
Boscarino, Joseph A; Hoffman, Stuart N; Han, John J
2015-01-01
Aims Previously, we estimated the prevalence and risk factors for prescription opioid-use disorder among outpatients on opioid therapy using the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 and DSM-4 criteria. However, at the time, the DSM-5 criteria were not finalized. In the current study, we analyzed these data using the final DSM-5 criteria and compared these results. Methods Using electronic records from a large US health care system, we identified outpatients receiving five or more prescription orders for opioid therapy in the past 12 months for noncancer pain (mean prescription orders =10.72; standard deviation =4.96). In 2008, we completed diagnostic interviews with 705 of these patients using the DSM-4 criteria. In the current study, we reassessed these results using the final DSM-5 criteria. Results The lifetime prevalence of DSM-5 opioid-use disorders using the final DSM-5 criteria was 58.7% for no or few symptoms (<2), 28.1% for mild symptoms (2–3), 9.7% for moderate symptoms (4–5), and 3.5% for severe symptoms (six or more). Thus, the lifetime prevalence of “any” prescription opioid-use disorder in this cohort was 41.3% (95% confidence interval [CI] =37.6–45.0). A comparison to the DSM-4 criteria indicated that the majority of patients with lifetime DSM-4 opioid dependence were now classified as having mild opioid-use disorder, based on the DSM-5 criteria (53.6%; 95% CI =44.1–62.8). In ordinal logistic regression predicting no/few, mild, moderate, and severe opioid-use disorder, the best predictors were age <65 years, current pain impairment, trouble sleeping, suicidal thoughts, anxiety disorders, illicit drug use, and history of substance abuse treatment. Conclusion Given the final DSM-5 criteria, including the elimination of tolerance and withdrawal, inclusion of craving and abuse symptoms, and introduction of a new graded severity classification, the prevalence of opioid-use disorders has changed, while many of the DSM-4 risk factors for opioid dependence were similar. To our knowledge, this is one of the first studies to compare the final results for DSM-5 versus DSM-4 prescription opioid-use disorders among a high-risk patient population. PMID:26316838
Laser program annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, L.W.; Krupke, W.F.; Strack, J.R.
1981-06-01
Volume 2 contains five sections that cover the areas of target design, target fabrication, diagnostics, and fusion experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication Group, Section 5 contains the results of our diagnostics development, and Section 6 describes advances made in the management and analysis of experimental data. Finally, Section 7 in Volume 2 reports the results of laser target experiments conducted during the year.
Noninvasive diagnostic techniques in cardiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verani, M.S.
1983-10-01
Noninvasive cardiology has made notable progress in the last several years. A variety of sophisticated tests are now available to the clinician, providing both anatomic and physiologic information. The result has been an improvement of the level of diagnostic accuracy, which in a final analysis translates into better patient care. Newer tests such as cardiac CAT scan and nuclear magnetic resonance, using incredibly advanced technologies, continue to be investigated and almost certainly will play an important role in cardiovascular diagnosis in year to come.
State of the art in pathology business process analysis, modeling, design and optimization.
Schrader, Thomas; Blobel, Bernd; García-Rojo, Marcial; Daniel, Christel; Słodkowska, Janina
2012-01-01
For analyzing current workflows and processes, for improving them, for quality management and quality assurance, for integrating hardware and software components, but also for education, training and communication between different domains' experts, modeling business process in a pathology department is inevitable. The authors highlight three main processes in pathology: general diagnostic, cytology diagnostic, and autopsy. In this chapter, those processes are formally modeled and described in detail. Finally, specialized processes such as immunohistochemistry and frozen section have been considered.
Surface Spectroscopy Center Of Excellence Project
NASA Technical Reports Server (NTRS)
Wooden, Diane
2014-01-01
We propose to develop a national center of excellence in Regolith Radiative Transfer (RRT), i.e., in modeling spectral reflectivity and emissivity of grainy or structured surfaces. The focus is the regime where the structural elements of grainy surfaces have grain sizes and separations of tens of microns, comparable to the wavelengths carrying diagnostic compositional information. This regime is of fundamental interest to remote sensing of planetary and terrestrial surfaces.
Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas
NASA Astrophysics Data System (ADS)
Allen, Luke Daniel
Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.
Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia.
Ahmad, Riris Andono; Matthys, Francine; Dwihardiani, Bintari; Rintiswati, Ning; de Vlas, Sake J; Mahendradhata, Yodi; van der Stuyft, Patrick
2012-02-15
Early and accurate diagnosis of pulmonary tuberculosis (TB) is critical for successful TB control. To assist in the diagnosis of smear-negative pulmonary TB, the World Health Organisation (WHO) recommends the use of a diagnostic algorithm. Our study evaluated the implementation of the national tuberculosis programme's diagnostic algorithm in routine health care settings in Jogjakarta, Indonesia. The diagnostic algorithm is based on the WHO TB diagnostic algorithm, which had already been implemented in the health facilities. We prospectively documented the diagnostic work-up of all new tuberculosis suspects until a diagnosis was reached. We used clinical audit forms to record each step chronologically. Data on the patient's gender, age, symptoms, examinations (types, dates, and results), and final diagnosis were collected. Information was recorded for 754 TB suspects; 43.5% of whom were lost during the diagnostic work-up in health centres, 0% in lung clinics. Among the TB suspects who completed diagnostic work-ups, 51.1% and 100.0% were diagnosed without following the national TB diagnostic algorithm in health centres and lung clinics, respectively. However, the work-up in the health centres and lung clinics generally conformed to international standards for tuberculosis care (ISTC). Diagnostic delays were significantly longer in health centres compared to lung clinics. The high rate of patients lost in health centres needs to be addressed through the implementation of TB suspect tracing and better programme supervision. The national TB algorithm needs to be revised and differentiated according to the level of care.
Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans
This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.
Piezoelectric characterization of ejecta from shocked tin surfaces
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Anderson, W. W.; Grover, M.; Hammerberg, J. E.; King, N. S. P.; Lamoreaux, S. K.; Macrum, G.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Buttler, W. T.
2005-12-01
Using piezoelectric diagnostics, we have measured densities and velocities of ejected particulate as well as "free-surface velocities" of bulk tin targets shock loaded with high explosive. The targets had finely grooved, machined finishes ranging from 10 to 250μin. Two types of piezoelectric sensor ("piezopins"), lithium niobate and lead zirconate titanate, were compared for durability and repeatability; in addition, some piezopins were "shielded" with foam and metal foil in order to mitigate premature failure of the pins in high ejecta regimes. These experiments address questions about ejecta production at a given shock pressure as a function of surface finish; piezopin results are compared with those from complementary diagnostics such as x-ray radiography and time-resolved optical transmission techniques. The mass ejection shows a marked dependence on groove characteristics and cannot be described by a groove defect theory alone.
NASA Astrophysics Data System (ADS)
Shen, Fei; Chen, Chao; Yan, Ruqiang
2017-05-01
Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.
Field evaluation of skid resistant surfaces : final report : part I.
DOT National Transportation Integrated Search
1970-06-01
This project was undertaken to establish a thin bituminous surface course that would possess good skid resistant qualities as well as, being both economical and durable. : This is the final report on the evaluation of skid resistant surfaces which wa...
Method and apparatus for holographic wavefront diagnostics
Toeppen, J.S.
1995-04-25
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.
Method and apparatus for holographic wavefront diagnostics
Toeppen, John S.
1995-01-01
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.
A neutron diagnostic for high current deuterium beams.
Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G
2012-02-01
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.
Visualization and analysis of pulsed ion beam energy density profile with infrared imaging
NASA Astrophysics Data System (ADS)
Isakova, Y. I.; Pushkarev, A. I.
2018-03-01
Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao
2015-05-01
This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.
A neutron diagnostic for high current deuterium beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M.; Perelli Cippo, E.; Cavenago, M.
2012-02-15
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less
Maltese, Paolo E; Iarossi, Giancarlo; Ziccardi, Lucia; Colombo, Leonardo; Buzzonetti, Luca; Crinò, Antonino; Tezzele, Silvia; Bertelli, Matteo
2018-02-01
Obesity phenotype can be manifested as an isolated trait or accompanied by multisystem disorders as part of a syndromic picture. In both situations, same molecular pathways may be involved to different degrees. This evidence is stronger in syndromic obesity, in which phenotypes of different syndromes may overlap. In these cases, genetic testing can unequivocally provide a final diagnosis. Here we describe a patient who met the diagnostic criteria for Alström syndrome only during adolescence. Genetic testing was requested at 25 years of age for a final confirmation of the diagnosis. The genetic diagnosis of Alström syndrome was obtained through a Next Generation Sequencing genetic test approach using a custom-designed gene panel of 47 genes associated with syndromic and non-syndromic obesity. Genetic analysis revealed a novel homozygous frameshift variant p.(Arg1550Lysfs*10) on exon 8 of the ALMS1 gene. This case shows the need for a revision of the diagnostic criteria guidelines, as a consequence of the recent advent of massive parallel sequencing technology. Indications for genetic testing reported in these currently accepted diagnostic criteria for Alström syndrome, were drafted when sequencing was expensive and time consuming. Nowadays, Next Generation Sequencing testing could be considered as first line diagnostic tool not only for Alström syndrome but, more generally, for all those atypical or not clearly distinguishable cases of syndromic obesity, thus avoiding delayed diagnosis and treatments. Early diagnosis permits a better follow-up and pre-symptomatic interventions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Additive Manufacture of Plasma Diagnostic Components Final Report Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Simon; Romero-Talamas, Carlos; You, Setthivoine
There is now a well-established set of plasma diagnostics (see e.g. [3]), but these remain some of the mostexpensive assemblies in fusion systems since for every system they have to be custom built, and time fordiagnostic development can pace the project. Additive manufacturing (AM) has the potential to decreaseproduction cost and significantly lower design time of fusion diagnostic subsystems, which would realizesignificant cost reduction for standard diagnostics. In some cases, these basic components can be additivelymanufactured for less than 1/100th costs of conventional manufacturing.In our DOE Phase II SBIR, we examined the impact that AM can have on plasma diagnosticmore » cost bytaking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) tech-niques, then optimizing the design to exploit the benefits of AM. The impact of AM techniques on cost isfound to be in several areas. First, the cost of materials falls because AM parts can be manufactured withlittle to no waste, and engineered to use less material than CM. Next, the cost of fabrication falls for AMparts relative to CM since the fabrication time can be computed exactly, and often no post-processing isrequired for the part to be functional. We find that AM techniques are well suited for plasma diagnosticssince typical diagnostic complexity comes at no additional cost. Cooling channels, for example, can be builtin to plasma-facing components at no extra cost. Fabrication costs associated with assembly are lower forAM parts because many components can be combined and printed as monoliths, thereby mitigating the needfor alignment or calibration. Finally, the cost of engineering is impacted by exploiting AM design tools thatallow standard components to be customized through web-interfaces. Furthermore, we find that conceptdesign costs can be impacted by scripting interfaces for online engineering design tools.« less
Diagnostic evaluation of the MRP-8/14 for the emergency assessment of chest pain.
Vora, Amit N; Bonaca, Marc P; Ruff, Christian T; Jarolim, Petr; Murphy, Sabina; Croce, Kevin; Sabatine, Marc S; Simon, Daniel I; Morrow, David A
2012-08-01
Elevated levels of myeloid-related protein (MRP)-8/14 (S100A8/A9) are associated with first cardiovascular events in healthy individuals and worse prognosis in patients with acute coronary syndrome (ACS). The diagnostic utility of MRP-8/14 in patients presenting to the emergency room with symptoms concerning for ACS is uncertain. MRP-8/14 was measured in serial serum and plasma samples in a single center prospective cohort-study of patients presenting to the emergency room with non-traumatic chest pain concerning for ACS. Final diagnosis was adjudicated by an endpoint committee. Of patients with baseline MRP-8/14 results (n = 411), the median concentration in serum was 1.57 μg/ml (25th, 75th: 0.87, 2.68) and in plasma was 0.41 μg/ml (<0.4, 1.15) with only moderate correlation between serum and plasma (ρ = 0.40). A final diagnosis of MI was made in 106 (26%). Peak serum MRP-8/14 was higher in patients presenting with MI (p < 0.001). However, the overall diagnostic performance of MRP-8/14 was poor: sensitivity 28% (95% CI 20-38), specificity 82% (78-86), positive predictive value 36% (26-47), and negative predictive value 77% (72-81). The area under the ROC curve for diagnosis of MI with MRP-8/14 was 0.55 (95% CI 0.51-0.60) compared with 0.95 for cTnI. The diagnostic performance was not improved in early-presenters, patients with negative initial cTnI, or using later MRP-8/14 samples. Patients presenting with MI had elevated levels of serum MRP-8/14 compared to patients with non-cardiac chest pain. However, overall diagnostic performance of MRP-8/14 was poor and neither plasma nor serum MRP-8/14 offered diagnostic utility comparable to cardiac troponin.
Demonstrating the Importance of `` Good" Models of Land Surface Hydrological Processes
NASA Astrophysics Data System (ADS)
Pitman, A.; Irannejad, P.; McGuffie, K.; Henderson-Sellers, A.
2003-12-01
To reduce the uncertainty in the prediction of land surface climates,, the Atmospheric Model Intercomparison Project (AMIP) Diagnostic Subproject 12 (DSP 12) and the Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS) have analysed dependence of climate simulations on the land-surface schemes (LSSs). This analysis has comprised three efforts: (i) proving that LSSs matter in coupled simulations; (ii) investigating whether improvements in LSSs have occurred over time; and (iii) searching for novel means of validating LSS predictions. In the first, Irannejad et al. (2003) introduce a novel method for evaluating the dependence of 19 AMIP AGCMs' LH on the LSS by excluding the impact of the atmosphere. Pseudo LSSs (PLSSs) for LH in the form of multi-variable linear models expressing mean monthly LH as a function of atmospheric forcing are developed. Analysis over three large and climatically diverse river basins shows estimates of mean annual LH from the PLSSs agreeing well with the AGCMs' simulations. RMS errors range from 0.4 to 2.2 W m-2 depending on the region and the AGCM. When the PLSSs are driven by single atmospheric forcings, different LSSs behave differently, and the variability of mean annual LH among AGCMs increases. The second strand of our investigation uncovered a clear generational sequence of land-surface schemes: first generation 'no canopy'; second generation ` SiBlings'; and ` recent schemes'. We conclude that although continental surface modelling has improved over the last 30 years, full confidence remains elusive, in part due to tuning to available observations. Finally, we show that stable water isotopes challenge predictions of evaporation and condensation processes. These three-pronged findings prove that LSSs are important to AGCM and coupled climate predictions; demonstrate that new, or changed, land-surface components increase diversity among simulations; underline the need for validation data and also challenge current parameterisations with novel observations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2013 CFR
2013-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.41 Processing. (a... that will reduce the risk of transmitting type B viral hepatitis. (b) Ancillary reagents and materials... its dating period. (d) Date of manufacture. The date of manufacture of Hepatitis B Surface Antigen...
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
First flux surface measurements on W7-X
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Sunn; Otte, Matthias; Biedermann, Christoph; Bozhenkov, Sergey; Braeuer, Torsten; Lazerson, Samuel; W7-X Team
2015-11-01
Wendelstein 7-X is rapidly approaching first plasma operation. The full operational B-field of 2.5 T has been reached using the 70 superconducting coils. The first flux surface measurements have recently been successfully performed. This talk will describe the W7-X flux surface measurement system, and show and analyze the first results from this diagnostic, which, at the time of writing this abstract, can be summarized as follows: Confirmation of the existence of nested, closed flux surfaces, first measurements of iota, and detection of the expected internal 5/6 island chain of the OP1.1 configuration. The data obtained so far agree with expectations, and provide a first confirmation of the accuracy of the coil geometry and assembly, as well as diagnostic installation. They also confirm that, with respect to the magnetic topology, plasma operation can start. Plans for, and potentially first results of, measurements of any remnant field errors, will be reported separately at this meeting.
Simple Sample Processing Enhances Malaria Rapid Diagnostic Test Performance
Davis, K. M.; Gibson, L. E.; Haselton, F. R.; Wright, D. W.
2016-01-01
Lateral flow immunochromatographic rapid diagnostic tests (RDTs) are the primary form of medical diagnostic used for malaria in underdeveloped nations. Unfortunately, many of these tests do not detect asymptomatic malaria carriers. In order for eradication of the disease to be achieved, this problem must be solved. In this study, we demonstrate enhancement in the performance of six RDT brands when a simple sample-processing step is added to the front of the diagnostic process. Greater than a 4-fold RDT signal enhancement was observed as a result of the sample processing step. This lowered the limit of detection for RDT brands to submicroscopic parasitemias. For the best performing RDTs the limits of detection were found to be as low as 3 parasites/μL. Finally, through individual donor samples, the correlations between donor source, WHO panel detection scores and RDT signal intensities were explored. PMID:24787948
NASA Technical Reports Server (NTRS)
Sweet, Adam
2008-01-01
The IVHM Project in the Aviation Safety Program has funded research in electrical power system (EPS) health management. This problem domain contains both discrete and continuous behavior, and thus is directly relevant for the hybrid diagnostic tool HyDE. In FY2007 work was performed to expand the HyDE diagnosis model of the ADAPT system. The work completed resulted in a HyDE model with the capability to diagnose five times the number of ADAPT components previously tested. The expanded diagnosis model passed a corresponding set of new ADAPT fault injection scenario tests with no incorrect faults reported. The time required for the HyDE diagnostic system to isolate the fault varied widely between tests; this variance was reduced by tuning HyDE input parameters. These results and other diagnostic design trade-offs are discussed. Finally, possible future improvements for both the HyDE diagnostic model and HyDE itself are presented.
18F-FDG PET/CT in Detecting Metastatic Infection in Children.
Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P
2016-04-01
Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.
Initial operation of a newly developed multichord motional Stark effect diagnostic in KSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J., E-mail: jinil@nfri.re.kr; Ko, J.; Wi, H.
2016-11-15
A photo-elastic modulator based 25-chord motional Stark effect (MSE) diagnostic has been successfully developed and commissioned in Korea Superconducting Tokamak Advanced Research. The diagnostic measures the radial magnetic pitch angle profile of the Stark splitting of a D-alpha line at 656.1 nm by the electric field associated with the neutral deuterium heating beam. A tangential view of the neutral beam provides a good spatial resolution of 1–3 cm for covering the major radius from 1.74 m to 2.28 m, and the time resolution is achieved at 10 ms. An in-vessel calibration before the vacuum closing as well as an inmore » situ calibration during the tokamak operation was performed by means of specially designed polarized lighting sources. In this work, we present the final design of the installed MSE diagnostic and the first results of the commissioning.« less
Complementary approaches to diagnosing marine diseases: a union of the modern and the classic
Burge, Colleen A.; Friedman, Carolyn S.; Getchell, Rodman; House, Marcia; Mydlarz, Laura D.; Prager, Katherine C.; Renault, Tristan; Kiryu, Ikunari; Vega-Thurber, Rebecca
2016-01-01
Linking marine epizootics to a specific aetiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative real-time PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease. PMID:26880839
A revolution in diagnostic imaging.
Mamula, Paul W
2003-03-01
In November 1966, Sandy Koufax, the star left-handed pitcher of the Los Angeles Dodgers, retired after spending his final season coping with traumatic arthritis in his elbow, the compounded effects of a sliding injury to his pitching arm the previous season and 12 years of hard throwing.1 Had his career begun a few years later, he might have been able to benefit from the advances in diagnostic imaging and treatment that were introduced at that time. Modern arthroscopy and computed tomography (CT) did not become available until the mid 1970s,2 and the first elbow reconstruction was done by Frank Jobe, MD, about 10 years after Koufax retired.1 Arthroscopy was first used as a diagnostic tool, but it later became a surgical tool, affecting treatment of knees, then, later, shoulders. Since 1973, when The Physician and Sportsmedicine was launched, we have witnessed a revolution in diagnostic imaging and are continuing to see an evolution of modalities.
Complementary approaches to diagnosing marine diseases: a union of the modern and the classic
Burge, Colleen A.; Friedman, Carolyn S.; Getchell, Rodman G.; House, Marcia; Lafferty, Kevin D.; Mydlarz, Laura D.; Prager, Katherine C.; Sutherland, Kathryn P.; Renault, Tristan; Kiryu, Ikunari; Vega-Thurber, Rebecca
2016-01-01
Linking marine epizootics to a specific aetiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative real-time PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease.
Solodinina, E N; Starkov, Iu G; Shumkina, L V
2016-01-01
To define criteria and to estimate diagnostic significance of endosonography in differential diagnosis of benign and malignant stenoses of common bile duct. We presented the results of survey and treatment of 57 patients with benign and malignant stenoses of common bile duct. The technique of endosonography is described. We have formulated major criteria of differential diagnostics of tumoral and non-tumoral lesion of extrahepatic bile ducts. Comparative analysis of endosonography, ultrasound, computed tomography and magnetic resonance cholangiopancreatography was performed. Sensitivity, specificity and accuracy of endosonography in diagnosis of stenosis cause is 97.7%, 100% and 98.2% respectively. So it exceeds the efficacy of other diagnostic X-ray methods. In modern surgical clinic endosonography should be mandatory performed. It is necessary for final diagnostics of cause of common bile duct stenosis especially in case of its low location.
Simple sample processing enhances malaria rapid diagnostic test performance.
Davis, K M; Gibson, L E; Haselton, F R; Wright, D W
2014-06-21
Lateral flow immunochromatographic rapid diagnostic tests (RDTs) are the primary form of medical diagnostic used for malaria in underdeveloped nations. Unfortunately, many of these tests do not detect asymptomatic malaria carriers. In order for eradication of the disease to be achieved, this problem must be solved. In this study, we demonstrate enhancement in the performance of six RDT brands when a simple sample-processing step is added to the front of the diagnostic process. Greater than a 4-fold RDT signal enhancement was observed as a result of the sample processing step. This lowered the limit of detection for RDT brands to submicroscopic parasitemias. For the best performing RDTs the limits of detection were found to be as low as 3 parasites per μL. Finally, through individual donor samples, the correlations between donor source, WHO panel detection scores and RDT signal intensities were explored.
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
A Primer on Vibrational Ball Bearing Feature Generation for Prognostics and Diagnostics Algorithms
2015-03-01
Atlas -Marks (Cone-Shaped Kernel) ........................................................36 8.7.7 Hilbert-Huang Transform...bearing surface and eventually progress to the surface where the material will separate. Also known as pitting, spalling, or flaking. • Wear ...normal degradation caused by dirt and foreign particles causing abrasion of the contact surfaces over time resulting in alterations in the raceway and
Diagnostic methods for atmospheric inversions of long-lived greenhouse gases
NASA Astrophysics Data System (ADS)
Michalak, Anna M.; Randazzo, Nina A.; Chevallier, Frédéric
2017-06-01
The ability to predict the trajectory of climate change requires a clear understanding of the emissions and uptake (i.e., surface fluxes) of long-lived greenhouse gases (GHGs). Furthermore, the development of climate policies is driving a need to constrain the budgets of anthropogenic GHG emissions. Inverse problems that couple atmospheric observations of GHG concentrations with an atmospheric chemistry and transport model have increasingly been used to gain insights into surface fluxes. Given the inherent technical challenges associated with their solution, it is imperative that objective approaches exist for the evaluation of such inverse problems. Because direct observation of fluxes at compatible spatiotemporal scales is rarely possible, diagnostics tools must rely on indirect measures. Here we review diagnostics that have been implemented in recent studies and discuss their use in informing adjustments to model setup. We group the diagnostics along a continuum starting with those that are most closely related to the scientific question being targeted, and ending with those most closely tied to the statistical and computational setup of the inversion. We thus begin with diagnostics based on assessments against independent information (e.g., unused atmospheric observations, large-scale scientific constraints), followed by statistical diagnostics of inversion results, diagnostics based on sensitivity tests, and analyses of robustness (e.g., tests focusing on the chemistry and transport model, the atmospheric observations, or the statistical and computational framework), and close with the use of synthetic data experiments (i.e., observing system simulation experiments, OSSEs). We find that existing diagnostics provide a crucial toolbox for evaluating and improving flux estimates but, not surprisingly, cannot overcome the fundamental challenges associated with limited atmospheric observations or the lack of direct flux measurements at compatible scales. As atmospheric inversions are increasingly expected to contribute to national reporting of GHG emissions, the need for developing and implementing robust and transparent evaluation approaches will only grow.
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
3D Human cartilage surface characterization by optical coherence tomography.
Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven
2015-10-07
Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8 × 8, 4 × 4 and 1 × 1 mm (width × length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.
3D Human cartilage surface characterization by optical coherence tomography
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven
2015-10-01
Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8 × 8, 4 × 4 and 1 × 1 mm (width × length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.
A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics.
van den Bent, Martin J; Weller, Michael; Wen, Patrick Y; Kros, Johan M; Aldape, Ken; Chang, Susan
2017-05-01
The 2007 World Health Organization (WHO) classification of brain tumors did not use molecular abnormalities as diagnostic criteria. Studies have shown that genotyping allows a better prognostic classification of diffuse glioma with improved treatment selection. This has resulted in a major revision of the WHO classification, which is now for adult diffuse glioma centered around isocitrate dehydrogenase (IDH) and 1p/19q diagnostics. This revised classification is reviewed with a focus on adult brain tumors, and includes a recommendation of genes of which routine testing is clinically useful. Apart from assessment of IDH mutational status including sequencing of R132H-immunohistochemistry negative cases and testing for 1p/19q, several other markers can be considered for routine testing, including assessment of copy number alterations of chromosome 7 and 10 and of TERT promoter, BRAF, and H3F3A mutations. For "glioblastoma, IDH mutated" the term "astrocytoma grade IV" could be considered. It should be considered to treat IDH wild-type grades II and III diffuse glioma with polysomy of chromosome 7 and loss of 10q as glioblastoma. New developments must be more quickly translated into further revised diagnostic categories. Quality control and rapid integration of molecular findings into the final diagnosis and the communication of the final diagnosis to clinicians require systematic attention. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Diagnostic indices for vertiginous diseases
2010-01-01
Background Vertigo and dizziness are symptoms which are reported frequently in clinical practice. We aimed to develop diagnostic indices for four prevalent vertiginous diseases: benign paroxysmal positional vertigo (BPPV), Menière's disease (MD), vestibular migraine (VM), and phobic postural vertigo (PPV). Methods Based on a detailed questionnaire handed out to consecutive patients presenting for the first time in our dizziness clinic we preselected a set of seven questions with desirable diagnostic properties when compared with the final diagnosis after medical workup. Using exact logistic regression analysis diagnostic scores, each comprising of four to six items that can simply be added up, were built for each of the four diagnoses. Results Of 193 patients 131 questionnaires were left after excluding those with missing consent or data. Applying the suggested cut-off points, sensitivity and specificity were 87.5 and 93.5% for BPPV, 100 and 87.4% for MD, 92.3 and 83.7% for VM, 73.7 and 84.1% for PPV, respectively. By changing the cut-off points sensitivity and specificity can be adjusted to meet diagnostic needs. Conclusions The diagnostic indices showed promising diagnostic properties. Once further validated, they could provide an ease to use and yet flexible tool for screening vertigo in clinical practice and epidemiological research. PMID:20973968
Proton Radiography of a Thermal Explosion in PBX9501
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.
2007-12-01
The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.
Laser Diagnostic Analyses of Sooting Flames.
1984-11-29
flame front as expected. However the fuel flame length is considerably shorter than the luminous height, and the flame surface must cross the soot surface...very useful in understanding this behaviour and the fact that the fuel flame length increases only slightly on addition of diluent--while the visible
Fructose 1,6-Bisphosphate aldolase, a novel immunogenic surface protein on Listeria species
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.43 Potency test. To be satisfactory for release, each filling of Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Antiserum Panel and shall be sufficiently potent to be able to detect the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.
Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less
Spallation studies on shock loaded uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, D.L.; Hixson, R.; Gustavsen, R.L.
1997-12-31
Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three placesmore » in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.« less
High Quality Acquisition of Surface Electromyography - Conditioning Circuit Design
NASA Astrophysics Data System (ADS)
Shobaki, Mohammed M.; Malik, Noreha Abdul; Khan, Sheroz; Nurashikin, Anis; Haider, Samnan; Larbani, Sofiane; Arshad, Atika; Tasnim, Rumana
2013-12-01
The acquisition of Surface Electromyography (SEMG) signals is used for many applications including the diagnosis of neuromuscular diseases, and prosthesis control. The diagnostic quality of the SEMG signal is highly dependent on the conditioning circuit of the SEMG acquisition system. This paper presents the design of an SEMG conditioning circuit that can guarantee to collect high quality signal with high SNR such that it is immune to environmental noise. The conditioning circuit consists of four stages; consisting of an instrumentation amplifier that is used with a gain of around 250; 4th order band pass filter in the 20-500Hz frequency range as the two initial stages. The third stage is an amplifier with adjustable gain using a variable resistance; the gain could be changed from 1000 to 50000. In the final stage the signal is translated to meet the input requirements of data acquisition device or the ADC. Acquisition of accurate signals allows it to be analyzed for extracting the required characteristic features for medical and clinical applications. According to the experimental results, the value of SNR for collected signal is 52.4 dB which is higher than the commercial system, the power spectrum density (PSD) graph is also presented and it shows that the filter has eliminated the noise below 20 Hz.
Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; ...
2015-03-30
Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong
2016-08-02
Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.
Explosive component acceptance tester using laser interferometer technology
NASA Technical Reports Server (NTRS)
Wickstrom, Richard D.; Tarbell, William W.
1993-01-01
Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien
2018-01-01
Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-corrected AUC for these 8 features is 0.939. Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed.
Gloor, C I; Schweighauser, A; Francey, T; Rodriguez-Campos, S; Vidondo, B; Bigler, B; Schuller, S
2017-03-01
To determine the diagnostic performance of two patient-side tests (RDT-1: Test-it™ and RDT-2 Witness®Lepto) in the early diagnosis of canine leptospirosis. Retrospective study of 108 dogs with leptospirosis and 53 controls. Leptospirosis was diagnosed based on compatible clinical and clinicopathologic signs and either a single microscopic agglutination test titre_ >800 (n=49), seroconversion (n=53), positive urine real time PCR (RT-PCR) (n=1), evidence of spirochaetes in silver-stained tissues (n=1) or a combination of these (n=4). Leptospirosis was excluded in dogs with a convincing alternative diagnosis and single microscopic agglutination testing titres _<200 (n=46) or lack of seroconversion (n=7). Indices of diagnostic accuracy of the rapid diagnostic tests were calculated by comparing admission rapid diagnostic test results to the final disease status. Rapid diagnostic test-1 was performed in 118 dogs, rapid diagnostic test-2 in 69 dogs and both tests in 26 dogs. Weak positive results occurred frequently representing 22·6% (rapid diagnostic test-1) and 32·3% (rapid diagnostic test-2) of all positive tests in dogs with leptospirosis. If weak positive rapid diagnostic tests were considered positive, rapid diagnostic test-1 and rapid diagnostic test-2 had sensitivities of 82 and 76%, specificities of 91 and 100%, positive predictive values of 94% and 100% and negative predictive values of 73% and 74%, respectively. There were some technical problems with rapid diagnostic test-1. The diagnostic performance of the rapid diagnostic tests is similar to that reported for the microscopic agglutination test. Both can support a diagnosis of leptospirosis with high specificity but leptospirosis cannot be excluded based on a negative admission test result. Both RDTs are useful in conjunction with other confirmatory tests. © 2017 British Small Animal Veterinary Association.
Diagnostic Criteria, Clinical Features, and Incidence of Thyroid Storm Based on Nationwide Surveys
Satoh, Tetsurou; Isozaki, Osamu; Suzuki, Atsushi; Wakino, Shu; Iburi, Tadao; Tsuboi, Kumiko; Monden, Tsuyoshi; Kouki, Tsuyoshi; Otani, Hajime; Teramukai, Satoshi; Uehara, Ritei; Nakamura, Yosikazu; Nagai, Masaki; Mori, Masatomo
2012-01-01
Background Thyroid storm (TS) is life threatening. Its incidence is poorly defined, few series are available, and population-based diagnostic criteria have not been established. We surveyed TS in Japan, defined its characteristics, and formulated diagnostic criteria, FINAL-CRITERIA1 and FINAL-CRITERIA2, for two grades of TS, TS1, and TS2 respectively. Methods We first developed diagnostic criteria based on 99 patients in the literature and 7 of our patients (LIT-CRITERIA1 for TS1 and LIT-CRITERIA2 for TS2). Thyrotoxicosis was a prerequisite for TS1 and TS2 as well as for combinations of the central nervous system manifestations, fever, tachycardia, congestive heart failure (CHF), and gastrointestinal (GI)/hepatic disturbances. We then conducted initial and follow-up surveys from 2004 through 2008, targeting all hospitals in Japan, with an eight-layered random extraction selection process to obtain and verify information on patients who met LIT-CRITERIA1 and LIT-CRITERIA2. Results We identified 282 patients with TS1 and 74 patients with TS2. Based on these data and information from the Ministry of Health, Labor, and Welfare of Japan, we estimated the incidence of TS in hospitalized patients in Japan to be 0.20 per 100,000 per year. Serum-free thyroxine and free triiodothyroine concentrations were similar among patients with TS in the literature, Japanese patients with TS1 or TS2, and a group of patients with thyrotoxicosis without TS (Tox-NoTS). The mortality rate was 11.0% in TS1, 9.5% in TS2, and 0% in Tox-NoTS patients. Multiple organ failure was the most common cause of death in TS1 and TS2, followed by CHF, respiratory failure, arrhythmia, disseminated intravascular coagulation, GI perforation, hypoxic brain syndrome, and sepsis. Glasgow Coma Scale results and blood urea nitrogen (BUN) were associated with irreversible damages in 22 survivors. The only change in our final diagnostic criteria for TS as compared with our initial criteria related to serum bilirubin concentration >3 mg/dL. Conclusions TS is still a life-threatening disorder with more than 10% mortality in Japan. We present newly formulated diagnostic criteria for TS and clarify its clinical features, prognosis, and incidence based on nationwide surveys in Japan. This information will help diagnose TS and in understanding the factors contributing to mortality and irreversible complications. PMID:22690898
Tong, Qunbo; Chen, Rui; Kong, Qingming; Goossens, Julie; Radwanska, Magdalena; Lou, Di; Ding, Jianzu; Zheng, Bin; Fu, Yixiu; Wang, Tianping; Stefan, Magez; Lu, Shaohong
2018-01-30
Trypanosoma evansi (T. evansi) is the most widely spread pathogenic trypanosome in the world. The control of trypanosomiasis depends on accurate diagnosis and effective treatment. Focusing on the presence of T. evansi in Asia, we developed a detection assay based on tracing phosphate ions (Pi) generated during LAMP targeting the variant surface glycoprotein (VSG) gene of Rode Trypanozoon antigenic type 1.2 (RoTat 1.2 VSG). The diagnostic potential as well as the use of the assay as a test-of-cure method after berenil treatment, was assessed in mice at different time points of infection. In addition, 67 buffalo blood collected from Tongling county, Anhui province, as well as 42 cattle sera from the Shanghai area, were used to evaluate the diagnostic validity of the test. The detection limit of the novel LAMP assay was determined to be as low as 1 fg of T. evansi DNA, while the reaction time for the test was only 30min. Hence it outperforms both microscopy and PCR. In the test-of-cure assessment, successful berenil mediated cure could be confirmed within 48h after treatment. This offers a tremendous advantage over conventional antibody-based diagnostic tools in which successful cure only can be confirmed after months. In the cattle and buffalo screening, the LAMP was able to detect a false-negative determined sample, wrongly classified in a conventional microscopy and PCR screening. Finally, no cross-reactivity was observed with other zoonotic parasites, such as T. evansi type B, T. congolense, T. brucei, Schistosoma japonicum, Plasmodium falciparum, Leishmania donovani, Toxoplasma gondii and Angiostrongylus cantonensis. We conclude that the novel LAMP assay is sensitive, specific and convenient for field use, particularly in areas where infection incidence has become extremely low. The LAMP assay could be used as a tool for trypanosomiasis control and elimination strategies in areas where T. evansi Type A infections are causing a threat to livestock farming. Copyright © 2017 Elsevier B.V. All rights reserved.
Advances in Diagnostic Bronchoscopy
Haas, Andrew R.; Vachani, Anil; Sterman, Daniel H.
2010-01-01
Diagnostic bronchoscopy has undergone two major paradigm shifts in the last 40 years. First, the advent of flexible bronchoscopy gave chest physicians improved access to the tracheobronchial tree with a rapid learning curve and greater patient comfort compared with rigid bronchoscopy. The second paradigm shift has evolved over the last 5 years with the proliferation of new technologies that have significantly enhanced the diagnostic capabilities of flexible bronchoscopy compared with traditional methods. At the forefront of these new technologies is endobronchial ultrasound. In its various forms, endobronchial ultrasound has improved diagnostic yield for pulmonary masses, nodules, intrathoracic adenopathy, and disease extent, thereby reducing the need for more invasive surgical interventions. Various navigational bronchoscopy systems have become available to increase flexible bronchoscope access to small peripheral pulmonary lesions. Furthermore, various modalities of airway assessment, including optical microscopic imaging technologies, may play significant roles in the diagnosis of a variety of pulmonary diseases in the future. Finally, the combination of new diagnostic bronchoscopy technologies and novel approaches in molecular analysis and biomarker assessment hold promise for enhanced diagnosis and personalized management of many pulmonary disorders. In this review, we provide a contemporary review of diagnostic bronchoscopy developments over the past decade. PMID:20378726
Script-theory virtual case: A novel tool for education and research.
Hayward, Jake; Cheung, Amandy; Velji, Alkarim; Altarejos, Jenny; Gill, Peter; Scarfe, Andrew; Lewis, Melanie
2016-11-01
Context/Setting: The script theory of diagnostic reasoning proposes that clinicians evaluate cases in the context of an "illness script," iteratively testing internal hypotheses against new information eventually reaching a diagnosis. We present a novel tool for teaching diagnostic reasoning to undergraduate medical students based on an adaptation of script theory. We developed a virtual patient case that used clinically authentic audio and video, interactive three-dimensional (3D) body images, and a simulated electronic medical record. Next, we used interactive slide bars to record respondents' likelihood estimates of diagnostic possibilities at various stages of the case. Responses were dynamically compared to data from expert clinicians and peers. Comparative frequency distributions were presented to the learner and final diagnostic likelihood estimates were analyzed. Detailed student feedback was collected. Over two academic years, 322 students participated. Student diagnostic likelihood estimates were similar year to year, but were consistently different from expert clinician estimates. Student feedback was overwhelmingly positive: students found the case was novel, innovative, clinically authentic, and a valuable learning experience. We demonstrate the successful implementation of a novel approach to teaching diagnostic reasoning. Future study may delineate reasoning processes associated with differences between novice and expert responses.
Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P
2018-01-01
Background Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test’s performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. Methods and findings We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Cholrapid and Cholgold) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). Conclusion No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard. PMID:29387424
When is diagnostic testing inappropriate or irrational? Acceptable regret approach.
Hozo, Iztok; Djulbegovic, Benjamin
2008-01-01
The authors provide a new model within the framework of theories of bounded rationality for the observed physicians' behavior that their ordering of diagnostic tests may not be rational. Contrary to the prevailing thinking, the authors find that physicians do not act irrationally or inappropriately when they order diagnostic tests in usual clinical practice. When acceptable regret (i.e., regret that a decision maker finds tolerable upon making a wrong decision) is taken into account, the authors show that physicians tend to order diagnostic tests at a higher level of pretest probability of disease than predicted by expected utility theory. They also show why physicians tend to overtest when regret about erroneous decisions is extremely small. Finally, they explain variations in the practice of medicine. They demonstrate that in the same clinical situation, different decision makers might have different acceptable regret thresholds for withholding treatment, for ordering a diagnostic test, or for administering treatment. This in turn means that for some decision makers, the most rational strategy is to do nothing, whereas for others, it may be to order a diagnostic test, and still for others, choosing treatment may be the most rational course of action.
An efficient method for unfolding kinetic pressure driven VISAR data
Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James
2015-08-18
Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys.43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater.29, 181 (1998)] or a magnetic pressure [Lemkeet al., Intl J. Impact Eng.38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide amore » precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. As a result, the purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.« less
Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics
NASA Astrophysics Data System (ADS)
Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.
2011-05-01
In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.
Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E
2014-05-01
Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
van der Vorst, Emiel P C; Weber, Christian; Donners, Marjo M P C
2018-06-06
A disintegrin and metalloproteases (ADAMs) are membrane-bound enzymes responsible for the shedding or cleavage of various cell surface molecules, such as adhesion molecules, cytokines/chemokines and growth factors. This shedding can result in the release of soluble proteins that can exert agonistic or antagonistic functions. Additionally, ADAM-mediated cleavage can render these membrane proteins inactive. This review will describe the role and association of ADAMs in various pathologies with a main focus on ADAM10 and ADAM17 in atherosclerosis, including a brief overview of atherosclerosis-related ADAM substrates. Furthermore, ADAMs involvement in other metabolic and inflammatory diseases like diabetes, sepsis, Alzheimer's disease and rheumatoid arthritis will be highlighted. Subsequently, we will briefly discuss an interesting emerging field of research, i.e. the potential implications of ADAM expression in extracellular vesicles. Finally, several ADAM-based therapeutic and diagnostic (theranostic) opportunities will be discussed, while focusing on key questions about the required specificity and selectivity. Schattauer GmbH Stuttgart.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C
2018-03-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.
Development of an electrochemical biosensor for vitamin B12 using D-phenylalanine nanotubes
NASA Astrophysics Data System (ADS)
Moazeni, Maryam; Karimzadeh, Fathallah; Kermanpur, Ahmad; Allafchian, Alireza
2018-01-01
In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B.; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M.; Saltzman, Daniel A.; Konety, Badrinath R.
2017-01-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured. PMID:29608202
Radar analysis of free oscillations of rail for diagnostics defects
NASA Astrophysics Data System (ADS)
Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.
2018-05-01
One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.
Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study
NASA Astrophysics Data System (ADS)
Mayer, W. O. H.
1994-05-01
Coaxial injectors have proven to be advantageous for the injection, atomization and mixing of propellants in cryogenic H2/O2 rocket engines. Thereby, a round liquid oxygen jet is atomized by a fast, coaxial gaseous hydrogen jet. This article summarizes phenomenological studies of coaxial spray generation under a broad variation of influencing parameters including injector design, inflow, and fluid conditions. The experimental investigations, performed using spark light photography and high speed cinematography in a shadow graph setup as main diagnostic means, illuminate the most important processes leading to atomization. These are identified as turbulence in the liquid jet, surface instability, surface wave growth and droplet detachment. Numerical simulations including free surface flow phenomena are a further diagnostic tool to elucidate some atomization particulars. The results of the study are of general importance in the field of liquid atomization.
Molding cork sheets to complex shapes
NASA Technical Reports Server (NTRS)
Sharpe, M. H.; Simpson, W. G.; Walker, H. M.
1977-01-01
Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.
Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia
2012-01-01
Background Early and accurate diagnosis of pulmonary tuberculosis (TB) is critical for successful TB control. To assist in the diagnosis of smear-negative pulmonary TB, the World Health Organisation (WHO) recommends the use of a diagnostic algorithm. Our study evaluated the implementation of the national tuberculosis programme's diagnostic algorithm in routine health care settings in Jogjakarta, Indonesia. The diagnostic algorithm is based on the WHO TB diagnostic algorithm, which had already been implemented in the health facilities. Methods We prospectively documented the diagnostic work-up of all new tuberculosis suspects until a diagnosis was reached. We used clinical audit forms to record each step chronologically. Data on the patient's gender, age, symptoms, examinations (types, dates, and results), and final diagnosis were collected. Results Information was recorded for 754 TB suspects; 43.5% of whom were lost during the diagnostic work-up in health centres, 0% in lung clinics. Among the TB suspects who completed diagnostic work-ups, 51.1% and 100.0% were diagnosed without following the national TB diagnostic algorithm in health centres and lung clinics, respectively. However, the work-up in the health centres and lung clinics generally conformed to international standards for tuberculosis care (ISTC). Diagnostic delays were significantly longer in health centres compared to lung clinics. Conclusions The high rate of patients lost in health centres needs to be addressed through the implementation of TB suspect tracing and better programme supervision. The national TB algorithm needs to be revised and differentiated according to the level of care. PMID:22333111
Kwon, Yong Hoon; Kim, Yong Joo
2013-09-01
The clinical presentations of inflammatory bowel disease (IBD) prior to diagnosis are so diverse or vague that many of them waste time before final diagnosis. This study was undertaken to know the medical history of the pediatric patients until the final diagnosis could be reached. The medical records of all pediatric patients who were diagnosed with IBD (Crohn's disease [CD] in 14 children, ulcerative colitis [UC] in 17) during the last 13 years were reviewed. We investigated the length of the diagnostic time lag, chief clinical presentation, and any useful laboratory predictor among the routinely performed examinations. Indeterminate colitis was not included. The mean ages of children at the final diagnosis was similar in both diseases. As for the pre-clinical past history of bowel symptoms in CD patients, 5 were previously healthy, 9 had had 1-3 gastrointestinal (GI) symptoms, weight loss, bloody stool, anemia and rectal prolapse. With UC, 9 were previously healthy, 8 had had 1-3 GI symptoms, bloody stool, anorexia. The average diagnostic time lag with CD was 3.36 months, and with UC 2.2 months. Body mass index (BMI) and the initial basic laboratory data (white blood cell, hemoglobin, mean corpuscular volume, serum albumin, and serum total protein) were lower in CD, statistically significant only in BMI. IBD shows diverse clinical symptoms before its classical features, making the patients waste time until diagnosis. It is important to concern possibility of IBD even in the mildly sick children who do not show the characteristic symptoms of IBD.
Early diagnostic of concurrent gear degradation processes progressing under time-varying loads
NASA Astrophysics Data System (ADS)
Guilbault, Raynald; Lalonde, Sébastien
2016-08-01
This study develops a gear diagnostic procedure for the detection of multi- and concurrent degradation processes evolving under time-varying loads. Instead of a conventional comparison between a descriptor and an alarm level, this procedure bases its detection strategy on a descriptor evolution tracking; a lasting descriptor increase denotes the presence of ongoing degradation mechanisms. The procedure works from time domain residual signals prepared in the frequency domain, and accepts any gear conditions as reference signature. To extract the load fluctuation repercussions, the procedure integrates a scaling factor. The investigation first examines a simplification assuming a linear connection between the load and the dynamic response amplitudes. However, while generally valuable, the precision losses associated with large load variations may mask the contribution of tiny flaws. To better reflect the real non-linear relation, the paper reformulates the scaling factor; a power law with an exponent value of 0.85 produces noticeable improvements of the load effect extraction. To reduce the consequences of remaining oscillations, the procedure also includes a filtering phase. During the validation program, a synthetic wear progression assuming a commensurate relation between the wear depth and friction assured controlled evolutions of the surface degradation influence, whereas the fillet crack growth remained entirely determined by the operation conditions. Globally, the tested conditions attest that the final strategy provides accurate monitoring of coexisting isolated damages and general surface deterioration, and that its tracking-detection capacities are unaffected by severe time variations of external loads. The procedure promptly detects the presence of evolving abnormal phenomena. The tests show that the descriptor curve shapes virtually describe the constant wear progression superimposed on the crack length evolution. At the tooth fracture, the mean values of the residual signal evince strong perturbations, while after this episode, the monitoring curves continue signaling the ongoing wear process.
Surface tension in human pathophysiology and its application as a medical diagnostic tool
Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem
2015-01-01
Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Peters-Lidard, Christa D.; Kennedy, Aaron D.; Kumar, Sujay; Dong, Xiquan
2011-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
Measurements and Diagnostics of Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.
1999-01-01
The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.
The pursuit of better diagnostic performance: a human factors perspective.
Henriksen, Kerm; Brady, Jeff
2013-10-01
Despite the relatively slow start in treating diagnostic error as an amenable research topic at the beginning of the patient safety movement, interest has steadily increased over the past few years in the form of solicitations for research, regularly scheduled conferences, an expanding literature and even a new professional society. Yet improving diagnostic performance increasingly is recognised as a multifaceted challenge. With the aid of a human factors perspective, this paper addresses a few of these challenges, including questions that focus on who owns the problem, treating cognitive and system shortcomings as separate issues, why knowledge in the head is not enough, and what we are learning from health information technology (IT) and the use of checklists. To encourage empirical testing of interventions that aim to improve diagnostic performance, a systems engineering approach making use of rapid-cycle prototyping and simulation is proposed. To gain a fuller understanding of the complexity of the sociotechnical space where diagnostic work is performed, a final note calls for the formation of substantive partnerships with those in disciplines beyond the clinical domain.
[Positron emission tomography: diagnostic imaging on a molecular level].
Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B
2004-08-01
In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.
Udink Ten Cate, Floris Ea; Hannes, Tobias; Germund, Ingo; Khalil, Markus; Huntgeburth, Michael; Apitz, Christian; Brockmeier, Konrad; Sreeram, Narayanswami
2016-07-15
A standardised diagnostic definition of protein-losing enteropathy (PLE) in Fontan patients serves both patient care and research. The present study determined whether a diagnostic definition of PLE was routinely used in published clinical Fontan studies, and to identify potentially relevant diagnostic criteria for composing a uniform PLE definition. A systematic review was conducted in adherence to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations. Published clinical Fontan studies that were written in English and included at least four patients with PLE were selected. PLE definitions were quantitatively analysed using a lateral thinking tool in which definitions were fractionated into constituent pieces of information (building blocks or diagnostic criteria). We identified 364 papers. In the final analysis, data from 62 published articles were extracted. A diagnostic definition of PLE was used in only 27/62 (43.5%) of selected studies, and definitions were very heterogeneous. We identified eight major diagnostic criteria. Hypoalbuminaemia (n=23 studies, 85.2%), clinical presentation (n=18, 66.7%), documentation of enteric protein loss (n=16, 59.3%) and exclusion of other causes of hypoproteinaemia (n=17, 63.0%), were the most frequently used diagnostic criteria. Most studies used three diagnostic variables (n=13/27, 48.1%). Cut-off values for laboratory parameters (serum albumin, protein or faecal α-1-antitrypsin) were frequently incorporated in the PLE definition (n=16, 59.3%). Establishment of a universally accepted PLE definition for routine use in clinical research and daily practice is required. The diagnostic criteria may help constitute a diagnostic PLE definition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Driscoll, Ashley J.
Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system parameters such as particle diameter, initial analyte concentration and dissociation constants. The projected sensitivities over a broad range of assay conditions are examined and the governing regime of particle systems reported. The results provide metrics in the design of more robust analytics that are of particular interest for POC diagnostics.
NASA Astrophysics Data System (ADS)
Weinstein-Webb, Joseph A.
Cancer is the second leading cause of death globally according to the World Health Organization. Especially dangerous and lethal are the breast cancers that have genetic mutations for surface receptors utilized in drug therapy. This resistance calls for new and innovative treatments that be optimized for cancers based on an individual patient basis/cancer phenotype. Nanoparticle based diagnostics and therapeutics have recently emerged as a novel platform for management and mitigation of cancer at all stages. Gold nanostructures, specifically, have multiple characteristics that make them ideal for cancer theranostics including: (i) high biocompatibility, (ii) ease of bioconjugation, (iii) ability to tune their plasmon resonance to absorb tissue penetrating near infrared light, (iv) their use as contrast agents, and (v) ability to convert light to heat when excited at the plasmon resonance for photothermal ablation of cancer cells. Further, due to their adaptability as a platform, the nanoparticles affect the battle against cancer in multiple different strategies. These theranostic gold nanoprobes can be incorporated into point of care diagnostic (POCD) systems for biomarker detection, used as theranostic probes to delivery multiplex SERS receptor imaging and photothermal therapy or be involved in future immunotherapy treatments. In this work we demonstrate the use of near-infrared light absorbing multibranched gold nanoantennas (MGNs) to simultaneously deliver diagnostic and therapeutic (theranostic) capabilities in cancer models. More aggressive cancer cell lines require approaches that are versatile and multifunctional, and the possibilities for the usage in diagnostics or therapeutics for these theranostic MGNs are abundant.
Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.
Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor
2017-01-01
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Nowacki, Maciej; Peterson, Margarita; Kloskowski, Tomasz; McCabe, Eleanor; Guiral, Delia Cortes; Polom, Karol; Pietkun, Katarzyna; Zegarska, Barbara; Pokrywczynska, Marta; Drewa, Tomasz; Roviello, Franco; Medina, Edward A.; Habib, Samy L.; Zegarski, Wojciech
2017-01-01
The treatment of peritoneal surface malignances has changed considerably over the last thirty years. Unfortunately, the palliative is the only current treatment for peritoneal carcinomatosis (PC). Two primary intraperitoneal chemotherapeutic methods are used. The first is combination of cytoreductive surgery (CRS) and Hyperthermic IntraPEritoneal Chemotherapy (HIPEC), which has become the gold standard for many cases of PC. The second is Pressurized IntraPeritoneal Aerosol Chemotheprapy (PIPAC), which is promising direction to minimally invasive as safedrug delivery. These methods were improved through multicenter studies and clinical trials that yield important insights and solutions. Major method development has been made through nanomedicine, specifically nanoparticles. Here, we are presenting the latest advances of nanoparticles and their application to precision diagnostics and improved treatment strategies for PC. These advances will likely develop both HIPEC and PIPAC methods that used for in vitro and in vivo studies. Several benefits of using nanoparticles will be discussed including: 1) Nanoparticles as drug delivery systems; 2) Nanoparticles and Near Infrred (NIR) Irradiation; 3) use of nanoparticles in perioperative diagnostic and individualized treatment planning; 4) use of nanoparticles as anticancer dressing’s, hydrogels and as active beeds for optimal reccurence prevention; and 5) finally the curent in vitro and in vivo studies and clinical trials of nanoparticles. The current review highlighted use of nanoparticles as novel tools in improving drug delivery to be effective for treatment patients with peritoneal carcinomatosis. PMID:29100461
The 2016 Bowman Lecture Conjunctival curses: scarring conjunctivitis 30 years on
Dart, J K
2017-01-01
This review is in two sections. The first section summarises 35 conditions, both common and infrequent, causing cicatrising conjunctivitis. Guidelines for making a diagnosis are given together with the use of diagnostic tests, including direct and indirect immunofluorescence, and their interpretation. The second section evaluates our knowledge of ocular mucous membrane pemphigoid, which is the commonest cause of cicatrizing conjunctivitis in most developed countries. The clinical characteristics, demographics, and clinical signs of the disease are described. This is followed by a review and re-evaluation of the pathogenesis of conjunctival inflammation in mucous membrane pemphigoid (MMP), resulting in a revised hypothesis of the autoimmune mechanisms causing inflammation in ocular MMP. The relationship between inflammation and scarring in MMP conjunctiva is described. Recent research, describing the role of aldehyde dehydrogenase (ALDH) and retinoic acid (RA) in both the initiation and perpetuation of profibrotic activity in MMP conjunctival fibroblasts is summarised and the potential for antifibrotic therapy, using ALDH inhibition, is discussed. The importance of the management of the ocular surface in MMP is briefly summarised. This is followed with the rationale for the use of systemic immunomodulatory therapy, currently the standard of care for patients with active ocular MMP. The evidence for the use of these drugs is summarised and guidelines given for their use. Finally, the areas for research and innovation in the next decade are reviewed including the need for better diagnostics, markers of disease activity, and the potential for biological and topical therapies for both inflammation and scarring. PMID:28106896
New web-based algorithm to improve rigid gas permeable contact lens fitting in keratoconus.
Ortiz-Toquero, Sara; Rodriguez, Guadalupe; de Juan, Victoria; Martin, Raul
2017-06-01
To calculate and validate a new web-based algorithm for selecting the back optic zone radius (BOZR) of spherical gas permeable (GP) lens in keratoconus eyes. A retrospective calculation (n=35; multiple regression analysis) and a posterior prospective validation (new sample of 50 keratoconus eyes) of a new algorithm to select the BOZR of spherical KAKC design GP lenses (Conoptica) in keratoconus were conducted. BOZR calculated with the new algorithm, manufacturer guidelines and APEX software were compared with the BOZR that was finally prescribed. Number of diagnostic lenses, ordered lenses and visits to achieve optimal fitting were recorded and compared those obtained for a control group [50 healthy eyes fitted with spherical GP (BIAS design; Conoptica)]. The new algorithm highly correlated with the final BOZR fitted (r 2 =0.825, p<0.001). BOZR of the first diagnostic lens using the new algorithm demonstrated lower difference with the final BOZR prescribed (-0.01±0.12mm, p=0.65; 58% difference≤0.05mm) than with the manufacturer guidelines (+0.12±0.22mm, p<0.001; 26% difference≤0.05mm) and APEX software (-0.14±0.16mm, p=0.001; 34% difference≤0.05mm). Close numbers of diagnostic lens (1.6±0.8, 1.3±0.5; p=0.02), ordered lens (1.4±0.6, 1.1±0.3; P<0.001), and visits (3.4±0.7, 3.2±0.4; p=0.08) were required to fit keratoconus and healthy eyes, respectively. This new algorithm (free access at www.calculens.com) improves spherical KAKC GP fitting in keratoconus and can reduce the practitioner and patient chair time to achieve a final acceptable fit in keratoconus. This algorithm reduces differences between keratoconus GP fitting (KAKC design) and standard GP (BIAS design) lenses fitting in healthy eyes. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa; Kennedy, Aaron D.
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
New diagnostic technique for the study of turbulent boundary-layer separation
NASA Technical Reports Server (NTRS)
Horstman, C. C.; Owen, F. K.
1974-01-01
Description of a diagnostic technique for determining the unsteady character of turbulent boundary-layer separation. The technique uses thin platinum films mounted flush with the model surface. Voltages from these films provide measurements related to the flow character above the film. For illustration, results obtained by this technique are presented for the interaction of a hypersonic shock wave and a turbulent boundary layer, with and without separation.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi
2017-10-01
A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
NASA Astrophysics Data System (ADS)
Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong
2014-09-01
A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.
Lunar Surface Reference Missions: A Description of Human and Robotic Surface Activities
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Hoffman, Stephen J.; Snook, Kelly
2003-01-01
Most medical equipment to the International Space Station (ISS) is manisfested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical siruations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-opertor during an exam to facilitate the diagnosis in a timely fashion.
NASA Astrophysics Data System (ADS)
Sena Maia, Bruno
The presented work is focused on characterization of thermal treated recycled and virgin carbon fibers. Their thermal performances, chemical surface composition and its influence on interfacial adhesion phenomena on PP/PA12 hybrid matrix were compared using TGA, FTIR and XPS analysis. Additionally, differences between hybrid matrix structural performances of PP/PA12 using both surface modifiers PMPPIC and MAPP were investigated. Final mechanical properties improvements between 8% up to 17% were reached by addition of PMPPIC in PP/PA12 hybrid matrix. For PP/PA12 matrix reinforcement using virgin and recycled carbon fibers, impact energy was improved up to 98% compared with MAPP modified matrix leading to a novel composite with good energy absorption. Finally, wettability studies and surface free energy analysis of all materials studied support the effect of the addition of PMPPIC, MAPP and carbon fibers in final composite surface thermodynamics bringing important data correlation between interfacial adhesion mechanisms and final composite performance.
Radiation transfer of models of massive star formation. III. The evolutionary sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp
2014-06-20
We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... respirators, Respiratory support devices, Ventilators, Anthrax, Smallpox, Botulism, Acute radiation syndrome...] and Relenza[supreg] when used for pandemic purposes; (5) smallpox countermeasures; (6) acute radiation syndrome countermeasures; (7) pandemic influenza diagnostics, personal respiratory devices, and respiratory...
LDRD Final Review: Radiation Transport Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goorley, John Timothy; Morgan, George Lake; Lestone, John Paul
2017-06-22
Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.
Seibaek, Lene; Hounsgaard, Lise
2013-01-01
Introduction. This paper deals with secular, spiritual, and religious existential concerns during severe illness. Materials and Methods. Qualitative research interviews were made before and after surgery with women who underwent final diagnostics, surgery, and chemotherapy for ovarian cancer. By applying a phenomenological-hermeneutic text interpretation methodology the findings were systematically identified, placed into meaning structures, interpreted, and critically discussed. Results. The analysis offered insight into the complexity of challenges and personal development over time in being a woman with ovarian cancer during her first treatment period. Although the women experienced their health to be seriously threatened, they also felt hope, will, and courage. The diagnostic procedures and treatment had comprehensive impact on their lives. However, hope and spirituality were important resources of comfort and meaning. Conclusion. Hope and courage to face life represent significant personal resources that are created not only in the interplay between body and mind but also between patients and their healthcare professionals. The women dealt with this in a dialectical manner, so that hope and despair could be present simultaneously. In this process secular, spiritual, and religious existential meaning orientations assisted the women in creating new narratives and obtain new orientations in life. PMID:24288565
Hydraulic-fracture diagnostic research. Final report, December 1989-December 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, J.E.; Adair, R.G.; Clawson, G.E.
1992-05-01
The results of the research in microseismic methods to determine hydraulic fracture dimensions during the contract were significant. The GRI Hydraulic Fracture Test Site (HFTS) development planning was a major effort. Ten meetings of the Planning Team were coordinated and hosted. A statement of the HFTS mission, scope, objectives, and requirements was created. The primary objectives were to provide for interdisciplinary experiments on fracture modeling and fracture diagnostics. A Conceptual Plan for the HFTS was compiled by Teledyne Geotech and distributed at the Project Advisors Group meeting. An experiment at the Shell South Belridge Field in California was a directmore » analog of the HFTS. Multiple fracture stimulations were monitored from 3 wells with cemented-in geophones. Methods of handling and processing large data volumes in real time were established. The final fracture geometry did not fit the circular model. Fracture diagnostics were monitored at two GRI cooperative wells: the Enron S. Hogsback No. 13-8A and the Phillips Ward C No. 11. Theoretical studies indicate that crack waves might be used as an estimate of fracture length. After applying advanced signal enhancement techniques to low-frequency signals from 14 surveys, it was concluded that the data from presently available sondes is contaminated by sonde resonances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
2016-08-03
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Emerging Human Fetuin A Assays for Biomedical Diagnostics.
Vashist, Sandeep Kumar; Schneider, E Marion; Venkatesh, A G; Luong, John H T
2017-05-01
Human fetuin A (HFA) plays a prominent pathophysiological role in numerous diseases and pathophysiological conditions with considerable biomedical significance; one example is the formation of calciprotein particles in osteoporosis and impaired calcium metabolisms. With impressive advances in in vitro diagnostic assays during the last decade, ELISAs have become a workhorse in routine clinical diagnostics. Recent diagnostic formats involve high-sensitivity immunoassay procedures, surface plasmon resonance, rapid immunoassay chemistries, signal enhancement, and smartphone detection. The current trend is toward fully integrated lab-on-chip platforms with smartphone readouts, enabling health-care practitioners and even patients to monitor pathological changes in biomarker levels. This review provides a critical analysis of advances made in HFA assays along with the challenges and future prospects. Copyright © 2016 Elsevier Ltd. All rights reserved.
The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER
NASA Astrophysics Data System (ADS)
Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby
2014-01-01
The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.
Bazzini, G
2001-01-01
The epidemiology of work-related musculo-skeletal pathologies of the upper limbs has become significantly relevant in the last years, and a sharp increasing trend can be observed. This paper mainly focuses on the chronic inflammatory and degenerative conditions, which are more complex and difficult to accurately diagnose and treat. A synthesis of the diagnostic picture of the different types, involving the joints, muscles and tendons, and peripheral nerves is provided, with mention of the sensitivity and specificity of the main diagnostic tests. The possible entrapments of the radial, median and ulnar nerves are described in detail. Finally, a brief critical review on the principal movements of the upper limbs which are responsible of the onset of such conditions is presented.
Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2016-03-08
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2017-12-26
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Boonsarngsuk, Viboon; Kanoksil, Wasana; Laungdamerongchai, Sarangrat
2015-04-01
There are many sampling techniques dedicated to radial endobronchial ultrasound (R-EBUS) guided flexible bronchoscopy (FB). However, data regarding the diagnostic performances among bronchoscopic sampling techniques is limited. This study was conducted to compare the diagnostic yields among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions (PPLs). A prospective study was conducted on 112 patients who were diagnosed with PPLs and underwent R-EBUS-guided FB between Oct 2012 and Sep 2014. Sampling techniques-including transbronchial biopsy (TBB), brushing cell block, brushing smear, rinsed fluid of brushing, and bronchoalveolar lavage (BAL)-were evaluated for the diagnosis. The mean diameter of the PPLs was 23.5±9.5 mm. The final diagnoses included 76 malignancies and 36 benign lesions. The overall diagnostic yield of R-EBUS-guided bronchoscopy was 80.4%; TBB gave the highest yield among the 112 specimens: 70.5%, 34.8%, 62.5%, 50.0% and 42.0% for TBB, brushing cell block, brushing smear, rinsed brushing fluid, and BAL fluid (BALF), respectively (P<0.001). TBB provided high diagnostic yield irrespective of the size and etiology of the PPLs. The combination of TBB and brushing smear achieved the maximum diagnostic yield. Of 31 infectious PPLs, BALF culture gave additional microbiological information in 20 cases. TBB provided the highest diagnostic yield; however, to achieve the highest diagnostic performance, TBB, brushing smear and BAL techniques should be performed together.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Potency test. 660.4 Section 660.4 Food and Drugs... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen...
Experienced physicians benefit from analyzing initial diagnostic hypotheses
Bass, Adam; Geddes, Colin; Wright, Bruce; Coderre, Sylvain; Rikers, Remy; McLaughlin, Kevin
2013-01-01
Background Most incorrect diagnoses involve at least one cognitive error, of which premature closure is the most prevalent. While metacognitive strategies can mitigate premature closure in inexperienced learners, these are rarely studied in experienced physicians. Our objective here was to evaluate the effect of analytic information processing on diagnostic performance of nephrologists and nephrology residents. Methods We asked nine nephrologists and six nephrology residents at the University of Calgary and Glasgow University to diagnose ten nephrology cases. We provided presenting features along with contextual information, after which we asked for an initial diagnosis. We then primed participants to use either hypothetico-deductive reasoning or scheme-inductive reasoning to analyze the remaining case data and generate a final diagnosis. Results After analyzing initial hypotheses, both nephrologists and residents improved the accuracy of final diagnoses (31.1% vs. 65.6%, p < 0.001, and 40.0% vs. 70.0%, p < 0.001, respectively). We found a significant interaction between experience and analytic processing strategy (p = 0.02): nephrology residents had significantly increased odds of diagnostic success when using scheme-inductive reasoning (odds ratio [95% confidence interval] 5.69 [1.59, 20.33], p = 0.07), whereas the performance of experienced nephrologists did not differ between strategies (odds ratio 0.57 [0.23, 1.39], p = 0.20). Discussion Experienced nephrologists and nephrology residents can improve their performance by analyzing initial diagnostic hypotheses. The explanation of the interaction between experience and the effect of different reasoning strategies is unclear, but may relate to preferences in reasoning strategy, or the changes in knowledge structure with experience. PMID:26451203
Tracing the decision-making process of physicians with a Decision Process Matrix.
Hausmann, Daniel; Zulian, Cristina; Battegay, Edouard; Zimmerli, Lukas
2016-10-18
Decision-making processes in a medical setting are complex, dynamic and under time pressure, often with serious consequences for a patient's condition. The principal aim of the present study was to trace and map the individual diagnostic process of real medical cases using a Decision Process Matrix [DPM]). The naturalistic decision-making process of 11 residents and a total of 55 medical cases were recorded in an emergency department, and a DPM was drawn up according to a semi-structured technique following four steps: 1) observing and recording relevant information throughout the entire diagnostic process, 2) assessing options in terms of suspected diagnoses, 3) drawing up an initial version of the DPM, and 4) verifying the DPM, while adding the confidence ratings. The DPM comprised an average of 3.2 suspected diagnoses and 7.9 information units (cues). The following three-phase pattern could be observed: option generation, option verification, and final diagnosis determination. Residents strove for the highest possible level of confidence before making the final diagnoses (in two-thirds of the medical cases with a rating of practically certain) or excluding suspected diagnoses (with practically impossible in half of the cases). The following challenges have to be addressed in the future: real-time capturing of emerging suspected diagnoses in the memory of the physician, definition of meaningful information units, and a more contemporary measurement of confidence. DPM is a useful tool for tracing real and individual diagnostic processes. The methodological approach with DPM allows further investigations into the underlying cognitive diagnostic processes on a theoretical level and improvement of individual clinical reasoning skills in practice.
Chapter 4: Low compaction grading to enhance reforestation success on coal surface mines
R. Sweigard; J. Burger; C. Zipper; J. Skousen; C. Barton; P. Angel
2017-01-01
This Forest Reclamation Advisory describes final-grading techniques for reclaiming coal surface mines to forest postmining land uses. Final grading that leaves a loose soil and a rough surface increases survival of planted seedlings and forest productivity. Such practices are often less costly than traditional "smooth grading" while meeting the requirements...
Qin, Shan-yu; Zhou, You; Li, Ping; Jiang, Hai-xing
2014-01-01
Background The diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) cytology varies widely depending on the treatment method of the specimens. The present study aimed to evaluate the diagnostic efficacy of cell block (CB) immunohistochemistry, smear cytology (SC), and liquid-based cytology (LBC) in patients with pancreatic lesions without consulting an on-site cytopathologist. Methods This study prospectively enrolled 72 patients with pancreatic lesions. The EUS-FNA specimens were examined by SC, LBC, and CB immunohistochemistry. The diagnostic efficacy of the 3 methods was then compared. Patients’ final diagnosis was confirmed by surgical resection specimens, diagnostic imaging, and clinical follow-up. Results Our results included 60 malignant and 12 benign pancreatic lesions. The diagnostic sensitivity (90%), negative predictive value (66.7%), and accuracy (91.7%) of CB immunohistochemistry were significantly higher than those of SC (70.0%, 30.0%, and 75.0%, respectively) and LBC (73.3%, 31.6%, and 77.8%, respectively) (all P<0.05). The combination of CB and SC, or CB and LBC, did not significantly increase the efficacy compared to CB immunohistochemistry alone. Conclusion Our findings suggest that in the absence of an on-site cytopathologist, CB immunohistochemistry on EUS-FNA specimens offers a higher diagnostic efficacy in patients with pancreatic lesions than does SC and LBC. PMID:25259861
[Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].
Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I
2002-01-01
An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.
Ramnarayan, Padmanabhan; Kapoor, Ritika R; Coren, Michael; Nanduri, Vasantha; Tomlinson, Amanda L; Taylor, Paul M; Wyatt, Jeremy C; Britto, Joseph F
2003-01-01
Few previous studies evaluating the benefits of diagnostic decision support systems have simultaneously measured changes in diagnostic quality and clinical management prompted by use of the system. This report describes a reliable and valid scoring technique to measure the quality of clinical decision plans in an acute medical setting, where diagnostic decision support tools might prove most useful. Sets of differential diagnoses and clinical management plans generated by 71 clinicians for six simulated cases, before and after decision support from a Web-based pediatric differential diagnostic tool (ISABEL), were used. A composite quality score was calculated separately for each diagnostic and management plan by considering the appropriateness value of each component diagnostic or management suggestion, a weighted sum of individual suggestion ratings, relevance of the entire plan, and its comprehensiveness. The reliability and validity (face, concurrent, construct, and content) of these two final scores were examined. Two hundred fifty-two diagnostic and 350 management suggestions were included in the interrater reliability analysis. There was good agreement between raters (intraclass correlation coefficient, 0.79 for diagnoses, and 0.72 for management). No counterintuitive scores were demonstrated on visual inspection of the sets. Content validity was verified by a consultation process with pediatricians. Both scores discriminated adequately between the plans of consultants and medical students and correlated well with clinicians' subjective opinions of overall plan quality (Spearman rho 0.65, p < 0.01). The diagnostic and management scores for each episode showed moderate correlation (r = 0.51). The scores described can be used as key outcome measures in a larger study to fully assess the value of diagnostic decision aids, such as the ISABEL system.
Diagnostics of transparent polymer coatings of metal items
NASA Astrophysics Data System (ADS)
Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.
2017-08-01
The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.
Real-time interferometric diagnostics of rubidium plasma
NASA Astrophysics Data System (ADS)
Djotyan, G. P.; Bakos, J. S.; Kedves, M. Á.; Ráczkevi, B.; Dzsotjan, D.; Varga-Umbrich, K.; Sörlei, Zs.; Szigeti, J.; Ignácz, P.; Lévai, P.; Czitrovszky, A.; Nagy, A.; Dombi, P.; Rácz, P.
2018-03-01
A method of interferometric real-time diagnostics is developed and applied to rubidium plasma created by strong laser pulses in the femtosecond duration range at different initial rubidium vapor densities using a Michelson-type interferometer. A cosine fit with an exponentially decaying relative phase is applied to the obtained time-dependent interferometry signals to measure the density-length product of the created plasma and its recombination time constant. The presented technique may be applicable for real-time measurements of rubidium plasma dynamics in the AWAKE experiment at CERN, as well as for real-time diagnostics of plasmas created in different gaseous media and on surfaces of solid targets.
The cobas® 6800/8800 System: a new era of automation in molecular diagnostics.
Cobb, Bryan; Simon, Christian O; Stramer, Susan L; Body, Barbara; Mitchell, P Shawn; Reisch, Natasa; Stevens, Wendy; Carmona, Sergio; Katz, Louis; Will, Stephen; Liesenfeld, Oliver
2017-02-01
Molecular diagnostics is a key component of laboratory medicine. Here, the authors review key triggers of ever-increasing automation in nucleic acid amplification testing (NAAT) with a focus on specific automated Polymerase Chain Reaction (PCR) testing and platforms such as the recently launched cobas® 6800 and cobas® 8800 Systems. The benefits of such automation for different stakeholders including patients, clinicians, laboratory personnel, hospital administrators, payers, and manufacturers are described. Areas Covered: The authors describe how molecular diagnostics has achieved total laboratory automation over time, rivaling clinical chemistry to significantly improve testing efficiency. Finally, the authors discuss how advances in automation decrease the development time for new tests enabling clinicians to more readily provide test results. Expert Commentary: The advancements described enable complete diagnostic solutions whereby specific test results can be combined with relevant patient data sets to allow healthcare providers to deliver comprehensive clinical recommendations in multiple fields ranging from infectious disease to outbreak management and blood safety solutions.
Case Report: SPECT/CT as the New Diagnostic Tool for Specific Wrist Pathology.
Linde, Musters; Ten Broek, M; Kraan, G A
2017-01-01
Single photon emission computed tomography has been introduced as a promising new diagnostic tool in orthopaedic pathology since the early 90'. Computed tomography, the combined with SPECT, gives insight in the specific sight of wrist pathology. Literature already supports introduction of SPECT/CT in wrist pathology, but clinical application is lagging. A 40yr old patient reported first in 2004 with persisting pain after a right distal radius fracture. Several diagnostics and operative interventions were performed, all unsuccessful. Because of the persisting pain a SPECT-CT was performed which showed a cyst in the hamate bone, which was successfully enucleated. The patient was finally pain free at recent follow-up. With a QDash-score of 43 and a PRW (H) E-DLV-score of 58/150. In this case report, SPECT/CT proved a very sensitive diagnostic tool for specific pathology of the wrist. It offered precise localisation and thereby the clinically suspected diagnosis was confirmed and the patient successfully treated.
Evaluation of diagnostic accuracy in detecting ordered symptom statuses without a gold standard
Wang, Zheyu; Zhou, Xiao-Hua; Wang, Miqu
2011-01-01
Our research is motivated by 2 methodological problems in assessing diagnostic accuracy of traditional Chinese medicine (TCM) doctors in detecting a particular symptom whose true status has an ordinal scale and is unknown—imperfect gold standard bias and ordinal scale symptom status. In this paper, we proposed a nonparametric maximum likelihood method for estimating and comparing the accuracy of different doctors in detecting a particular symptom without a gold standard when the true symptom status had an ordered multiple class. In addition, we extended the concept of the area under the receiver operating characteristic curve to a hyper-dimensional overall accuracy for diagnostic accuracy and alternative graphs for displaying a visual result. The simulation studies showed that the proposed method had good performance in terms of bias and mean squared error. Finally, we applied our method to our motivating example on assessing the diagnostic abilities of 5 TCM doctors in detecting symptoms related to Chills disease. PMID:21209155
Women-specific mental disorders in DSM-V: are we failing again?
Wittchen, Hans-Ulrich
2010-02-01
Despite a wealth of studies on differences regarding the biobehavioral and social-psychological bases of mental disorders in men and women and repeated calls for increased attention, women-specific issues have so far not been comprehensively addressed in past diagnostic classification systems of mental disorders. There is also increasing evidence that this situation will not change significantly in the upcoming revisions of ICD-11 and DSM-V. This paper explores reasons for this continued failure, highlighting three major barriers: the fragmentation of the field of women's mental health research, lack of emphasis on diagnostic classificatory issues beyond a few selected clinical conditions, and finally, the "current rules of game" used by the current DSM-V Task Forces in the revision process of DSM-V. The paper calls for concerted efforts of researchers, clinicians, and other stakeholders within a more coherent and comprehensive framework aiming at broader coverage of women-specific diagnostic classificatory issues in future diagnostic systems.
Particle Engineering in Pharmaceutical Solids Processing: Surface Energy Considerations
Williams, Daryl R.
2015-01-01
During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912
Adolescent Sociopaths. Revised.
ERIC Educational Resources Information Center
Chapple, Eliot D.
Presented is the final report of a research project on the programed training and placement of nonpsychotic disturbed adolescents. Eleven chapters cover topics which include the following: psychiatry and the sociopaths and psychopaths; boys dealt with in the project; development of the programed interaction diagnostic interview; disturbances to…
Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers
NASA Astrophysics Data System (ADS)
Besant, Justin
The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics for diseases not previously detectable at the point-of-care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.M.; Barnard, J.J.; Henestroza, E.
2009-09-30
This milestone has been met. The effort contains two main components: (1) Experimental results of warm dense matter target experiments on optimized NDCX-I configurations that include measurements of target temperature and transient target behavior. (2) A theoretical model of the target response to beam heating that includes an equilibrium heating model of the target foil and a model for droplet formation in the target for comparison with experimental results. The experiments on ion-beam target heating use a 300-350-keV K{sup +} pulsed beam from the Neutralized Compression Drift Experiment (NDCX-I) accelerator at LBNL. The NDCX-I accelerator delivers an uncompressed pulse beammore » of several microseconds with a typical power density of >100 kW/cm{sup 2} over a final focus spot size of about 1 mm. An induction bunching module the NDCX-I compresses a portion of the beam pulse to reach a much higher power density over 2 nanoseconds. Under these conditions the free-standing foil targets are rapidly heated to temperatures to over 4000 K. We model the target thermal dynamics using the equation of heat conduction for the temperature T(x,t) as a function of time (t) and spatial dimension along the beam direction (x). The competing cooling processes release energy from the surface of the foil due to evaporation, radiation, and thermionic (Richardson) emission. A description of the experimental configuration of the target chamber and results from initial beam-target experiments are reported in our FY08 4th Quarter and FY09 2nd Quarter Milestone Reports. The WDM target diagnostics include a high-speed multichannel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. The fast optical pyrometer is a unique and significant new diagnostic which provides valuable information on the temperature evolution of the heated target.« less
Simon, Andor E; Borgwardt, Stefan; Lang, Undine E; Roth, Binia
2014-07-01
To discuss the diagnostic validity of unusual bodily perceptions along the spectrum from age-specific, often transitory and normal, to pathological phenomena in adolescence to hypochondriasis and finally to psychosis. Critical literature review of the cornerstone diagnostic groups along the spectrum embracing anxiety and cenesthopathy in adolescence, hypochondriasis, and cenesthopathy and psychosis, followed by a discussion of the diagnostic overlaps along this spectrum. The review highlights significant overlaps between the diagnostic cornerstones. It is apparent that adolescents with unusual bodily perceptions may conceptually qualify for more than one diagnostic group along the spectrum. To determine whether cenesthopathies in adolescence mirror emerging psychosis, a number of issues need to be considered, i.e. age and mode of onset, gender, level of functioning and drug use. The role of overvalued ideas at the border between hypochondriasis and psychosis must be considered. As unusual bodily symptoms may in some instances meet formal psychosis risk criteria, a narrow understanding of these symptoms may lead to both inappropriate application of the new DSM-5 attenuated psychosis syndrome and of treatment selection. On the other hand, the possibility of a psychotic dimension of unusual bodily symptoms in adolescents must always be considered as most severe expression of the cenesthopathy spectrum. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical Decision Rules for Diagnostic Imaging in the Emergency Department: A Research Agenda.
Finnerty, Nathan M; Rodriguez, Robert M; Carpenter, Christopher R; Sun, Benjamin C; Theyyunni, Nik; Ohle, Robert; Dodd, Kenneth W; Schoenfeld, Elizabeth M; Elm, Kendra D; Kline, Jeffrey A; Holmes, James F; Kuppermann, Nathan
2015-12-01
Major gaps persist in the development, validation, and implementation of clinical decision rules (CDRs) for diagnostic imaging. The objective of this working group and article was to generate a consensus-based research agenda for the development and implementation of CDRs for diagnostic imaging in the emergency department (ED). The authors followed consensus methodology, as outlined by the journal Academic Emergency Medicine (AEM), combining literature review, electronic surveys, telephonic communications, and a modified nominal group technique. Final discussions occurred in person at the 2015 AEM consensus conference. A research agenda was developed, prioritizing the following questions: 1) what are the optimal methods to justify the derivation and validation of diagnostic imaging CDRs, 2) what level of evidence is required before disseminating CDRs for widespread implementation, 3) what defines a successful CDR, 4) how should investigators best compare CDRs to clinical judgment, and 5) what disease states are amenable (and highest priority) to development of CDRs for diagnostic imaging in the ED? The concepts discussed herein demonstrate the need for further research on CDR development and implementation regarding diagnostic imaging in the ED. Addressing this research agenda should have direct applicability to patients, clinicians, and health care systems. © 2015 by the Society for Academic Emergency Medicine.
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System
NASA Technical Reports Server (NTRS)
Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.
2010-01-01
The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.
Might telesonography be a new useful diagnostic tool aboard merchant ships? A pilot study.
Nikolić, Nebojsa; Mozetić, Vladimir; Modrcin, Bob; Jaksić, Slaven
2006-01-01
Developments of new, ultra-light diagnostic ultrasound systems (UTS) and modern satellite telecommunication networks are opening new potential applications for diagnostic sonography. One such area is maritime medicine. It is our belief that ship officers can be trained to use diagnostic ultrasound systems with the aim to generate ultrasound images of sufficient quality to be interpreted by medical professionals qualified to read sonograms. To test our thesis we included lectures and hands on scanning practice to the current maritime medicine curriculum at the Faculty of Maritime Studies at the University of Rijeka. Following the didactic and practical training all participating students examined several patients, some with pathology some without. Images obtained by students were then submitted for interpretation to a qualified physician (specialist of general surgery trained in UTS) who was unaware of the patient's pathology. In total, 37 students performed 37 examinations and made 45 ultrasound images, on 3 patients. In this paper, results on this pilot study are presented. It is possible to teach ship officers to produce diagnostically usable ultrasound pictures aboard ships at sea. But before reaching final conclusion about applicability of telesonography on board merchant ships, further studies are necessary, that would include studies of economic feasibility, and on validity of introducing such a diagnostic tool to the maritime medical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.
2012-04-15
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less
A Research Agenda for Malaria Eradication: Diagnoses and Diagnostics
2011-01-01
Many of malaria's signs and symptoms are indistinguishable from those of other febrile diseases. Detection of the presence of Plasmodium parasites is essential, therefore, to guide case management. Improved diagnostic tools are required to enable targeted treatment of infected individuals. In addition, field-ready diagnostic tools for mass screening and surveillance that can detect asymptomatic infections of very low parasite densities are needed to monitor transmission reduction and ensure elimination. Antibody-based tests for infection and novel methods based on biomarkers need further development and validation, as do methods for the detection and treatment of Plasmodium vivax. Current rapid diagnostic tests targeting P. vivax are generally less effective than those targeting Plasmodium falciparum. Moreover, because current drugs for radical cure may cause serious side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency, more information is needed on the distribution of G6PD-deficiency variants as well as tests to identify at-risk individuals. Finally, in an environment of very low or absent malaria transmission, sustaining interest in elimination and maintaining resources will become increasingly important. Thus, research is required into the context in which malaria diagnostic tests are used, into diagnostics for other febrile diseases, and into the integration of these tests into health systems. PMID:21311583
Menem, R; Barngkgei, I; Beiruti, N; Al Haffar, I; Joury, Easter
2017-04-01
The aim of this in vivo study was to test the diagnostic accuracy of a pen-type laser fluorescence (LFpen) device in detecting approximal caries lesions, in posterior permanent teeth, at the cavitation and non-cavitation thresholds, and compare it with that of digital bitewing radiography. Thirty patients (aged 18-37), who attended the Faculty of Dentistry at Damascus University for a dental examination, were consecutively screened. Ninety approximal surfaces of posterior permanent teeth without frank cavitations, enamel hypoplasia or restorations were selected and examined using the LFpen (DIAGNOdent pen) and digital bitewing radiography. The reference standard was the visual-tactile inspection, after performing temporary tooth separation, using orthodontic rubber rings, placed for 7 days. The status of included approximal surfaces was recorded as intact/sound, with white/brown spots or cavitated. One trained examiner performed all examinations. There were statistically significant differences in LFpen readings between the three types of approximal surface status (P < 0.001). The optimal cut-off values for detecting approximal caries lesions in posterior permanent teeth were >16 and 8 at the cavitation and non-cavitation thresholds respectively. The sensitivity, specificity and accuracy (measured by the area under the receiver-operating characteristic curve) were 100, 85 and 95 and 92, 90 and 95% at the cavitation and non-cavitation thresholds respectively. The intra-class correlation coefficient for intra-examiner reliability was 0.95. The diagnostic accuracy of the LFpen was significantly higher than that of digital bitewing radiography (P < 0.001). The LFpen's diagnostic performance was accurate and significantly better than digital bitewing radiography in detecting approximal caries lesions, in posterior permanent teeth.
Scanning and Measuring Device for Diagnostic of Barrel Bore
NASA Astrophysics Data System (ADS)
Marvan, Ales; Hajek, Josef; Vana, Jan; Dvorak, Radim; Drahansky, Martin; Jankovych, Robert; Skvarek, Jozef
The article discusses the design, mechanical design, electronics and software for robot diagnosis of barrels with caliber of 120 mm to 155 mm. This diagnostic device is intended primarily for experimental research and verification of appropriate methods and technologies for the diagnosis of the main bore guns. Article also discusses the design of sensors and software, the issue of data processing and image reconstruction obtained by scanning of the surface of the bore.
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
Lorincz, Attila; Raison, Claire
2015-01-01
Interview with Attila Lorincz by Claire Raison (Commissioning Editor) To mark the beginning of the 15th year of Expert Review of Molecular Diagnostics, the journal's Editor-in-Chief shares his expert knowledge on translational diagnostics, his opinion on recent controversies and his predictions for molecular diagnostics in 2015 and beyond. Attila Lorincz received his doctorate from Trinity College, Dublin, Republic of Ireland, and went on to become a research fellow at the University of California, Santa Barbara, CA, USA. During Professor Lorincz's research on human papillomavirus (HPV), he found several important and novel carcinogenic HPV types and pioneered the use of HPV DNA testing for clinical diagnostics. In 1988, Professor Lorincz's team produced the first HPV test to be FDA-approved for patients and in 2003, for general population cervical precancer screening. Now Professor of Molecular Epidemiology at the Centre for Cancer Prevention, Queen Mary University of London, UK, he and his team are furthering translational research into DNA methylation assays for cancer risk prediction.
Diagnostic decision-making and strategies to improve diagnosis.
Thammasitboon, Satid; Cutrer, William B
2013-10-01
A significant portion of diagnostic errors arises through cognitive errors resulting from inadequate knowledge, faulty data gathering, and/or faulty verification. Experts estimate that 75% of diagnostic failures can be attributed to clinician diagnostic thinking failure. The cognitive processes that underlie diagnostic thinking of clinicians are complex and intriguing, and it is imperative that clinicians acquire explicit appreciation and application of different cognitive approaches to make decisions better. A dual-process model that unifies many theories of decision-making has emerged as a promising template for understanding how clinicians think and judge efficiently in a diagnostic reasoning process. The identification and implementation of strategies for decreasing or preventing such diagnostic errors has become a growing area of interest and research. Suggested strategies to decrease diagnostic error incidence include increasing clinician's clinical expertise and avoiding inherent cognitive errors to make decisions better. Implementing Interventions focused solely on avoiding errors may work effectively for patient safety issues such as medication errors. Addressing cognitive errors, however, requires equal effort on expanding the individual clinician's expertise. Providing cognitive support to clinicians for robust diagnostic decision-making serves as the final strategic target for decreasing diagnostic errors. Clinical guidelines and algorithms offer another method for streamlining decision-making and decreasing likelihood of cognitive diagnostic errors. Addressing cognitive processing errors is undeniably the most challenging task in reducing diagnostic errors. While many suggested approaches exist, they are mostly based on theories and sciences in cognitive psychology, decision-making, and education. The proposed interventions are primarily suggestions and very few of them have been tested in the actual practice settings. Collaborative research effort is required to effectively address cognitive processing errors. Researchers in various areas, including patient safety/quality improvement, decision-making, and problem solving, must work together to make medical diagnosis more reliable. © 2013 Mosby, Inc. All rights reserved.
Identification of factors associated with diagnostic error in primary care.
Minué, Sergio; Bermúdez-Tamayo, Clara; Fernández, Alberto; Martín-Martín, José Jesús; Benítez, Vivian; Melguizo, Miguel; Caro, Araceli; Orgaz, María José; Prados, Miguel Angel; Díaz, José Enrique; Montoro, Rafael
2014-05-12
Missed, delayed or incorrect diagnoses are considered to be diagnostic errors. The aim of this paper is to describe the methodology of a study to analyse cognitive aspects of the process by which primary care (PC) physicians diagnose dyspnoea. It examines the possible links between the use of heuristics, suboptimal cognitive acts and diagnostic errors, using Reason's taxonomy of human error (slips, lapses, mistakes and violations). The influence of situational factors (professional experience, perceived overwork and fatigue) is also analysed. Cohort study of new episodes of dyspnoea in patients receiving care from family physicians and residents at PC centres in Granada (Spain). With an initial expected diagnostic error rate of 20%, and a sampling error of 3%, 384 episodes of dyspnoea are calculated to be required. In addition to filling out the electronic medical record of the patients attended, each physician fills out 2 specially designed questionnaires about the diagnostic process performed in each case of dyspnoea. The first questionnaire includes questions on the physician's initial diagnostic impression, the 3 most likely diagnoses (in order of likelihood), and the diagnosis reached after the initial medical history and physical examination. It also includes items on the physicians' perceived overwork and fatigue during patient care. The second questionnaire records the confirmed diagnosis once it is reached. The complete diagnostic process is peer-reviewed to identify and classify the diagnostic errors. The possible use of heuristics of representativeness, availability, and anchoring and adjustment in each diagnostic process is also analysed. Each audit is reviewed with the physician responsible for the diagnostic process. Finally, logistic regression models are used to determine if there are differences in the diagnostic error variables based on the heuristics identified. This work sets out a new approach to studying the diagnostic decision-making process in PC, taking advantage of new technologies which allow immediate recording of the decision-making process.
Identification of factors associated with diagnostic error in primary care
2014-01-01
Background Missed, delayed or incorrect diagnoses are considered to be diagnostic errors. The aim of this paper is to describe the methodology of a study to analyse cognitive aspects of the process by which primary care (PC) physicians diagnose dyspnoea. It examines the possible links between the use of heuristics, suboptimal cognitive acts and diagnostic errors, using Reason’s taxonomy of human error (slips, lapses, mistakes and violations). The influence of situational factors (professional experience, perceived overwork and fatigue) is also analysed. Methods Cohort study of new episodes of dyspnoea in patients receiving care from family physicians and residents at PC centres in Granada (Spain). With an initial expected diagnostic error rate of 20%, and a sampling error of 3%, 384 episodes of dyspnoea are calculated to be required. In addition to filling out the electronic medical record of the patients attended, each physician fills out 2 specially designed questionnaires about the diagnostic process performed in each case of dyspnoea. The first questionnaire includes questions on the physician’s initial diagnostic impression, the 3 most likely diagnoses (in order of likelihood), and the diagnosis reached after the initial medical history and physical examination. It also includes items on the physicians’ perceived overwork and fatigue during patient care. The second questionnaire records the confirmed diagnosis once it is reached. The complete diagnostic process is peer-reviewed to identify and classify the diagnostic errors. The possible use of heuristics of representativeness, availability, and anchoring and adjustment in each diagnostic process is also analysed. Each audit is reviewed with the physician responsible for the diagnostic process. Finally, logistic regression models are used to determine if there are differences in the diagnostic error variables based on the heuristics identified. Discussion This work sets out a new approach to studying the diagnostic decision-making process in PC, taking advantage of new technologies which allow immediate recording of the decision-making process. PMID:24884984
Interfacing Nanoparticles and Biology: New Strategies for Biomedicine
Tonga, Gulen Yesilbag; Saha, Krishnendu; Rotello, Vincent M.
2014-01-01
The exterior surface of nanoparticles (NPs) dictates the behavior of these systems with the outside world. Understanding the interactions of NP surface functionality with biosystems enables the design and fabrication of effective platforms for therapeutics, diagnostics, and imaging agents. In this review, we highlight the role of chemistry in the engineering of nanomaterials, focusing on the fundamental role played by surface chemistry in controlling the interaction of NPs with proteins and cells. PMID:24105763
Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.
2017-01-01
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821
Gynecologic electrical impedance tomograph
NASA Astrophysics Data System (ADS)
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
NASA Astrophysics Data System (ADS)
Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao
2013-02-01
The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.
Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R
2017-01-14
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Bang, Ji Young; Navaneethan, Udayakumar; Hasan, Muhammad K; Hawes, Robert; Varadarajulu, Shyam
2018-03-11
Outcomes of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) evaluation vary with technique, needles, and methods of specimen evaluation. We performed a direct comparison of diagnostic yields of EUS-FNA samples collected using different gauge needles (22- vs 25-gauge), with or without suction. We performed a randomized controlled study of 352 patients with suspected pancreatic masses, referred for EUS-FNA at a tertiary referral center. Patients were randomly assigned to 22-gauge needles with or without suction or 25-gauge needles with or without suction. Specimens were evaluated offsite by cell block and rapid onsite cytologic evaluation (ROSE). Final diagnoses were made based on histologic analyses or 12-month follow-up evaluations. The primary outcome was diagnostic adequacy of cell blocks. Secondary outcomes were operating characteristics of ROSE and EUS-FNA, number of passes required for accurate onsite diagnosis, and amount of blood in specimens. The final diagnoses were malignancy (81.5% of patients) and benign disease (17.0% of patients); 1.4% of patients were lost during follow up. Cell block, ROSE, and EUS-FNA led to diagnostic accuracies of 71.9%, 95.5%, and 96.6%, respectively. A 22-gauge needle with suction was associated with more passes for adequate onsite diagnosis (P = .003) and specimens contained more blood (P = .01). Diagnostic accuracy of specimens collected by transduodenal EUS-FNA was lower with 22-gauge needles with suction compared to other techniques (P = .004). In a randomized trial of patients undergoing EUS-FNA for pancreatic masses, samples collected with 22-gauge vs 25-gauge needles performed equally well for offsite specimen evaluation. Use of suction appears to increase number of passes needed and specimen bloodiness. Specimen collection techniques should be individualized based on method of evaluation. ClinicalTrials.gov no: NCT02424838. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Ceci, Francesco; Castellucci, Paolo; Mapelli, Paola; Incerti, Elena; Picchio, Maria; Fanti, Stefano
2016-10-01
The aim of this review is to report on the value of 11 C-choline PET imaging as a diagnostic procedure for metastasis-directed therapies. Furthermore, the role of 11 C-choline PET/CT as a diagnostic tool for monitoring castration-resistant prostate cancer patients treated with systematic therapy is assessed. Finally, the role of 11 C-choline PET/CT in the prediction of survival in both castration-resistant prostate cancer patients and hormone-naïve patients is investigated. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The DSM-III concept of organic brain syndrome.
Fox, H A
1983-04-01
The shortcomings of the DSM-II classification of organic brain syndrome are described, including the limitation of the concept to the global brain disorders; the idiosyncratic use of the terms acute and chronic; and the unsatisfactory categories psychotic and nonpsychotic. Organic brain syndrome is defined according to DSM-III and the 10 separate brain syndrome categories are outlined. The diagnostic criteria for each category are listed and the general principles underlying the criteria are described. Finally, the goals of the authors' of DSM-III to enhance diagnostic reliability and validity are discussed and the impact of the new nomenclature is assessed.
Photovoltaic array space power plus diagnostics experiment
NASA Technical Reports Server (NTRS)
Burger, D. R.
1990-01-01
The objective is to summarize the five years of hardware development and fabrication represented by the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) Instrument. The original PASP Experiment requirements and background is presented along with the modifications which were requested to transform the PASP Experiment into the PASP Plus Instrument. The PASP Plus hardware and software is described. Test results for components and subsystems are given as well as final system tests. Also included are appendices which describe the major subsystems and present supporting documentation such as block diagrams, schematics, circuit board artwork, drawings, test procedures and test reports.
Key Issues in Hymenoptera Venom Allergy: An Update.
Alfaya Arias, T; Soriano Gómis, V; Soto Mera, T; Vega Castro, A; Vega Gutiérrez, J M; Alonso Llamazares, A; Antolín Amérigo, D; Carballada Gonzalez, F J; Dominguez Noche, C; Gutierrez Fernandez, D; Marques Amat, L; Martinez Arcediano, A; Martinez San Ireneo, M; Moreno Ancillo, A; Puente Crespo, Y; Ruiz Leon, B; Sánchez Morillas, L
In this review, the Hymenoptera Allergy Committee of the SEAIC analyzes the most recent scientific literature addressing problems related to the diagnosis of hymenoptera allergy and to management of venom immunotherapy. Molecular diagnosis and molecular risk profiles are the key areas addressed. The appearance of new species of hymenoptera that are potentially allergenic in Spain and the associated diagnostic and therapeutic problems are also described. Finally, we analyze the issue of mast cell activation syndrome closely related to hymenoptera allergy, which has become a new diagnostic challenge for allergists given its high prevalence in patients with venom anaphylaxis.
Zieliński, Michał; Hartleb, Marek; Sitek, Piotr; Ziora, Dariusz
2017-01-01
This paper presents a case of a young patient with cyanosis and digital clubbing, until then an active, sporty person. He sought medical assistance due to the growing dyspnoea and the drop of effort tolerance. Initially the diagnostic process focused on the confirmation of the suspicion of pulmonary fibrosis or another interstitial lung disease as causes of the respiratory failure. Due to the atypical presentation of the symptoms, reaching the final diagnosis of digestive system disease with lung involvement required a more thorough multifaceted diagnostics of a number of systems and organs.
Dry Eye Disease: Concordance Between the Diagnostic Tests in African Eyes.
Onwubiko, Stella N; Eze, Boniface I; Udeh, Nnenma N; Onwasigwe, Ernest N; Umeh, Rich E
2016-11-01
To assess the concordance between the diagnostic tests for dry eye disease (DED) in a Nigerian hospital population. The study was a hospital-based cross-sectional survey of adults (≥18 years) presenting at the eye clinic of the University of Nigeria Teaching Hospital (UNTH), Enugu; September-December, 2011. Participants' socio-demographic data were collected. Each subject was assessed for DED using the "Ocular Surface Disease Index" (OSDI) questionnaire, tear-film breakup time (TBUT), and Schirmer test. The intertest concordance was assessed using kappa statistic, correlation, and regression coefficients. The participants (n=402; men: 193) were aged 50.1±19.1 standard deviation years (range: 18-94 years). Dry eye disease was diagnosed in 203 by TBUT, 170 by Schirmer test, and 295 by OSDI; the concordance between the tests were OSDI versus TBUT (Kappa, κ=-0.194); OSDI versus Schirmer (κ=-0.276); and TBUT versus Schirmer (κ=0.082). Ocular Surface Disease Index was inversely correlated with Schirmer test (Spearman ρ=-0.231, P<0.001) and TBUT (ρ=-0.237, P<0.001). In the linear regression model, OSDI was poorly predicted by TBUT (β=-0.09; 95% confidence interval (CI): -0.26 to -0.03, P=0.14) and Schirmer test (β=-0.35, 95% CI: -0.53 to -0.18, P=0.18). At UNTH, there is poor agreement, and almost equal correlation, between the subjective and objective tests for DED. Therefore, the selection of diagnostic test for DED should be informed by cost-effectiveness and diagnostic resource availability, not diagnostic efficiency or utility.
NASA Astrophysics Data System (ADS)
Vetrov, A.
2009-05-01
The condition of underground constructions, communication and supply systems in the cities has to be periodically monitored and controlled in order to prevent their breakage, which can result in serious accident, especially in urban area. The most risk of damage have the underground construction made of steal such as pipelines widely used for water, gas and heat supply. To ensure the pipeline survivability it is necessary to carry out the operative and inexpensive control of pipelines condition. Induced electromagnetic methods of geophysics can be applied to provide such diagnostics. The highly developed surface in urbane area is one of cause hampering the realization of electromagnetic methods of diagnostics. The main problem is in finding of an appropriate place for the source line and electrodes on a limited surface area and their optimal position relative to the observation path to minimize their influence on observed data. Author made a number of experiments of an underground heating system pipeline diagnostics using different position of the source line and electrodes. The experiments were made on a 200 meters section over 2 meters deep pipeline. The admissible length of the source line and angle between the source line and the observation path were determined. The minimal length of the source line for the experiment conditions and accuracy made 30 meters, the maximum admissible angle departure from the perpendicular position made 30 degrees. The work was undertaken in cooperation with diagnostics company DIsSO, Saint-Petersburg, Russia.
Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er
2012-12-01
Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.
Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
..., such as observational research or research toward the development of diagnostic or outcome assessment... Institute on Disability and Rehabilitation Research--Rehabilitation Research and Training Centers AGENCY... for the Disability and Rehabilitation Research Projects and Centers Program administered by the...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Ellorhaoui, M; Schultze, W
1977-01-15
On the basis of a survey is attempted to describe mode of development, symptomatology, individual forms and the different possibilities of therapy of the spontaneous hypoglycaemias. A particularly broad range was devoted to the cerebral sequelae, since in these cases--according to our experience--on account of simulation of neurologico-psychiatric symptoms at the soonest wrong diagnoses are to be expected. Furthermore, it is attempted to classify the hypoglycemias according to their development, in which cases their incompleteness was evident from the very beginning. The individual forms of appearance are treated according their to significance. Out of the inducible hypoglycaemias a particular attention is devoted to the forms caused by insulin and oral antidiabetics, since these most frequently participate in the development. Finally the author inquires into diagnostic measures for recognition of special forms of hypoglycaemia. In this place the diagnostics of hyperinsulinism conditioned by adenomatosis or tumours of other kinds is of particular importance. Finally conservative and operative possibilities of the therapy of these tumours are discussed,whereby the only recently tested treatment with streptotocin is mentioned.
Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S
1994-12-01
While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).
Diagnosis and management of deep venous thrombosis and pulmonary embolism in neonates and children.
Monagle, Paul
2012-10-01
Neonates and children represent a specific population that can suffer from deep venous thrombosis (DVT) and pulmonary embolism (PE). In considering how the diagnosis and management of DVT/PE in neonates and children differs from adults, one has to consider the fundamental differences in the general characteristics of the patient population, the specific differences in the disease entity, the differences in sensitivity or specificity of diagnostic strategies and risk/benefit profile of therapeutic options available, and then finally the practical applications of therapies, using an evidence-based approach. This review will articulate the key differences in the patient population, disease entity, diagnostic strategies, and drug therapies that must be understood to apply a rigorous evidence-based approach to diagnosis and management of DVT and PE in neonates and children. Finally, there will be a brief discussion of the latest American College of Chest Physician guidelines for antithrombotic treatment in neonates and children. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Optical diagnostics in the oral cavity: an overview.
Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A
2010-11-01
As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms
Pimentel, Ana; Araújo, Andreia; Águas, Hugo; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5–30 min) and temperature (70–130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.
Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz
2015-11-01
Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Cavernous sinus thrombosis as a rare cause of exophthalmos in childhood : A case report].
Kamawal, A; Schmidt, M A; Rompel, O; Gusek-Schneider, G C; Mardin, C Y; Trollmann, R
2017-05-01
Complications of acute bacterial sinusitis mostly occur in children and adolescents. In particular, intracranial spread of the infection can lead to severe even fatal courses of the disease. This article is a case report about a 13-year-old boy suffering from left-sided headache, meningismus and exophthalmos as presenting symptoms. Cranial magnetic resonance imaging (MRI) showed merely right-sided sphenoid sinusitis; however, the diffusion-weighted MRI sequence indicated a left-sided cavernous sinus thrombosis, which could be confirmed by computed tomography (CT) angiography. Cerebrospinal fluid diagnostics showed significant leukocytosis confirming secondary meningitis. Finally, exophthalmos was explained by parainfectious cavernous sinus thrombosis and periorbital edema. This case report highlights the importance of extended and specific diagnostic imaging in cases of clinically suspected complications in children and adolescents with sinusitis and the diagnostic significance of diffusion-weighted MRI.
FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics
NASA Technical Reports Server (NTRS)
Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg
1993-01-01
FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.
Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7
NASA Technical Reports Server (NTRS)
Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G. D.
2010-01-01
We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Tc method, for the first time in all metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at z=2.
The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7
NASA Technical Reports Server (NTRS)
Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.
2011-01-01
We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.
Mazurek, Micah O; Lu, Frances; Symecko, Heather; Butter, Eric; Bing, Nicole M; Hundley, Rachel J; Poulsen, Marie; Kanne, Stephen M; Macklin, Eric A; Handen, Benjamin L
2017-09-01
The transition from DSM-IV to DSM-5 criteria for autism spectrum disorder (ASD) sparked considerable concern about the potential implications of these changes. This study was designed to address limitations of prior studies by prospectively examining the concordance of DSM-IV and final DSM-5 criteria on a consecutive sample of 439 children referred for autism diagnostic evaluations. Concordance and discordance were assessed using a consistent diagnostic battery. DSM-5 criteria demonstrated excellent overall specificity and good sensitivity relative to DSM-IV criteria. Sensitivity and specificity were strongest for children meeting DSM-IV criteria for autistic disorder, but poor for those meeting criteria for Asperger's disorder and pervasive developmental disorder. Higher IQ, older age, female sex, and less pronounced ASD symptoms were associated with greater discordance.
Classification of mood disorders in DSM-V and DSM-VI.
Joyce, Peter R
2008-10-01
For any diagnostic system to be clinically useful, and go beyond description, it must provide an understanding that informs about aetiology and/or outcome. DSM-III and DSM-IV have provided reliability; the challenge for DSM-V and DSM-VI will be to provide validity. For DSM-V this will not be achieved. Believers in DSM-III and DSM-IV have impeded progress towards a valid classification system, so DSM-V needs to retain continuity with its predecessors to retain reliability and enhance research, but position itself to inform a valid diagnostic system by DSM-VI. This review examines the features of a diagnostic system and summarizes what is really known about mood disorders. The review also questions whether what are called mood disorders are primarily disorders of mood. Finally, it provides suggestions for DSM-VI.
Right bundle branch block pattern during right ventricular permanent pacing: Is it safe or not?
Erdogan, Okan; Aksu, Feyza
2007-01-01
The present case report describes a patient with dual chamber pacemaker whose surface ECG demonstrated paced right bundle branch block pattern suggesting a malpositioned ventricular lead in the left ventricle. However, diagnostic work-up revealed that the lead was appropriately located in the right ventricular apex. Diagnostic maneuvers and clues for differentiating safe right bundle branch block pattern during permanent pacing are thoroughly revisited and discussed within the article. PMID:17684578
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-01-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks under various conditions with a series of RH. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups within paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude-regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
NASA Astrophysics Data System (ADS)
Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil
2018-05-01
Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks at room temperature and under different RH conditions. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups with paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude – regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.
The surface science of nanocrystals
NASA Astrophysics Data System (ADS)
Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan; Talapin, Dmitri V.
2016-02-01
All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands -- molecules that bind to the surface -- are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.
Heat flow diagnostics for helicon plasmas.
Berisford, Daniel F; Bengtson, Roger D; Raja, Laxminarayan L; Cassady, Leonard D; Chancery, William J
2008-10-01
We present experimental studies of power balance in an argon helicon discharge. An infrared camera measures the heating of the dielectric tube containing a helicon discharge based on measurement of temperature profiles of the tube surface before and after a rf pulse. Using this diagnostic, we have measured surface heating trends at a variety of operating conditions on two helicon systems: the 10 kW VASIMR VX-50 experiment and the University of Texas at Austin 1 kW helicon experiment. Power losses downstream from the antenna are measured using thermocouples and probes. The heating of the dielectric tube increases with decreasing magnetic fields, higher gas flow rates, and higher molecular mass of the gas. These preliminary results suggest that cross-field particle diffusion contributes a significant proportion of the energy flux to the wall.
NASA Astrophysics Data System (ADS)
Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.
2017-04-01
In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...
2017-02-14
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
Davis, Donald R.; Wagner, David L.
2011-01-01
Abstract Four New World species of Phyllocnistis Zeller are described from serpentine mines in Persea (Family Lauraceae). Phyllocnistis hyperpersea,new species, mines the upper leaf surfaces of avocado, Persea americana Mill., and red bay, Persea borbonia (L.) Spreng. and ranges over much of the southeastern United States into Central America. Phyllocnistis subpersea,new species, mines the underside and occasionally upper sides of new leaves of Persea borbonia in southeastern United States. Phyllocnistis longipalpa, new species, known only from southern Florida also mines the undersides of new leaves of Persea borbonia. Phyllocnistis perseafolia,new species, mines both leaf surfaces and possibly fruits of Persea americana in Colombia, South America. As in all known species of Phyllocnistis, the early instars are subepidermal sapfeeders in young (not fully hardened) foliage, and the final instar is an extremely specialized, nonfeeding larval form, whose primary function is to spin the silken cocoon, at the mine terminus, prior to pupation. Early stages are illustrated and described for three of the species. The unusual morphology of the pupae, particularly the frontal process of the head, is shown to be one of the most useful morphological sources of diagnostic characters for species identification of Phyllocnistis. COI barcode sequence distances are provided for the four proposed species and a fifth, undescribed species from Costa Rica. PMID:21594066
Davis, Donald R; Wagner, David L
2011-05-11
Four New World species of Phyllocnistis Zeller are described from serpentine mines in Persea (Family Lauraceae). Phyllocnistis hyperpersea,new species, mines the upper leaf surfaces of avocado, Persea americana Mill., and red bay, Persea borbonia (L.) Spreng. and ranges over much of the southeastern United States into Central America. Phyllocnistis subpersea,new species, mines the underside and occasionally upper sides of new leaves of Persea borbonia in southeastern United States. Phyllocnistis longipalpa, new species, known only from southern Florida also mines the undersides of new leaves of Persea borbonia. Phyllocnistis perseafolia,new species, mines both leaf surfaces and possibly fruits of Persea americana in Colombia, South America. As in all known species of Phyllocnistis, the early instars are subepidermal sapfeeders in young (not fully hardened) foliage, and the final instar is an extremely specialized, nonfeeding larval form, whose primary function is to spin the silken cocoon, at the mine terminus, prior to pupation. Early stages are illustrated and described for three of the species. The unusual morphology of the pupae, particularly the frontal process of the head, is shown to be one of the most useful morphological sources of diagnostic characters for species identification of Phyllocnistis. COI barcode sequence distances are provided for the four proposed species and a fifth, undescribed species from Costa Rica.
Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.
2010-01-01
A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.
Bacterial Extracellular Polysaccharides in Biofilm Formation and Function
Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.
2015-01-01
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074
Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.
Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J
2015-06-01
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Passive Optical Technique to Measure Physical Properties of a Vibrating Surface
2014-01-01
it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2
2010-01-01
Background The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs) ability to correctly appraise the origin of chest pain within the first minutes of an encounter. Methods The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Results Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5%) of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3%) and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%). The predictive abilities of an early diagnostic guess were consistent among GPs. Conclusions The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain. PMID:20170544
Verdon, François; Junod, Michel; Herzig, Lilli; Vaucher, Paul; Burnand, Bernard; Bischoff, Thomas; Pécoud, Alain; Favrat, Bernard
2010-02-21
The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs) ability to correctly appraise the origin of chest pain within the first minutes of an encounter. The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5%) of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3%) and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%). The predictive abilities of an early diagnostic guess were consistent among GPs. The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain.
Diagnostic uncertainty, guilt, mood, and disability in back pain.
Serbic, Danijela; Pincus, Tamar; Fife-Schaw, Chris; Dawson, Helen
2016-01-01
In the majority of patients a definitive cause for low back pain (LBP) cannot be established, and many patients report feeling uncertain about their diagnosis, accompanied by guilt. The relationship between diagnostic uncertainty, guilt, mood, and disability is currently unknown. This study tested 3 theoretical models to explore possible pathways between these factors. In Model 1, diagnostic uncertainty was hypothesized to correlate with pain-related guilt, which in turn would positively correlate with depression, anxiety and disability. Two alternative models were tested: (a) a path from depression and anxiety to guilt, from guilt to diagnostic uncertainty, and finally to disability; (b) a model in which depression and anxiety, and independently, diagnostic uncertainty, were associated with guilt, which in turn was associated with disability. Structural equation modeling was employed on data from 413 participants with chronic LBP. All 3 models showed a reasonable-to-good fit with the data, with the 2 alternative models providing marginally better fit indices. Guilt, and especially social guilt, was associated with disability in all 3 models. Diagnostic uncertainty was associated with guilt, but only moderately. Low mood was also associated with guilt. Two newly defined factors, pain related guilt and diagnostic uncertainty, appear to be linked to disability and mood in people with LBP. The causal path of these links cannot be established in this cross sectional study. However, pain-related guilt especially appears to be important, and future research should examine whether interventions directly targeting guilt improve outcomes. (c) 2015 APA, all rights reserved).
Development of a molecular diagnostic test for Retinitis Pigmentosa in the Japanese population.
Maeda, Akiko; Yoshida, Akiko; Kawai, Kanako; Arai, Yuki; Akiba, Ryutaro; Inaba, Akira; Takagi, Seiji; Fujiki, Ryoji; Hirami, Yasuhiko; Kurimoto, Yasuo; Ohara, Osamu; Takahashi, Masayo
2018-05-21
Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy caused by different genetic variants. More than 60 causative genes have been identified to date. The establishment of cost-effective molecular diagnostic tests with high sensitivity and specificity can be beneficial for patients and clinicians. Here, we developed a clinical diagnostic test for RP in the Japanese population. Evaluation of diagnostic technology, Prospective, Clinical and experimental study. A panel of 39 genes reported to cause RP in Japanese patients was established. Next generation sequence (NGS) technology was applied for the analyses of 94 probands with RP and RP-related diseases. After interpretation of detected genetic variants, molecular diagnosis based on a study of the genetic variants and a clinical phenotype was made by a multidisciplinary team including clinicians, researchers and genetic counselors. NGS analyses found 14,343 variants from 94 probands. Among them, 189 variants in 83 probands (88.3% of all cases) were selected as pathogenic variants and 64 probands (68.1%) have variants which can cause diseases. After the deliberation of these 64 cases, molecular diagnosis was made in 43 probands (45.7%). The final molecular diagnostic rate with the current system combining supplemental Sanger sequencing was 47.9% (45 of 94 cases). The RP panel provides the significant advantage of detecting genetic variants with a high molecular diagnostic rate. This type of race-specific high-throughput genotyping allows us to conduct a cost-effective and clinically useful genetic diagnostic test.
Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis.
Dai, Jian; Yu, Guoyou; Yu, Jianqiang
2018-04-01
A meta-analysis was conducted to investigate the diagnostic performance of computed tomography (CT) imaging features of ground-glass opacity (GGO) to predict invasiveness. Two reviewers independently searched PubMed, Medline, Web of Science, Cochrane Embase and CNKI for relevant studies. CT imaging signs of bubble lucency, speculation, lobulated margin, and pleural indentation were used as diagnostic references to discriminate pre-invasive and invasive disease. The sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the area under the SROC curve (AUC) were calculated to evaluate diagnostic efficiency. Twelve studies were finally included. Diagnostic performance ranged from 0.41 to 0.52 for sensitivity and 0.56 to 0.63 for specificity. The diagnostic positive and negative likelihood ratios ranged from 1.03 to 2.13 and 0.52 to 1.05, respectively. The DORs of the GGO CT features for discriminating invasive disease ranged from 1.02 to 4.00. The area under the ROC curve was also low, with a range of 0.60 to 0.67 for discriminating pre-invasive and invasive disease. The diagnostic value of a single CT imaging sign of GGO, such as bubble lucency, speculation, lobulated margin, or pleural indentation is limited for discriminating pre-invasive and invasive disease because of low sensitivity, specificity, and AUC. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Basic nonlinear acoustics: an introduction for radiological physicists.
Harpen, Michael D
2006-09-01
Presented is a brief introduction to nonlinear acoustics, a topic of increasing importance in modern diagnostic ultrasound. Specifically treated is shock wave and harmonic production in lossless media. We also present a description of linear attenuation mechanisms in soft tissue and finally nonlinear propagation in soft tissue.
Attitudes toward Death in Adolescent Offspring of Holocaust Survivors.
ERIC Educational Resources Information Center
Schneider, Stanley
1978-01-01
This article describes three American adolescents in an Israeli residential treatment program. Biographical data, diagnostic categories, projective test responses, relationships with parents, and some examples of dreams are presented. A final section analyzes some underlying concepts: survivor guilt, repressed aggression, and isolation of affect.…
Diagnostic Imaging Guidelines Implementation Study for Spinal Disorders
Bussières, André E.; Laurencelle, Louis; Peterson, Cynthia
2010-01-01
Purpose: Implementation strategies of imaging guidelines can assist in reducing the number of radiographic examinations. This study aimed to compare the perceived need for diagnostic imaging before and after an educational intervention strategy. Methods: One hundred sixty Swiss chiropractors attending a conference were randomized to either receive a radiology workshop, reviewing appropriate indications for diagnostic imaging for adult spine disorders (n = 80), or be in a control group (CG). One group of 40 individuals dropped out from the CG due to logistic reasons. Participants in the intervention group were randomly assigned to three subgroups to evaluate the effect of an online reminder at midpoint. All participants underwent a pretest and a final test at 14–16 weeks. A posttest was administered to two subgroups at 8–10 weeks. Results: There was no difference between baseline scores, and overall scores for the pretest and the final tests for all four groups were not significantly different. However, the subgroup provided with access to a reminder performed significantly better than the subgroup with whom they were compared (F = 4.486; df = 1 and 30; p = .043). Guideline adherence was 50.5% (95% CI, 39.1–61.8) for the intervention group and 43.7% (95% CI, 23.7–63.6) for the CG at baseline. Adherence at follow-up was lower, but mean group differences remained insignificant. Conclusions: Online access to specific recommendations while making a clinical decision may favorably influence the intention to either order or not order imaging studies. However, a didactic presentation alone did not appear to change the perception for the need of diagnostic imaging studies. PMID:20480010
Sannier, Aurélie; Cazejust, Julien; Lequoy, Marie; Cervera, Pascale; Scatton, Olivier; Rosmorduc, Olivier; Wendum, Dominique
2016-11-01
The contribution of liver biopsy for the diagnosis of presumed benign hepatocellular lesions lacking the diagnostic features of focal nodular hyperplasia (FNH) on magnetic resonance imaging (MRI) is unknown. We evaluated liver biopsy and MRI performances in this setting. Magnetic resonance imaging and slides of liver biopsies performed for a presumed benign hepatocellular lesion (2006-2013) without the typical features of FNH on MRI were blindly reviewed (n = 45). Eighteen lesions were surgically removed and also analyzed. The final diagnosis was the diagnosis established after surgery or on the biopsy in the absence of surgery. The final diagnosis was FNH (n = 19), hepatocellular adenoma (HCA, n = 15), hepatocellular carcinoma (n = 3) and indefinite (n = 4). Four lesions corresponded to non hepatocellular lesions. FNH, HNF1A mutated and inflammatory HCA were diagnosed accurately on the biopsy in 95%, 67% and 100% of the cases respectively. Diagnostic performance of liver biopsy for HNF1A mutated HCA was lower because of the lack of non-tumoral tissue. Diagnosis based on morphological analysis was certain and correct in 27 cases. Immunostaining allowed a definite diagnosis in 12 additionnal cases. Radiological diagnosis was in agreement with the histological diagnosis in 75.6% of the cases, with a very high sensitivity (97%) and specificity (100%) for the diagnosis of HNF1A mutated HCA. Liver biopsy has a good diagnostic performance particularly for FNH and inflammatory HCA, and sampling of non-lesional tissue is highly recommended. A biopsy does not seem necessary if H-HCA is diagnosed on MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The clinical evaluation of infantile nystagmus: What to do first and why
Bertsch, Morgan; Floyd, Michael; Kehoe, Taylor; Pfeifer, Wanda; Drack, Arlene V.
2017-01-01
Introduction Infantile nystagmus has many causes, some life threatening. We determined the most common diagnoses in order to develop a testing algorithm. Methods Retrospective chart review. Exclusion criteria were no nystagmus, acquired after 6 months, or lack of examination. Data collected: pediatric eye examination findings, ancillary testing, order of testing, referral, and final diagnoses. Final diagnosis was defined as meeting published clinical criteria and/or confirmed by diagnostic testing. Patients with a diagnosis not meeting the definition were “unknown.” Patients with incomplete testing were “incomplete.” Patients with multiple plausible etiologies were “multifactorial.” Patients with negative complete workup were “motor.” Results 284 charts were identified; 202 met inclusion criteria. The 3 most common causes were Albinism(19%), Leber Congenital Amaurosis(LCA)(14%) and Non-LCA retinal dystrophy (13%). Anatomic retinal disorders comprised 10%, motor another 10%. The most common first test was MRI (74/202) with a diagnostic yield of 16%. For 28 MRI-first patients, nystagmus alone was the indication; for 46 MRI-first patients other neurologic signs were present. 0/28 nystagmus-only patients had a diagnostic MRI while 14/46 (30%) with neurologic signs did. Yield of ERG as first test was 56%, OCT 55%, and molecular genetic testing 47%. 90% of patients had an etiology identified. Conclusion The most common causes of infantile nystagmus were retinal disorders (56%), however the most common first test was brain MRI. For patients without other neurologic stigmata complete pediatric eye examination, ERG, OCT and molecular genetic testing had a higher yield than MRI scan. If MRI is not diagnostic, a complete ophthalmologic workup should be pursued. PMID:28177849
This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.
NASA Astrophysics Data System (ADS)
Georgiou, Harris
2009-10-01
Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.
Study of an experimental methodology for thermal properties diagnostic of building envelop
NASA Astrophysics Data System (ADS)
Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe
2017-04-01
The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The measured data from different sensors were analysed and compared. The emissivity of wall surface and treated sensor surfaces were evaluated by using an IR camera with an adapted post-processing. Then, convective and radiative heat fluxes, at wall level, were estimated. Finally, the wall thermal properties can be calculated by using the measured temperatures and estimated heat fluxes using a dedicated thermal quadrupoles heat transfer model and an inverse method. This study aims at providing some guidelines for the choice of sensors, measurements protocol and adapted inverse model to be tested in real conditions on pilot situ scale. Aknowledgments : The Authors are very grateful to H2020 Built2Spec project for supporting this work.
Gatapova, Elizaveta Ya; Shonina, Anna M; Safonov, Alexey I; Sulyaeva, Veronica S; Kabov, Oleg A
2018-03-07
The evaporation dynamics of a water droplet with an initial volume of 2 μl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 μm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R 2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.
Surface Roughness Optimization Using Taguchi Method of High Speed End Milling For Hardened Steel D2
NASA Astrophysics Data System (ADS)
Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.
2017-03-01
The main challenge for any manufacturer is to achieve higher quality of their final products with maintains minimum machining time. In this research final surface roughness analysed and optimized with maximum 0.3 mm flank wear length. The experiment was investigated the effect of cutting speed, feed rate and depth of cut on the final surface roughness using D2 as a work piece hardened to 52-56 HRC, and coated carbide as cutting tool with higher cutting speed 120-240 mm/min. The experiment has been conducted using L9 design of Taguchi collection. The results have been analysed using JMP software.
[Current macro-diagnostic trends of forensic medicine in the Czech Republic].
Frišhons, Jan; Kučerová, Štěpánka; Jurda, Mikoláš; Sokol, Miloš; Vojtíšek, Tomáš; Hejna, Petr
2017-01-01
Over the last few years, advanced diagnostic methods have penetrated in the realm of forensic medicine in addition to standard autopsy techniques supported by traditional X-ray examination and macro-diagnostic laboratory tests. Despite the progress of imaging methods, the conventional autopsy has remained basic and essential diagnostic tool in forensic medicine. Postmortem computed tomography and magnetic resonance imaging are far the most progressive modern radio diagnostic methods setting the current trend of virtual autopsies all over the world. Up to now, only two institutes of forensic medicine have available postmortem computed tomography for routine diagnostic purposes in the Czech Republic. Postmortem magnetic resonance is currently unattainable for routine diagnostic use and was employed only for experimental purposes. Photogrammetry is digital method focused primarily on body surface imaging. Recently, the most fruitful results have been yielded from the interdisciplinary cooperation between forensic medicine and forensic anthropology with the implementation of body scanning techniques and 3D printing. Non-invasive and mini-invasive investigative methods such as postmortem sonography and postmortem endoscopy was unsystematically tested for diagnostic performance with good outcomes despite of limitations of these methods in postmortem application. Other futuristic methods, such as the use of a drone to inspect the crime scene are still experimental tools. The authors of the article present a basic overview of the both routinely and experimentally used investigative methods and current macro-diagnostic trends of the forensic medicine in the Czech Republic.
Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong
2017-02-01
Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.
Development and utilization of new diagnostics for dense-phase pneumatic transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theorymore » of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Macfarlane, Joseph; Golovkin, Igor; Sebald, James
2017-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.
2018-01-01
Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.
Mukherjee, Prabuddha; Misra, Santosh K; Gryka, Mark C; Chang, Huei-Huei; Tiwari, Saumya; Wilson, William L; Scott, John W; Bhargava, Rohit; Pan, Dipanjan
2015-09-01
In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...
2018-01-31
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
Extracting 3D Information from 1D and 2D Diagnostic Systems on the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Brookman, Michael
2017-10-01
The interpretation of tokamak data often hinges on assumptions of axisymetry and flux surface equilibria, neglecting 3D effects. This work discusses examples on the DIII-D tokamak where this assumption is an insufficient approximation, and explores the diagnostic information available to resolve 3D effects while preserving 1D profiles. Methods for extracting 3D data from the electron cyclotron emission radiometers, density profile reflectometer, and Thomson scattering system are discussed. Coordinating diagnostics around the tokamak shows the significance of 3D features, such as sawteeth[1] and resonant magnetic perturbations. A consequence of imposed 3D perturbations is a shift in major radius of measured profiles between diagnostics at different toroidal locations. Integrating different diagnostics requires a database containing information about their toroidal, poloidal, and radial locations. Through the data analysis framework OMFIT, it is possible to measure the magnitude of the apparent shifts from 3D effects and enforce consistency between diagnostics. Using the existing 1D and 2D diagnostic systems on DIII-D, this process allows the effects of the 3D perturbations on 1D profiles to be addressed. Supported by US DOE contracts DE-FC02-04ER54698, DE-FG03-97ER54415.
Automated Dermoscopy Image Analysis of Pigmented Skin Lesions
Baldi, Alfonso; Quartulli, Marco; Murace, Raffaele; Dragonetti, Emanuele; Manganaro, Mario; Guerra, Oscar; Bizzi, Stefano
2010-01-01
Dermoscopy (dermatoscopy, epiluminescence microscopy) is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs), allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis). This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR). PMID:24281070
Sepehry, Amir A; Lee, Philip E; Hsiung, Ging-Yuek R; Beattie, B Lynn; Feldman, Howard H; Jacova, Claudia
2017-01-01
Presented herein is evidence for criterion, content, and convergent/discriminant validity of the NIMH-Provisional Diagnostic Criteria for depression of Alzheimer's Disease (PDC-dAD) that were formulated to address depression in Alzheimer's disease (AD). Using meta-analytic and systematic review methods, we examined criterion validity evidence in epidemiological and clinical studies comparing the PDC-dAD to Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-IV), and International Classification of Disease (ICD 9) depression diagnostic criteria. We estimated prevalence of depression by PDC, DSM, and ICD with an omnibus event rate effect-size. We also examined diagnostic agreement between PDC and DSM. To gauge content validity, we reviewed rates of symptom endorsement for each diagnostic approach. Finally, we examined the PDC's relationship with assessment scales (global cognition, neuropsychiatric, and depression definition) for convergent validity evidence. The aggregate evidence supports the validity of the PDC-dAD. Our findings suggest that depression in AD differs from other depressive disorders including Major Depressive Disorder (MDD) in that dAD is more prevalent, with generally a milder presentation and with unique features not captured by the DSM. Although the PDC are the current standard for diagnosis of depression in AD, we identified the need for their further optimization based on predictive validity evidence.
Nonparametric predictive inference for combining diagnostic tests with parametric copula
NASA Astrophysics Data System (ADS)
Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.
2017-09-01
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David
2010-05-01
While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.
Ramoni, Rachel B.; Walji, Muhammad F.; Kim, Soyun; Tokede, Oluwabunmi; McClellan, Lyle; Simmons, Kristen; Skourtes, Eugene; Yansane, Alfa; White, Joel M.; Kalenderian, Elsbeth
2015-01-01
Background Attitudes and views are critical to the adoption of innovation. While there have been broadening calls for a standardized dental diagnostic terminology, little is known about the views of private practice dental team members towards the adoption of such a terminology. Methods A survey was developed using validated questions identified through literature review. Domain experts’ input allowed for further modifications. The final survey was administered electronically to 814 team members at a multi-office practice based in the Pacific Northwest. Results Response proportion was 92%. The survey had excellent reliability (Cronbach alpha coefficient = 0.87). Results suggested that participants showed, in general, positive attitudes and beliefs towards using a standardized diagnostic terminology in their practices. Additional written comments by participants highlighted the potential for improved communication with use of the terminology. Conclusions Dental providers and staff in one multi-office practice showed positive attitudes towards the use of a diagnostic terminology, specifically they believed it would improve communication between the dentist and patient as well as among providers, while expressing some concerns if using standardized dental diagnostic terms helps clinicians to deliver better dental care. Practical Implications As the dental profession is advancing towards the use of standardized diagnostic terminologies, successful implementation will require that dental team leaders prepare their dental teams by gauging their attitude toward the use of such a terminology. PMID:26025826
2015-01-01
Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein–surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein–surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format. PMID:24456577
Hahm, Jong-in
2014-08-26
Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.
Chen, Lih-Shyang; Hsu, Ta-Wen; Chang, Shu-Han; Lin, Chih-Wen; Chen, Yu-Ruei; Hsieh, Chin-Chiang; Han, Shu-Chen; Chang, Ku-Yaw; Hou, Chun-Ju
2017-01-01
Objective: In traditional surface rendering (SR) computed tomographic endoscopy, only the shape of endoluminal lesion is depicted without gray-level information unless the volume rendering technique is used. However, volume rendering technique is relatively slow and complex in terms of computation time and parameter setting. We use computed tomographic colonography (CTC) images as examples and report a new visualization technique by three-dimensional gray level mapping (GM) to better identify and differentiate endoluminal lesions. Methods: There are 33 various endoluminal cases from 30 patients evaluated in this clinical study. These cases were segmented using gray-level threshold. The marching cube algorithm was used to detect isosurfaces in volumetric data sets. GM is applied using the surface gray level of CTC. Radiologists conducted the clinical evaluation of the SR and GM images. The Wilcoxon signed-rank test was used for data analysis. Results: Clinical evaluation confirms GM is significantly superior to SR in terms of gray-level pattern and spatial shape presentation of endoluminal cases (p < 0.01) and improves the confidence of identification and clinical classification of endoluminal lesions significantly (p < 0.01). The specificity and diagnostic accuracy of GM is significantly better than those of SR in diagnostic performance evaluation (p < 0.01). Conclusion: GM can reduce confusion in three-dimensional CTC and well correlate CTC with sectional images by the location as well as gray-level value. Hence, GM increases identification and differentiation of endoluminal lesions, and facilitates diagnostic process. Advances in knowledge: GM significantly improves the traditional SR method by providing reliable gray-level information for the surface points and is helpful in identification and differentiation of endoluminal lesions according to their shape and density. PMID:27925483
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
Final Technical Report -- Bridging the PSI Knowledge Gap: A Multiscale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whyte, Dennis
2014-12-12
The Plasma Surface Interactions (PSI) Science Center formed by the grant undertook a multidisciplinary set of studies on the complex interface between the plasma and solid states of matter. The strategy of the center was to combine and integrate the experimental, diagnostic and modeling toolkits from multiple institutions towards specific PSI problems. In this way the Center could tackle integrated science issues which were not addressable by single institutions, as well as evolve the underlying science of the PSI in a more general way than just for fusion applications. The overall strategy proved very successful. The research result and highlightsmore » of the MIT portion of the Center are primarily described. A particular highlight is the study of tungsten nano-tendril growth in the presence of helium plasmas. The Center research provided valuable new insights to the mechanisms controlling the nano-tendrils by developing coupled modeling and in situ diagnostic methods which could be directly compared. For example, the role of helium accumulation in tungsten distortion in the surface was followed with unique in situ helium concentration diagnostics developed. These depth-profiled, time-resolved helium concentration measurements continue to challenge the numerical models of nano-tendrils. The Center team also combined its expertise on tungsten nano-tendrils to demonstrate for the first time the growth of the tendrils in a fusion environment on the Alcator C-Mod fusion experiment, thus having significant impact on the broader fusion research effort. A new form of isolated nano-tendril “columns” were identified which are now being used to understand the underlying mechanisms controlling the tendril growth. The Center also advanced PSI science on a broader front with a particular emphasis on developing a wide range of in situ PSI diagnostic tools at the DIONISOS facility at MIT. For example the strong suppression of sputtering by the certain combination of light-species plasmas and metals was experimentally studied with independent measurement methods across the Center. This surprising result challenges the universal use of the binary-collision approximation in sputtering predictions and continues to be the subject of study. In order to address this issue MIT developed a new in situ erosion measurement technique based on ion beam analysis which can be used at elevated material temperatures. This exciting new technique is now being used to study material erosion in high performance plasma thrusters for space exploration and is being adopted to fusion experimental devices. This is an indicator of the positive synergies that arise from such a Center, with the research having impact beyond the initial area of study. The Center also served successfully as an organizing force for communication to the science community. The MIT members of the Center provided many high-profile overview presentations at prestigious international conferences and national workshops. The research resulted in three student theses and 24 peer-reviewed publications. PSI research continues to be identified as a critical area for fusion energy.« less
Investigation of Ejecta Production in Tin Using Plate Impact Experiments
NASA Astrophysics Data System (ADS)
Rigg, P. A.; Anderson, W. W.; Olson, R. T.; Buttler, W. T.; Hixson, R. S.
2006-07-01
Experiments to investigate ejecta production in shocked tin have been performed using plate impact facilities at Los Alamos National Laboratory. Three primary diagnostics — piezoelectric pins, Asay foils, and low energy X-ray radiography — were fielded simultaneously in an attempt to quantify the amount of ejecta produced in tin as the shock wave breaks out of the free surface. Results will be presented comparing and contrasting all three diagnostics methods. Advantages and disadvantages of each method will be discussed.
The Integral Role of a Diabatic Rossby Vortex in a Heavy Snowfall Event
2008-06-01
anomalies are identified: 1) a low-level anomaly to the east of the Appalachian Mountains associated with the incipient surface cyclone and 2) an upper-level...diagnostic eddy available potential energy ( APE ) equa- tion, one can gain insight into the relative importance of FIG. 4. As in Fig. 3, but at 0600 UTC 25...More specifically, the con- version ratio of the diabatic to baroclinic generation of eddy APE has been shown to be a useful diagnostic for
ATR spectra on boundary with mixture containing organic substances
NASA Astrophysics Data System (ADS)
Schelokov, R. V.; Yatsishen, V. V.
2005-02-01
The problem of not destroying diagnostics and dosing of radiation at laser therapy is one of important in medicine. Therefore the purpose of our work is development of method ATR for diagnostics and researches in biomedicine. In this work as objects of consideration were: a mixture of nicotine with water, a mixture of an ascorbic acid with water and surface lesions of an eye cornea by a herpes virus. Results of our consideration are the ATR spectra defined at different concentration of organic substances and virions.