Sample records for surface differential rotation

  1. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  2. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  3. Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817

    NASA Astrophysics Data System (ADS)

    Marsden, Stephen

    2018-04-01

    The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.

  4. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model, consisting of an independently-rotating radiative interior and convective envelope. Using such a prior we find that the rotation rates of the radiative interior and convective envelope likely do not differ by more than 50%. This further supports the idea that Sun-like stars likely show a rotation pattern similar to that of the Sun. Results from the analysis presented herein provide physical limits on the internal differential rotation of Sun-like stars, and show that this method may be easily applied to a wider variety of stars.

  5. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  6. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  7. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  8. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  9. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  10. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  11. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  12. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  13. The 2D dynamics of radiative zones of low-mass stars

    NASA Astrophysics Data System (ADS)

    Hypolite, D.; Mathis, S.; Rieutord, M.

    2018-02-01

    Context. Helioseismology and asteroseismology allow us to probe the differential rotation deep within low-mass stars. In the solar convective envelope, the rotation varies with latitude with an equator rotating faster than the pole, which results in a shear applied on the radiative zone below. However, a polar acceleration of the convective envelope can be obtained through 3D numerical simulations in other low-mass stars and the dynamical interaction of the surface convective envelope with the radiative core needs to be investigated in the general case. Aim. In the context of secular evolution, we aim to describe the dynamics of the radiative core of low-mass stars to get a deeper understanding of the internal transport of angular momentum in such stars, which results in a solid rotation in the Sun from 0.7R⊙ to 0.2R⊙ and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture the latitudinal variations of the differential rotation. Methods: We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a conical or cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number ℛo = ΔΩ/2Ω0 measuring the latitudinal differential rotation at the radiative-convective interface. We provide a 2D description of the differential rotation and the associated meridional circulation in the incompressible and stably stratified cases using the Boussinesq approximation. Results: The imposed shear generates a geostrophic flow implying a cylindrical differential rotation in the case of an isotropic viscosity. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant when the Rossby number is high enough (ℛo ≥ 1) with a cylindrical rotation profile. For low Rossby numbers (ℛo < 1), the baroclinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators (Ω0 < 30Ω⊙) are expected to have a cylindrical rotation profile. Fast rotators (Ω0 > 30Ω⊙) may have a shellular profile at the beginning of the main sequence in stellar radiative zones. Conclusions: This study enables us to predict different types of differential rotation and emphasizes the need for a new generation of 2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has a strong impact on the dynamics of the underlying radiative zone in low-mass stars. However, it cannot produce a flat internal rotation profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal directions.

  14. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  15. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  16. REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars

    NASA Astrophysics Data System (ADS)

    Kitchatinov, Leonid L.

    2005-05-01

    Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

  17. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B. Huston

    1983-01-01

    Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  18. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B.H.

    1982-07-21

    Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  19. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  20. Recurrent star-spot activity and differential rotation in KIC 11560447

    NASA Astrophysics Data System (ADS)

    Özavcı, I.; Şenavcı, H. V.; Işık, E.; Hussain, G. A. J.; O'Neal, D.; Yılmaz, M.; Selam, S. O.

    2018-03-01

    We present a detailed analysis of surface inhomogeneities on the K1-type subgiant component of the rapidly rotating eclipsing binary KIC 11560447, using high-precision Kepler light curves spanning nearly 4 yr, which corresponds to about 2800 orbital revolutions. We determine the system parameters precisely, using high-resolution spectra from the 2.1-m Otto Struve Telescope at the McDonald Observatory. We apply the maximum entropy method to reconstruct the relative longitudinal spot occupancy. Our numerical tests show that the procedure can recover large-scale random distributions of individually unresolved spots, and it can track the phase migration of up to three major spot clusters. By determining the drift rates of various spotted regions in orbital longitude, we suggest a way to constrain surface differential rotation and we show that the results are consistent with periodograms. The K1IV star exhibits two mildly preferred longitudes of emergence, indications of solar-like differential rotation, and a 0.5-1.3-yr recurrence period in star-spot emergence, accompanied by a secular increase in the axisymmetric component of spot occupancy.

  1. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  2. A rotational ablation tool for calcified atherosclerotic plaque removal.

    PubMed

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon

    2011-12-01

    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  3. Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason

    We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.

  4. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  5. Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.

    2004-01-01

    To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.

  6. Differential rotation in solar-like stars from global simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.

    2013-12-20

    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less

  7. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  8. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  9. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  10. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  11. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  12. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model ofmore » a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.« less

  13. Applying the new HIT results to tokamak and solar plasmas

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Sutherland, Derek; Hossack, Aaron; Nelson, Brian; Morgan, Kyle; Chris, Hansen; Benedett, Thomas; Everson, Chris; Penna, James

    2016-10-01

    Understanding sustainment of stable equilibria with helicity injection in HIT-SI has led to a simple picture of several tokamak features. Perturbations cause a viscous-like force on the current that flattens the λ profile, which sustains and stabilizes the equilibrium. An explanation of the mechanism is based on two properties of stable, ideal, two-fluid, magnetized plasma. First, the electron fluid is frozen to magnetic fields and, therefore, current flow is also magnetic field flow. Second, for a stable equilibrium the structure perpendicular to the flux surface resists deformation. Thus toroidal current is from electrons frozen in nested, rotating resilient flux surfaces. Only symmetric flux surfaces allow free differential current flow. Perturbations cause interference of the flux surfaces. Thus, perturbations cause forces that oppose differential electron rotation and forced differential flow produces a symmetrizing force against perturbations and instability. This mechanism can explain the level of field error that spoils tokamak performance and the rate of poloidal flux loss in argon-induced disruptions in DIII-D. This new understanding has led to an explanation of the source of the solar magnetic fields and the power source for the chromosphere, solar wind and corona. Please place in spheromak and FRC section with other HIT posters.

  14. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  15. Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Mengel, M.; Carter, B. D.; Marsden, S.; Collier Cameron, A.; Wichmann, R.

    2000-08-01

    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50+/-10d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 1020g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars.

  16. DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.

    2015-09-01

    Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak,more » are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.« less

  17. The solar gravitational figure: J2 and J4

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Hawkins, G. W.

    1980-01-01

    The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.

  18. Comparative stereodynamics in molecule-atom and molecule-molecule rotational energy transfer: NO(A{sup 2}Σ{sup +}) + He and D{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.

    2016-08-28

    We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A{sup 2}Σ{sup +}) in collisions with the kinematically identical colliders He and D{sub 2}. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N′ = 3, 5-12) in collisions with He and D{sub 2} at respective average collision energies of 670 cm{sup −1} and 663 cm{sup −1}. Quantum scattering calculations on a literature ab initio potential energy surface for NO(A)-He [J.more » Kłos et al., J. Chem. Phys. 129, 244303 (2008)] yield near-quantitative agreement with the experimental differential scattering cross sections and good agreement with the rotational polarization moments. This confirms that the Kłos et al. potential is accurate within the experimental collisional energy range. Comparison of the experimental results for NO(A) + D{sub 2} and He collisions provides information on the hitherto unknown NO(A)-D{sub 2} potential energy surface. The similarities in the measured scattering dynamics of NO(A) imply that the general form of the NO(A)-D{sub 2} potential must be similar to that calculated for NO(A)-He. A consistent trend for the rotational rainbow maximum in the differential cross sections for NO(A) + D{sub 2} to peak at more forward angles than those for NO(A) + He is consistent with the NO(A)-D{sub 2} potential being more anisotropic with respect to NO(A) orientation. No evidence is found in the experimental measurements for coincident rotational excitation of the D{sub 2}, consistent with the potential having low anisotropy with respect to D{sub 2}. The NO(A) + He polarization moments deviate systematically from the predictions of a hard-shell, kinematic-apse scattering model, with larger deviations as N′ increases, which we attribute to the shallow gradient of the anisotropic repulsive NO(A)-He potential energy surface.« less

  19. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  20. Rotational spectral variations of asteroid (8) Flora Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1984-01-01

    The surface material and the surface material heterogeneities of the asteroid Flora are characterized using the best available data sets and the most sophisticated interpretive calibrations. Five spectrally derived mineralogic and patrologic properties of the surface assemblage of Flora which are relevant to whether this body is a differentiated or undifferentiated object are considered: bulk mineralogy, mafic mineral assemblage, metallic phase, pyroxene composition and structural type, and mineralogic variation. All of these properties indicate that Flora is a differentiated body. Flora is probably the residual core of an intensely heated, thermally evolved, and magnetically differentiated planetesimal which was subsequently disrupted. The present surface sample layers formed at or near the core-mantle boundary in the parent body.

  1. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    NASA Astrophysics Data System (ADS)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  2. Seismic sounding of convection in the Sun

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Katepalli R.

    2015-11-01

    Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.

  3. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  4. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  5. Stellar Ro

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas

    2017-05-01

    Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.

  6. Large-scale photospheric motions determined from granule tracking and helioseismology from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.

    2018-04-01

    Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.

  7. Factors Affecting SOS (Silicon-on-Sapphire) Yield and Reliability.

    DTIC Science & Technology

    1984-07-01

    Figure 47. Nomarski differential interference contrast micrographs at 2000 X. 104 Figure 48. Schematic illustrating procedure for preparing cross...8217When the rotation angle dependence of UV scattering was discovered, additional surface texture characterizations by Nomarski differential-interference...model 9000 f wafer flatness analyzer, an optical interferometric instrument of - adjustable sensitivity. Wafers were mounted on a 2-inch diameter Perkin

  8. Experimental study of time-dependent flows in laboratory atmospheric flow models

    NASA Technical Reports Server (NTRS)

    Rush, J. E.

    1982-01-01

    Baroclinic waves in a rotating, differentially-heated annulus of liquid were studied in support of the Atmospheric General Circulation Experiment. Specific objectives were to determine: (1) the nature of the flow at shallow depths, (2) the effect of a rigid lid vs. free surface, and (3) the nature of fluctuations in the waves as a function of rotation rate, depth, and type of surface. It is found that flows with a rigid lid are basically the same as those with a free surface, except for a decrease in flow rate. At shallow depths steady flows are found in essentially the same form, but the incidence of unsteady flows is greatly diminished.

  9. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  10. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  11. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  12. What we know about the sun's internal rotation from solar oscillations

    NASA Technical Reports Server (NTRS)

    Goode, Philip R.; Dziembowski, W. A.; Korzennik, S. G.; Rhodes, E. J., Jr.

    1991-01-01

    In this paper, a uniform approach of inversion was used to determine the internal rotation rate of the sun from each of the six available sets of solar oscillation data, which included the data of Duvall et al. (1986), Rhodes et al. (1987, 1990), Tomczyk (1988), Brown and Morrow (1987), and Libbrecht (1989). The technique chosen for inverting the solar oscillation data was the discretized least-squares technique. The results indicate that the rotation rate of the sun in the equatorial plane declines going inward between the surface and 0.6 of the radius and that the polar rate increases going inward (i.e., the surfacelike differential rotation decreases with depth).

  13. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  14. Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.

    2015-12-01

    Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.

  15. Constraints on the subsurface structure of Europa

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Banerdt, W. B.

    1990-02-01

    The wedge-shaped bands appearing near the anti-Jovian point on Europa are tension cracks which, after formation on an intact lithosphere, have facilitated the rotation of ice-lithosphere sections decoupled from the silicate interior. Such factors as fluid pressure, surface temperature, silicate impurities in the ice, and strain rates, would have affected the processes in question. A minimum degree of differentiation is required for Europa to mechanically decouple the rotated ice lithosphere from the underlying, predominantly silicate mantle.

  16. Oscillations and instabilities of fast and differentially rotating relativistic stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, Christian; Gaertig, Erich; Kokkotas, Kostas D.

    2010-04-15

    We study nonaxisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic j-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the Chandrasekhar-Friedman-Schutz (CFS) instability, while the critical value of T/|W| at the mass-shedding limit is raised even more. For stiffer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFSmore » instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a large degree of differential rotation the absolute value of the critical T/|W| is below the corresponding value for rigid rotation. We conclude that the onset of the CFS instability is eased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness. Moreover, we were able to extract the eigenfrequencies and the eigenfunctions of r-modes for differentially rotating stars and our simulations show a good qualitative agreement with previous Newtonian results.« less

  17. The Flow in a Model Rotating-Wall Bioreactor.

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Neitzel, G. Paul

    1997-11-01

    Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).

  18. Differential rotation in Jupiter: A comparison of methods

    NASA Astrophysics Data System (ADS)

    Wisdom, J.; Hubbard, W. B.

    2016-03-01

    Whether Jupiter rotates as a solid body or has some element of differential rotation along concentric cylinders is unknown. But Jupiter's zonal wind is not north/south symmetric so at most some average of the north/south zonal winds could be an expression of cylinders. Here we explore the signature in the gravitational moments of such a smooth differential rotation. We carry out this investigation with two general methods for solving for the interior structure of a differentially rotating planet: the CMS method of Hubbard (Hubbard, W.B. [2013]. Astrophys. J. 768, 1-8) and the CLC method of Wisdom (Wisdom, J. [1996]. Non-Perturbative Hydrostatic Equilibrium. http://web.mit.edu/wisdom/www/interior.pdf). The two methods are in remarkable agreement. We find that for smooth differential rotation the moments do not level off as they do for strong differential rotation.

  19. Proton--H/sub 2/ scattering on an ab initio CI potential energy surface. II. Combined vibrational--rotational excitation at 4. 67 and 6 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinke, R.

    1980-04-01

    Infinite-order-sudden calculations have been performed at 4.67 and 6 eV on the ab initio CI potential energy surface determined recently by Schinke, Dupuis, and Lester. The vibrational degree of freedom has been treated exactly by solving vibrationally coupled radial equations. The rotationally summed differential cross sections for vibrational excitation are in good agreement with the measurements of Schmidt, Hermann, and Linder. It is shown that the rotational excitation cross sections in the vibrational ground state near the rainbow angle are almost exclusively determined by the potential between 2.5a/sub 0/ and 5a/sub 0/ proton--H/sub 2/ separations. In this region only themore » V/sub 2/ term of an expansion into Legendre polynomials is nonvanishing and is a factor of approx.3 smaller for the new surface than for the Giese and Gentry analytic potential. These differences result in a dramatic decrease of the rotational excitation cross sections in the rainbow region so that the present theoretical transition probabilities are in much better agreement with the experiments than our previous sudden vib--rotor calculations utilizing Giese and Gentry's surface.« less

  20. Controlled surface-induced flows from the motion of self-assembled colloidal walkers.

    PubMed

    Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-12

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.

  1. Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  2. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structuremore » (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.« less

  3. Differential rotation in main-sequence solar-like stars: Qualitative inference from asteroseismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Mikkel N.; Christensen-Dalsgaard, Jørgen; Miesch, Mark S., E-mail: mikkelnl@phys.au.dk

    2014-08-01

    Understanding differential rotation of Sun-like stars is of great importance for insight into the angular momentum transport in these stars. One means of gaining such information is that of asteroseismology. By a forward modeling approach we analyze in a qualitative manner the impact of different differential rotation profiles on the splittings of p-mode oscillation frequencies. The optimum modes for inference on differential rotation are identified along with the best value of the stellar inclination angle. We find that in general it is not likely that asteroseismology can be used to make an unambiguous distinction between a rotation profile such asmore » a conical Sun-like profile and a cylindrical profile. In addition, it seems unlikely that asteroseismology of Sun-like stars will result in inferences on the radial profile of the differential rotation, such as can be done for red giants. At best, one could possibly obtain the sign of the radial differential rotation gradient. Measurements of the extent of the latitudinal differential from frequency splitting are, however, more promising. One very interesting aspect that could likely be tested from frequency splittings is whether the differential rotation is solar-like or anti-solar-like in nature, in the sense that a solar-like profile has an equator rotating faster than the poles.« less

  4. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra

    NASA Astrophysics Data System (ADS)

    Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W. H.

    2017-06-01

    Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseismology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained. Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on measuring or even placing limits on differential rotation. Aims: Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065. Methods: We used stellar structure models for these five stars from previous works. These models provide the mass density, mode eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from the rotation of surface magnetic activity measured from the photometric variability. Results: The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear. Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases that we studied, the interior rotation rate does not differ from the envelope by more than approximately ± 30%. Uncertainties in the rotational splittings are too large to unambiguously determine the sign of the radial shear.

  5. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  6. Local fragmentation of thin disks in Eddington-inspired gravity

    NASA Astrophysics Data System (ADS)

    Roshan, Mahmood; Kazemi, Ali; De Martino, Ivan

    2018-06-01

    We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a self-gravitating and differentially rotating disk. Finally we find a new version of Toomre's stability criterion for thin disks. We show that EiBI gravity with negative χ destabilizes all the rotating thin disks. On the other hand EiBI with positive χ substantially can suppress the local fragmentation, and has stabilizing effects against axi-symmetric perturbations. More specifically, we show that only an annulus remains unstable on the surface of the disk. The width of the annulus directly depends on the magnitude of χ.

  7. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  8. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  9. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  10. Weak magnetic field, solid-envelope rotation, and wave-induced N-enrichment in the SPB star ζ Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Briquet, M.; Neiner, C.; Petit, P.; Leroy, B.; de Batz, B.

    2016-03-01

    Aims: The main-sequence B-type star ζ Cassiopeiae is known as a N-rich star with a magnetic field discovered with the Musicos spectropolarimeter. We model the magnetic field of the star by means of 82 new spectropolarimetric observations of higher precision to investigate the field strength, topology, and effect. Methods: We gathered data with the Narval spectropolarimeter installed at Télescope Bernard Lyot (TBL; Pic du Midi, France) and applied the least-squares deconvolution technique to measure the circular polarisation of the light emitted from ζ Cas. We used a dipole oblique rotator model to determine the field configuration by fitting the longitudinal field measurements and by synthesizing the measured Stokes V profiles. We also made use of the Zeeman-Doppler imaging technique to map the stellar surface and to deduce the difference in rotation rate between the pole and equator. Results: ζ Cas exhibits a polar field strength Bpol of 100-150 G, which is the weakest polar field observed so far in a massive main-sequence star. Surface differential rotation is ruled out by our observations and the field of ζ Cas is strong enough to enforce rigid internal rotation in the radiative zone according to theory. Thus, the star rotates as a solid body in the envelope. Conclusions: We therefore exclude rotationally induced mixing as the cause of the surface N-enrichment. We discuss that the transport of chemicals from the core to the surface by internal gravity waves is the most plausible explanation for the nitrogen overabundance at the surface of ζ Cas. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique (CNRS) of France.

  11. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in the tachocline layer, where the turbulent viscosity reaches its maximum value at the equator. There, the tachocline layer exerts the most efficient drag on the less dense outer layers of the solar plasma, which are slowed down due to the interaction with the ambient space plasma (solar wind).

  12. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  13. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  14. MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk

    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less

  15. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave modes. Thus certain "benchmarks" have been created that can later be used as test cases for atmospheric numerical model validation. Both in the experiments and in the numerics multiple equilibrium states have been observed in the form of hysteretic behavior depending on the initial conditions. The precise quantification of these state and wave mode transitions may shed light to some aspects of the basic underlying dynamics of the baroclinic annulus configuration, still to be understood.

  16. The effects of differential flow between rational surfaces on toroidal resistive MHD modes

    NASA Astrophysics Data System (ADS)

    Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John

    2016-10-01

    Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.

  17. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  18. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  19. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    NASA Astrophysics Data System (ADS)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  20. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations.

  1. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  2. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower crust relative to the brittle crust above. Our study suggests that kinematics of crustal blocks in the ER is controlled by Africa and Somalia plates interaction at different scale and layers.

  3. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  4. Thermophysical characteristics of the large main-belt asteroid (349) Dembowska

    NASA Astrophysics Data System (ADS)

    Yu, Liang Liang; Yang, Bin; Ji, Jianghui; Ip, Wing-Huen

    2017-12-01

    (349) Dembowska is a large, bright main-belt asteroid that has a fast rotation and an oblique spin axis. It might have experienced partial melting and differentiation. We constrain Dembowska's thermophysical properties, such as thermal inertia, roughness fraction, geometric albedo and effective diameter within 3σ uncertainty of Γ =20^{+12}_{-7} Jm-2 s-0.5 K-1, f_r=0.25^{+0.60}_{-0.25}, p_v=0.309^{+0.026}_{-0.038} and D_eff=155.8^{+7.5}_{-6.2} km, by utilizing the advanced thermophysical model to analyse four sets of thermal infrared data obtained by the Infrared Astronomy Satellite (IRAS), AKARI, the Wide-field Infrared Survey Explorer (WISE) and the Subaru/Cooled Mid-Infrared Camera and Spectrometer (COMICS) at different epochs. In addition, by modelling the thermal light curve observed by WISE, we obtain the rotational phases of each data set. These rotationally resolved data do not reveal significant variations of thermal inertia and roughness across the surface, indicating that the surface of Dembowska should be covered by a dusty regolith layer with few rocks or boulders. Besides, the low thermal inertia of Dembowska shows no significant difference with other asteroids larger than 100 km, which indicates that the dynamical lives of these large asteroids are long enough to make their surfaces have sufficiently low thermal inertia. Furthermore, based on the derived surface thermophysical properties, as well as the known orbital and rotational parameters, we can simulate Dembowska's surface and subsurface temperatures throughout its orbital period. The surface temperature varies from ∼40 to ∼220 K, showing significant seasonal variation, whereas the subsurface temperature achieves equilibrium temperature about 120-160 K below a depth of 30-50 cm.

  5. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  6. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Ji Won

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitivemore » DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.« less

  7. Differential rotation of plasma in the GOL-3 multiple-mirror trap during injection of a relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, I. A., E-mail: I.A.Ivanov@inp.nsk.su; Burdakov, A. V.; Burmasov, V. S.

    2017-02-15

    Results of spectral and magnetic diagnostics of plasma differential rotation in the GOL-3 multiplemirror trap are presented. It is shown that the maximum frequency of plasma rotation about the longitudinal axis reaches 0.5 MHz during the injection of a relativistic electron beam into the plasma. The data of two diagnostics agree if there is a region with a higher rotation frequency near the boundary of the electron beam. Plasma differential rotation can be an additional factor stabilizing interchange modes in the GOL-3 facility.

  8. Rainbows in rotationally inelastic scattering: a comparative study of different model potential surfaces and dynamical approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinke, R.; Korsch, H.J.; Poppe, D.

    1982-12-15

    Rainbow structures in rotationally elastic and inelastic differential cross sections in atom--diatom collisions are investigated by comparison of three model potential energy surfaces labeled I, II, and III which are represented by V(R,..gamma..) = V/sub 0/(R)+V/sub 2/(R)P/sub 2/(cos ..gamma..). The cross sections are calculated within the quantal infinite-order-sudden (IOS) approximation. The anisotropic part V/sub 2/ is the same for all potentials and purely repulsive. The isotropic part V/sub 0/ for potential I is also repulsive and the differential cross sections show the well-studied rotational rainbow structures. Structural changes occur for collisions in potential II and III which have V/sub 0/more » terms being attractive at intermediate and large atom--molecule separations and having well depths of 10% and 25% of the collision energy, respectively. For example, the elastic cross section has no classical rainbow in the case of potential I but three in the case of potential III. The rainbow structures are analyzed within the classical and semiclassical versions of the IOS approximation and interpreted in terms of catastrophe theory. The quantitative comparison of the classical with the quantal IOS cross sections manifests possible quantum effects, i.e., tunneling into nonclassical regions and interference effects due to the superposition of several contributions (up to six in the present study). They can be very prominent and thus we conclude that much caution is needed if experimental data are compared with classical calculations. The accuracy of the IOS approximation is tested by comparison of classical IOS cross sections with cross sections obtained from exact classical trajectory calculations. The agreement is generally good with the exemption of the rainbow region and small angle, rotationally elastic scattering.« less

  9. Driving Solar Giant Cells through the Self-organization of Near-surface Plumes

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri

    2018-06-01

    Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

  10. On the Maximum Mass of Differentially Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Shapiro, Stuart L.; Shibata, Masaru

    2000-01-01

    We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such ``hypermassive'' models in full general relativity and show that there do exist configurations that are dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and a delayed gravitational wave burst.

  11. Microgravity-Enhanced Stem Cell Selection

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in conventional bioreactors, stirring invokes deleterious forces that disrupt cell aggregation and results in cell death. First-generation rotating bioreactors provided rotation on the horizontal axis, which resulted in the suspension of cells without stirring, thus providing a suitable environment to propagate cells without sedimentation to a surface. The rotating wall bioreactors did not provide a way to remove air bubbles that were causing shear and disrupting 3D cultures. Johnson Space Center successfully engineered the hydrofocusing bioreactor (HFB) that resolved the problem of removing the air bubbles from the fluid medium of NASA's rotating-wall space bioreactors. The HFB uses the principle of hydrodynamic focusing that simultaneously produces a low-shear fluid culture environment and a variable hydrofocusing force that can control the movement, location, and removal of suspended cells, tissues, and air bubbles from the bioreactor. The HFB is a rotating, domeshaped cell culture vessel with a centrally located sampling port and an internal viscous spinner. The vessel and spinner can rotate at different speeds either in the same or opposite directions. Rotation of the vessel and viscous interaction at the spinner generate a hydrofocusing force. Adjusting the differential rotation rate between vessel and spinner controls the magnitude of the force.

  12. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  13. Differential porosimetry and permeametry for random porous media.

    PubMed

    Hilfer, R; Lemmer, A

    2015-07-01

    Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.

  14. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    NASA Astrophysics Data System (ADS)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  15. The stable magnetic field of the fully convective star V374 Peg

    NASA Astrophysics Data System (ADS)

    Morin, J.; Donati, J.-F.; Forveille, T.; Delfosse, X.; Dobler, W.; Petit, P.; Jardine, M. M.; Collier Cameron, A.; Albert, L.; Manset, N.; Dintrans, B.; Chabrier, G.; Valenti, J. A.

    2008-02-01

    We report in this paper phase-resolved spectropolarimetric observations of the rapidly rotating fully convective M4 dwarf V374 Peg, on which a strong, mainly axisymmetric, large-scale poloidal magnetic field was recently detected. In addition to the original data set secured in 2005 August, we present here new data collected in 2005 September and 2006 August. From the rotational modulation of unpolarized line profiles, we conclude that star-spots are present at the surface of the star, but their contrast and fractional coverage are much lower than those of non-fully convective active stars with similar rotation rate. Applying tomographic imaging on each set of circularly polarized profiles separately, we find that the large-scale magnetic topology is remarkably stable on a time-scale of 1 yr; repeating the analysis on the complete data set suggests that the magnetic configuration is sheared by very weak differential rotation (about 1/10th of the solar surface shear) and only slightly distorted by intrinsic variability. This result is at odds with various theoretical predictions, suggesting that dynamo fields of fully convective stars should be mostly non-axisymmetric unless they succeed at triggering significant differential rotation. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. E-mail: jmorin@ast.obs-mip.fr (JM); donati@ast.obs-mip.fr (J-FD); thierry.forveille@obs.ujf-grenoble.fr (TF); xavier.delfosse@obs.ujfgrenoble.fr (XD); wolfgang.dobler@ucalgary.ca (WD); petit@ast.obs-mip.fr (PP); mmj@st-andrews.ac.uk (MMJ); acc4@st-andrews.ac.uk (ACC);albert@cfht.hawaii.edu (LA); manset@cfht.hawaii.edu (NM); dintrans@ast.obs-mip.fr (BD); chabrier@ens-lyon.fr (GC); valenti@stsci.edu (JAV)

  16. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.

    PubMed

    Tao, Xu; Liu, Junpeng; Chen, Lei; Zhou, You; Tang, Kanglai

    2015-01-01

    The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries. © 2015 S. Karger AG, Basel.

  17. Depth and latitude dependence of the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1990-01-01

    One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone.

  18. Revealing Stellar Surface Structure Behind Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.

  19. Multishell Au/Ag/SiO 2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  20. Combined Influence of Hall Current and Soret Effect on Chemically Reacting Magnetomicropolar Fluid Flow from Radiative Rotating Vertical Surface with Variable Suction in Slip-Flow Regime

    PubMed Central

    Jain, Preeti

    2014-01-01

    An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957

  1. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  2. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  3. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  4. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  5. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other suggested mechanisms for driving differential rotation. Gary A. Glatzmaier, Martha Evonuk and Tamara M. Rogers (2009), Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51.

  6. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-10-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (b) consists of variations over a range of timescales, in the manner of a "1/f" random process. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the stochastic process (b). The data can be found at the National Solar Observatory web site http://nsosp.nso.edu/data/cak_mon.html, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  7. Aspects of the Solar Tachocline

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1997-01-01

    The splitting of the frequencies of p-mode multiplets enables information to be gained about the internal rotation of the sun. Such data have revealed a transition at the base of the convection zone from differential rotation similar to that observed at the surface to almost solid-body rotation in the radiative interior. This transition region, known as the tachocline, has been found to be relatively narrow and centered below the base of the convection zone. In this paper, the evolution of the transition region is investigated numerically. Without a large anisotropic viscosity, the depth to which it would spread in one solar age, under the assumption of a constant prescribed differential rotation at the base of the convection zone, is found to be greater than its extent as inferred from helioseismology. In the second part of the paper a highly anisotropic turbulent viscosity with a large horizontal component, as suggested by Spiegel & Zahn (1992), is assumed. In this case, a steady tachocline is formed in which the advection of angular momentum balances the Reynolds stresses. The horizontal component of turbulent viscosity required to match the thickness of the tachocline to that obtained by helioseismology, is estimated to be 5 x 1O sq cm/s The transport of helium is studied in this case and is found to yield a sound-speed increase similar to that required by helioseismology.

  8. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  10. Role of Interaction between Magnetic Rossby Waves and Tachocline Differential Rotation in Producing Solar Seasons

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.

    2018-02-01

    We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.

  11. Fields and Plasma Structures Around ``Shining'' Black Holes: Solitary Rings and Tri-dimensional Topologies

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-03-01

    Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).

  12. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE PAGES

    Tobias, B.; Chen, M.; Classen, I. G. J.; ...

    2016-04-15

    The electromagnetic coupling of helical modes, including those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. Furthermore, with increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lockmore » to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. Additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing.« less

  13. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, B.; Grierson, B. A.; Okabayashi, M.

    2016-05-15

    The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less

  14. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less

  15. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  16. EK Draconis. Magnetic activity in the photosphere and chromosphere

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Berdyugina, S. V.; Korhonen, H.; Ilyin, I.; Tuominen, I.

    2007-09-01

    Context: As a young solar analogue, EK Draconis provides an opportunity to study the magnetic activity of the infant Sun. Aims: We present three new surface temperature maps of EK Draconis and compare them with previous results obtained from long-term photometry. Furthermore, we determined a set of stellar parameters and compared the determined values with the corresponding solar values. Methods: Atmospheric parameters were determined by comparing observed and synthetic spectra calculated with stellar atmosphere models. Surface temperature maps were obtained using the Occamian approach inversion technique. The differential rotation of EK Dra was estimated using two different methods. Results: A detailed model atmosphere analysis of high resolution spectra of EK Dra has yielded a self-consistent set of atmospheric parameters: T_eff = 5750 K, log g = 4.5, [M/H] = 0.0, ξt = 1.6 km s-1. The evolutionary models imply that the star is slightly more massive than the Sun and has an age between 30-50 Myr, which agrees with the determined lithium abundance of log N(Li) = 3.02. Moreover, the atmospheric parameters, as well as the wings of the Ca ii 8662 Å, indicate that the photosphere of EK Dra is very similar to the one of the present Sun, while their chromospheres differ. There also seems to be a correlation between magnetic features seen in the photosphere and chromosphere. The temperature images reveal spots of only 500 K cooler than the quiet photosphere. The mean spot latitude varies with time. The obtained differential rotation is very small, but the sign of it supports solar type differential rotation on EK Dra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table [see full text] and Figs. [see full text] and [see full text] are only available in electronic form at http://www.aanda.org

  17. Radial and latitudinal gradients in the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1988-01-01

    The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.

  18. Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua

    1991-08-01

    This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.

  19. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  20. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method

    NASA Astrophysics Data System (ADS)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard

    2015-02-01

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.

  1. On mechanisms separating stars into normal and chemically peculiar

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-10-01

    The paper argues in favor of the assumption that magnetic and non-magnetic protostars, from which CP stars were formed, are the objects that had rotation velocities of the parent cloud V smaller than a critical value V c . At V greater than the critical value, differential rotation emerges in the collapsing protostellar cloud, which twists magnetic lines of force into an' invisible' toroidal shape and disturbs the stability of the atmosphere. In magnetic protostars, the loss of angular momentum is due to magnetic braking, while in metallic protostars, the loss of rotation momentum occurs due to tidal interactions with a close component. HgMn stars are most likely not affected by some braking mechanism, but originated from the slowest protostellar rotators. The boundary of V c where the differential rotation occurs is not sharp. The slower the protostar rotates, the greater the probability of suppressing the differential rotation and the more likely the possibility of CP star birth.

  2. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  3. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  4. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.

    2012-02-01

    In the context of high energy density laboratory astrophysics, we aim to produce and study a rotating plasma relevant to accretion discs physics. We devised an experimental setup based on a modified cylindrical wire array and we studied it numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. The simulations show that a rotating plasma cylinder is formed, with typical rotation velocity ~35 km/s and Mach number ~5. In addition, the plasma ring is differentially rotating and strongly radiatively cooled. The introduction of external magnetic fields is discussed.

  5. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  6. Principles and biophysical applications of single particle super-localization and rotational tracking

    NASA Astrophysics Data System (ADS)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized for the first time. The rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport was also visualized using high-speed SPORT with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause. To improve the localization precision of the SPT technique with DIC microscopy, a precise three-dimensional (3D) localization method of spherical gold nanoparticle probes using model-based correlation coefficient mapping was introduced. To accomplish this, a stack of sample images at different z-positions are acquired, and a 3D intensity profile of the probe serving as the model is used to map out the positions of nanoparticles in the sample. By using this model-based correlation imaging method, precise localization can be achieved in imaging techniques with complicated point spread functions (PSF) such as differential interference contrast (DIC) microscopy. The 3D superlocalization method was applied to tracking gold nanospheres during live endocytosis events. Finally, a novel dual-modality imaging technique has been developed to super-localize a single gold nanorod while providing its orientation and rotational information. The super-localization of the gold nanorod can be accomplished by curve fitting the modified bright-field images generated by one of the two beams laterally shifted by the first Nomarski prism in a DIC microscope. The orientation and rotational information is derived from the DIC images of gold nanorods. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment.

  7. Principles and biophysical applications of single particle super-localization and rotational tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. Wemore » found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized for the first time. The rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport was also visualized using high-speed SPORT with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause. To improve the localization precision of the SPT technique with DIC microscopy, a precise three-dimensional (3D) localization method of spherical gold nanoparticle probes using model-based correlation coefficient mapping was introduced. To accomplish this, a stack of sample images at different z-positions are acquired, and a 3D intensity profile of the probe serving as the model is used to map out the positions of nanoparticles in the sample. By using this model-based correlation imaging method, precise localization can be achieved in imaging techniques with complicated point spread functions (PSF) such as differential interference contrast (DIC) microscopy. The 3D superlocalization method was applied to tracking gold nanospheres during live endocytosis events. Finally, a novel dual-modality imaging technique has been developed to super-localize a single gold nanorod while providing its orientation and rotational information. The super-localization of the gold nanorod can be accomplished by curve fitting the modified bright-field images generated by one of the two beams laterally shifted by the first Nomarski prism in a DIC microscope. The orientation and rotational information is derived from the DIC images of gold nanorods. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment.« less

  8. Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method

    NASA Astrophysics Data System (ADS)

    Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.

    2017-12-01

    The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.

  9. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  10. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  11. Evolution of Starspots on LO Pegasi

    NASA Astrophysics Data System (ADS)

    Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle

    2018-01-01

    LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.

  12. Electromyographic analysis of trunk and hip muscles during resisted lateral band walking.

    PubMed

    Youdas, James W; Foley, Brooke M; Kruger, BreAnna L; Mangus, Jessica M; Tortorelli, Alis M; Madson, Timothy J; Hollman, John H

    2013-02-01

    The purpose of this study was to simultaneously quantify bilateral activation/recruitment levels (% maximum voluntary isometric contraction [MVIC]) for trunk and hip musculature on both moving and stance lower limbs during resisted lateral band walking. Differential electromyographic (EMG) activity was recorded in neutral, internal, and external hip rotation in 21 healthy participants. EMG signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz during three consecutive lateral steps. Gluteus medius average EMG activation was greater (p = 0.001) for the stance limb (52 SD 18% MVIC) than moving limb (35 SD 16% MVIC). Gluteus maximus EMG activation was greater (p = 0.002) for the stance limb (19 SD 13% MVIC) than moving limb (13 SD 9% MVIC). Erector spinae activation was greater (p = 0.007) in hip internal rotation (30 SD 13% MVIC) than neutral rotation (26 SD 10% MVIC) and the moving limb (31 SD 15% MVIC) was greater (p = 0.039) than the stance limb (23 SD 11% MVIC). Gluteus medius and maximus muscle activation were greater on the stance limb than moving limb during resisted lateral band walking. Therefore, clinicians may wish to consider using the involved limb as the stance limb during resisted lateral band walking exercise.

  13. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    NASA Astrophysics Data System (ADS)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  14. Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V.; Jenkins, J. S.

    2017-10-01

    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

  15. Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  16. Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.

    PubMed

    Hecht, H

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  17. Steady flow in a rotating sphere with strong precession

    NASA Astrophysics Data System (ADS)

    Kida, Shigeo

    2018-04-01

    The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

  18. User's guide to PMESH: A grid-generation program for single-rotation and counterrotation advanced turboprops

    NASA Technical Reports Server (NTRS)

    Warsi, Saif A.

    1989-01-01

    A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.

  19. Pair-correlated stereodynamics for diatom-diatom rotational energy transfer: NO(A2Σ+) + N2

    NASA Astrophysics Data System (ADS)

    Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.; Costen, Matthew. L.

    2017-07-01

    We have performed a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with N2 and have measured rotational angular momentum polarization dependent images of product NO(A) rotational levels N' = 3 and 5-11 for collisions at an average energy of 797 cm-1. We present an extension of our previously published [T. F. M. Luxford et al., J. Chem. Phys. 145, 174 304 (2016)] image analysis which includes the effect of rotational excitation of the unobserved collision partner and critically evaluate this methodology. We report differential cross sections and angle-resolved angular momentum alignment moments for NO(A) levels N' = 3 and 5-11 as a function of the rotational excitation of the coincident N2 partner. The scattering dynamics of NO(A) + N2 share similarities with those previously reported for NO(A) + Ne and Ar, although with detailed differences. We use comparison of the measurements reported here to the scattering of NO(A) with Ne, and the known NO(A)-Ne potential energy surface, to draw conclusions about the previously unknown NO(A)-N2 potential.

  20. A suppression of differential rotation in Jupiter’s deep interior

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.

  1. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  2. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  3. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  4. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spinmore » down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.« less

  5. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  6. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  7. Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration

    NASA Astrophysics Data System (ADS)

    Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.

    2018-06-01

    Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.

  8. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  9. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  10. State-to-state reaction dynamics of {sup 18}O+{sup 32}O{sub 2} studied by a time-dependent quantum wavepacket method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang, E-mail: zsun@dicp.ac.cn

    2015-02-14

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with {sup 32}O{sub 2} in the hypothetical j{sub 0} = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational periodmore » of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.« less

  11. EVOLUTION OF NEAR-SURFACE FLOWS INFERRED FROM HIGH-RESOLUTION RING-DIAGRAM ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogart, Richard S.; Baldner, Charles S.; Basu, Sarbani

    2015-07-10

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ∼15° (180 Mm) or more in order to provide reasonable mode sets for inversions. Helioseismic and Magnetic Imager (HMI) data analysis also provides a set of ring fit parameters on a scale three timesmore » smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from a local helioseismic analysis of regions over different parts of the observable disk, and not all of them are well understood. In this study we characterize those systematic effects with higher spatial resolution so that they may be accounted for more effectively in mapping the temporal and spatial evolution of the flows. Leaving open the question of the mean structure of the global meridional circulation and the differential rotation, we describe the near-surface flow anomalies in time and latitude corresponding to the torsional oscillation pattern in differential rotation and analogous patterns in the meridional cell structure as observed by the Solar Dynamics Observatory/HMI.« less

  12. Differential Rotation within the Earth's Outer Core

    NASA Technical Reports Server (NTRS)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  13. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  14. Journal bearing

    DOEpatents

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  15. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    NASA Technical Reports Server (NTRS)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  16. Librations and Interior Structure of the Galilean Satellites

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Baland, R.; Karatekin, O.; Rambaux, N.

    2009-12-01

    We investigate the influence of the interior structure of the Galilean satellites on their rotation variations (or librations). Since the Galilean satellites are significantly aspherical due to rotation and static tides, Jupiter exerts a gravitational torque on them. In a circular orbit, the long axis of a satellite would always point towards Jupiter and the gravitational torque would be zero. However, the eccentric orbits of the Galilean satellites lead to misalignment of the long axis with the direction to Jupiter and result in non-zero gravitational torques that tend to modify the rotation of the satellites. Since the torque varies with the orbital phase, the main libration period is equal to the orbital period. In a first-order approximation, the libration amplitude is usually calculated by assuming that the satellite reacts rigidly to the gravitational torque. The corresponding amplitudes, expressed as a shift at the surface of the orientation of the long axis with respect to that for the mean rotation rate, decrease with increasing distance from Jupiter from a few hundred meters for Io to about ten meter for Callisto. Internal liquid layers, such as a subsurface ocean, can lead to differential rotation of the solid and liquid layers and to differences of the libration of surface with respect to that for a rigid libration. Here, we present a method to determine the influence of gravitational and pressure interactions between internal layers on the libration of the Galilean satellites. For Io, we show that the liquid core has only a small effect on the surface librations. For Europa, Ganymede and Callisto, the presence of a subsurface ocean can significantly increase the libration amplitude. We also study the effect of the possible existence of two liquid layers in Ganymede and Europa: a subsurface ocean and a liquid core. We quantify the sensitivity of the libration amplitude to the internal structure and assess expected improvements in the interior structure of the Galilean satellites from future libration observations with the joint NASA/ESA Europa Jupiter System Mission.

  17. Muscle Weakness in the Empty and Full Can Tests Cannot Differentiate Rotator Cuff Tear from Cervical Spondylotic Amyotrophy: Pain Provocation is a Useful Finding.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Sakamoto, Yoshihiro; Tanaka, Yasuhito

    2017-01-01

    Rotator cuff tears and cervical spondylotic amyotrophy (CSA) are often confused as the main symptom in those with difficulty in shoulder elevation. Empty and full can tests are frequently used for the clinical diagnosis of rotator cuff tears. The aim of the present study was to investigate whether the empty and full can test results can help differentiate rotator cuff tears from CSA. Twenty-seven consecutive patients with rotator cuff tears and 25 with CSA were enrolled. We prospectively performed empty and full can tests in patients with rotator cuff tears and CSA. The following signs were considered positive: (a) muscle weakness during the empty can test, (b) muscle weakness during the full can test, (c) pain provocation during the empty can test, and (d) pain provocation during the full can test. We calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of rotator cuff tears for each positive finding. The sensitivity and specificity of each index were as follows (sensitivity, specificity, PPV, NPV): (a) 77.8%, 0%, 45.7%, 0%; (b) 66.7%, 4.0%, 42.9%, 10.0%; (c) 88.9%, 96.0%, 96.0%, 88.9%; and (d) 74.1%, 96.0%, 95.2%, 77.4%. There were significant differences for each index. Muscle weakness during the empty and full can tests was not useful in differentiating rotator cuff tears from CSA because of low specificity and PPV. However, pain provocation was useful in differentiating these two conditions because of high specificity and PPV.

  18. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  19. Surface dimpling on rotating work piece using rotation cutting tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less

  20. Two Populations of Sunspots: Differential Rotation

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Pevtsov, A. A.; Osipova, A. A.

    2018-03-01

    To investigate the differential rotation of sunspot groups using the Greenwich data, we propose an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different latitude intervals. The general statistical velocity distributions for all such intervals are shown to be described by two rather than one normal distribution, so that two fundamental rotation modes exist simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2 in Faye's law is 2.87-2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results obtained not only suggest a real physical difference between the two populations of sunspots but also give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially distributed dynamo.

  1. Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135

    NASA Astrophysics Data System (ADS)

    Fröhlich, H.-E.; Frasca, A.; Catanzaro, G.; Bonanno, A.; Corsaro, E.; Molenda-Żakowicz, J.; Klutsch, A.; Montes, D.

    2012-07-01

    Aims: We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods: The fundamental stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results: We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle. Based on public Kepler data, on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei - INAF at the Observatorio del Roque del los Muchachos, La Palma (Canary Islands), on observations collected at the 2.2-m telescope of the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and on observations collected at the Catania Astrophysical Observatory (Italy).

  2. Star formation with disc accretion and rotation. I. Stars between 2 and 22 M⊙ at solar metallicity

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2013-09-01

    Context. The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. Aims: In the framework of the cold disc accretion scenario, we study how angular momentum builds up inside the star during its formation for the first time and what the consequences are for its evolution on the main sequence (MS). Methods: Computation begins from a hydrostatic core on the Hayashi line of 0.7 M⊙ at solar metallicity (Z = 0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered, which vary between 1.5 × 10-5 and 1.7 × 10-3 M⊙ yr-1. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 M⊙. Results: We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Typically, the 6 M⊙ model has a core that rotates 50% faster than the surface on the ZAMS. The degree of differential rotation on the ZAMS decreases when the mass increases (for a fixed value of vZAMS/vcrit). The MS evolution of our models with a pre-MS accreting phase show no significant differences with respect to those of corresponding models computed from the ZAMS with an initial solid-body rotation. Interestingly, there exists a maximum surface velocity that can be reached through the present scenario of formation for masses on the ZAMS larger than 8 M⊙. Typically, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed for 14 M⊙ models. Reaching higher velocities would require starting from cores that rotate above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, there is no restriction below 8 M⊙, and the whole domain of velocities to the critical point can be reached.

  3. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  4. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation.

    PubMed

    Medina, Roberto; Llamas, José; Gómez-García-Bermejo, Jaime; Zalama, Eduardo; Segarra, Miguel José

    2017-07-20

    In this article, a system for the detection of cracks in concrete tunnel surfaces, based on image sensors, is presented. Both data acquisition and processing are covered. Linear cameras and proper lighting are used for data acquisition. The required resolution of the camera sensors and the number of cameras is discussed in terms of the crack size and the tunnel type. Data processing is done by applying a new method called Gabor filter invariant to rotation, allowing the detection of cracks in any direction. The parameter values of this filter are set by using a modified genetic algorithm based on the Differential Evolution optimization method. The detection of the pixels belonging to cracks is obtained to a balanced accuracy of 95.27%, thus improving the results of previous approaches.

  5. Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface

    NASA Astrophysics Data System (ADS)

    Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael

    2017-11-01

    A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.

  6. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    PubMed Central

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678

  7. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.

    PubMed

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

  8. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    NASA Astrophysics Data System (ADS)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  9. Null result for violation of the equivalence principle with free-fall rotating gyroscopes

    NASA Astrophysics Data System (ADS)

    Luo, J.; Nie, Y. X.; Zhang, Y. Z.; Zhou, Z. B.

    2002-02-01

    The differential acceleration between a rotating mechanical gyroscope and a nonrotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2×10-6. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or antigravity of the rotating gyroscopes as reported by Hayasaka et al.

  10. Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set

    NASA Astrophysics Data System (ADS)

    Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.

    2017-10-01

    Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the DS method and ω(b) = (14.50 ± 0.01)-(2.87 ± 0.12)sin2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964-2016 in the present paper. Rotation profiles, using different data sets, presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Conclusions: The KSO data set used in this paper is in good agreement with the Debrecen Photoheliographic Data and Greenwich Photoheliographic Results and is suitable for the investigation of the long-term variabilities in the solar rotation profile. Also, the quality of the KSO sunspot drawings has gradually increased during the last 50 yr.

  11. Lectures on the Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1981-12-01

    2 can be treated similarly. By a translation and a rotation, we can transform it to the do- main 2 : -45 ° ( 9 225 ° . It is a good exercise to ...of boundary conditions along the lateral surface does not naturally give rise to a two-dimensional plate model. I According to the Rivlin-Erzcksen...series (3.17). In the sequel, we shall be concerned with the computation of the first term (u,o) which, according to the above considerations, should

  12. Attività fotometrica di Plutone nel 2005

    NASA Astrophysics Data System (ADS)

    Bianciardi, Giorgio

    2006-06-01

    This report describes unfiltered CCD differential photometry of Pluto performed between 1 August and 10 September 2005. Results show that in the present year Pluto is maintaining a high photometric activity, higher than expected (maximum brightness variations of 0.29±0.02 magnitudes) in relation to the rotational period. Pluto's appearance is now drastically changing owing to viewing geometry and the next collapse of its atmosphere onto the surface. Amateurs too should dedicate particular attention to the photometric evolution of the planet.

  13. Twisted surfaces with vanishing curvature in Galilean 3-space

    NASA Astrophysics Data System (ADS)

    Dede, Mustafa; Ekici, Cumali; Goemans, Wendy; Ünlütürk, Yasin

    In this work, we define twisted surfaces in Galilean 3-space. In order to construct these surfaces, a planar curve is subjected to two simultaneous rotations, possibly with different rotation speeds. The existence of Euclidean rotations and isotropic rotations leads to three distinct types of twisted surfaces in Galilean 3-space. Then we classify twisted surfaces in Galilean 3-space with zero Gaussian curvature or zero mean curvature.

  14. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel, whereby newly formed molecules leave the surface without equilibrating, and (ii) a partially accommodated fraction that shares vibrational, rotational, and translational energy with the liquid surface before returning to the gas phase. Finally, a velocity map ion imaging apparatus has been implemented to investigate reaction dynamics in crossed molecular beams. Resonantly enhanced multiphoton ionization (REMPI) results in rotational, vibrational, and electronic state selectivity. Velocity map imaging measurements provide differential cross sections and information about the internal energy distribution of the undetected collision partner.

  15. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).

    PubMed

    McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J

    2017-07-12

    Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.

  16. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.

  17. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. Copyright 2002 Wiley Periodicals, Inc.

  18. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain increased with time in culture. Histology demonstrated cell infiltration through the full thickness of all scaffolds and immunofluorescence demonstrated greater expression of type I, but not type III collagen through the full thickness of the scaffold in TDM-scaffolds compared to other treatment groups. Together, these data suggest that nonaligned multilayered electrospun scaffolds permit tenogenic differentiation by hASCs and that TDM may promote some aspects of this differentiation. PMID:23808760

  19. Nonmodal phenomena in differentially rotating dusty plasmas

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  20. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  1. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  2. Thermal casting of polymers in centrifuge for producing X-ray optics

    DOEpatents

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA

    2012-03-27

    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  3. Energy functions for regularization algorithms

    NASA Technical Reports Server (NTRS)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  4. Pressure deformation of tires using differential stiffness for triangular solid-of-revolution elements

    NASA Technical Reports Server (NTRS)

    Chen, C. H. S.

    1975-01-01

    The derivation is presented of the differential stiffness for triangular solid of revolution elements. The derivation takes into account the element rigid body rotation only, the rotation being about the circumferential axis. Internal pressurization of a pneumatic tire is used to illustrate the application of this feature.

  5. Mercury. [Mariner 10 observations and planetary properties

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Cassen, P.; Burns, J. A.; Strom, R. G.

    1977-01-01

    Information about Mercury obtained with the Mariner 10 spacecraft is summarized together with results of theoretical studies and ground-based observations. It is shown that Mercury is very likely a differentiated body, probably contains a large earthlike iron-rich core, and displays a surface similar to the moon's, which suggests a similar evolutionary history. The size and mass of Mercury are discussed along with its orbit, rotation, atmosphere, magnetic field, and magnetosphere. Surface features of Mercury are described on the basis of Mariner 10 pictures, with detailed attention given to the major physiographic provinces, the structure of the Caloris basin, the tectonic framework of the planet, crater morphology, the planet's optical and thermal properties, and cartography. The composition and structure of the interior are examined, and the thermal history of Mercury is considered. The planet's geologic history is divided into five stages or epochs: (1) accretion and differentiation, (2) terminal heavy bombardment, (3) Caloris basin formation, (4) basin flooding, and (5) postfilling lighter bombardment.

  6. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  7. A Study of Supersonic Surface Sources: The Ffowcs Williams-Hawkings Equation and the Kirchhoff Formula

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.; Dunn, M. H.

    2004-01-01

    In this paper we address the mathematical problem of noise generation from high speed moving surfaces. The problem we are solving is the linear wave equation with sources on a moving surface. The Ffowcs Williams-Hawkings (FW-H) equation as well as the govern- ing equation for deriving the Kirchhoff formula for moving surfaces are both this type of partial differential equation. We give a new exact solution of this problem here in closed form which is valid for subsonic and supersonic motion of the surface but it is particularly suitable for supersonically moving surfaces. This new solution is the simplest of all high speed formulations of Langley and is denoted formulation 4 following the tradition of numbering of our major results for the prediction of the noise of rotating blades. We show that for a smooth surface moving at supersonic speed, our solution has only removable singularities. Thus it can be used for numerical work.

  8. Polygons on a rotating fluid surface.

    PubMed

    Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

    2006-05-05

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

  9. Meridional Flow in Solar Cycle 24: The Impact on the Polar Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Upton, Lisa; Hathaway, David; Kosak, Katie

    2012-01-01

    Axisymmetric flows, Differential Rotation and Meridional Flow (MF), were measured by tracking the motion of magnetic elements on the surface of the Sun using data obtained by the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. HMI provides the highest resolution full ]disk magnetograms available to date. This dramatically reduces the noise in axisymmetric flows, particularly at high latitudes (i.e. near the poles). The MF was found to vary greatly from one Carrington Rotation to the next. Furthermore, a distinct north ]south difference was found in the MF at high latitudes: Flow in the South was persistently weaker than flow in the North. Conclusions will be drawn concerning the MF variability, north ]south differences, and the impact on the polar magnetic field strengths and the timing of their reversals.

  10. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  11. Subgrid Scale Modeling in Solar Convection Simulations using the ASH Code

    NASA Technical Reports Server (NTRS)

    Young, Y.-N.; Miesch, M.; Mansour, N. N.

    2003-01-01

    The turbulent solar convection zone has remained one of the most challenging and important subjects in physics. Understanding the complex dynamics in the solar con- vection zone is crucial for gaining insight into the solar dynamo problem. Many solar observatories have generated revealing data with great details of large scale motions in the solar convection zone. For example, a strong di erential rotation is observed: the angular rotation is observed to be faster at the equator than near the poles not only near the solar surface, but also deep in the convection zone. On the other hand, due to the wide range of dynamical scales of turbulence in the solar convection zone, both theory and simulation have limited success. Thus, cutting edge solar models and numerical simulations of the solar convection zone have focused more narrowly on a few key features of the solar convection zone, such as the time-averaged di erential rotation. For example, Brun & Toomre (2002) report computational finding of differential rotation in an anelastic model for solar convection. A critical shortcoming in this model is that the viscous dissipation is based on application of mixing length theory to stellar dynamics with some ad hoc parameter tuning. The goal of our work is to implement the subgrid scale model developed at CTR into the solar simulation code and examine how the differential rotation will be a affected as a result. Specifically, we implement a Smagorinsky-Lilly subgrid scale model into the ASH (anelastic spherical harmonic) code developed over the years by various authors. This paper is organized as follows. In x2 we briefly formulate the anelastic system that describes the solar convection. In x3 we formulate the Smagorinsky-Lilly subgrid scale model for unstably stratifed convection. We then present some preliminary results in x4, where we also provide some conclusions and future directions.

  12. Assessment of Dominant/Codominant Height Growth for Second Rotation Slash Pine Plantations in South Georgia and North Florida

    Treesearch

    Charles E. Rose; Barry D. Shiver

    2002-01-01

    A slash pine (Pinus elliottii Engelm.) successive rotation plantation study was established in 1978-79 for the north Florida and south Georgia fiatwoods. The second rotation duplicated the first rotation seed source, site preparation, planting method, and density. The comparison between the two rotations is based on the mean height differential...

  13. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming.

    PubMed

    Lee, Yi-Ying; Belas, Robert

    2015-01-01

    Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2016-10-01

    Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.

  15. Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields

    NASA Astrophysics Data System (ADS)

    Hubbard, William B.

    2014-11-01

    Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).

  16. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  17. Constraining the common properties of active region formation using the SDO/HEAR dataset

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.

    2016-10-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which enable us to perform statistical analyses. We collated a uniform data set of emerging active regions (EARs) observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region can be observed up to 7 days before emergence. We call this dataset the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. We have used this dataset to to understand the nature of active region emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 110 ± 15 m/s (-60 ± 10 m/s) relative to the Carrington rotation rate in the first day after emergence. However, relative to the differential rotation of the surface plasma the East-West velocity is symmetric, with a mean of 90 ± 10 m/s. We have also compared the surface flows associated with the EARs at the time of emergence with surface flows from numerical simulations of flux emergence with different rise speeds. We found that the surface flows in simulations of emerging flux with a low rise speed of 70 m/s best match the observations.

  18. Measurement of surface effects on the rotational diffusion of a colloidal particle.

    PubMed

    Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo

    2011-03-15

    A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.

  19. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  20. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo.

    PubMed

    Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2011-11-21

    We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. © 2011 Optical Society of America

  1. Miniature endoscopic optical coherence tomography for calculus detection.

    PubMed

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P<0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus.

  2. Rotationally inelastic scattering of methyl radicals with Ar and N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkáč, Ondřej; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk; Ma, Qianli

    2015-01-07

    The rotationally inelastic scattering of methyl radical with Ar and N{sub 2} is examined at collision energies of 330 ± 25 cm{sup −1} and 425 ± 50 cm{sup −1}, respectively. Differential cross sections (DCSs) were measured for different final n′ rotational levels (up to n′ = 5) of the methyl radicals, averaged over k′ sub-levels, using a crossed molecular beam machine with velocity map imaging. For Ar as a collision partner, we present a newly constructed ab initio potential energy surface and quantum mechanical scattering calculations of state-resolved DCSs. These computed DCSs agree well with the measurements. The DCSs formore » both Ar and N{sub 2} collision partners are strongly forward peaked for all spectroscopic lines measured. For scattering angles below 60°, the theoretical CD{sub 3}–Ar DCSs show diffraction oscillations that become less pronounced as n′ increases, but these oscillations are not resolved experimentally. Comparisons are drawn with our recently reported DCSs for scattering of methyl radicals with He atoms.« less

  3. Analytical evaluation of the trajectories of hypersonic projectiles launched into space

    NASA Astrophysics Data System (ADS)

    Stutz, John David

    An equation of motion has been derived that may be solved using simple analytic functions which describes the motion of a projectile launched from the surface of the Earth into space accounting for both Newtonian gravity and aerodynamic drag. The equation of motion is based upon the Kepler equation of motion differential and variable transformations with the inclusion of a decaying angular momentum driving function and appropriate simplifying assumptions. The new equation of motion is first compared to various numerical and analytical trajectory approximations in a non-rotating Earth reference frame. The Modified Kepler solution is then corrected to include Earth rotation and compared to a rotating Earth simulation. Finally, the modified equation of motion is used to predict the apogee and trajectory of projectiles launched into space by the High Altitude Research Project from 1961 to 1967. The new equation of motion allows for the rapid equalization of projectile trajectories and intercept solutions that may be used to calculate firing solutions to enable ground launched projectiles to intercept or rendezvous with targets in low Earth orbit such as ballistic missiles.

  4. Energy and rotation-dependent stereodynamics of reaction

    NASA Astrophysics Data System (ADS)

    Yong-Qing, Li; Yun-Fan, Yang; Yang, Yu; Yong-Jia, Zhang; Feng-Cai, Ma

    2016-02-01

    Quasi-classical trajectory calculations are performed to study the stereodynamics of the reaction based on the first excited state NH2(12A‧) potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k‧ distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k‧ distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j‧ of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685), and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less

  6. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  7. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  8. Hexagonally ordered nanodots: Result of substrate rotation during oblique incidence low energy IBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debasree, E-mail: debasree.chowdhury@saha.ac.in; Ghose, Debabrata, E-mail: debasree.chowdhury@saha.ac.in

    The anisotropic regular patterns are often results during oblique incidence ion beam sputtering (IBS). Simultaneous substrate rotation (SR) during IBS can suppress surface roughening and removes anisotropic nature of surface pattern. Here, the evolution of Si surface morphology as result of with and without SR is studied during oblique incidence low energy Ar{sup +} sputtering. Resultant topography shows smooth surface to hexagonally ordered nanodots at different rotating conditions. Interestingly, surface roughness exhibits non-monotonic dependence on rotation frequency. The underlying mechanism for dot formation can be described within the framework of isotropic DKS equation.

  9. Collisional excitation of interstellar PO(X2Π) by He: new ab initio potential energy surfaces and scattering calculations

    NASA Astrophysics Data System (ADS)

    Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos

    2018-01-01

    We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

  10. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  11. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  12. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  13. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  14. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  15. The Differential Impact of Clerk Interest and Participation in a Child and Adolescent Psychiatry Clerkship Rotation upon Psychiatry and Pediatrics Residency Matches

    ERIC Educational Resources Information Center

    Hanson, Mark D.; Szatmari, Peter; Eva, Kevin W.

    2011-01-01

    Objective: The authors evaluated the differential impact of clerk interest and participation in a Child and Adolescent Psychiatry (CAP) clerkship rotation upon psychiatry and pediatrics residency matches. Method: Authors studied clerks from the McMaster University M.D. program graduating years of 2005-2007. Participants were categorized as 1)…

  16. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  17. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  18. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  19. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  20. Limits on magnetic field amplification from the r -mode instability

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Rezzolla, Luciano; Chugunov, Andrey I.

    2017-12-01

    At second order in perturbation theory, the unstable r -mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000)., 10.1086/312539], suggests that the amplification may damp out the instability. A background magnetic field, however, turns the saturated time-independent perturbations corresponding to adding differential rotation into perturbations whose characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to previous work, however, we show that if the amplitude is small, i.e., ≲10-4 , then the limit on the magnetic-field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or significantly altering an unstable r -mode in nascent neutron stars with normal interiors and in cold stars whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our analysis depends on the assumption that there are no marginally unstable perturbations, and this may not hold when differential rotation leads to a magnetorotational instability.

  1. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    PubMed

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  2. Film depth and concentration banding in free-surface Couette flow of a suspension.

    PubMed

    Timberlake, Brian D; Morris, Jeffrey F

    2003-05-15

    The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.

  3. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  4. Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.; Metallo, A.

    2017-11-01

    Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.

  5. Newton Algorithms for Analytic Rotation: An Implicit Function Approach

    ERIC Educational Resources Information Center

    Boik, Robert J.

    2008-01-01

    In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…

  6. Perception of Invariance Over Perspective Transformations in Five Month Old Infants.

    ERIC Educational Resources Information Center

    Gibson, Eleanor; And Others

    This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…

  7. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  8. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it hasmore » an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.« less

  9. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  10. Imaging Active Giants and Comparisons to Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael

    2018-04-01

    In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.

  11. On blockage effects for a marine hydrokinetic turbine in free surface proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Kolekar, N.

    2016-12-01

    Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.

  12. Noncontact on-machine measurement system based on capacitive displacement sensors for single-point diamond turning

    NASA Astrophysics Data System (ADS)

    Li, Xingchang; Zhang, Zhiyu; Hu, Haifei; Li, Yingjie; Xiong, Ling; Zhang, Xuejun; Yan, Jiwang

    2018-04-01

    On-machine measurements can improve the form accuracy of optical surfaces in single-point diamond turning applications; however, commercially available linear variable differential transformer sensors are inaccurate and can potentially scratch the surface. We present an on-machine measurement system based on capacitive displacement sensors for high-precision optical surfaces. In the proposed system, a position-trigger method of measurement was developed to ensure strict correspondence between the measurement points and the measurement data with no intervening time-delay. In addition, a double-sensor measurement was proposed to reduce the electric signal noise during spindle rotation. Using the proposed system, the repeatability of 80-nm peak-to-valley (PV) and 8-nm root-mean-square (RMS) was achieved through analyzing four successive measurement results. The accuracy of 109-nm PV and 14-nm RMS was obtained by comparing with the interferometer measurement result. An aluminum spherical mirror with a diameter of 300 mm was fabricated, and the resulting measured form error after one compensation cut was decreased to 254 nm in PV and 52 nm in RMS. These results confirm that the measurements of the surface form errors were successfully used to modify the cutting tool path during the compensation cut, thereby ensuring that the diamond turning process was more deterministic. In addition, the results show that the noise level was significantly reduced with the reference sensor even under a high rotational speed.

  13. [MRI of the rotator cuff: evaluation of a new symptomatologic classification].

    PubMed

    Tavernier, T; Walch, G; Noël, E; Lapra, C; Bochu, M

    1995-05-01

    The different classifications use for the rotator cuff pathology seem to be incomplete. We propose a new classification with many advantages: 1) Differentiate the tendinopathy between less serious (grade 2A) and serious (grade 2B). 2) Recognize the intra-tendinous cleavage of the infra-spinatus associated with complete tear of the supra-spinatus. 3) Differentiate partial and complete tears of the supra-spinatus. We established this classification after a retrospective study of 42 patients operated on for a rotator cuff pathology. Every case had had a preoperative MRI. This classification is simple, reliable, especially for the associated intra tendinous cleavage.

  14. Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis.

    PubMed

    Hackenberg, Lars; Hierholzer, Eberhard; Bullmann, Viola; Liljenqvist, Ulf; Götze, Christian

    2006-07-01

    The forward bending test according to Adams and rib hump quantification by scoliometer are common clinical examination techniques in idiopathic scoliosis, although precise data about the change of axial surface rotation in forward bending posture are not available. In a pilot study the influence of leg length inequalities on the back shape of five normal subjects was clarified. Then 91 patients with idiopathic scoliosis with Cobb-angles between 20 degrees and 82 degrees were examined by rasterstereography, a 3D back surface analysis system. The axial back surface rotation in standing posture was compared with that in forward bending posture and additionally with a scoliometer measurement in forward bending posture. The changes of back shape in forward bending posture were correlated with the Cobb-angle, the level of the apex of the scoliotic primary curve and the age of the patient. Averaged over all patients, the back surface rotation amplitude increased from 23.1 degrees in standing to 26.3 degrees in forward bending posture. The standard deviation of this difference was high (6.1 degrees ). The correlation of back surface rotation amplitude in standing with that in forward bending posture was poor (R (2)=0.41) as was the correlation of back surface rotation in standing posture with the scoliometer in forward bending posture measured rotation (R (2)=0.35). No significant correlation could be found between the change of back shape in forward bending and the degree of deformity (R (2)=0.07), likewise no correlation with the height of the apex of the scoliosis (R (2)=0.005) and the age of the patient (R (2)=0.001). Before forward bending test leg length inequalities have to be compensated accurately. Compared to the standing posture, forward bending changes back surface rotation. However, this change varies greatly between patients, and is independent of the type and degree of scoliosis. Furthermore remarkable differences were found between scoliometer measurement of the rib hump and rasterstereographic measurement of the vertebral rotation. Therefore the forward bending test and the identification of idiopathic scoliosis rotation by scoliometer can be markedly different compared to rasterstereographic surface measurement in the standing posture.

  15. Comparison of trunk kinematics in trunk training exercises and throwing.

    PubMed

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  16. USE OF A NOVEL BOARD GAME IN A CLINICAL ROTATION FOR LEARNING THORACIC DIFFERENTIAL DIAGNOSES IN VETERINARY MEDICAL IMAGING.

    PubMed

    Ober, Christopher P

    2017-03-01

    When confronted with various findings on thoracic radiographs, fourth-year veterinary students often have difficulty generating appropriate lists of differential diagnoses. The purpose of this one-group, pretest, posttest experimental study was to determine if a game could be used as an adjunct teaching method to improve students' understanding of connections between imaging findings and differential diagnoses. A novel board game focusing on differential diagnoses in thoracic radiography was developed. One hundred fourth-year veterinary students took a brief pretest, played the board game, and took a brief posttest as a part of their respective clinical radiology rotations. Pretest results were compared to posttest results using a paired t-test to determine if playing the game impacted student understanding. Students' mean scores on the posttest were significantly higher than mean pretest scores (P < 0.0001). Thus, results indicate that playing the board game resulted in improved short-term understanding of thoracic differential diagnoses by fourth-year students, and use of the board game on a clinical rotation seems to be a beneficial part of the learning process. © 2016 American College of Veterinary Radiology.

  17. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior than the individual spots or as azimuthal dynamo waves exhibiting prograde propagation. Based on observations made as part of the automated astronomy program at Tennessee State University and with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Photometric data and results are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A38

  18. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  19. Detection of large color variation in the potentially hazardous asteroid (297274) 1996 SK

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hsien; Ip, Wing-Huen; Lin, Zhong-Yi; Yoshida, Fumi; Cheng, Yu-Chi

    2014-03-01

    Low-inclination near-earth asteroid (NEA) (297274) 1996 SK, which is also classified as a potentially hazardous asteroid, has a highly eccentric orbit. It was studied by multi-wavelength photometry within the framework of an NEA color survey at Lulin Observatory. Here, we report the finding of large color variation across the surface of (297274) 1996 SK within one asteroidal rotation period of 4.656 ± 0.122 hours and classify it as an S-type asteroid according to its average colors of B — V = 0.767 ± 0.033, V — R = 0.482 ± 0.021, V — I = 0.801 ± 0.025 and the corresponding relative reflectance spectrum. These results might be indicative of differential space weathering or compositional inhomogeneity in the surface materials.

  20. Toward a Self-Consistent Dynamical Model of the NSSL

    NASA Astrophysics Data System (ADS)

    Matilsky, Loren

    2018-01-01

    The advent of helioseismology has revealed in detail the internal differential rotation profile of the Sun. In particular, the presence of two boundary layers, the tachocline at the bottom of the convection zone (CZ) and the Near Surface Shear Layer (NSSL) at the top of the CZ, has remained a mystery. These two boundary layers may have significant consequences for the internal dynamo that operates the Sun's magnetic field, and so understanding their dynamics is an important step in solar physics and in the theory of solar-like stellar structure in general. In this talk, we analyze three numerical models of hydrodynamic convection in rotating spherical shells with varying degrees of stratification in order to understand the dynamical balance of the solar near-surface shear layer (NSSL). We find that with sufficient stratification, a boundary layer with some characteristics of the NSSL develops at high latitudes, and it is maintained purely an inertial balance of torques in which the viscosity is negligible. An inward radial flux of angular momentum from the Reynold's stress (as has been predicted by theory) is balanced by the poleward latitudinal flux of angular momentum due to the meridional circulation. We analyze the similarities of the near surface shear in our models to that of the Sun, and find that the solar NSSL is most likely maintained by the inertial balance our simulations display at high latitudes, but with a modified upper boundary condition.

  1. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  2. Study of the solar coronal hole rotation

    NASA Astrophysics Data System (ADS)

    Oghrapishvili, N. B.; Bagashvili, S. R.; Maghradze, D. A.; Gachechiladze, T. Z.; Japaridze, D. R.; Shergelashvili, B. M.; Mdzinarishvili, T. G.; Chargeishvili, B. B.

    2018-06-01

    Rotation of coronal holes is studied using data from SDO/AIA for 2014 and 2015. A new approach to the treatment of data is applied. Instead of calculated average angular velocities of each coronal hole centroid and then grouping them in latitudinal bins for calculating average rotation rates of corresponding latitudes, we compiled instant rotation rates of centroids and their corresponding heliographic coordinates in one matrix for further processing. Even unfiltered data showed clear differential nature of rotation of coronal holes. We studied possible reasons for distortion of data by the limb effects to eliminate some discrepancies at high latitudes caused by the high order of scattering of data in that region. A study of the longitudinal distribution of angular velocities revealed the optimal longitudinal interval for the best result. We examined different methods of data filtering and realized that filtration using targeting on the local medians of data with a constant threshold is a more acceptable approach that is not biased towards a predefined notion of an expected result. The results showed a differential pattern of rotation of coronal holes.

  3. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  4. Simple Verification of the Parabolic Shape of a Rotating Liquid and a Boat on Its Surface

    ERIC Educational Resources Information Center

    Sabatka, Z.; Dvorak, L.

    2010-01-01

    This article describes a simple and inexpensive way to create and to verify the parabolic surface of a rotating liquid. The liquid is water. The second part of the article deals with the problem of a boat on the surface of a rotating liquid. (Contains 1 table, 10 figures and 5 footnotes.)

  5. Rotating flow over a stretching sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.

    2017-08-01

    The boundary layer flow and heat transfer in rotating nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is studied. Four types of nanoparticles, namely silver (Ag), copper (Cu), alumina (Al2O3) and titania (TiO2) are used in our analysis with water as the base fluid (Prandtl number, Pr = 6.2). The nonlinear partial differential equations are transformed into ordinary differential equations by using the similarity transformation. The numerical solutions of these equation is obtained using shooting method in Maple software. The numerical results is concentrated on the effects of nanoparticle volume fraction φ, Brownian motion Nb, thermophoresis Nt, rotation Ω and suction S parameters on the skin friction coefficient and heat transfer rate. Dual solutions are observed in a certain range of the rotating parameter.

  6. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, H. M.; Reed, M. D.; Telting, J. H.

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets ofmore » ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.« less

  7. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  8. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1, PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  9. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  10. Modeling the Solar Convective Dynamo and Emerging Flux

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  11. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.

    PubMed

    Holtzer, Gretchen L; Velegol, Darrell

    2005-10-25

    Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.

  12. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  13. Rotatable crucible for rapid solidification process

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas (Inventor)

    1990-01-01

    This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.

  14. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  15. The rotational velocity of low-mass stars in the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Queloz, D.; Allain, S.; Mermilliod, J.-C.; Bouvier, J.; Mayor, M.

    1998-07-01

    We present new {vsin i} measurements for 235 low-mass stars in the Pleiades. The differential rotational broadening has been resolved for all the stars in our sample. These results, combined with previously published measurements, provide a complete and unbiased rotation data set for stars in the mass range from 0.6 to 1.2{Msun}. Applying a numerical inversion technique on the {vsin i} distributions, we derive the distributions of equatorial velocities for low-mass Pleiades members. We find that half of the Pleiades dwarfs with a mass between 0.6 to 1 {Msun} have rotation rates lower than 10{ km s(-1) }. Comparison of the rotational distributions of low-mass members between IC 2602/2391 (~ 35 Myr) and the Pleiades (~ 100 Myr) suggests that G dwarfs behave like solid-bodies and follow Skumanich's law during this time span. However, comparison between Pleiades and older clusters -M34 (~ 200 Myr) and Hyades (~ 600 Myr)- indicates that the braking of slow rotators on the early main sequence is weaker than predicted by an asymptotical Skumanich's law. This strongly supports the view that angular momentum tapped in the radiative core of slow rotators on the zero age main sequence (ZAMS) resurfaces into the convective envelope between Pleiades and Hyades age. For the G-dwarfs, we derive a characteristic coupling time scale between the core and the envelope of about 100-200 Myr, which accounts for the observed evolution of surface rotation from the ZAMS to the Hyades. The relationship between rotation and coronal activity in the Pleiades is in agreement with previous observations in other clusters and field stars. We show that the Rossby diagram provides an excellent description of the X-ray activity for all stars in the mass domain studied. The Pleiades data for slow and moderate rotators fills the gap between the X-ray-rotation correlation found for slow rotators and the X-ray ``saturation plateau'' observed for young fast rotators. The transition between increasing X-ray flux with rotation and X-ray saturation is observed at log (P/tau )=0.8+/-0.1. These results strengthen the hypothesis that the ``saturation'' of the angular momentum loss process depends on the stellar mass. Based on observations collected at the Observatoire de Haute-Provence with ELODIE at the 193cm telescope and with CORAVEL at the 1m-swiss telescope

  16. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  17. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  18. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  19. Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Gizon, Laurent

    1999-01-01

    Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.

  20. Flattening and surface-brightness of the fast-rotating star δ Persei with the visible VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.

    2017-08-01

    Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of I = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.

  1. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE PAGES

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-10

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  2. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-15

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  3. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  4. Femoroacetabular Impingement in Elite Ice Hockey Goaltenders: Etiological Implications of On-Ice Hip Mechanics.

    PubMed

    Whiteside, David; Deneweth, Jessica M; Bedi, Asheesh; Zernicke, Ronald F; Goulet, Grant C

    2015-07-01

    Femoroacetabular impingement (FAI) is particularly prevalent in ice hockey. The butterfly goalie technique is thought to involve extreme ranges of hip motion that may predispose goaltenders to FAI. To quantify hip mechanics during 3 common goaltender movements and interpret their relevance to the development of FAI. Descriptive laboratory study. Fourteen collegiate and professional goaltenders performed skating, butterfly save, and recovery movements on the ice. Hip mechanics were compared across the 3 movements. The butterfly did not exhibit the greatest range of hip motion in any of the 3 planes. Internal rotation was the only hip motion that appeared close to terminal in this study. When subjects decelerated during skating—shaving the blade of their skate across the surface of the ice—the magnitude of peak hip internal rotation was 54% greater than in the butterfly and 265% greater than in the recovery. No movement involved levels of concomitant flexion, adduction, and internal rotation that resembled the traditional impingement (FADIR) test. The magnitude of internal rotation was the most extreme planar hip motion (relative to end-range) recorded in this study (namely during decelerating) and appeared to differentiate this cohort from other athletic populations. Consequently, repetitive end-range hip internal rotation may be the primary precursor to symptomatic FAI in hockey goaltenders and provides the most plausible account for the high incidence of FAI in these athletes. Resection techniques should, therefore, focus on enhancing internal rotation in goaltenders, compared with flexion and adduction. While the butterfly posture can require significant levels of hip motion, recovering from a save and, in particular, decelerating during skating are also demanding on goaltenders' hip joints. Therefore, it appears critical to consider and accommodate a variety of sport-specific hip postures to comprehensively diagnose, treat, and rehabilitate FAI. © 2015 The Author(s).

  5. Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine-oxygen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.

    2012-09-15

    Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on themore » surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.« less

  6. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  7. Solitary plasma rings and magnetic field generation involving gravity and differential rotation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-12-01

    A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.

  8. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  9. A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow

    NASA Astrophysics Data System (ADS)

    Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A.

    Abrasive flow machining has been the pioneer of new finishing processes. Rotating workpiece and imposing a magnetic field using magnetorheological working medium are some assisting manipulations to improve surface finishing, because they can increase the forces on the workpiece surface. Similarly, swirling the inlet flow using stationary swirler vanes, as a novel idea, may also increase forces on the surface, and then raise the material removal, with a lower expense and energy consumption compared with the case of workpiece rotation. Thus, in this paper, surface roughness improvement is studied in a pipe with rotating inlet flow of a magnetorheological finishing medium under imposing a magnetic field. The results are compared with the case of rotating workpiece, using 3D numerical simulation. The governing hydrodynamic parameters are investigated in both cases to monitor the flow variations. It is shown that surface roughness is improved by rotating inlet flow. However, it is found that finishing in the entrance length of swirling-assisted inlet flow can be so economical for short length workpieces, compared with the case of rotating workpiece, with very near Ra values. By comparison of the numerical results and published experimental data, current study also shows the ability of the numerical simulation, as an inexpensive and efficient tool, to predict the surface roughness changes in finishing processes.

  10. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Ma, Qianli; Rusher, Cassandra A.; Greaves, Stuart J.; Orr-Ewing, Andrew J.; Dagdigian, Paul J.

    2014-05-01

    Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD3 radicals with H2 and D2 collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm-1. Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD3 rotational level (n, k → n', k') integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD3 scattering from both H2 and D2 peak in the forward hemisphere for n' = 2-4 and shift more to sideways and backward scattering for n' = 5. For n' = 6-8, the DCSs are dominated by backward scattering. DCSs for a particular CD3 n → n' transition have a similar angular dependence with either D2 or H2 as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD3-H2 and CD3-D2 collisions. Further comparisons are drawn between the CD3-D2 scattering and results for CD3-He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs.

  11. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.

    PubMed

    Li, Guanglai; Tang, Jay X

    2009-08-14

    In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.

  12. Nanofiber Orientation and Surface Functionalization Modulate Human Mesenchymal Stem Cell Behavior In Vitro

    PubMed Central

    Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.

    2014-01-01

    Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454

  13. SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk

    2016-12-20

    We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.

  14. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  15. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  16. A discrete geometric approach for simulating the dynamics of thin viscous threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.

    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less

  17. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  18. Viscous free-surface flows on rotating elliptical cylinders

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish

    2017-09-01

    The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.

  19. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the fluctuations in the Lorentz torque, and the torsional oscillations observed in the geomagnetic data are a mixture of forced and free oscillations.

  20. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.

    PubMed

    Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco

    2010-06-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.

  1. Manipulation After Object Rotation Reveals Independent Sensorimotor Memory Representations of Digit Positions and Forces

    PubMed Central

    Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi

    2010-01-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064

  2. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  3. Biceps-Related Physical Findings Are Useful to Prevent Misdiagnosis of Cervical Spondylotic Amyotrophy as a Rotator Cuff Tear.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Yamamoto, Yusuke; Sakamoto, Yoshihiro; Koizumi, Munehisa; Tanaka, Yasuhito

    2018-02-01

    Case-control study. The aim of the present study was to identify physical findings useful for differentiating between cervical spondylotic amyotrophy (CSA) and rotator cuff tears to prevent the misdiagnosis of CSA as a rotator cuff tear. CSA and rotator cuff tears are often confused among patients presenting with difficulty in shoulder elevation. Twenty-five patients with CSA and 27 with rotator cuff tears were enrolled. We included five physical findings specific to CSA that were observed in both CSA and rotator cuff tear patients. The findings were as follows: (1) weakness of the deltoid muscle, (2) weakness of the biceps muscle, (3) atrophy of the deltoid muscle, (4) atrophy of the biceps muscle, and (5) swallow-tail sign (assessment of the posterior fibers of the deltoid). Among 25 CSA patients, 10 (40.0%) were misdiagnosed with a rotator cuff tear on initial diagnosis. The sensitivity and specificity of each physical finding were as follows: (1) deltoid weakness (sensitivity, 92.0%; specificity, 55.6%), (2) biceps weakness (sensitivity, 80.0%; specificity, 100%), (3) deltoid atrophy (sensitivity, 96.0%; specificity, 77.8%), (4) biceps atrophy (sensitivity, 88.8%; specificity, 92.6%), and (5) swallow-tail sign (sensitivity, 56.0%; specificity, 74.1%). There were statistically significant differences in each physical finding. CSA is likely to be misdiagnosed as a rotator cuff tear; however, weakness and atrophy of the biceps are useful findings for differentiating between CSA and rotator cuff tears to prevent misdiagnosis.

  4. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  5. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  6. Magnetic Field Generation Processes Involving Gravity and Differential Rotation. Solitary Plasma Rings Formation around Black Holes

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-10-01

    A clear theoretical framework to describe how magnetic fields are generated and amplified is provided by the magneto-gravitational modes that involve both differential rotation and gravity and for which other factors such as temperature gradients can contribute to their excitation. These modes are shown to be important for the evolution of plasma disks surrounding black holes.footnotetextB. Coppi, Phys. Plasmas 18, 032901 (2011) Non-linear and axi-symmetric plasmas and associated field configurations are found under stationary conditions that do not involve the presence of a pre-existing ``seed'' magnetic field unlike other configurations found previously.footnotetextIbid. The relevant magnetic energy density is of the order of the gravitationally confined plasma pressure. The solitary plasma rings that characterize these configurations are localized radially over regions with vanishing differential rotation and can be envisioned as the saturated state of magneto-gravitational modes. The ``source'' of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it.

  7. Anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda in China Regional Seismic Networks

    NASA Astrophysics Data System (ADS)

    Xia, H.; Song, X.; Wang, T.

    2014-12-01

    The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.

  8. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  9. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  10. The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory

    NASA Astrophysics Data System (ADS)

    de Paula, V.; Curto, J. J.; Casas, R.

    2016-10-01

    The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.

  11. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  12. Using relative velocity vectors to reveal axial rotation about the medial and lateral compartment of the knee.

    PubMed

    Anderst, William J; Tashman, Scott

    2010-03-22

    A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Masks For Deposition Of Aspherical Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Rogers, John R.; Martin, John D.

    1992-01-01

    Masks of improved design developed for use in fabrication of aspherical, rotationally symmetrical surfaces of mirrors, lenses, and lens molds by evaporative deposition onto rotating substrates. In deposition chamber, source and mask aligned with axis of rotation of substrate. Mask shadows source of rotating substrate. Azimuthal opening (as function of radius) in mask proportional to desired thickness (as function of radius) to which material deposited on substrate. Combination of improved masks and modern coating chambers provides optical surfaces comparable or superior to those produced by conventional polishing, computer-controlled polishing, replication from polished molds, and diamond turning, at less cost in material, labor, and capital expense.

  14. Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, S.; Fingersh, L.; Siegel, K.

    2013-01-01

    Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observedmore » in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.« less

  15. Transtendon, Double-Row, Transosseous-Equivalent Arthroscopic Repair of Partial-Thickness, Articular-Surface Rotator Cuff Tears

    PubMed Central

    Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.

    2014-01-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness. PMID:25473606

  16. Transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears.

    PubMed

    Dilisio, Matthew F; Miller, Lindsay R; Higgins, Laurence D

    2014-10-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness.

  17. Driving and controlling molecular surface rotors with a terahertz electric field.

    PubMed

    Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean

    2012-06-26

    Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.

  18. Magnetic Flux Transport at the Solar Surface

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.

    2014-12-01

    After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.

  19. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  20. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.

    PubMed

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming

    2017-06-01

    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Collapse of differentially rotating neutron stars and cosmic censorship

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-07-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  2. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yichao; Yuan, Jun; Yin, Ge

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  3. Variable loading roller

    DOEpatents

    Williams, Daniel M.

    1989-01-01

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.

  4. Variable loading roller

    DOEpatents

    Williams, D.M.

    1988-01-21

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.

  5. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  6. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  7. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  8. Rotational motions for teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.

    2011-08-01

    We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.

  9. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  10. Differential effects of voluntary wheel running and toy rotation on the mRNA expression of neurotrophic factors and FKBP5 in a post-traumatic stress disorder rat model with the shuttle-box task.

    PubMed

    Tanichi, Masaaki; Toda, Hiroyuki; Shimizu, Kunio; Koga, Minori; Saito, Taku; Enomoto, Shingo; Boku, Shuken; Asai, Fumiho; Mitsui, Yumi; Nagamine, Masanori; Fujita, Masanori; Yoshino, Aihide

    2018-06-18

    Life-threatening experiences can result in the development of post-traumatic stress disorder. We have developed an animal model for post-traumatic stress disorder (PTSD) using a shuttle box in rats. In this paradigm, the rats were exposed to inescapable foot-shock stress (IS) in a shuttle box, and then an avoidance/escape task was performed in the same box 2 weeks after IS. A previous study using this paradigm revealed that environmental enrichment (EE) ameliorated avoidance/numbing-like behaviors, but not hyperarousal-like behaviors, and EE also elevated hippocampal brain-derived neurotrophic factor (BDNF) expression. However, the differential effects of EE components, i.e., running wheel (RW) or toy rotation, on PTSD-like behaviors has remained unclear. In this experiment, we demonstrated that RW, toy rotation, and EE (containing RW and toy rotation) ameliorated avoidance/numbing-like behaviors, induced learning of avoidance responses, and improved depressive-like behaviors in traumatized rats. The RW increased the hippocampal mRNA expression of neurotrophic factors, especially BDNF and glial-cell derived neurotrophic factor. Toy rotation influenced FK506 binding protein 5 mRNA expression, which is believed to be a regulator of the hypothalamic-pituitary-adrenal (HPA)-axis system, in the hippocampus and amygdala. This is the first report to elucidate the differential mechanistic effects of RW and toy rotation. The former appears to exert its effects via neurotrophic factors, while the latter exerts its effects via the HPA axis. Further studies will lead to a better understanding of the influence of environmental factors on PTSD. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. a New Method for Calculating the Fractal Dimension of Surface Topography

    NASA Astrophysics Data System (ADS)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan

    2015-06-01

    A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.

  12. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  13. The LP-ESP(®) lumbar disc prosthesis with 6 degrees of freedom: development and 7 years of clinical experience.

    PubMed

    Lazennec, Jean-Yves; Aaron, Alain; Brusson, Adrien; Rakover, Jean-Patrick; Rousseau, Marc-Antoine

    2013-02-01

    The viscoelastic lumbar disk prosthesis-elastic spine pad (LP-ESP(®)) is an innovative one-piece deformable but cohesive interbody spacer providing 6 full degrees of freedom about the 3 axes, including shock absorption. A 20-year research program has demonstrated that this concept provides mechanical properties very close to those of a natural disk. Improvements in technology have made it possible to solve the problem of the bond between the elastic component and the titanium endplates and to obtain an excellent biostability. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses, which are 2- or 3-piece devices involving 1 or 2 bearing surfaces and providing 3 or 5 degrees of freedom. This design and the adhesion-molding technology differentiate the LP-ESP prosthesis from other mono-elastomeric prostheses, for which the constraints of shearing during rotations or movement are absorbed at the endplate interface. Seven years after the first implantation, we can document in a solid and detailed fashion the course of clinical outcomes and the radiological postural and kinematic behavior of this prosthesis.

  14. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  15. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  16. Variations in the Solar Coronal Rotation with Altitude - Revisited

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Trivedi, Rupal; Sharma, Som Kumar; Vats, Hari Om

    2017-04-01

    Here we report an in-depth reanalysis of an article by Vats et al. ( Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson's factor with trend line was 0.86, whereas present analysis obtained a {˜} 0.97 Pearson's factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).

  17. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    PubMed

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  18. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  19. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  20. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2011-11-15

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  1. Controlled clockwise and anticlockwise rotational switching of a molecular motor.

    PubMed

    Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  2. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  3. KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-11-01

    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at -115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}⊙ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

  4. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  5. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors.

    PubMed

    DiStefano, Tyler; Chen, Holly Yu; Panebianco, Christopher; Kaya, Koray Dogan; Brooks, Matthew J; Gieser, Linn; Morgan, Nicole Y; Pohida, Tom; Swaroop, Anand

    2018-01-09

    Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies. Published by Elsevier Inc.

  6. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  7. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.K.; Das, P.K.; Saha, P.

    2010-11-15

    Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less

  8. Long-term magnetic field stability of Vega

    NASA Astrophysics Data System (ADS)

    Alina, D.; Petit, P.; Lignières, F.; Wade, G. A.; Fares, R.; Aurière, M.; Böhm, T.; Carfantan, H.

    2012-05-01

    We present new spectropolarimetric observations of the normal A-type star Vega, obtained during the summer of 2010 with NARVAL at Télescope Bernard Lyot (Pic du Midi Observatory). This new time-series is constituted of 615 spectra collected over 6 different nights. We use the Least-Square-Deconvolution technique to compute, from each spectrum, a mean line profile with a signal-to-noise ratio close to 20,000. After averaging all 615 polarized observations, we detect a circularly polarized Zeeman signature consistent in shape and amplitude with the signatures previously reported from our observations of 2008 and 2009. The surface magnetic geometry of the star, reconstructed using the technique of Zeeman-Doppler Imaging, agrees with the maps obtained in 2008 and 2009, showing that most recognizable features of the photospheric field of Vega are only weakly distorted by large-scale surface flows (differential rotation or meridional circulation).

  9. Dual lead-crowning for helical gears with anti-twist tooth flanks on the internal gear honing machine

    NASA Astrophysics Data System (ADS)

    Tran, Van-Quyet; Wu, Yu-Ren

    2017-12-01

    For some specific purposes, a helical gear with wide face-width is applied for meshing with two other gears simultaneously, such as the idle pinions in the vehicle differential. However, due to the fact of gear deformation, the tooth edge contact and stress concentration might occur. Single lead-crowning is no more suitable for such a case to get the appropriate position of contact pattern and improve the load distribution on tooth surfaces. Therefore, a novel *Email: method is proposed in this paper to achieve the wide-face-width helical gears with the dual lead-crowned and the anti-twisted tooth surfaces by controlling the swivel angle and the rotation angle of the honing wheel respectively on an internal gear honing machine. Numerical examples are practiced to illustrate and verified the merits of the proposed method.

  10. Radio Navigation Beacons on the Moon, Lunar Geodetic VLBI System, Physical Libration of the Moon for Chang'E-3/4, Luna-Glob, Luna-Resource and SELENE-2 Projects

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Ping, Jinsong; Hanada, Hideo; Kikuchi, Fuyuhiko; Kosov, Alexander; Li, Jinling; Titov, Oleg

    2014-12-01

    The future lunar missions of Chang'E-3/4, Luna-Glob, Luna-Resource, and SELENE-2 will consist of a lander and an orbiter. Using the Lunar Same Beam, Differential and Inverse VLBI technologies, we anticipate to determine the coordinates of the radio beacons on the lunar surface with an accuracy of 1 mm for various space projects on the Moon. Small radio telescopes being installed on the surface of the Moon and incorporated into the existing network will help to improve the traditional IVS products by a factor of ten or even more. The model of the two-layer Moon gives several normal rotational modes--Chandler Wobble and Free Core Nutation. They can play an important role in the determination of the core parameters.

  11. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  12. Simulations of Magnetic Flux Emergence in Cool, Low-Mass Stars: Toward Linking Dynamo Action with Starspots

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann; Browning, Matthew; Nelson, Nicholas

    2018-01-01

    Starspots are windows into a star’s internal dynamo mechanism. However, the manner by which the dynamo-generated magnetic field traverses the stellar interior to emerge at the surface is not especially well understood. Establishing the details of magnetic flux emergence plays a key role in deciphering stellar dynamos and observed starspot properties. In the solar context, insight into this process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized thin flux tubes (TFTs). Here, we present three sets of TFT simulations in rotating spherical shells of convection: one representative of the Sun, the second of a solar-like rapid rotator, and the third of a fully convective M dwarf. Our solar simulations reproduce sunspot observables such as low-latitude emergence, tilting action toward the equator following the Joy’s Law trend, and a phenomenon akin to active longitudes. Further, we compare the evolution of rising flux tubes in our (computationally inexpensive) TFT simulations to buoyant magnetic structures that arise naturally in a unique global simulation of a rapidly rotating Sun. We comment on the role of rapid rotation, the Coriolis force, and external torques imparted by the surrounding convection in establishing the trajectories of the flux tubes across the convection zone. In our fully convective M dwarf simulations, the expected starspot latitudes deviate from the solar trend, favoring significantly poleward latitudes unless the differential rotation is sufficiently prograde or the magnetic field is strongly super-equipartition. Together our work provides a link between dynamo-generated magnetic fields, turbulent convection, and observations of starspots along the lower main sequence.

  13. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  14. Disagreement between theory and experiment grows with increasing rotational excitation of HD(v', j') product for the H + D2 reaction.

    PubMed

    Jankunas, Justin; Sneha, Mahima; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C

    2013-03-07

    The Photoloc technique has been employed to measure the state-resolved differential cross sections of the HD(v', j(')) product in the reaction H + D2 over a wide range of collision energies and internal states. The experimental results were compared with fully dimensional, time-dependent quantum mechanical calculations on the refined Boothroyd-Keogh-Martin-Peterson potential energy surface. We find nearly perfect agreement between theory and experiment for HD(v', j(')) product states with low to medium rotational excitation, e.g., HD(v' = 1, j(') = 3) at a collision energy, Ecoll, of 1.72 eV, HD(v' = 1, j(') = 3, 5) at Ecoll = 1.97 eV, and HD(v' = 3, j(') = 3) at Ecoll = 1.97 eV. As the rotational angular momentum, j('), of HD(v', j(')) increases, the agreement between theoretical predictions and experimental measurements worsens but not in a simple fashion. A moderate disagreement between theory and experiment has been found for HD(v' = 0, j(') = 12) at Ecoll = 1.76 eV and increased monotonically for HD(v' = 0, j(') = 13) at Ecoll = 1.74 eV, HD(v' = 0, j(') = 14) at Ecoll = 1.72 eV, and HD(v' = 0, j(') = 15) at Ecoll = 1.70 eV. Disagreement was not limited to vibrationless HD(v', j(')) product states: HD(v' = 1, j(') = 12) at Ecoll = 1.60 eV and HD(v' = 3, j(') = 8, 10) at Ecoll = 1.97 eV followed a similar trend. Theoretical calculations suggest more sideways∕forward scattering than has been observed experimentally for high j(') HD(v', j(')) states. The source of this discrepancy is presently unknown but might be the result of inaccuracy in the potential energy surface.

  15. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patoul, Judith de; Foullon, Claire; Riley, Pete, E-mail: j.depatoul@exeter.ac.uk, E-mail: c.foullon@exeter.ac.uk, E-mail: rileype@saic.com

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models aremore » more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.« less

  16. 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, J.; Foullon, C.; Riley, P.

    2015-12-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling, and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. We derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method. First we compare the density distributions obtained from tomography with magnetohydrodynamic (MHD) solutions. The tomography provides more accurate distributions of electron densities in the polar regions, and we find that the observed density varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We conclude that tomography offers reliable density distribution in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how it is magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in-situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus. This research combined with the MHD coronal modeling efforts has the potential to increase the reliability for future space weather forecasting.

  17. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  18. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin

    2017-10-01

    The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.

  19. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683

  20. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope.

    PubMed

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-07-22

    We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.

  1. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South Atlantic generate elastic waves that traverse the Earth's mantle and core, and are recorded by the seismographs located in the northern hemisphere. The waveform doublets produced by repeating earthquakes present a reliable probe, which can reveal temporal changes exhibited by the inner core due to the fact that the mantle effects are minimized. We observe new waveform-doublets at the College station, Alaska, and analyse all existing doublets recorded at that station using state of the art mathematical methods. The complex temporal pattern of differences in travel times between the first and the second event of a doublet is impossible to explain with a simple linear-fit approach. An ensemble approach utilizing transdimensional and hierarchical Bayesian analysis proves to be a powerful approach in this case, relaxing the choices on model parameterization and revealing hitherto unseen complex dynamics of the Earth's inner core.

  2. Rotator cuff injuries.

    PubMed

    Crusher, R H

    2000-07-01

    Different types of rotator cuff injuries frequently present to Accident and Emergency departments and minor injury units but can be difficult to differentiate clinically. This brief case study describes the examination and diagnosis of related shoulder injuries, specifically rotator cuff tears/disruption and calcifying supraspinatus tendinitis. The relevant anatomy and current therapies for these injuries is also discussed to enable the emergency nurse practitioner to have a greater understanding of the theory surrounding their diagnosis and treatments.

  3. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  4. Inertia gravity waves in a rotating, differentially heated annulus with an upper free surface

    NASA Astrophysics Data System (ADS)

    Randriamampianina, Anthony; Harlander, Uwe; Vincze, Miklos; von Larcher, Thomas; Viazzo, Stephane

    2015-04-01

    Inertia gravity waves (IGWs) are ubiquitous in the atmosphere and oceans, and are known to play a fundamental role in a wide variety of processes, among others the induction and modulation of turbulence. Observations and simulations have revealed their spontaneous occurrence simultaneously with the onset of baroclinic instability, recognized to be one of the dominant energetic processes in the large-scale atmospheric and oceanic circulations. In spite of intensive research activities these last decades, the generation mechanism and the propagation of IGWs, as well as their interaction with large-scale structures triggering locally chaotic motions, remain poorly understood. A better understanding of these phenomena is therefore mandatory for the development of IGW's parameterization schemes actually required for numerical global weather prediction. A combined laboratory experiment and direct numerical simulations study is proposed for the detailed investigations of instabilities arising within a differentially heated rotating annulus, the baroclinic cavity. The configuration corresponds to an experimental setup used at BTU, Cottbus Senftenberg, Germany [1], characterized by an open upper surface and filled with water (Pr = 7). Infrared thermography and simultaneous kalliroscope visualization in horizontal planes, illuminated by a laser sheet, have been applied to detect the surface signatures of IGWs. These findings confirmed the computations carried out by three different numerical approaches, using either spectral methods, high order compact finite difference scheme (M2P2, Marseille), or the EULAG code (Freie Universitaet Berlin). These small-scale features have been observed in addition to those developing along the inner cold cylinder, previously identified by simulations in a closed cavity, filled with a liquid defined by Pr = 16 [2]. These new IGWs show characteristics similar to the ones obtained by [3] at the exit of the meandering jet between the cyclonic and anticyclonic parts of the baroclinic waves. References [1] Harlander, U. et al. Exp. Fluids 52:1077-1087, 2012. [2] Randriamampianina, A. C. R. M'ecanique 341:547-552, 2013. [3] Plougonven, R. & Snyder, C. J. Atmos Sci. 64:2502-2520, 2007.

  5. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  6. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  7. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  8. Measurement of the adsorption energy difference between ortho- and para-D2 on an amorphous ice surface.

    PubMed

    Amiaud, L; Momeni, A; Dulieu, F; Fillion, J H; Matar, E; Lemaire, J-L

    2008-02-08

    Molecular hydrogen interaction on water ice surfaces is a major process taking place in interstellar dense clouds. By coupling laser detection and classical thermal desorption spectroscopy, it is possible to study the effect of rotation of D(2) on adsorption on amorphous solid water ice surfaces. The desorption profiles of ortho- and para-D(2) are different. This difference is due to a shift in the adsorption energy distribution of the two lowest rotational states. Molecules in J''=1 rotational state are on average more strongly bound to the ice surface than those in J''=0 rotational state. This energy difference is estimated to be 1.4+/-0.3 meV. This value is in agreement with previous calculation and interpretation. The nonspherical wave function J'' =1 has an interaction with the asymmetric part of the adsorption potential and contributes positively in the binding energy.

  9. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  10. Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.R. Hudson

    2003-11-20

    Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates.

  11. Physics of rotation: problems and challenges

    NASA Astrophysics Data System (ADS)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  12. Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K.-P.

    2017-11-01

    Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index. Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly. Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation.

  13. Effect of toroidal rotation on resistive magnetohydrodynamic instability with a nonmonotonic q profile in cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Peng, X. D.

    2018-04-01

    The effect of plasma rotation on the linear stability of the resistive magnetohydrodynamic (MHD) instabilities with a nonmonotonic q profile is investigated numerically in the cylindrical geometry. The results have shown that the plasma rotation has a stabilization effect on the double tearing modes (DTMs) depending on the magnitude of the velocity, while the velocity shear has a relatively weak effect. The effect of rotation on DTMs is determined by the velocity at each rational surface. A toroidal velocity imposed on the innermost rational surface has a weak effect on m > 1 DTMs. When the velocity is imposed on the outboard resonant surface, the growth rates of the DTMs are reduced for m > 1 modes; however, it has an obvious destabilizing effect on both m = 1 (with m the poloidal mode number) DTM and single tearing mode branches if the distance between the two rational surfaces is sufficiently small. It is shown that the effect of plasma rotation on the growth rates of the MHD instabilities is in phase with the integrated value of the coupling between potential fluctuation and magnetic flux perturbation.

  14. The role of sea-ice albedo in the climate of slowly rotating aquaplanets

    NASA Astrophysics Data System (ADS)

    Salameh, Josiane; Popp, Max; Marotzke, Jochem

    2018-04-01

    We investigate the influence of the rotation period (P_{rot}) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in which case the planet is synchronously rotating. The global-mean surface temperature decreases with increasing P_{rot} and sea ice expands equatorwards. The cooling of the mean climate with increasing P_{rot} is caused partly by the high surface albedo of sea ice on the dayside and partly by the high albedo of the deep convective clouds over the substellar region. The cooling caused by these deep convective clouds is weak for non-synchronous rotations compared to synchronous rotation. Sensitivity simulations with the sea-ice model switched off show that the global-mean surface temperature is up to 27 K higher than in our main simulations with sea ice and thus highlight the large influence of sea ice on the climate. We present the first estimates of the influence of the rotation period on the transition of an Earth-like climate to global glaciation. Our results suggest that global glaciation of planets with synchronous rotation occurs at substantially lower incoming solar irradiation than for planets with slow but non-synchronous rotation.

  15. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  16. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  17. Differential rotation of chromosphere and photosphere in the rising phase of N22 cycle of the Sun: torsional oscillations

    NASA Astrophysics Data System (ADS)

    Kasinskii, V.; Kasinskaia, L. I.

    2005-06-01

    The angular velocities of chromosphere and photosphere are calculated for 1987-1990 on the basis of heliographic coordinates of the chromospheric flares and sunspots (Solar Geophysical Data). The time resolution accepted is 0.25 year. The mean equatorial rotations of chromosphere and photosphere practically coincide. However, the differential coefficients in the chromosphere and photosphere, b, have strongly different behaviour. The value bch - bph change regularly from ``+'' sign to ``-'' sign over two-year interval. Thus, the idea of a torsion like oscillations of ``chromosphere-photosphere'' is supported.

  18. Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule.

    PubMed

    Li, Shaobai; Wang, Yun; Wang, Qi; Ma, Xianxian; Wang, Longxiao; Zhao, Weiqian; Zhang, Xusheng

    2018-05-10

    In this paper, we propose a new measurement and compensation method for the eccentricity of the inertial confinement fusion (ICF) capsule, which combines computer vision and the laser differential confocal method to align the capsule in rotation measurement. This technique measures the eccentricity of the capsule by obtaining the sub-pixel profile with a moment-based algorithm, then performs the preliminary alignment by the two-dimensional adjustment. Next, we use the laser differential confocal sensor to measure the height data of the equatorial surface of the capsule by turning it around, then obtain and compensate the remaining eccentricity ultimately. This method is a non-contact, automatic, rapid, high-precision measurement and compensation technique of eccentricity for the capsule. Theoretical analyses and preliminary experiments indicate that the maximum measurement range of eccentricity of this proposed method is 1.8 mm for the capsule with a diameter of 1 mm, and it could eliminate the eccentricity to less than 0.5 μm in 30 s.

  19. The study of micro-inextensible piezoelectric cantilever plate

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Xu, J. W.; Zhang, W.

    2018-06-01

    In this paper, a micro-inextensible piezoelectric cantilever plate is analyzed and its nonlinear dynamic behaviour is studied. The nonlinear oscillation differential equation is established by using Hamilton’s principle with the application of strain gradient theory to consider the size effect, and inextensible theory to consider the large deformation and rotation effect of cantilever plate. Based on MATLAB software, using the Runge-Kuta method, we can obtain the response of the nonlinear oscillation differential equation. The influences of the strain gradient length scale parameter and voltage on the dynamic response of micro piezoelectric cantilever plate are investigated separately. The results confirmed an increase of the stiffness of the system by using the strain gradient theory and the amplitude of the vibration is reduced. The vibration of the system can be controlled by applying an active voltage. The effect of external excitation frequency on nonlinear dynamic behaviour is considered by using Poincare surface of section and diagrams of waveforms, phase and bifurcation.

  20. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  1. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  2. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    PubMed

    Lee, Kyung-Min; Song, Jin-Myoung; Cho, Jin-Hyoung; Hwang, Hyeon-Shik

    2016-01-01

    The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  3. Linear and nonlinear response of a rotating tokamak plasma to a resonant error-field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-09-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of constant-ψ, resistive-magnetohydrodynamical theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived and their domains of validity mapped out in parameter space.

  4. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between?

    NASA Astrophysics Data System (ADS)

    McIntyre, Michael E.

    The tachocline has values of the stratification or buoyancy frequency N two or more orders of magnitude greater than the Coriolis frequency. In this and other respects it is very like the Earth's atmosphere, viewed globally, except that the Earth's solid surface is replaced by an abrupt, magnetically-constrained "tachopause" (Gough & McIntyre 1998). The tachocline is helium-poor through fast ventilation from above, down to the tachopause, on timescales of only a few million years. The corresponding sound-speed anomaly fits helioseismic data with a tachocline thickness (0.019±0.001) Rsolar, about 0.13×105km (Elliott & Gough 1999), implying large values of the gradient Richardson number such that stratification dominates vertical shear even more strongly than in the Earth's stratosphere, as earlier postulated by Spiegel & Zahn (1992). Therefore the tachocline ventilation circulation cannot be driven by vertically-transmitted frictional torques, any more than the ozone-transporting circulation and differential rotation of the Earth's stratosphere can thus be driven. Rather, the tachocline circulation must be driven mainly by the Reynolds and Maxwell stresses interior to the convection zone, through a gyroscopic pumping action and the downward-burrowing response to it. If layerwise-two-dimensional turbulence is important, then because of its potential-vorticity-transporting properties the effect will be anti-frictional rather than eddy-viscosity-like. In order to correctly predict the differential rotation of the Sun's convection zone, even qualitatively, a convection-zone model must be fully coupled to a tachocline model.

  5. Design forms of total knee replacement.

    PubMed

    Walker, P S; Sathasivam, S

    2000-01-01

    The starting point of this article is a general design criterion applicable to all types of total knee replacement. This criterion is then expanded upon to provide more specifics of the required kinematics, and the forces which the total knee must sustain. A characteristic which differentiates total knees is the amount of constraint which is required, and whether the constraint is translational or rotational. The different forms of total knee replacement are described in terms of these constraints, starting with the least constrained unicompartments to the almost fully constrained fixed and rotating hinges. Much attention is given to the range of designs in between these two extreme types, because they constitute by far the largest in usage. This category includes condylar replacements where the cruciate ligaments are preserved or resected, posterior cruciate substituting designs and mobile bearing knees. A new term, 'guided motion knees', is applied to the growing number of designs which control the kinematics by the use of intercondylar cams or specially shaped and even additional bearing surfaces. The final section deals with the selection of an appropriate design of total knee for specific indications based on the design characteristics.

  6. Aeolian processes aboard a space station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.

    1986-01-01

    The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  7. Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.

    1987-01-01

    The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  8. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  9. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  10. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  11. Differences of RNA Expression in the Tendon According to Anatomic Outcomes in Rotator Cuff Repair.

    PubMed

    Ahn, Jin-Ok; Chung, Jin-Young; Kim, Do Hoon; Im, Wooseok; Kim, Sae Hoon

    2017-11-01

    Despite increased understanding of the pathophysiology of rotator cuff tears and the evolution of rotator cuff repair, healing failure remains a substantial problem. The critical roles played by biological factors have been emphasized, but little is known of the implications of gene expression profile differences at the time of repair. To document the relationship between the perioperative gene expression of healed and unhealed rotator cuffs by RNA microarray analysis. Case-control study; Level of evidence, 3. Superior (supraspinatus involvement) and posterosuperior (supraspinatus and infraspinatus involvement) tears were included in the study. Samples of rotator cuff tendons were prospectively collected during rotator cuff surgery. Three samples were harvested at the tendon ends of tears from the anterior, middle (apex), and posterior parts using an arthroscopic punch. Seven patients with an unhealed rotator cuff were matched one-to-one with patients with a healed rotator cuff by sex, age, tear size, and fatty degeneration of rotator cuff muscles. mRNA microarray analysis was used to identify genetic differences between healed and unhealed rotator cuff tendons. Gene ontology and gene association files were obtained from the Gene Ontology Consortium, and the Gene Ontology system in DAVID was used to identify enhanced biological processes. Microarray analyses identified 262 genes that were differentially expressed by at least 1.5-fold between the healed and unhealed groups. Overall, in the healed group, 103 genes were significantly downregulated, and 159 were significantly upregulated. DAVID Functional Annotation Cluster analysis showed that in the healed group, the genes most upregulated were related to the G protein-coupled receptor protein signaling pathway and to the neurological system. On the other hand, the genes most downregulated were related to immune and inflammatory responses. BMP5 was the gene most upregulated in the healed group, and the majority of downregulated genes were involved in the immune/inflammatory response. The downregulation of inflammatory response genes and the upregulation of cell differentiation genes in torn rotator cuffs at the time of surgery are related to rotator cuff healing. These results provide useful baseline information for future biological studies on rotator cuff healing.

  12. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    NASA Astrophysics Data System (ADS)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  13. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less

  14. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  15. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  16. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  17. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon

    We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumentalmore » broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.« less

  19. Progress Report on Rotating Liquid Liner Implosion Experiment, 1 June to 31 December 1975.

    DTIC Science & Technology

    A critical question in the use of imploding liner flux compression for controlled fusion has been the stability of the inner surface of the liner ...To study the problem experimentally, the existing NRL Imploding Liner Facility was modified to allow the implosion of rotating liquid metal liners ...Rotational stabilization of lthe inner surface of a decelerating liquid sodium-potassium liner has been demonstrated, with excellent circularity of the

  20. Restrained Differential Growth: The Initiating Event of Adolescent Idiopathic Scoliosis?

    PubMed

    Crijns, Tom Joris; Stadhouder, Agnita; Smit, Theodoor Henri

    2017-06-15

    An experimental model study and a short review of literature. The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. N/A.

  1. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Simon; Winn, Joshua N.; Hirano, Teruyuki

    We measure a tilt of 86 Degree-Sign {+-} 6 Degree-Sign between the sky projections of the rotation axis of the WASP-7 star and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planet's trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however,more » with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise ({sup s}tellar jitter{sup )} with an amplitude of Almost-Equal-To 30 m s{sup -1} over a timescale of days.« less

  3. Regularizing the r-mode Problem for Nonbarotropic Relativistic Stars

    NASA Technical Reports Server (NTRS)

    Lockitch, Keith H.; Andersson, Nils; Watts, Anna L.

    2004-01-01

    We present results for r-modes of relativistic nonbarotropic stars. We show that the main differential equation, which is formally singular at lowest order in the slow-rotation expansion, can be regularized if one considers the initial value problem rather than the normal mode problem. However, a more physically motivated way to regularize the problem is to include higher order terms. This allows us to develop a practical approach for solving the problem and we provide results that support earlier conclusions obtained for uniform density stars. In particular, we show that there will exist a single r-mode for each permissible combination of 1 and m. We discuss these results and provide some caveats regarding their usefulness for estimates of gravitational-radiation reaction timescales. The close connection between the seemingly singular relativistic r-mode problem and issues arising because of the presence of co-rotation points in differentially rotating stars is also clarified.

  4. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    PubMed

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  5. Spiral groove seal. [for hydraulic rotating shaft

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  6. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.

    2017-04-01

    In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.

  7. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    DOE PAGES

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...

    2017-02-14

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  8. Heat transfer in rotating serpentine passages with selected model orientation for smooth or skewed trip walls

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1993-01-01

    Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.

  9. Solar collector mounting and support apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchison, J.A.

    1981-12-22

    A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried onmore » the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.« less

  10. DNS of unsteady, turbulent convection in a rotating stratified fluid

    NASA Astrophysics Data System (ADS)

    Pal, Anikesh; Chalmalla, Vamsi

    2017-11-01

    Turbulent convection under the influence of intense surface cooling and earth's rotation is a common phenomenon observed in the ocean. In the present study, direct numerical simulations are performed to understand this dynamics. The effect of rotation is represented by Rossby number Ro* which is defined in terms of ocean depth H, Coriolis parameter f and surface buoyancy flux B0, as Ro* =B01// 2 Hf 3 / 2 . Cooling at the surface results in the formation of unstable density configuration where denser fluid lies on top of the lighter fluid. These unstable density configuration leads to a turbulent front. When the turbulent front reaches a transition depth zc, it experiences the effect of rotation leading to the formation of quasi- 2D vortices beneath the 3D turbulent layer. If the surface cooling is strong enough, these vortices penetrate further downwards producing vortex columns. Qualitatively, DNS results agree well with the findings of experimental study by Maxworthy & Narimousa (1993). The motivation of this study is to understand the nonlinear dynamics and turbulence scaling as the surface cooling and Coriolis parameter are varied.

  11. Isoperimetric surfaces and area-angular momentum inequality in a rotating black hole in new massive gravity

    NASA Astrophysics Data System (ADS)

    Aceña, Andrés; López, Ericson; Llerena, Mario

    2018-03-01

    We study the existence and stability of isoperimetric surfaces in a family of rotating black holes in new massive gravity. We show that the stability of such surfaces is determined by the sign of the hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area and the angular momentum of the black hole, conjecturing geometric inequalities for more general black holes.

  12. Surface optical vortices

    NASA Astrophysics Data System (ADS)

    Lembessis, V. E.; Babiker, M.; Andrews, D. L.

    2009-01-01

    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.

  13. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    PubMed

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P < .001, R(2) = 0.60). In the surface light scattering analysis, a significant and higher correlation was obtained (P < .001, R(2) = 0.91) until the fixed Scheimpflug photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  15. Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

    NASA Astrophysics Data System (ADS)

    Garner, Scott M.; Miller, Terry A.

    2017-06-01

    The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.

  16. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  17. Evaluation of optical performance of 4 aspheric toric intraocular lenses using an optical bench system: Influence of pupil size, decentration, and rotation.

    PubMed

    Kim, Min-Ji; Yoo, Young-Sik; Joo, Choun-Ki; Yoon, Geunyoung

    2015-10-01

    To evaluate the effect of pupil size, degree of intraocular lens (IOL) decentration, and rotation of 4 aspheric toric IOLs on the image quality. Department of Ophthalmology, Seoul St. Mary's Hospital, Seoul, South Korea. Experimental study. Four aspheric toric intraocular lenses (IOLs)-the Precizon (transitional conic toric IOL), AT Torbi 709M (bitoric IOL), SN6AT4 (posterior toric surface IOL), and ZCT225 (anterior toric surface IOL)-were evaluated using the optical bench metrology system. Measurements included changes in spherical aberrations, relative spherical equivalent (SE), and image quality at different pupil diameters and image quality degradation due to decentration and rotation of the IOLs. Change in relative SE with pupil size in aberration-free toric IOLs (transitional conic toric and bitoric IOLs) was greater than in negatively aspheric toric IOLs (posterior toric surface and anterior toric surface IOLs). In contrast, the aberration-free IOLs showed higher contrast than the negatively aspheric IOLs. When IOLs were decentered by 1.0 mm, the contrast reduction rates at 17.6 cycles per degree for the transitional conic toric IOL, bitoric IOL, posterior toric surface IOL, and anterior toric surface IOL were 5.1%, 3.1%, 12.2%, and 15.8%, respectively. Rotation-induced deterioration of contrast to 0.5 required a much higher rotation for the transitional conic toric IOL than for the other 3 IOLs. The transitional conic toric IOL and bitoric IOL provided superior image quality despite pupil size changes and the presence of decentration. The transitional conic toric IOL demonstrated maximum rotation tolerance compared with the other IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. The representation of object viewpoint in human visual cortex.

    PubMed

    Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit

    2009-04-01

    Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.

  19. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  20. Geothermal energy conversion system

    NASA Astrophysics Data System (ADS)

    Goldstein, David

    1991-04-01

    A generator having a tubular gear made of shape memory alloy in sheet-form floatingly supported for rotation about an axis fixedly spaced from the rotational axis of a roller gear presented. The tubular gear is sequentially deformed by exposure to a geothermal heat source and meshing engagement with the roller gear. Such sequential deformation of the tubular gear is controlled by a temperature differential to induce and sustain rotation of the gears in response to which the heat energy is converted into electrical energy.

  1. Apparatus and method for forming a workpiece surface into a non-rotationally symmetric shape

    DOEpatents

    Dow, Thomas A.; Garrard, Kenneth P.; Moorefield, II, George M.; Taylor, Lauren W.

    1995-11-21

    A turning machine includes a controller for generating both aspherical and non-symmetrical shape components defining the predetermined shape, and a controller for controlling a spindle and a positionable cutting blade to thereby form a predetermined non-rotationally symmetric shape in a workpiece surface. The apparatus includes a rotatable spindle for rotatably mounting the workpiece about an axis, a spindle encoder for sensing an angular position of the rotating workpiece, the cutting blade, and radial and transverse positioners for relatively positioning the cutting blade and workpiece along respective radial and transverse directions. The controller cooperates with a fast transverse positioner for positioning the cutting blade in predetermined varying transverse positions during a revolution of the workpiece.

  2. Variational differential equations for engineering type trajectories close to a planet with an atmosphere

    NASA Technical Reports Server (NTRS)

    Dickmanns, E. D.

    1972-01-01

    The differential equations for the adjoint variables are derived and coded in FORTRAN. The program is written in a form to either take into account or neglect thrust, aerodynamic forces, planet rotation and oblateness, and altitude dependent winds.

  3. On families of differential equations on two-torus with all phase-lock areas

    NASA Astrophysics Data System (ADS)

    Glutsyuk, Alexey; Rybnikov, Leonid

    2017-01-01

    We consider two-parametric families of non-autonomous ordinary differential equations on the two-torus with coordinates (x, t) of the type \\overset{\\centerdot}{{x}} =v(x)+A+Bf(t) . We study its rotation number as a function of the parameters (A, B). The phase-lock areas are those level sets of the rotation number function ρ =ρ (A,B) that have non-empty interiors. Buchstaber, Karpov and Tertychnyi studied the case when v(x)=\\sin x in their joint paper. They observed the quantization effect: for every smooth periodic function f(t) the family of equations may have phase-lock areas only for integer rotation numbers. Another proof of this quantization statement was later obtained in a joint paper by Ilyashenko, Filimonov and Ryzhov. This implies a similar quantization effect for every v(x)=a\\sin (mx)+b\\cos (mx)+c and rotation numbers that are multiples of \\frac{1}{m} . We show that for every other analytic vector field v(x) (i.e. having at least two Fourier harmonics with non-zero non-opposite degrees and nonzero coefficients) there exists an analytic periodic function f(t) such that the corresponding family of equations has phase-lock areas for all the rational values of the rotation number.

  4. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  5. Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-10-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.

  6. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  7. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  8. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  9. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the statistically significant decrease of the orbital period of about 0.9 s during the last 96 yr. Conclusions: Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the orbit. They have, however, not yet aligned all spins of the system and have just begun to synchronise rotation. Based on data collected by the BRITE - Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN), the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and the Solar Mass Ejection Imager, which is a joint project of the University of California San Diego, Boston College, the University of Birmingham (UK), and the Air Force Research Laboratory.

  10. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.

    PubMed

    Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.

  11. On the dust zoning of rapidly rotating cometary nuclei

    NASA Astrophysics Data System (ADS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-12-01

    The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.

  12. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  13. Active Transtensional Tectonics Due to Differentially Rotating Upper Crustal Blocks East of the Eastern Himalayan syntaxis, Yunnan Province, China.

    NASA Astrophysics Data System (ADS)

    Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.

    2004-12-01

    Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.

  14. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  15. Titan's interior from its rotation axis orientation and its Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre

    2013-04-01

    The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal structure models consistent with the measured orientation of the rotation axis and Love number still have to be examined with respect to other constrains, such as the shell thickness estimation derived from electric-field measurement of the Huyges probe (Béghin et al. 2012) and the expected temperature profile of the water/ice layer. For instance, a thin shell would imply a rather thick ocean, based on water (or water/ammonia) phase diagram.

  16. Surface--micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  17. Surface-micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  18. Low torque hydrodynamic lip geometry for rotary seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  19. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  20. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  1. Atomic and Molecular Beam Scattering: Characterizing Structure and Dynamics of Hybrid Organic-Semiconductor Interfaces and Introducing Novel Isotope Separation Techniques

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin John

    This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an organic-functionalized semiconductor interface. Aside from their use as probes for surface structure and dynamics, atomic beam sources are also demonstrated to enable the efficient separation of gaseous mixtures of isotopes by means of diffraction and differential condensation. In the former method, the kinematic conditions for elastic diffraction result in an incident beam of natural abundance neon diffracting into isotopically distinct angles, resulting in the enrichment of a desired isotope; this purification can be improved by exploiting the difference in arrival times of the two isotopes at a given final angle. In the latter method, the identical incident velocities of coexpanded isotopes lead to minor but important differences in their incident kinetic energies, and thus their probability of adsorbing on a sufficiently cold surface, resulting in preferential condensation of a given isotope that depends on the energy of the incident beam. Both of these isotope separation techniques are made possible by the narrow velocity distribution and velocity seeding effect offered only by high-Mach number supersonic beam sources. These experiments underscore the utility of supersonically expanded atomic and molecular beam sources as both extraordinarily precise probes of surface structure and dynamics and as a means for high-throughput, non-dissociative isotopic enrichment methods.

  2. The stretching of magnetic flux tubes in the convective overshoot region

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi

    1991-01-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  3. Establishing laboratory standards for biological flight experiments

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Moriarity, Debra M.

    1989-01-01

    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells.

  4. Horizontal wind fluctuations in the stratosphere during large-scale cyclogenesis

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Scott, S. G.; Danielsen, Edwin F.; Pfister, L.; Bowen, S. W.; Gaines, Steven E.

    1991-01-01

    The meteorological measurement system (MMS) on the U-2 aircraft measured pressure, temperature, and the horizontal wind during a cyclogenesis event over western United States on April 20, 1984. The mean horizontal wind in the stratosphere decreases monotonically with altitude. Superimposed on the mean stratospheric wind is a perturbation wind vector, which is an elliptically polarized wave with an amplitude of 4 to 10 m/s and a vertical wavelength of 2 to 3 km. The perturbation wind vector rotates anticyclonically (clockwise) with altitude and produces alternating advection in the plane of the aircraft flight path. This differential advection folds surfaces of constant tracer mixing ratio and contributes to the observed tracer laminar structures and inferred cross-jet transport.

  5. Angular distributions for a model system of nonadiabatic molecular collisions: The quenching of Na*(3p) by H/sub 2/ and D/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiland, W.; Tittes, U.; Hertel, I.V.

    Angular distributions for the electronic to vibrational rotational and translational energy (E-VRT) transfer process Na*(3p)+H/sub 2/,D/sub 2/..-->..Na(3s)+H/sub 2/(v',j') with product energy analysis have been measured for the first time. The differential cross sections are forward peaked, constant but small between 35/sup 0/ and 160/sup 0/ and very slightly increasing at 180/sup 0/. The observations can be qualitatively understood by a simple model for the particle motion on the attractive A/sup 2/B/sub 2/ excited-state surface with a hop to the repulsive X/sup 2/A/sub 1/ ground state.

  6. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  7. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  8. Stationary Temperature Distribution in a Rotating Ring-Shaped Target

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.

    2018-05-01

    For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.

  9. Analysis of an ultrasonically rotating droplet by moving particle semi-implicit and distributed point source method in a rotational coordinate

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2017-07-01

    Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.

  10. A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Owocki, S. P.

    2005-02-01

    We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.

  11. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  12. VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2016-06-01

    Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).

  13. Postural illusions experienced during Z-axis recumbent rotation and their dependence upon somatosensory stimulation of the body surface

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    A blindfolded recumbent subject experiences a variety of postural illusions when rotated about his Z axis. Initially, during the acceleratory phase of rotation, turning about his Z axis is experienced; but, as rotary velocity increases, a spiraling of the body outward in the direction opposite to true rotation is experienced as well. Above 15-20 rpm, only orbital motion of the body is experienced, with the subject feeling that he is always facing in the same direction. One cycle of the apparent orbit is completed each time the subject actually rotates 360 deg. The reverse sequence of illusory motion is experienced during deceleration. The illusory motion all subjects experience during Z-axis recumbent rotation is shown to depend upon the touch and pressure stimulation of the body surface generated by contact forces of support.

  14. Detecting Rotational Superradiance in Fluid Laboratories

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke

    2016-12-01

    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  15. Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall.

    PubMed

    Davoust, Laurent; Achard, Jean-Luc; Drazek, Laurent

    2015-02-01

    This paper presents a new method for solving analytically the axisymmetric swirling flow generated in a finite annular channel from a rotating end wall, with no-slip boundary conditions along stationary side walls and a slip condition along the free surface opposite the rotating floor. In this case, the end-driven swirling flow can be described from the coupling between an azimuthal shear flow and a two-dimensional meridional flow driven by the centrifugal force along the rotating floor. A regular asymptotic expansion based on a small but finite Reynolds number is used to calculate centrifugation-induced first-order correction to the azimuthal Stokes flow obtained as the solution at leading order. For solving the first-order problem, the use of an integral boundary condition for the vorticity is found to be a convenient way to attribute boundary conditions in excess for the stream function to the vorticity. The annular geometry is characterized by both vertical and horizontal aspect ratios, whose respective influences on flow patterns are investigated. The vertical aspect ratio is found to involve nontrivial changes in flow patterns essentially due to the role of corner eddies located on the left and right sides of the rotating floor. The present analytical method can be ultimately extended to cylindrical geometries, irrespective of the surface opposite the rotating floor: a wall or a free surface. It can also serve as an analytical tool for monitoring confined rotating flows in applications related to surface viscosimetry or crystal growth from the melt.

  16. Quasiclassical trajectory study of the Cl+CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface.

    PubMed

    Castillo, J F; Aoiz, F J; Bañares, L

    2006-09-28

    An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.

  17. Quasiclassical trajectory study of the Cl +CH4 reaction dynamics on a quadratic configuration interaction with single and double excitation interpolated potential energy surface

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Aoiz, F. J.; Bañares, L.

    2006-09-01

    An ab initio interpolated potential energy surface (PES) for the Cl +CH4 reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl +CH4 and Cl +CD4 reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl +CH4 and Cl +CD4 reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH4 molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH3 and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.

  18. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  19. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  20. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1990-01-01

    An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.

  1. Comparison of velocity and temperature time series data analysis in experiments on the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments of baroclinic wave interactions, and a number of data acquisition techniques are applied e.g. to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. In our experiments presented here, we make use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera, which resolution allows for resolving fine scale structures, measures the surface temperature field. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). In addition, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us not only to compare the data analysis methods but also to reclassify the results yielded with the LDV data analysis. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. For example, we found a dominant and a weak mode in the 3-4 wave transition region. This finding confirms earlier ideas on wave dispersion in transition regions between regular waves. Increasing the annulus' rotation leads to a growth of the weak mode until this mode becomes the dominant one. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  2. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    NASA Astrophysics Data System (ADS)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  3. Unified Nusselt- and Sherwood-number correlations in axisymmetric finite-gap stagnation and rotating-disk flows

    DOE PAGES

    Coltrin, Michael E.; Kee, Robert J.

    2016-06-18

    This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objective is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at the stagnation surface. The approach is based on computationally solving the governing conservation equations in similarity form as a boundary-value problem. The formulation considers ideal gases and incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt, and Damkohler numbers. Heterogeneous chemistry at the stagnation surface is represented as a singlemore » first-order reaction. A composite Reynolds number represents the combination of stagnation flows with and without stagnation-surface rotation.« less

  4. Method and apparatus for reducing the drag of flows over surfaces

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  5. When the swimming gets tough, the tough form a biofilm.

    PubMed

    Belas, Robert

    2013-10-01

    Bacteria live either as independent planktonic cells or as members of surface-attached communities called biofilms. Motility and biofilm development are mutually exclusive events, and control of the phase of this 'swim-or-stick' switch involves the ability of the bacterium to sense and respond appropriately to a surface. Cairns et al. (2013) report that the Bacillus subtilis flagellum functions in surface-sensing. Using mutants of B. subtilis that prevent flagellum rotation, they measured the expression and activity of DegU, the response regulator of the two-component DegS-DegU circuit. DegU activity and degU transcription increased when flagellum rotation was prevented, and were dependent on the DegS kinase. Inhibiting flagellar rotation by overexpressing the EpsE flagellar 'clutch' or addition of anti-flagellin antiserum also increased degU transcription and activity. These results suggest B. subtilis senses restriction of flagellum rotation as the cell nears a surface. Inhibition of the flagellum activates the DegS-DegU circuit to turn on biofilm formation, i.e. the flagellum is acting as a mechanosensor of surfaces. B. subtilis joins an ever-expanding group of bacteria, including species of Vibrio, Proteus and Caulobacter that use the flagellum as a surface sensor. © 2013 John Wiley & Sons Ltd.

  6. Performance and Near-Wake Flow field of A Marine Hydrokinetic Turbine Operating in Free surface Proximity

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Kolekar, Nitin

    2015-11-01

    The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.

  7. Force-Free Magnetic Fields on AN Extreme Reissner-Nordström Spacetime and the Meissner Effect

    NASA Astrophysics Data System (ADS)

    Takamori, Yousuke; Ken-Ichi, Nakao; Hideki, Ishihara; Masashi, Kimura; Chul-Moon, Yoo

    It is known that the Meissner effect of black holes is seen in the vacuum solutions of blackhole magnetosphere: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this article, in order to see the effects of charge currents, we study the force-free magnetic field on the extreme Reissner-Nordström background. In this case, we should solve one elliptic differential equation called the Grad-Shafranov equation which has singular points called light surfaces. In order to see the Meissner effect, we consider the region near the event horizon and try to solve the equation by Taylor expansion about the event horizon. Moreover, we assume that the small rotational velocity of the magnetic field, and then, we construct a perturbative method to solve the Grad-Shafranov equation considering the efftect of the inner light surface and study the behavior of the magnetic field near the event horizon.

  8. Helioseismic Observations of Two Solar Cycles and Constraints on Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2018-01-01

    Helioseismology data from the SOHO and SDO, obtained in 1996-2017 for almost two solar cycles, provide a unique opportunity to investigate variations of the solar interior structure and dynamics, and link these variations to the current dynamo models and simulations. The solar oscillation frequencies and frequency splitting of medium-degree p- and f-modes, as well as helioseismic inversions have been used to analyze variations of the differential rotation (“torsional oscillations”) and the global asphericity. By comparing the helioseismology results with the synoptic surface magnetic fields we identify characteristic changes associated the initiation and evolution of the solar cycles, 23 and 24. The observational results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the dynamics of the tachocline and near-surface shear layer, and also may explain the fundamental difference between the two solar cycles and detect the onset of the next cycle.

  9. The distribution of water frost on Charon

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Shriver, Scott K.

    1994-01-01

    We present high-spatial-resolution imaging observations of the Pluto-Charon system taken with ProtoCAM on the Infrared Telescope Facility (IRTF). Our dataset consists of measurements from eight nights at widely separated rotational longitudes and covering five wavelengths -- standard J, H, and K, plus two special narrow band filters at 1.5 and 1.75 microns. The relative flux contributions of Pluto and Charon were extracted, when possible, by fitting a two-source Gaussian image model to the observed images. At K, we find the Charon-Pluto magnitude difference to be on average 1.8 mag, somewhat less than the value of 2.2 mag found by Bosh et al. (1992). The average differential magnitude at 1.5 and 1.75 microns is 2.0 and 1.6, respectively. The larger magnitude difference at 1.5 microns is due to a water-frost absorption band on the surface of Charon. Our observations are consistent with a surface of Charon dominated by water frost at all longitudes.

  10. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  11. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  12. Evolution of graphene islands growing on Cu foils

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph; Nie, Shu; Bartelt, Norman; McCarty, Kevin; Dubon, Oscar

    2011-03-01

    Using low-energy electron microscopy we investigate, in real time, the growth of graphene monolayers on Cu foils. Graphene islands evolve from an initially compact form into an increasingly ramified, four-lobed shape, reflecting the symmetry of the (100)-textured Cu surface. Diffraction analysis reveals that each lobe is an individual graphene domain, differentiated by a rotation about the film normal, making the islands polycrystalline. An inspection of the morphological evolution of the graphene lobes shows the growth fronts posses an angularly dependent velocity, which is consistent with a growth mode dominated by edge kinetics. The fast growth direction of each lobe tends to align with the 001 in-plane directions of the Cu surface but not with a high symmetry direction of the graphene lattice. Finally, the implications of this unexpected growth mechanism on the formation of high-quality graphene films on Cu foils are evaluated. Supported by BES/USDOE under contracts #DE-AC04-94AL85000 and #DE-AC02-05CH11231.

  13. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.

    PubMed

    Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs

    2017-11-01

    The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus , which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.

  14. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  15. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    NASA Astrophysics Data System (ADS)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  16. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  17. Meniscus Stability in Rotating Systems

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  18. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  19. Three-axis force actuator for a magnetic bearing

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  20. A computational procedure for large rotational motions in multibody dynamics

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    A computational procedure suitable for the solution of equations of motion for multibody systems is presented. The present procedure adopts a differential partitioning of the translational motions and the rotational motions. The translational equations of motion are then treated by either a conventional explicit or an implicit direct integration method. A principle feature of this procedure is a nonlinearly implicit algorithm for updating rotations via the Euler four-parameter representation. This procedure is applied to the rolling of a sphere through a specific trajectory, which shows that it yields robust solutions.

  1. [Calcifying tendinitis of the rotator cuff with focal umeral osteolysis. Imaging features].

    PubMed

    Mascarenhas, V V; Morais, F; Marques, H; Guerra, A; Carpinteiro, E; Gaspar, A

    2015-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. The authors report two cases of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed.

  2. Modelling the Surface Distribution of Magnetic Activity on Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2018-04-01

    With the advent of high-precision space-borne stellar photometry and prospects for direct imaging, it is timely and essential to improve our understanding of stellar magnetic activity in rotational time scales. We present models for 'younger suns' with rotation and flux emergence rates between 1 and 16 times the solar rate. The models provide latitudinal distributions and tilt angles of bipolar magnetic regions, using flux tube rise simulations. Using these emergence patterns, we model the subsequent surface flux transport, to predict surface distributions of star-spots. Based on these models, we present preliminary results from our further modelling of the observed azimuthal magnetic fields, which strengthen for more rapidly rotating Sun-like stars.

  3. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  4. Remote Evaluation of Rotational Velocity Using a Quadrant Photo-Detector and a DSC Algorithm

    PubMed Central

    Zeng, Xiangkai; Zhu, Zhixiong; Chen, Yang

    2016-01-01

    This paper presents an approach to remotely evaluate the rotational velocity of a measured object by using a quadrant photo-detector and a differential subtraction correlation (DSC) algorithm. The rotational velocity of a rotating object is determined by two temporal-delay numbers at the minima of two DSCs that are derived from the four output signals of the quadrant photo-detector, and the sign of the calculated rotational velocity directly represents the rotational direction. The DSC algorithm does not require any multiplication operations. Experimental calculations were performed to confirm the proposed evaluation method. The calculated rotational velocity, including its amplitude and direction, showed good agreement with the given one, which had an amplitude error of ~0.3%, and had over 1100 times the efficiency of the traditional cross-correlation method in the case of data number N > 4800. The confirmations have shown that the remote evaluation of rotational velocity can be done without any circular division disk, and that it has much fewer error sources, making it simple, accurate and effective for remotely evaluating rotational velocity. PMID:27120607

  5. Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Keller, P.; Lowrie, W.; Gehring, A. U.

    1994-12-01

    The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.

  6. Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence with symmetries broken by rotation and stratification. Such structure is here found to play a crucial role in defining the mean zonal and meridional flows that coexist with the convection. Though they are subject to strong inertial oscillations, the strength and type of the mean flows are determined by a combination of the laminar tilting and the turbulent alignment mechanisms. Varying the parameters produces a wide range of mean motions. Among these, some turbulent solutions exhibit a mean zonal velocity profile that is nearly constant with depth, much as deduced by helioseismology at midlatitudes within the Sun. The solutions exhibit a definite handedness, with the direction of the persistent mean flows often prescribing a spiral with depth near the boundaries, also in accord with helioseismic deductions. The mean helicity has a profile that is positive in the upper portion of the domain and negative in the lower portion, a property bearing on magnetic dynamo processes that may be realized within such rotating layers of turbulent convection.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  8. Mechanisms of SN2 reactions: insights from a nearside/farside analysis.

    PubMed

    Hennig, Carsten; Schmatz, Stefan

    2015-10-28

    A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.

  9. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  10. Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism

    NASA Astrophysics Data System (ADS)

    Beaudoin, Patrice; Strugarek, Antoine; Charbonneau, Paul

    2018-05-01

    We present a set of four global Eulerian/semi-Lagrangian fluid solver (EULAG) hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations of solar convection, two of which are restricted to the nominal convection zone, and the other two include an underlying stably stratified fluid layer. While all four simulations generate reasonably solar-like latitudinal differential rotation profiles where the equatorial region rotates faster than the polar regions, the rotational isocontours vary significantly among them. In particular, the purely HD simulation with a stable layer alone can break the Taylor–Proudman theorem and produce approximately radially oriented rotational isocontours at medium to high latitudes. We trace this effect to the buildup of a significant latitudinal temperature gradient in the stable fluid immediately beneath the convection zone, which imprints itself on the lower convection zone. It develops naturally in our simulations as a consequence of convective overshoot and rotational influence of rotation on convective energy fluxes. This favors the establishment of a thermal wind balance that allows evading the Taylor–Proudman constraint. A much smaller latitudinal temperature gradient develops in the companion MHD simulation that includes a stable fluid layer, reflecting the tapering of deep convective overshoot that occurs at medium to high latitudes, which is caused by the strong magnetic fields that accumulate across the base of the convection zone. The stable fluid layer also has a profound impact on the large-scale magnetic cycles developing in the two MHD simulations. Even though both simulations operate in the same convective parameter regime, the simulation that includes a stable layer eventually loses cyclicity and transits to a non-solar, steady quadrupolar state.

  11. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases.

    PubMed

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). The Dynamic MRI enabled a novel measure; 'Looseness', i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position.

  12. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  13. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  14. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  15. Instability of a rotating liquid ring.

    PubMed

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  16. The Fokker-Planck equation for coupled Brown-Néel-rotation.

    PubMed

    Weizenecker, Jürgen

    2018-01-22

    Calculating the dynamic properties of magnetization of single-domain particles is of great importance for the tomographic imaging modality known as magnetic particle imaging (MPI). Although the assumption of instantaneous thermodynamic equilibrium (Langevin function) after application of time-dependent magnetic fields is sufficient for understanding the fundamental behavior, it is essential to consider the finite response times of magnetic particles for optimizing or analyzing various aspects, e.g. interpreting spectra, optimizing MPI sequences, developing new contrasts, and evaluating simplified models. The change in magnetization following the application of the fields is caused by two different movements: the geometric rotation of the particle and the rotation of magnetization with respect to the fixed particle axes. These individual rotations can be well described using the Langevin equations or the Fokker-Planck equation. However, because the two rotations generally exhibit interdependence, it is necessary to consider coupling between the two equations. This article shows how a coupled Fokker-Planck equation can be derived on the basis of coupled Langevin equations. Two physically equivalent Fokker-Planck equations are derived and transformed by means of an appropriate series expansion into a system of ordinary differential equations, which can be solved numerically. Finally, this system is also used to specify a system of differential equations for various limiting cases (Néel, Brown, uniaxial symmetry). Generally, the system exhibits a sparsely populated matrix and can therefore be handled well numerically.

  17. The Fokker-Planck equation for coupled Brown-Néel-rotation

    NASA Astrophysics Data System (ADS)

    Weizenecker, Jürgen

    2018-02-01

    Calculating the dynamic properties of magnetization of single-domain particles is of great importance for the tomographic imaging modality known as magnetic particle imaging (MPI). Although the assumption of instantaneous thermodynamic equilibrium (Langevin function) after application of time-dependent magnetic fields is sufficient for understanding the fundamental behavior, it is essential to consider the finite response times of magnetic particles for optimizing or analyzing various aspects, e.g. interpreting spectra, optimizing MPI sequences, developing new contrasts, and evaluating simplified models. The change in magnetization following the application of the fields is caused by two different movements: the geometric rotation of the particle and the rotation of magnetization with respect to the fixed particle axes. These individual rotations can be well described using the Langevin equations or the Fokker-Planck equation. However, because the two rotations generally exhibit interdependence, it is necessary to consider coupling between the two equations. This article shows how a coupled Fokker-Planck equation can be derived on the basis of coupled Langevin equations. Two physically equivalent Fokker-Planck equations are derived and transformed by means of an appropriate series expansion into a system of ordinary differential equations, which can be solved numerically. Finally, this system is also used to specify a system of differential equations for various limiting cases (Néel, Brown, uniaxial symmetry). Generally, the system exhibits a sparsely populated matrix and can therefore be handled well numerically.

  18. Solitary waves in shallow water hydrodynamics and magnetohydrodynamics in rotating spherical coordinates

    NASA Astrophysics Data System (ADS)

    London, Steven D.

    2018-01-01

    In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.

  19. Machining approach of freeform optics on infrared materials via ultra-precision turning.

    PubMed

    Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong

    2017-02-06

    Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

  20. Calculation of lens alignment errors using the ray transfer matrices for the lens assembly system with an autocollimator and a rotation stage

    NASA Astrophysics Data System (ADS)

    Chu, Jiyoung; Cho, Sungwhi; Joo, Won Don; Jang, Sangdon

    2017-08-01

    One of the most popular methods for high precision lens assembly of an optical system is using an autocollimator and a rotation stage. Some companies provide software for calculating the state of the lens along with their lens assembly systems, but the calculation algorithms used by the software are unknown. In this paper, we suggest a calculation method for lens alignment errors using ray transfer matrices. Alignment errors resulting from tilting and decentering of a lens element can be calculated from the tilts of the front and back surfaces of the lens. The tilt of each surface can be obtained from the position of the reticle image on the CCD camera of the autocollimator. Rays from a reticle of the autocollimator are reflected from the target surface of the lens, which rotates with the rotation stage, and are imaged on the CCD camera. To obtain a clear image, the distance between the autocollimator and the first lens surface should be adjusted according to the focusing lens of the autocollimator and the lens surfaces from the first to the target surface. Ray propagations for the autocollimator and the tilted lens surfaces can be expressed effectively by using ray transfer matrices and lens alignment errors can be derived from them. This method was compared with Zemax simulation for various lenses with spherical or flat surfaces and the error was less than a few percent.

  1. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  2. Detection of Rotational Spectral Variation on the M-type Asteroid (16) Psyche

    NASA Astrophysics Data System (ADS)

    Sanchez, Juan A.; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward A.; Takir, Driss; Conrad, Albert; Kiddell, Cain; Applin, Daniel

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ˜1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7-2.5 μm) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ˜0.92 to 0.94 μm. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  3. DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Juan A.; Thomas, Cristina; Reddy, Vishnu

    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μ m) of (16) Psyche obtained with the NASA Infrared Telescope Facility.more » These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μ m. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs{sub 30}En{sub 65}Wo{sub 5}. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.« less

  4. Advanced Rotating Biological Surface Operation. Training Module 2.122.4.77.

    ERIC Educational Resources Information Center

    Paulson, W. L.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a rotating biological surface (RBS) wastewater treatment system. Included are objectives, instructor guides, student handouts, and transparency masters. This is the third level of a three module series and…

  5. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  6. Tether System for Exchanging Payloads Between the International Space Station and the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert P.

    1998-01-01

    Systems composed of several rotating and/or hanging tethers may provide a means of exchanging supplies between low Earth orbit facilities and lunar bases without requiring the use of propellant. This work develops methods for designing a tether system capable of repeatedly exchanging payloads between a LEO facility such as the International Space Station or a Space Business Park and a base on the lunar surface. In this system, a hanging tether extended upwards from the LEO facility, places a payload into a slightly elliptical orbit, where it is caught by a rotating tether in a higher elliptical orbit. This rotating tether then tosses the payload to the moon. At the moon, a long rotating "Lunavator" tether catches the payload and deposits it on the surface of the moon. By transporting an equal mass of lunar materials such as oxygen back down to the LEO facility through the tether transport system, the momentum and energy of the system is conserved, allowing frequent traffic between LEO and the lunar surface with minimal propellant requirements.

  7. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  8. Which factors differentiate athletes with hip/groin pain from those without? A systematic review with meta-analysis

    PubMed Central

    Mosler, Andrea B; Agricola, Rintje; Weir, Adam; Hölmich, Per; Crossley, Kay M

    2015-01-01

    Background Hip and groin injuries are common in many sports. Understanding the factors differentiating athletes with hip/groin pain from those without these injuries could facilitate management and prevention. Objective Conduct a systematic review and meta-analysis of the literature on factors differentiating athletes with and without hip/groin pain. Methods The review was registered as PROSPERO CRD42014007416 and a comprehensive, systematic search was conducted in June 2014. Inclusion criteria were: cross-sectional, cohort or case–control study designs of n>10 that examined outcome measures differentiating athletes with and without hip/groin pain. Two authors independently screened search results, assessed study quality, and performed data extraction. Methodological heterogeneity was determined and data pooled for meta-analysis when appropriate. A best evidence synthesis was performed on the remaining outcome measures. Results Of 2251 titles identified, 17 articles were included of which 10 were high quality. Sixty two different outcome measures were examined, 8 underwent meta-analysis. Pooled data showed strong evidence that athletes with hip/groin pain demonstrated: pain and lower strength on the adductor squeeze test, reduced range of motion in hip internal rotation and bent knee fall out; however, hip external rotation range was equivalent to controls. Strong evidence was found that lower patient-reported outcome (PRO) scores, altered trunk muscle function, and moderate evidence of bone oedema and secondary cleft sign were associated with hip/groin pain. Conclusions PROs, pain and reduced strength on the adductor squeeze test, reduced range of motion in internal rotation and bent knee fall out are the outcome measures that best differentiate athletes with hip/groin pain from those without this pain. PMID:26031646

  9. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.

  10. Analysis of ultrasonically rotating droplet using moving particle semi-implicit and distributed point source methods

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2016-07-01

    Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.

  11. 10. The surface and interior of venus

    USGS Publications Warehouse

    Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.

    1977-01-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

  12. QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.

    2008-09-01

    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

  13. QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.

    2009-02-01

    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

  14. An update of Leighton's solar dynamo model

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent diffusivity below about 80 km2s-1, and dynamo excitation not too far above the threshold (linear growth rate less than 0.1 yr-1).

  15. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds

    PubMed Central

    Leferink, Anne M.; Chng, Yhee-Cheng; van Blitterswijk, Clemens A.; Moroni, Lorenzo

    2015-01-01

    One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation. PMID:26557644

  16. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds.

    PubMed

    Leferink, Anne M; Chng, Yhee-Cheng; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2015-01-01

    One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  17. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less

  18. Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing

    2003-12-01

    Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

  19. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1992-01-01

    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  20. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    PubMed

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

Top