Sample records for surface displacement map

  1. Mapping of the surface rupture induced by the M 7.3 Kumamoto Earthquake along the Eastern segment of Futagawa fault using image correlation techniques

    NASA Astrophysics Data System (ADS)

    Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.

    2016-12-01

    Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.

  2. Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.

    2018-04-01

    Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.

  3. Retrieving Precise Three-Dimensional Deformation on the 2014 M6.0 South Napa Earthquake by Joint Inversion of Multi-Sensor SAR.

    PubMed

    Jo, Min-Jeong; Jung, Hyung-Sup; Yun, Sang-Ho

    2017-07-14

    We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.

  4. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii

    USGS Publications Warehouse

    Baum, R.L.; Messerich, J.; Fleming, R.W.

    1998-01-01

    Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.

  5. A new global approach to obtain three-dimensional displacement maps by integrating GPS and DInSAR data

    NASA Astrophysics Data System (ADS)

    Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A.

    2009-04-01

    We propose a new technique, based on the elastic theory, to efficiently produce an estimate of three-dimensional surface displacement maps by integrating sparse Global Position System (GPS) measurements of deformations and Differential Interferometric Synthetic Aperture Radar (DInSAR) maps of movements of the Earth's surface. The previous methodologies known in literature, for combining data from GPS and DInSAR surveys, require two steps: the first, in which sparse GPS measurements are interpolated in order to fill in GPS displacements at the DInSAR grid, and the second, to estimate the three-dimensional surface displacement maps by using a suitable optimization technique. One of the advantages of the proposed approach is that both these steps are unified. We propose a linear matrix equation which accounts for both GPS and DInSAR data whose solution provide simultaneously the strain tensor, the displacement field and the rigid body rotation tensor throughout the entire investigated area. The mentioned linear matrix equation is solved by using the Weighted Least Square (WLS) thus assuring both numerical robustness and high computation efficiency. The proposed methodology was tested on both synthetic and experimental data, these last from GPS and DInSAR measurements carried out on Mt. Etna. The goodness of the results has been evaluated by using standard errors. These tests also allow optimising the choice of specific parameters of this algorithm. This "open" structure of the method will allow in the near future to take account of other available data sets, such as additional interferograms, or other geodetic data (e.g. levelling, tilt, etc.), in order to achieve even higher accuracy.

  6. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  7. Motion of the surface of the human tympanic membrane measured with stroboscopic holography

    PubMed Central

    Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Harrington, Ellery; Hernandez-Montes, Maria del Socorro; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Sound-induced motion of the surface of the human tympanic membrane (TM) was studied by stroboscopic holographic interferometery, which measures the amplitude and phase of the displacement at each of about 40000 points on the surface of the TM. Measurements were made with tonal stimuli of 0.5, 1, 4 and 8 kHz. The magnitude and phase of the sinusoidal displacement of the TM at each driven frequency were derived from the fundamental Fourier component of the raw displacement data computed from stroboscopic holograms of the TM recorded at eight stimulus phases. The correlation between the Fourier estimates and measured motion data was generally above 0.9 over the entire TM surface. We used three data presentations: (i) Plots of the phasic displacements along a single chord across the surface of the TM, (ii) Phasic surface maps of the displacement of the entire TM surface, and (iii) Plots of the Fourier derived amplitude and phase-angle of the surface displacement along four diameter lines that define and bisect each of the four quadrants of the TM. These displays led to some common conclusions: At 0.5 and 1 kHz, the entire TM moved roughly in-phase with some small phase delay apparent between local areas of maximal displacement in the posterior half of the TM. At 4 and 8 kHz, the motion of the TM became more complicated with multiple local displacement maxima arranged in rings around the manubrium. The displacements at most of these maxima were roughly in-phase, while some moved out-of-phase. Superposed on this in- and out-of-phase behavior were significant cyclic variations in phase with location of less than 0.2 cycles or occasionally rapid half-cycle step-like changes in phase. The high frequency displacement amplitude and phase maps discovered in this study can not be explained by any single wave motion, but are consistent with a combination of low and higher order modal motions plus some small traveling-wave-like components. The observations of the dynamics of TM surface motion from this study will help us better understand the sound-receiving function of the TM and how it couples sound to the ossicular chain and inner ear. PMID:20034549

  8. 3D displacement field measurement with correlation based on the micro-geometrical surface texture

    NASA Astrophysics Data System (ADS)

    Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François

    2011-07-01

    Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.

  9. Poro-elastic Rebound Along the Landers 1992 Earthquake Surface Rupture

    NASA Technical Reports Server (NTRS)

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1998-01-01

    Maps of post-seismic surface displacement after the 1992, Landers, California earthquake, generated by interferometric processing of ERS-1 Synthetic Aperture Radar (SAR) images, reveal effects of various deformation processes near the 1992 surface rupture.

  10. Faults and structure in the Pierre Shale, central south Dakota

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Jones-Cecil, Meridee; Swolfs, Henri S.

    1994-01-01

    Numerous faults observed at the surface and (or) determined by geometric and geophysical methods to be present as much as several hundred meters below the surface (near-surface faults) have been mapped in a 2,000-km2 area west of Pierre, S. Dakota. Many of these faults surround an east-west-trending structural high that has been mapped on the lower part of the Virgin Creek Member of the Pierre Shale. Generally, the geometry and displacement of many of the faults precludes slumping from surficial erosion as a mechanism to explain the faults. Seismic-reflection data indicate that several of the faults directly overlie faults in Precambrian basement that have cumulative vertical displacements of as much as 340 m. The structural high is interpreted to have been uplifted by displacements along faults that cut Upper Cretaceous sedimentary rocks. Recent low-level seismicity and fluvial-geomorphic studies of stream patterns, gradients, and orders suggest that rejuvenation of drainages may be taking place as a result of rebound or other tectonic activity. The studies indicate that repeated uplift and subsidence may have been the cause of extensive faulting mapped in the Pierre Shale since its deposition in Cretaceous time. Surficial fault displacements that cause damage to engineered structures are thought to be the result of construction-induced rebound in the Pierre Shale, although tectonic uplift cannot be ruled out as a cause.

  11. D Model Visualization Enhancements in Real-Time Game Engines

    NASA Astrophysics Data System (ADS)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including DirectX 11 support. Real-time tessellation is a technique that can be applied by using such technology. Since the displacement and the resulting geometry are calculated by the GPU, the time-based execution cost of this technique is very low.

  12. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  13. Primary surface rupture associated with the Mw 7.1 16 October 1999 Hector Mine earthquake, San Bernardino County, California

    USGS Publications Warehouse

    Treiman, J.A.; Kendrick, K.J.; Bryant, W.A.; Rockwell, T.K.; McGill, S.F.

    2002-01-01

    The Mw 7.1 Hector Mine earthquake occurred within the Mojave Desert portion of the eastern California shear zone and was accompanied by 48 km of dextral surface rupture. Complex northward rupture began on two branches of the Lavic Lake fault in the northern Bullion Mountains and also propagated southward onto the Bullion fault. Lesser amounts of rupture occurred across two right steps to the south. Surface rupture was mapped using postearthquake, 1:10,000-scale aerial photography. Field mapping provided additional detail and more than 400 fault-rupture observations; of these, approximately 300 measurements were used to characterize the slip distribution. En echelon surface rupture predominated in areas of thick alluvium, whereas in the bedrock areas, rupture was more continuous and focused within a narrower zone. Measured dextral offsets were relatively symmetrical about the epicentral region, with a maximum displacement of 5.25 ?? 0.85 m. Vertical slip was a secondary component and was variable, with minor west-side-down displacements predominat.ing in the Bullion Mountains. Field and aerial photographic evidence indicates that most of the faults that ruptured in 1999 had had prior late-Quaternary displacement, although only limited sections of the rupture show evidence for prior Holocene displacement.

  14. Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.

  15. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  16. Surface faulting near Livermore, California, associated with the January 1980 earthquakes

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.; Tinsley, John C.

    1980-01-01

    The earthquakes of 24 January (Ms 5.8) 1980 north of Livermore, California, and 26 January (Ms 5.2), were accompanied by surface faulting in the Greenville fault zone and apparently in the Las Positas fault zone also. The surface faulting was discontinuous and of small displacement. The main rupture within the Greenville fault zone trended about N.38°W. It was at least 4.2 km long and may have extended southward to Interstate Highway 580, giving a possible length of 6.2 km; both of these lengths included more gaps than observed surface rupture. Maximum displacements measured by us were about 25 mm of right slip (including afterslip through 28 January); vertical components of as much as 50 mm were seen locally, but these included gravity effects of unknown amount. The main break within the Greenville fault zones is very close to a fault strand mapped by Herd (1977, and unpublished data). A subsidiary break within the Greenville fault zone was about 0.5 km. long, had a general trend of N.46°W., and lay 0.12 to 0.25 km east of the main break. It was characterized by extension of as much as 40 mm and right slip of as much as 20 mm. This break was no more than 25 m from a fault mapped by Herd (unpublished data). Another break within the Greenville fault zone lay about 0.3 km southwest of the projection of the main break and trended about N33°W. It was at least 0.3 km long and showed mostly extension, but at several places a right-lateral component (up to 5 mm) was seen. This break was 80 to 100 m from a strand of the Greenville fault mapped by Herd (1977). Extensional fractures within the Greenville fault zone on the frontage roads north and south of Interstate Highway 580 may be related to regional extension or other processes, but do not seem to have resulted from faulting of the usual kind. One exception in this group is a fracture at the east side of Livermore valley which showed progressive increase in right-lateral displacement in February and March, 1980, and is directly on the projection of a fault in the Greenville fault zone mapped by Herd (1977). A group of more than 20 extensional fractures in Laughlin Road 1 km north of Interstate 580 probably are related to small tectonic displacements on faults in the Greenville fault zone. They are adjacent and parallel to two faults mapped by Herd (1977), are diagonal to the road, and most of them developed between 25 and 29 January, a period that included the Ms 5.2 shock of 26 January. Observations at two locations indicate tectonic displacement on the Las Positas fault zone as mapped by Herd (1977). At Vasco Road a prominent break on a strand of the fault showed about 0.5 mm of left-lateral strike slip on 7 February. An alinement array across this and other fractures at the locality indicates about 6 mm of left-lateral displacement occurred between 21 February and 26 March. On Tesla Road several right-stepping fractures, one of which showed 1.5 mm of left-lateral strike slip, lie on or close tp previously mapped strands of the Las Positas fault zone. The evidence at these two localities indicates that tectonic surface displacement occurred along at least 1.1 km of the Las Positas fault zone.

  17. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  18. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  19. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  20. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.

    1994-01-01

    We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.

  1. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares, J [Altadena, CA

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  2. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT)

    NASA Astrophysics Data System (ADS)

    Sanny, Teuku A.

    2017-07-01

    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.

  3. Modified Displacement Transfer Functions for Deformed Shape Predictions of Slender Curved Structures with Varying Curvatives

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2014-01-01

    To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.

  4. The Surface Displacement Field of the November 8, 1997, Mw7.6 Manyi (Tibet) Earthquake Observed with ERS InSAR Data

    NASA Technical Reports Server (NTRS)

    Peltzer, G.; Crampe, F.

    1998-01-01

    ERS2 radar data acquired before and after the Mw7.6, Manyi (Tibet) earthquake of November 8, 1997, provide geodetic information about the surface displacement produced by the earthquake in two ways. (1) The sub-pixel geometric adjustment of the before and after images provides a two dimensional offset field with a resolution of approx, 1m in both the range (radar line of sight) and azimuth (satellite track) directions. Comparison of offsets in azimuth and range indicates that the displacement along the fault is essentially strike-slip and in a left-lateral sense. The offset map reveals a relatively smooth and straight, N78E surface rupture that exceeds 150 km in length, consistent with the EW plane of the Harvard CMT solution. The rupture follows the trace of a quaternary fault visible on satellite imagery (Tapponnier and Molnar, 1978; Wan Der Woerd, pers. comm.). (2) Interferometric processing of the SAR data provides a range displacement map with a precision of a few millimeters. The slip distribution along the rupture reconstructed from the range change map is a bell-shaped curve in the 100-km long central section of the fault with smaller, local maxima near both ends. The curve shows that the fault slip exceeds 2.2 m in range, or 6.2 in strike-slip, along a 30-km long section of the fault and remains above 1 m in range, approx. 3 m strike-slip, along most of its length. Preliminary forward modeling of the central section of the rupture, assuming a uniform slip distribution with depth, indicates that the slip occur-red essentially between 0 and the depth of 10 km, consistent with a relatively shallow event (Velasco et al., 1998).

  5. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac

    NASA Astrophysics Data System (ADS)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona

    2017-04-01

    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  6. On- and off-fault coseismic surface deformation associated with the September 2013 M7.7 Balochistan, Pakistan earthquake measured from mapping and automated pixel correlation

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.

  7. The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios

    NASA Astrophysics Data System (ADS)

    Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George

    2017-04-01

    The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the observed surface rupture displacement. Stress transfer analysis was also performed in the five modelled seismogenic sources, using seismologically defined parameters. The resulting stress transfer pattern, based on the sequence of events, shows that the causative fault of each event was influenced by loading from the previous ones.

  8. A numerical study of defect detection in a plaster dome ceiling using structural acoustics.

    PubMed

    Bucaro, J A; Romano, A J; Valdivia, N; Houston, B H; Dey, S

    2009-07-01

    A numerical study is carried out to evaluate the effectiveness of using measured surface displacements resulting from acoustic speaker excitation to detect and localize flaws in a domed, plaster ceiling. The response of the structure to an incident acoustic pressure is obtained at four frequencies between 100 and 400 Hz using a parallel h-p structural acoustic finite element-based code. Three ceiling conditions are modeled: the pristine ceiling considered rigidly attached to the domed-shape support, partial detachment of a segment of the plaster layer from the support, and an interior pocket of plaster deconsolidation modeled as a heavy fluid. Spatial maps of the normal displacement resulting from speaker excitation are interpreted with the help of predictions based on static analysis. It is found that acoustic speaker excitation can provide displacement levels readily detected by commercially available laser Doppler vibrometer systems. Further, it is concluded that for 1 in. thick plaster layers, detachment sizes as small as 4 cm are detectable by direct observation of the measured displacement maps. Finally, spatial structure differences are observed in the displacement maps beneath the two defect types, which may provide a wavenumber-based feature useful for distinguishing plaster detachment from other defects such as deconsolidation.

  9. Coseismic surface displacements from optical and SAR image offset tracking, fault modeling and geomorphological analysis of the Sept. 24th, 2013 M7.7 Balochistan earthquake

    NASA Astrophysics Data System (ADS)

    Harrington, Jonathan; Wang, Teng; Feng, Guangcai; Akoglu, Ahmet; Jónsson, Sigurjón; Motagh, Mahdi

    2014-05-01

    The M 7.7 earthquake in the Balochistan province of Pakistan on September 24th, 2013 took place along a subsidiary fault in the transition area between the Makran accretionary prism and the Chaman transform fault. This tectonics of the Indian and Arabian plate collisions with Eurasia produce primarily oblique left-lateral strike slip in this region. In this work, measurements of displacement and mapping of the rupture trace are achieved through image correlation of Landsat 8 images and SAR offset tracking of TerraSAR-X data. Horizontal displacements from both methods and derived vertical displacements are used to constrain a fault rupture model for the earthquake. Preliminary results show a surprisingly uniform slip distribution with maximum displacement near the surface. The total fault rupture length is ~210 km, with up to 9 m of left-lateral strike-slip and 3 m of reverse faulting. Additionally, mapping of the rupture trace is made use of for geomorphological observations relating to slip rates and identification of transpressional and transtensional features. Our results indicate a mostly smooth rupture trace, with the presence of two restraining steps, a releasing bend and a 3 km long sliver where the surface rupture jumped from the foot of the range-front into the alluvial fans at their base. A small block at one of the restraining steps shows intermediate displacement in both data sets. At the southern end of the rupture we observe that displacement from the earthquake cuts across a fold-and-thrust belt of the Makran accretionary prism. Preliminary results show a minimum of 12 km of repeated section of the accretionary wedge, and within the southern repeated section we find an offset of 600 m between two parallel ridges across the rupture trace. We relate these observations to conceptual models of fault segmentation and growth.

  10. New Ground Truth Capability from InSAR Time Series Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, S; Vincent, P; Yang, D

    2005-07-13

    We demonstrate that next-generation interferometric synthetic aperture radar (InSAR) processing techniques applied to existing data provide rich InSAR ground truth content for exploitation in seismic source identification. InSAR time series analyses utilize tens of interferograms and can be implemented in different ways. In one such approach, conventional InSAR displacement maps are inverted in a final post-processing step. Alternatively, computationally intensive data reduction can be performed with specialized InSAR processing algorithms. The typical final result of these approaches is a synthesized set of cumulative displacement maps. Examples from our recent work demonstrate that these InSAR processing techniques can provide appealing newmore » ground truth capabilities. We construct movies showing the areal and temporal evolution of deformation associated with previous nuclear tests. In other analyses, we extract time histories of centimeter-scale surface displacement associated with tunneling. The potential exists to identify millimeter per year surface movements when sufficient data exists for InSAR techniques to isolate and remove phase signatures associated with digital elevation model errors and the atmosphere.« less

  11. Ko Displacement Theory for Structural Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2010-01-01

    The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.

  12. Automated map sharpening by maximization of detail and connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  13. Automated map sharpening by maximization of detail and connectivity

    DOE PAGES

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.; ...

    2018-05-18

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  14. Predicted Surface Displacements for Scenario Earthquakes in the San Francisco Bay Region

    USGS Publications Warehouse

    Murray-Moraleda, Jessica R.

    2008-01-01

    In the immediate aftermath of a major earthquake, the U.S. Geological Survey (USGS) will be called upon to provide information on the characteristics of the event to emergency responders and the media. One such piece of information is the expected surface displacement due to the earthquake. In conducting probabilistic hazard analyses for the San Francisco Bay Region, the Working Group on California Earthquake Probabilities (WGCEP) identified a series of scenario earthquakes involving the major faults of the region, and these were used in their 2003 report (hereafter referred to as WG03) and the recently released 2008 Uniform California Earthquake Rupture Forecast (UCERF). Here I present a collection of maps depicting the expected surface displacement resulting from those scenario earthquakes. The USGS has conducted frequent Global Positioning System (GPS) surveys throughout northern California for nearly two decades, generating a solid baseline of interseismic measurements. Following an earthquake, temporary GPS deployments at these sites will be important to augment the spatial coverage provided by continuous GPS sites for recording postseismic deformation, as will the acquisition of Interferometric Synthetic Aperture Radar (InSAR) scenes. The information provided in this report allows one to anticipate, for a given event, where the largest displacements are likely to occur. This information is valuable both for assessing the need for further spatial densification of GPS coverage before an event and prioritizing sites to resurvey and InSAR data to acquire in the immediate aftermath of the earthquake. In addition, these maps are envisioned to be a resource for scientists in communicating with emergency responders and members of the press, particularly during the time immediately after a major earthquake before displacements recorded by continuous GPS stations are available.

  15. Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults

    NASA Astrophysics Data System (ADS)

    Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.

    2010-12-01

    Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.

  16. Analysis of the Shallow Slip Deficit Using Sub-Pixel Image Correlation:examples from various large continental strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Milliner, C. W.; Hollingsworth, J.; Dolan, J. F.; Leprince, S.; Ayoub, F.; Avouac, J.

    2012-12-01

    We use the optical image correlation technique to analyze the near-field displacement field for a variety of large (Mw 7+) continental strike-slip earthquakes, to better determine the contribution of distributed deformation to coseismic surface ruptures. Various satellite datasets are correlated using the COSI-Corr software package, including WorldView, Quickbird, SPOT and Landsat7 imagery, along with de-classified KH-9 spy satellite imagery and aerial photos, allowing us to investigate earthquakes as far back as 1976. The variety of datasets used highlights the versatility of COSI-Corr for measuring displacements at the Earth's surface. The following earthquakes are investigated: 1976 Guatemala (Mw 7.5), 1990 Luzon (Mw 7.4), 1992 Landers (Mw 7.3), 1995 Sakhalin (Mw 7.0), 1997 Zirkuh (Mw 7.2), 1999 Izmit (Mw 7.6), 1999 Hector Mine (Mw 7.1), 1999 Duzce (Mw 7.1), 2001 Kokoxilli (Mw 7.1) and 2002 Denali (Mw 7.8). For each event we examine the surface displacement field produced by COSI-Corr, and compare them with published field measurements to assess the component of distributed deformation that may be routinely missed by geologists when collecting data in the field. These results also complement surface displacements determined using InSAR, which commonly de-correlates at distances of 1-2 km from the fault rupture. Fault displacements are extracted from the displacement maps using a new tool written for MATLAB, which extracts the maximum and minimum values on either side of the fault, as well as the distance between these points, thus giving a potential measure of the total width of the deforming zone. Where possible, we determine the total geological displacements for each fault through analysis of satellite data, geological maps and published results, thus allowing an assessment of the structural maturity for each fault. The difference between field measurements and COSI-Corr-derived measurements of the coseismic displacement field are compared with geological parameters such as the structural maturity for each fault. Such an approach allows us to explore the various parameters that control deformation in the upper crust. This study therefore has significant implications for the assessment of seismic hazard in actively deforming regions.

  17. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.

    2015-01-01

    The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along active faults and demonstrate that fine-scale variability in fault slip has been missed by traditional earthquake response methods.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxall, W; Cunningham, C; Mellors, R

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements aremore » often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the ability to detect evidence for an underground facility using InSAR depends on the displacement sensitivity and spatial resolution of the interferogram, as well as on the size and depth of the facility and the time since its completion. The methodology development described in this report focuses on the exploitation of synthetic aperture radar data that are available commercially from a number of satellite missions. Development of the method involves three components: (1) Evaluation of the capability of InSAR to detect and characterize underground facilities ; (2) inversion of InSAR data to infer the location, depth, shape and volume of a subsurface facility; and (3) evaluation and selection of suitable geomechanical forward models to use in the inversion. We adapted LLNL's general-purpose Bayesian Markov Chain-Monte Carlo procedure, the 'Stochastic Engine' (SE), to carry out inversions to characterize subsurface void geometries. The SE performs forward simulations for a large number of trial source models to identify the set of models that are consistent with the observations and prior constraints. The inverse solution produced by this kind of stochastic method is a posterior probability density function (pdf) over alternative models, which forms an appropriate input to risk-based decision analyses to evaluate subsequent response strategies. One major advantage of a stochastic inversion approach is its ability to deal with complex, non-linear forward models employing empirical, analytical or numerical methods. However, while a geomechanical model must incorporate adequate physics to enable sufficiently accurate prediction of surface displacements, it must also be computationally fast enough to render the large number of forward realizations needed in stochastic inversion feasible. This latter requirement prompted us first to investigate computationally efficient empirical relations and closed-form analytical solutions. However, our evaluation revealed severe limitations in the ability of existing empirical and analytical forms to predict deformations from underground cavities with an accuracy consistent with the potential resolution and precision of InSAR data. We followed two approaches to overcoming these limitations. The first was to develop a new analytical solution for a 3D cavity excavated in an elastic half-space. The second was to adapt a fast parallelized finite element method to the SE and evaluate the feasibility of using in the stochastic inversion. To date we have demonstrated the ability of InSAR to detect underground facilities and measure the associated surface displacements by mapping surface deformations that track the excavation of the Los Angeles Metro system. The Stochastic Engine implementation has been completed and undergone functional testing.« less

  19. Surface deformation associated with the 2013 Mw7.7 Balochistan earthquake: Geologic slip rates may significantly underestimate strain release

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin

    2015-04-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.

  20. Inelastic Strain and Damage in Surface Instability Tests

    NASA Astrophysics Data System (ADS)

    Kao, Chu-Shu; Tarokh, Ali; Biolzi, Luigi; Labuz, Joseph F.

    2016-02-01

    Spalling near a free surface in laboratory experiments on two sandstones was characterized using acoustic emission and digital image correlation. A surface instability apparatus was used to reproduce a state of plane strain near a free surface in a modeled semi-infinite medium subjected to far-field compressive stress. Comparison between AE locations and crack trajectory mapped after the test showed good consistency. Digital image correlation was used to find the displacements in directions parallel (axial direction) and perpendicular (lateral direction) to the free surface at various stages of loading. At a load ratio, LR = current load/peak load, of approximately 30 %, elastic deformation was measured. At 70-80 % LR, the free-face effect started to appear in the displacement contours, especially for the lateral displacement measurements. As the axial compressive stress increased close to peak, extensional lateral strain started to show concentrations associated with localized damage. Continuum damage mechanics was used to describe damage evolution in the surface instability test, and it was shown that a critical value of extensional inelastic strain, on the order of -10-3 for the virgin sandstones, may provide an indicator for determining the onset of surface spalling.

  1. Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration

    PubMed Central

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2014-01-01

    Stereovision is an important intraoperative imaging technique that captures the exposed parenchymal surface noninvasively during open cranial surgery. Estimating cortical surface shift efficiently and accurately is critical to compensate for brain deformation in the operating room (OR). In this study, we present an automatic and robust registration technique based on optical flow (OF) motion tracking to compensate for cortical surface displacement throughout surgery. Stereo images of the cortical surface were acquired at multiple time points after dural opening to reconstruct three-dimensional (3D) texture intensity-encoded cortical surfaces. A local coordinate system was established with its z-axis parallel to the average surface normal direction of the reconstructed cortical surface immediately after dural opening in order to produce two-dimensional (2D) projection images. A dense displacement field between the two projection images was determined directly from OF motion tracking without the need for feature identification or tracking. The starting and end points of the displacement vectors on the two cortical surfaces were then obtained following spatial mapping inversion to produce the full 3D displacement of the exposed cortical surface. We evaluated the technique with images obtained from digital phantoms and 18 surgical cases – 10 of which involved independent measurements of feature locations acquired with a tracked stylus for accuracy comparisons, and 8 others of which 4 involved stereo image acquisitions at three or more time points during surgery to illustrate utility throughout a procedure. Results from the digital phantom images were very accurate (0.05 pixels). In the 10 surgical cases with independently digitized point locations, the average agreement between feature coordinates derived from the cortical surface reconstructions was 1.7–2.1 mm relative to those determined with the tracked stylus probe. The agreement in feature displacement tracking was also comparable to tracked probe data (difference in displacement magnitude was <1 mm on average). The average magnitude of cortical surface displacement was 7.9 ± 5.7 mm (range 0.3–24.4 mm) in all patient cases with the displacement components along gravity being 5.2 ± 6.0 mm relative to the lateral movement of 2.4 ± 1.6 mm. Thus, our technique appears to be sufficiently accurate and computationally efficiency (typically ~15 s), for applications in the OR. PMID:25077845

  2. Fault Slip Distribution and Optimum Sea Surface Displacement of the 2017 Tehuantepec Earthquake in Mexico (Mw 8.2) Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Satake, K.; Mulia, I. E.

    2017-12-01

    An intraplate normal fault earthquake (Mw 8.2) occurred on 8 September 2017 in the Tehuantepec seismic gap of the Middle America Trench. The submarine earthquake generated a tsunami which was recorded by coastal tide gauges and offshore DART buoys. We used the tsunami waveforms recorded at 16 stations to estimate the fault slip distribution and an optimum sea surface displacement of the earthquake. A steep fault dipping to the northeast with strike of 315°, dip of 73°and rake of -96° based on the USGS W-phase moment tensor solution was assumed for the slip inversion. To independently estimate the sea surface displacement without assuming earthquake fault parameters, we used the B-spline function for the unit sources. The distribution of the unit sources was optimized by a Genetic Algorithm - Pattern Search (GA-PS) method. Tsunami waveform inversion resolves a spatially compact region of large slip (4-10 m) with a dimension of 100 km along the strike and 80 km along the dip in the depth range between 40 km and 110 km. The seismic moment calculated from the fault slip distribution with assumed rigidity of 6 × 1010 Nm-2 is 2.46 × 1021 Nm (Mw 8.2). The optimum displacement model suggests that the sea surface was uplifted up to 0.5 m and subsided down to -0.8 m. The deep location of large fault slip may be the cause of such small sea surface displacements. The simulated tsunami waveforms from the optimum sea surface displacement can reproduce the observations better than those from fault slip distribution; the normalized root mean square misfit for the sea surface displacement is 0.89, while that for the fault slip distribution is 1.04. We simulated the tsunami propagation using the optimum sea surface displacement model. Large tsunami amplitudes up to 2.5 m were predicted to occur inside and around a lagoon located between Salina Cruz and Puerto Chiapas. Figure 1. a) Sea surface displacement for the 2017 Tehuantepec earthquake estimated by tsunami waveforms. b) Map of simulated maximum tsunami amplitude and comparison between observed (blue circles) and simulated (red circles) tsunami maximum amplitude along the coast.

  3. Toward mapping surface deformation in three dimensions using InSAR

    USGS Publications Warehouse

    Wright, Tim J.; Parsons, Barry E.; Lu, Zhong

    2004-01-01

    One of the limitations of deformation measurements made with interferometric synthetic aperture radar (InSAR) is that an interferogram only measures one component of the surface deformation — in the satellite's line of sight. We investigate strategies for mapping surface deformation in three dimensions by using multiple interferograms, with different imaging geometries. Geometries for both current and future missions are evaluated, and their abilities to resolve the displacement vector are compared. The north component is always the most difficult to determine using data from near-polar orbiting satellites. However, a satellite with an inclination of about 60°/120° would enable all three components to be well resolved. We attempt to resolve the 3D displacements for the 23 October 2002 Nenana Mountain (Alaska) Earthquake. The north component's error is much larger than the signal, but proxies for eastward and vertical motion can be determined if the north component is assumed negligible. Inversions of hypothetical coseismic interferograms demonstrate that earthquake model parameters can be well recovered from two interferograms, acquired on ascending and descending tracks.

  4. Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography.

    PubMed

    Hernández-Montes, Maria del Socorro; Pérez-López, Carlos; Santoyo, Fernando Mendoza

    2007-01-01

    3-D pulsed digital holography is a noninvasive optical method used to measure the depth position of breast tumor tissue immersed in a semisolid gel model. A master gel without inhomogeneities is set to resonate at an 810 Hz frequency; then, an identically prepared gel with an inhomogeneity is interrogated with the same resonant frequency in the original setup. Comparatively, and using only an out-of-plane sensitive setup, gel surface displacement can be measured, evidencing an internal inhomogeneity. However, the depth position cannot be measured accurately, since the out-of-plane component has the contribution of in-plane surface displacements. With the information gathered, three sensitivity vectors can be obtained to separate contributions from x, y, and z vibration displacement components, individual displacement maps for the three orthogonal axes can be built, and the inhomogeneity's depth position can be accurately measured. Then, the displacement normal to the gel surface is used to find the depth profile and its cross section. Results from the optical data obtained are compared and correlated to the inhomogeneity's physically measured position. Depth position is found with an error smaller than 1%. The inhomogeneity and its position within the gel can be accurately found, making the method a promising noninvasive alternative to study mammary tumors.

  5. September 3rd, 2017 underground nuclear test in North Korea: Results from satellite radar imagery and dislocation modeling

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nikkhoo, M.; Motagh, M.; Wei, S.; Barbot, S.; Burgmann, R.

    2017-12-01

    On September 3rd 2017, two seismic events were detected in the Democratic People's Republic of Korea (North Korea)'s Punggye-ri nuclear test site. US Geological Survey and China Earthquake Networks Center determined a body wave magnitude of Mb 6.3 for the first and larger event. Underground explosions have been well studied using seismic waveforms, the surface displacement associated with this kind of source is, however, poorly known due to the lack of geodetic measurements. Here, we use satellite observations to determine the first-ever complete (3D) surface displacement characterization associated with North Korea's sixth underground nuclear test. We measure the surface displacement by cross-correlating high-resolution radar images (2.5 m in azimuth and 0.5 m in the range direction) acquired by the German TerraSAR-X satellite. We combine azimuth and range offsets from two ascending and two descending tracks to map the 3D surface displacements. The horizontal motions of up to 3.5 m show a divergent pattern centered at the top of Mt. Mantap with a central zone of subsidence of 0.5 m, indicating the surface projection of the source (epicenter). The horizontal motions are distributed asymmetrically with larger displacements on the west and south flanks than the east and north flanks, suggesting a strong topographic control on the surface displacement pattern. We infer the location, depth and geometry of the deformation sources through applying the compound dislocation model (CDM) and the boundary element method (BEM) to the surface displacements. We show that the significant topographic effect on the near field displacements is due to the shallow depth and large radius of the explosion cavity and the steep slopes of the ground zero. The simulated surface displacements in our model consist of the contributions of two consecutive deformation sources, which are represented by two inflating and contracting finite cavities, respectively. The exposed characteristics of the sources are consistent with the focal mechanism analysis based on seismic waveforms, showing contributions from the isotropic explosion and the collapse of a cavity. The results demonstrate the capability of monitoring underground nuclear tests in quasi-real-time using remote-sensing observations.

  6. Geologic map of the Sunshine 7.5' quadrangle, Taos County, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens and is preserved as poorly exposed fault scarps that cut lava flows of Ute Mountain volcano, north of the map area. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in relatively young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations.

  7. A digital photogrammetric method for measuring horizontal surficial movements on the slumgullion earthflow, Hinsdale county, Colorado

    USGS Publications Warehouse

    Powers, P.S.; Chiarle, M.; Savage, W.Z.

    1996-01-01

    The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.

  8. Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking

    USGS Publications Warehouse

    Jo, Min-Jeong; Jung, Hyung-Sup; Won, Joong-Sun; Poland, Michael; Miklius, Asta; Lu, Zhong

    2015-01-01

    Multiple-aperture SAR interferometry (MAI) has demonstrated outstanding measurement accuracy of along-track displacement when compared to pixel-offset-tracking methods; however, measuring slow-moving (cm/year) surface displacement remains a challenge. Stacking of multi-temporal observations is a potential approach to reducing noise and increasing measurement accuracy, but it is difficult to achieve a significant improvement by applying traditional stacking methods to multi-temporal MAI interferograms. This paper proposes an efficient MAI stacking method, where multi-temporal forward- and backward-looking residual interferograms are individually stacked before the MAI interferogram is generated. We tested the performance of this method using ENVISAT data from Kīlauea Volcano, Hawai‘i, where displacement on the order of several centimeters per year is common. By comparing results from the proposed stacking methods with displacements from GPS data, we documented measurement accuracies of about 1.03 and 1.07 cm/year for the descending and ascending tracks, respectively—an improvement of about a factor of two when compared with that from the conventional stacking approach. Three-dimensional surface-displacement maps can be constructed by combining stacked InSAR and MAI observations, which will contribute to a better understanding of a variety of geological phenomena.

  9. Analysis of Landslide Kinematics using Multi-temporal UAV Imagery, La Honda, California

    NASA Astrophysics Data System (ADS)

    Carey, J.; Pickering, A.; Prentice, C. S.; Pinter, N.; DeLong, S.

    2017-12-01

    High-resolution topographic data are vital to studies of earth-surface processes. The combination of unmanned aerial vehicle (UAV) photography and structure-from-motion (SfM) digital photogrammetry provide a quickly deployable and cost-effective method for monitoring geomorphic change and landscape evolution. We acquired imagery of an active landslide in La Honda, California using a GPS-enabled quadcopter UAV with a 12.4 megapixel camera. Deep-seated landslides were previously documented in this region during the winter of 1997-98, with movement recurring and the landslide expanding during the winters of 2004-05 and 2005-06. This study documents the kinematics of a new and separate landslide immediately adjacent to the previous ones, throughout the winter of 2016-17. The roughly triangular-shaped, deep-seated landslide covers an area of approximately 10,000 m2. The area is underlain by SW dipping late Miocene to Pliocene sandstones and mudstones. A 3 m high head scarp stretches along the northeast portion of the slide for approximately 100 m. Internally, the direction of movement is towards the southwest, with two prominent NW-SE striking extensional grabens and numerous tension cracks across the landslide body. Here we calculate displaced landslide volumes and surface displacements from multi-temporal UAV surveys. Photogrammetric reconstruction of UAV/SfM-derived point clouds allowed creation of six digital elevation models (DEMs) with spatial resolutions ranging from 3 to 15 cm per pixel. We derived displacement magnitude, direction and rate by comparing multiple generations of DEMs and orthophotos, and estimated displaced volumes by differencing subsequent DEMs. We then correlated displacements with total rainfall and rainfall intensity measurements. Detailed geomorphic maps identify major landslide features, documenting dominant surface processes. Additionally, we compare the accuracy of the UAV/SfM-derived DEM with a DEM sourced from a synchronous terrestrial lidar survey. Conservative measurements yield 5.4 m of maximum horizontal displacement across the central portion of the slide. This study demonstrates the ability of the UAV/SfM workflow to map and monitor active mass-wasting processes in regions where landslides pose a direct threat to the surrounding community.

  10. Gravity and magma induces spreading of Mount Etna volcano revealed by satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Lungren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E.; Lanari, R.

    2004-01-01

    Mount Etna underwent a cycle of eruptive activity over the past ten years. Here we compute ground displacement maps and deformation time series from more than 400 radar interferograms to reveal Mount Etna's average and time varying surface deformation from 1992 to 2001.

  11. Speckle techniques for determining stresses in moving objects

    NASA Technical Reports Server (NTRS)

    Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.

    1978-01-01

    Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.

  12. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells

    NASA Technical Reports Server (NTRS)

    Hu, Shaohua; Chen, Jianxin; Fabry, Ben; Numaguchi, Yasushi; Gouldstone, Andrew; Ingber, Donald E.; Fredberg, Jeffrey J.; Butler, James P.; Wang, Ning

    2003-01-01

    We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell.

  13. Combination of optically measured coordinates and displacements for quantitative investigation of complex objects

    NASA Astrophysics Data System (ADS)

    Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang

    1996-09-01

    Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The described procedure will be demonstrated on an automotive component. Thus more accurate and effective measurement techniques make it possible to bring experimental and numerical displacement analysis closer.

  14. Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy

    USGS Publications Warehouse

    Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno

    2012-01-01

    Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.

  15. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives to the NSHM scenario were developed for the Hilton Creek and Hartley Springs Faults to account for different opinions in how far these two faults extend into Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice: the deterministic seismic hazard analysis program developed by Art Frankel of USGS and three Next Generation Ground Motion Attenuation (NGA) models. Ground motion calculations incorporated the potential amplification of seismic shaking by near-surface soils defined by a map of the average shear wave velocity in the uppermost 30 m (VS30) developed by CGS.In addition to ground shaking and shaking-related ground failure such as liquefaction and earthquake induced landslides, earthquakes cause surface rupture displacement, which can lead to severe damage of buildings and lifelines. For each earthquake scenario, potential surface fault displacements are estimated using deterministic and probabilistic approaches. Liquefaction occurs when saturated sediments lose their strength because of ground shaking. Zones of potential liquefaction are mapped by incorporating areas where loose sandy sediments, shallow groundwater, and strong earthquake shaking coincide in the earthquake scenario. The process for defining zones of potential landslide and rockfall incorporates rock strength, surface slope, and existing landslides, with ground motions caused by the scenario earthquake.Each scenario is illustrated with maps of seismic shaking potential and fault displacement, liquefaction, and landslide potential. Seismic shaking is depicted by the distribution of shaking intensity, peak ground acceleration, and 1.0-second spectral acceleration. One-second spectral acceleration correlates well with structural damage to surface facilities. Acceleration greater than 0.2 g is often associated with strong ground shaking and may cause moderate to heavy damage. The extent of strong shaking is influenced by subsurface fault dip and near surface materials. Strong shaking is more widespread in the hanging wall regions of a normal fault. Larger ground motions also occur where young alluvial sediments amplify the shaking. Both of these effects can lead to strong shaking that extends farther from the fault on the valley side than on the hill side.The effect of fault rupture displacements may be localized along the surface trace of the mapped earthquake fault if fault geometry is simple and the fault traces are accurately located. However, surface displacement hazards can spread over a few hundred meters to a few kilometers if the earthquake fault has numerous splays or branches, such as the Hilton Creek Fault. Faulting displacements are estimated to be about 1 meter along normal faults in the study area and close to 2 meters along the White Mountains Fault Zone.All scenarios show the possibility of widespread ground failure. Liquefaction damage would likely occur in the areas of higher ground shaking near the faults where there are sandy/silty sediments and the depth to groundwater is 6.1 meters (20 feet) or less. Generally, this means damage is most common near lakes and streams in the areas of strongest shaking. Landslide potential exists throughout the study region. All steep slopes (>30 degrees) present a potential hazard at any level of shaking. Lesser slopes may have landslides within the areas of the higher ground shaking. The landslide hazard zones also are likely sources for snow avalanches during winter months and for large boulders that can be shaken loose and roll hundreds of feet down hill, which happened during the 1980 Mammoth Lakes earthquakes.Whereas methodologies used in estimating ground shaking, liquefaction, and landslides are well developed and have been applied in published hazard maps; methodologies used in estimating surface fault displacement are still being developed. Therefore, this report provides a more in-depth and detailed discussion of methodologies used for deterministic and probabilistic fault displacement hazard analyses for this project.

  16. Satellite Radar Show Complex Set of Faults Moved in 2016 New Zealand Earthquake

    NASA Image and Video Library

    2017-03-23

    NASA and its partners are contributing important observations and expertise to the ongoing response to the Nov. 14, 2016, magnitude 7.8 Kaikoura earthquake in New Zealand. This shallow earthquake was so complex and unusual, it is likely to change how scientists think about earthquake hazards in plate boundary zones around the world. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and Caltech in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate maps of the deformation of Earth's surface caused by the quake. Two maps show motion of the surface in two different directions. Each false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 28-day interval between two ALOS-2 wide-swath images acquired on Oct. 18 and Nov. 15, 2016. In these two new maps made from the wide-swath images, the colors of the surface displacements are proportional to the surface motion. The wide-swath images cover the entire 106-mile (170-kilometer) length of the complex set of earthquake ruptures. The arrows show the direction of the radar motion measurement. In the left image, the blue and purple tones show the areas where the land around the Kaikoura peninsula in the Marlborough region of New Zealand's South Island has moved toward the satellite by up to 13.2 feet (4 meters), both eastward and upward. In the right image, the blue and purple tones show the areas that moved to the north by up to 30 feet (9 meters) and green tones show the area that moved to the south. The sharp line of color change is across the Kekerengu Fault, which had the largest amount of motion in the earthquake. Field studies found maximum rupture at the surface was measured at 39 feet (12 meters) of horizontal displacement. Several other faults have sharp color changes due to smaller amounts of motion, with a total of at least 12 faults rupturing in this single large earthquake. Areas without color have snow, heavy vegetation or open water that prevents the radar measurements from being coherent between satellite images – a required condition to measure ground displacement. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellites (CEOS) and through scientific research projects. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA21210

  17. Advantages to Geoscience and Disaster Response from QuakeSim Implementation of Interferometric Radar Maps in a GIS Database System

    NASA Astrophysics Data System (ADS)

    Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu

    2015-08-01

    High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.

  18. Organic pi-stacking Semiconducting Material: Design, Synthesis and the Analysis of Structure and Properties

    NASA Astrophysics Data System (ADS)

    Wilkinson, Taylor Marie

    Oil shales are naturally occurring heterogeneous composites with micro-scale, micro-structural variations. They may be found throughout the world, with large deposits located in the United States; shales are composed of organic matter known as kerogen, clays, calcite, quartz, and other minerals. Typically their microstructure consists of a composite network where the organic matter is housed in open and closed pores between different mineral phases that range in size from sub-micron to several microns. Currently, it is unknown how the micro-scale heterogeneity of the shale will impact hydraulic fracture, which is the key extraction technique used for these materials. In this thesis, high-resolution topographic and modulus maps were collected from oil shales with the use of new nanoindentation techniques in order to characterize the micro-scale, micro-structural variations that are typical for these materials. Dynamic modulus mapping allows for substantially higher spatial resolution of properties across grains and intragranular regions of kerogen than has previously been produced with standard quasistatic indentation methods. For accurate scanning, surface variations were minimized to maintain uniform contact of the tip and appropriate quasi-static and dynamic forces were used to maintain displacement amplitudes that avoid plastic deformation of the sample. Sample preparation to minimize surface roughness was completed with the use of focused ion beam milling, however, some variation was still noted. Due to the large changes in modulus values between the constituents of the shale, there were variations in the recorded displacement amplitude values as well. In order to distinguish biased data due to surface topography or a lack of displacement amplitude, filtering techniques were developed, optimization and implemented. Variations in surface topography, which resulted in the indenter tip not being able to accurately resolve surface features, and inadequate displacement amplitude values that prohibit differentiation between material changes and the noise floor of the machine, were removed. These filters resulted in a more valid interpretation of the micro-scale, micro-structural features and arrangement, as well as the mechanical properties, that are common to oil shales.

  19. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    NASA Astrophysics Data System (ADS)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  20. Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiot, Fabien; Roger, Jean Paul

    2006-10-20

    We propose to use a Nomarski imaging interferometer to measure the out-of-plane displacement field of micro-electro-mechanical systems. It is shown that the measured optical phase arises from both height and slope gradients. By using four integrating buckets, a more efficient approach to unwrap the measured phase is presented,thus making the method well suited for highly curved objects. Slope and height effects are then decoupled by expanding the displacement field on a functions basis, and the inverse transformation is applied to get a displacement field from a measured optical phase map change with a mechanical loading. A measurement reproducibility of approximatelymore » 10 pm is achieved, and typical results are shown on a microcantilever under thermal actuation, thereby proving the ability of such a setup to provide a reliable full-field kinematic measurement without surface modification.« less

  1. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological-geomorphological mapping, trenching and electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Linares, Rogelio; Roqué, Carles; Zarroca, Mario; Carbonel, Domingo; Rosell, Joan; Gutiérrez, Mateo

    2015-07-01

    Detailed geomorphological-geological mapping in Canelles Reservoir, the Spanish Pyrenees, reveals the presence of several large landslides overlooked in previous cartographic works. One of the slope movements, designated as the Canelles landslide, corresponds to a 40 × 106 m3 translational landslide reactivated in 2006 by a severe decline in the reservoir water level. The geomorphic features mapped in the upper part of the Canelles landslide, including surface ruptures corroborated by electrical resistivity imaging and trenching, indicate multiple displacement episodes previous to the 2006 human-induced event. Consistently, the stratigraphic and structural relationships observed in a trench record at least two displacement events older and larger in magnitude than the 2006 reactivation. The oldest recorded event occurred in the 6th to 7th Centuries and the second in 1262-1679 yr AD. This latter episode might be correlative to the 1373 Ribagorza earthquake (Mw 6.2), which caused the reactivation of a landslide and the consequent destruction of a village in the adjacent valley. The available data indicate that over more than one millennium the kinematics of the landslide has been characterised by discrete small-displacement episodes. These data, together with the available literature on rapid rockslides, do not concur with the acceleration predicted by modelling in a previous investigation, which foresees a speed of 16 m s- 1 despite the low average dip of the sliding surface (9-10°). This case study illustrates that the trenching technique may provide valuable practical information on the past behaviour of landslides, covering a much broader time span than instrumental and historical records.

  2. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.

    2014-12-01

    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  3. Butterflies' wings deformations using high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Mendoza Santoyo, Fernando; Aguayo, Daniel D.; de La Torre-Ibarra, Manuel H.; Salas-Araiza, Manuel D.

    2011-08-01

    A variety of efforts in different scientific disciplines have tried to mimic the insect's in-flight complex system. The gained knowledge has been applied to improve the performance of different flying artifacts. In this research report it is presented a displacement measurement on butterflies' wings using the optical noninvasive Digital Holographic Interferometry technique with out of plane sensitivity, using a high power cw laser and a high speed CMOS camera to record the unrepeatable displacement movements on these organic tissues. A series of digital holographic interferograms were recorded and the experimental results for several butterflies during flapping events. The relative unwrapped phase maps micro-displacements over the whole wing surface are shown in a wire-mesh representation. The difference between flying modes is remarkably depicted among them.

  4. Groundwater-Mining-Induced Subsidence and Earth Fissures in Cedar Valley, Southwestern Utah

    NASA Astrophysics Data System (ADS)

    Knudsen, T. R.; Inkenbrandt, P.; Lund, W. R.; Lowe, M.; Bowman, S. D.

    2014-12-01

    Groundwater pumping in excess of recharge (groundwater mining) has lowered the potentiometric surface in Cedar Valley, southwestern Utah, by as much as 114 feet since 1939. Lowering the potentiometric surface (head decline) has caused permanent compaction of fine-grained sediments of the Cedar Valley aquifer. Recently acquired interferometric synthetic aperture radar (InSAR) imagery shows that land subsidence is occurring over an ~100 square-mile area, including two pronounced subsidence bowls in the northeastern (Enoch graben) and southwestern (Quichapa Lake area) parts of the valley. A lack of accurate historical benchmark elevation data over much of the valley prevents detailed long-term quantification of subsidence. In response to the land subsidence, earth fissures have formed along the margins of the Enoch graben and north and west of Quichapa Lake. Our initial inventory of Cedar Valley fissures, which relied on aerial-photography analysis, identified 3.9 miles of fissures in 2009. With newly acquired light detection and ranging (LiDAR) coverage in 2011, we more than doubled the total length of mapped fissures to 8.3 miles. Fissures on the west side of the Enoch graben exhibit ongoing vertical surface displacement with rates as high as 1.7 inches/year. The largest Enoch-graben-west fissure has displaced street surfaces, curb and gutter, and sidewalks, and has reversed the flow direction of a sewer line in a partially developed subdivision. Several Cedar Valley fissures are closely associated with, and in some places coincident with, mapped Quaternary faults. While the majority of Cedar Valley fissures are mapped in agricultural areas, continued groundwater mining and resultant subsidence will likely cause existing fissures to lengthen and new fissures to form that may eventually impact other developed areas of the valley.

  5. Quantitative Methods Based on Twisted Nematic Liquid Crystals for Mapping Surfaces Patterned with Bio/Chemical Functionality Relevant to Bioanalytical Assays

    PubMed Central

    Lowe, Aaron M.; Bertics, Paul J.; Abbott, Nicholas L.

    2009-01-01

    We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethyleneglycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 µm. When combined, the results described in this paper suggest non-destructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies. PMID:18355089

  6. Vertical Displacement of the Surface Area over the Leakage to the Transverse salt Mine in 1992-2012

    NASA Astrophysics Data System (ADS)

    Lipecki, Tomasz

    2018-03-01

    The leakage of water in the salt mine caused considerable deformation of the surface. This article shows the vertical displacement in the area of leakage to the mine excavation, measured by precision leveling, carried out from the first days of leakage in 1992 until 2012. The geological and hydrogeological conditions of the mine, as well as the associated water hazards were described, which in conjunction with the inconvenient location of the excavation site in the northern frontage of the Carpathians and also inadequately conducted mining operations, contributed to the risk of flooding mine. The analysis of the vertical movements of the surface - subsidence and uplift - were present as well as the process of formation of the depression trough in the form of maps and graphs. The analyzes were based on 49 measurement series, starting from the first days of the disaster within the next 20 years. The course of development of the depression trough and the condition of the surface after stopping the water from the rock mass has been shown, which caused the surface to uplift.

  7. Scaling Relations of Earthquakes on Inland Active Mega-Fault Systems

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Matsushima, S.; Azuma, T.; Irikura, K.; Kitagawa, S.

    2010-12-01

    Since 2005, The Headquarters for Earthquake Research Promotion (HERP) has been publishing 'National Seismic Hazard Maps for Japan' to provide useful information for disaster prevention countermeasures for the country and local public agencies, as well as promote public awareness of disaster prevention of earthquakes. In the course of making the year 2009 version of the map, which is the commemorate of the tenth anniversary of the settlement of the Comprehensive Basic Policy, the methods to evaluate magnitude of earthquakes, to predict strong ground motion, and to construct underground structure were investigated in the Earthquake Research Committee and its subcommittees. In order to predict the magnitude of earthquakes occurring on mega-fault systems, we examined the scaling relations for mega-fault systems using 11 earthquakes of which source processes were analyzed by waveform inversion and of which surface information was investigated. As a result, we found that the data fit in between the scaling relations of seismic moment and rupture area by Somerville et al. (1999) and Irikura and Miyake (2001). We also found that maximum displacement of surface rupture is two to three times larger than the average slip on the seismic fault and surface fault length is equal to length of the source fault. Furthermore, compiled data of the source fault shows that displacement saturates at 10m when fault length(L) is beyond 100km, L>100km. By assuming the fault width (W) to be 18km in average of inland earthquakes in Japan, and the displacement saturate at 10m for length of more than 100 km, we derived a new scaling relation between source area and seismic moment, S[km^2] = 1.0 x 10^-17 M0 [Nm] for mega-fault systems that seismic moment (M0) exceeds 1.8×10^20 Nm.

  8. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation

  9. Quantifying yield behaviour in metals by X-ray nanotomography

    PubMed Central

    Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.

    2016-01-01

    Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472

  10. The 2014 Napa Earthquake Imaged Through A Full Exploitation Of SAR Data

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Casu, F.; de Luca, C.; Solaro, G.

    2014-12-01

    We investigate the co-seismic surface deformation related to the earthquake occurred in Napa area (California) on August 24, 2014. To this aim, we exploit both the phase and the amplitude information of SAR data acquired in Stripmap mode by the Italian COSMO-SkyMed (CSK), the Canadian RADARSAT-2 (RS2), and the recently launched Europena Sentinel-1 satellites, to evaluate and analyze the induced surface displacements through the Differential SAR Interferometry (DInSAR) and Pixel-Offset (PO) techniques. In particular, the SAR images, acquired from descending orbits on 26 July and 27 August 2014 by CSK, and on 07 August and 31 August 2014 by Sentinel-1, as well as the ones acquired on 24 July and 10 September by RS2 from ascending passes were used to generate differential SAR interferograms encompassing the main seismic events. The related deformation map, obtained by performing a complex multi-look operation resulting in a pixel size of about 30 m by 30 m, reveals two main lobes of LOS displacement with a range change decrease of about 11 cm to the NE sector and about 7 cm of range change increase to the SE sector. Moreover, by benefiting from the sensor spatial resolutions (down to 3 meters for both CSK and Sentinel-1 satellites), the Pixel-Offset maps of the same data pairs have been also computed, thus permitting us to retrieve displacement information along the azimuth direction and better describing the deformation field. In order to retrieve the earthquake source location and its geometrical characteristics, the displacement maps were modeled by finite dislocation faults in an elastic and homogeneous half-space [Okada, 1985]. In particular, we searched for all the parameters free the fault by using a nonlinear inversion based on the Levenberg-Marquardt least-squares approach. The best fit solution, consists of a right -lateral NNW-SSE oriented fault. The comparison between the model results and the measured InSAR data show a good fit, with residue values smaller than 2 cm. However, small zones far from the epicenter area, with higher residues are individuated.

  11. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake

    NASA Astrophysics Data System (ADS)

    Jiang, Houjun; Feng, Guangcai; Wang, Teng; Bürgmann, Roland

    2017-02-01

    Sentinel-1's continuous observation program over all major plate boundary regions makes it well suited for earthquake studies. However, decorrelation due to large displacement gradients and limited azimuth resolution of the Terrain Observation by Progressive Scan (TOPS) data challenge acquiring measurements in the near field of many earthquake ruptures and prevent measurements of displacements in the along-track direction. Here we propose to fully exploit the coherent and incoherent information of TOPS data by using standard interferometric synthetic aperture radar (InSAR), split-bandwidth interferometry in range and azimuth, swath/burst-overlap interferometry, and amplitude cross correlation to map displacements in both the line-of-sight and the along-track directions. Application to the 2016 Kumamoto earthquake sequence reveals the coseismic displacements from the far field to the near field. By adding near-field constraints, the derived slip model reveals more shallow slip than obtained when only using far-field data from InSAR, highlighting the importance of exploiting all coherent and incoherent information in TOPS data.

  12. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  13. Surface Deformation Due to the May 27, 1995 Sakhalin Earthquake and Related Events Measured by JERS-1 SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Fujiwara, Satoshi; Hensley, S.; Rosen, P. A.; Tobita, Mikio; Shimada, Masanobu

    1996-01-01

    A large (M&subw;=7.0) earthquake on May 27, 1995 completely destroyed the town of Neftegorsk in the northern part of Sakhalin Island and caused more than 2000 human deaths. The shallow, right-lateral, strick-slip earthquake resulted in extensive surface ruptures and up to 7 m of horizontal displacement as reported by field workers. The sourthern part of the mainshock epicenter zone was imaged by the JERS-1 SAR (synthetic aperature radar) one month (April 28) before and two weeks after (June 11) the mainshock. Despite drastically changed surface conditions in the 44 days between the two images, due primarily to spring thaw, we obtained reasonably good interferometric correlation with the L-band (24 cm) SAR pair. The interoferogram records the distribution of deformation reflecting displacement during both the mainshock and aftershocks. The ability to map the deformation pattern can aid the assessment and mitigation of damage.

  14. Late Neogene slip transfer and extension within the curved Whisky Flat fault system central Walker Lane, west-central Nevada

    NASA Astrophysics Data System (ADS)

    Biholar, Alexander Kenneth Casian

    In Whisky Flat of west-central Nevada, northwest-striking faults in the Walker Lane curve to east-northeast orientations at the northern limits of the Mina deflection. This curve in strike results in the formation of ˜685 m deep depression bounded by north-south convex to the east range-front faults that at the apex of fault curvature are bisected at a high angle by a structural stepover. We use the vertical offset of a late Miocene erosional surface mapped in the highlands and inferred from gravity depth inversion in the basin to measure the magnitude of displacement on faults. A N65°W extensional axis determined through fault-slip inversion is used to constrain the direction in displacement models. Through the use of a forward rectilinear displacement model, we document that the complex array of faults is capable of developing with broadly contemporaneous displacements on all structures since the opening of the basin during the Pliocene.

  15. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.

  16. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault

    USGS Publications Warehouse

    Barka, A.; Akyuz, H.S.; Altunel, E.; Sunal, G.; Cakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; De Chabalier, J. B.; Rockwell, Thomas; Dolan, J.R.; Hartleb, R.; Dawson, Tim; Christofferson, S.; Tucker, A.; Fumal, T.; Langridge, Rob; Stenner, H.; Lettis, William; Bachhuber, J.; Page, W.

    2002-01-01

    The 17 August 1999 İzmit earthquake occurred on the northern strand of the North Anatolian fault zone. The earthquake is associated with a 145-km-long surface rupture that extends from southwest of Düzce in the east to west of Hersek delta in the west. Detailed mapping of the surface rupture shows that it consists of five segments separated by releasing step-overs; herein named the Hersek, Karamürsel-Gölcük, İzmit-Sapanca Lake, Sapanca-Akyazi, and Karadere segments from west to east, respectively. The Hersek segment, which cuts the tip of a large delta plain in the western end of the rupture zone, has an orientation of N80°. The N70°-80°E-trending Karamürsel-Gölcük segment extends along the linear southern coasts of the İzmit Gulf between Karamürsel and Gölcük and produced the 470-cm maximum displacement in Gölcük. The northwest-southeast-striking Gölcük normal fault between the Karamürsel-Gölcük and İzmit-Sapanca segments has 2.3-m maximum vertical displacement. The maximum dextral offset along the İzmit-Sapanca Lake segment was measured to be about 3.5 m, and its trend varies between N80°E and east-west. The Sapanca-Akyazi segment trends N75°-85°W and expresses a maximum displacement of 5.2 m. The Karadere segment trends N65°E and produced up to 1.5-m maximum displacement. The Karadere and Sapanca-Akyazi segments form fan-shape or splaying ruptures near their eastern ends where the displacement also diminished.

  17. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    PubMed Central

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  18. U.S. Geological Survey Subsidence Interest Group Conference : proceedings of the Technical Meeting, Galveston, Texas, November 27-29, 2001

    USGS Publications Warehouse

    Prince, Keith R.; Galloway, Devin L.

    2003-01-01

    InSAR is a powerful technique that uses radar data acquired at different times to measure land-surface deformation, or displacement, over large areas at a high level of spatial detail and a high degree of measurement resolution. InSAR displacement maps (interferograms), in conjunction with other hydrogeologic data, have been used to determine aquifer-system characteristics for areas where surface deformation is the result of stress induced changes in the granular skeleton of the aquifer system. Interferograms and measurements of aquifer-system compaction from borehole extensometers, and ground-water levels in wells in Santa Clara Valley, California, have shown that land-surface changes caused by aquifer-system deformation for September 23, 1992-August 2, 1997, are elastic (reversible): During the summer when water levels are declining, the land surface subsides, and during the winter when water levels are recovering, the land surface uplifts, resulting in no net surface deformation. Interferograms used with fault maps of Santa Clara Valley and of Las Vegas Valley, Nevada, have shown that the extent of regional land-surface changes caused by aquifer-system deformation may be partially controlled by faults. Interferograms of Yucca Flat, Nevada, show subsidence associated with the recovery of elevated hydraulic heads caused by underground weapons testing at depths of more than 600 meters. For these selected case studies, continuing or renewed deformation of the aquifer system is coupled with pore-fluid-pressure changes. When applied stresses (water-level changes) can be measured accurately for periods that the interferograms show displacement, stress-strain relations, and thus bulk storage properties, can be evaluated. For areas where additional ground-water-level, land-surface-elevation, aquifer-system-compaction, or other environmental data are needed, the interferograms can be used as a guide for designing appropriate monitoring networks. Aquifer-system properties derived from stress-strain relations and identification of hidden faults, other structural or stratigraphic controls on deformation and ground-water flow, and other hydrogeologic boundaries in the flow system can be used to constrain numerical ground-water flow and subsidence simulations. Managing aquifer systems within optimal limits may be possible if regions susceptible to ground-water depletion and the accompanying land subsidence can be identified and characterized.

  19. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (<5 km in length), numerous, curved in map view, and of diverse trend. Intersecting faults are common. In contrast, surface faults in areas unaffected by salt diapirism are frequently mappable for appreciable distances (>10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth faults identified in subsurface Tertiary sediments. (4) Evidence to support the thesis that surface scarps are the shallow expression of faults extending downward into the Tertiary section is mostly indirect, but nonetheless reasonably convincing. Certainly the patterns of crestal grabens and radiating faults mapped on the surface above salt domes are more than happenstance; analogous fault patterns have been documented around these structures at depth. Similarly, some of the long surface faults not associated with salt domes seem to have subsurface counterparts among known regional growth faults documented through well logs and seismic data. Correlations between surface scarps and faults offsetting subsurface data are not conclusive because of the large vertical distances (1900- 3800 m) involved in making the most of the inferred connections. Nevertheless, the large number of successful correlations - in trend, movement sense, and position - suggests that many surface scarps represent merely the most recent displacements on faults formed during the Tertiary. (5) Upstream-facing fault scarps in this region of low relief can be significant impediments to streams. Locally, both abandoned, mud-filled Pleistocene distributary channels and, more commonly, Holocene drainage lines still occupied by perennial streams reflect the influence of faulting on their development. Some bend sharply near faults and have tended to flow along or pond against the base of scarps; others meander within topographically expressed grabens. Such evidence for Quaternary displacement of the ground surface is widespread in the Texas Gulf coast. In the general, however, streams in areas now offset by faulting show no disruption of their courses where they cross fault scarps. Such scarps are probably very young, and where they can be demonstrated to partly or wholly predate fluid withdrawal, very recent natural fault activity is indicated. (6) Early aerial photographs (1930) of the entire region and topographic maps (1915-16 surveys) of Harris County (Houston and vicinity) show that many faults had already displaced the land surface at a time when appreciable pressure declines in subjacent strata were localized to relatively few areas of large-scale pumping. Prehistoric faulting of the land surface, as noted above, appears to have affected much of the Texas Gulf Coast. (7) A relation between groundwater extraction and current motion on active faults is suspected because of the increased incidence of ground failure in the Houston-Galveston subsidence bowl. This argument is weakened somewhat by recognition of numerous surface faults, some of them active today, far beyond the periphery of the strongly subsiding area. Moreover, tilt beam records from two monitored faults in northwest Houston and accounts of fault damage from local residents demonstrate a complex, episodic nature of fault creep which can only partially be correlated with groundwater production. Nevertheless, although specific mechanisms are in doubt, the extraction of groundwater from shallow (<800-m) sands is probably a major factor in contributing to current displacement of the ground surface in the Houston-Galveston region. Within this large area, the number of faults recognizable from aerial photographs has increased at least tenfold between 1930 and 1970. Elsewhere in the Texas Gulf Coast only a moderate increase has been noted, some of which is possibly attributable to oil and gas production. Surface fault density in the Houston-Galveston region is far greater than in any other area of the Texas Gulf Coast investigated to date. A plausible explanation for these differences is that large overdrafts of groundwater over an extended period of time in the Houston-Galveston region have stimulated fault activity there. Throughout the Texas Gulf Coast, however, a natural contribution to fault motion remains a distinct possibility.

  20. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  1. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake

    NASA Astrophysics Data System (ADS)

    Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois; Sammis, Charles G.

    2015-05-01

    Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 Mw 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.

  2. Massive Cloud Computing Processing of P-SBAS Time Series for Displacement Analyses at Large Spatial Scale

    NASA Astrophysics Data System (ADS)

    Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.

    2016-12-01

    A methodology for computing surface deformation time series and mean velocity maps of large areas is presented. Our approach relies on the availability of a multi-temporal set of Synthetic Aperture Radar (SAR) data collected from ascending and descending orbits over an area of interest, and also permits to estimate the vertical and horizontal (East-West) displacement components of the Earth's surface. The adopted methodology is based on an advanced Cloud Computing implementation of the Differential SAR Interferometry (DInSAR) Parallel Small Baseline Subset (P-SBAS) processing chain which allows the unsupervised processing of large SAR data volumes, from the raw data (level-0) imagery up to the generation of DInSAR time series and maps. The presented solution, which is highly scalable, has been tested on the ascending and descending ENVISAT SAR archives, which have been acquired over a large area of Southern California (US) that extends for about 90.000 km2. Such an input dataset has been processed in parallel by exploiting 280 computing nodes of the Amazon Web Services Cloud environment. Moreover, to produce the final mean deformation velocity maps of the vertical and East-West displacement components of the whole investigated area, we took also advantage of the information available from external GPS measurements that permit to account for possible regional trends not easily detectable by DInSAR and to refer the P-SBAS measurements to an external geodetic datum. The presented results clearly demonstrate the effectiveness of the proposed approach that paves the way to the extensive use of the available ERS and ENVISAT SAR data archives. Furthermore, the proposed methodology can be particularly suitable to deal with the very huge data flow provided by the Sentinel-1 constellation, thus permitting to extend the DInSAR analyses at a nearly global scale. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.

  3. Consequence assessment of large rock slope failures in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of the unstable rock slope. This surface represents the possible basal sliding surface of an unstable rock slope. The elevation difference between this surface and the topographic surface estimates the volume of the unstable rock slope. A tool has been developed for the present study to adapt the curvature parameters of the computed surface to local geological and structural conditions. The obtained volume is then used to define the angle of reach of a possible rock avalanche from the unstable rock slope by using empirical derived values of angle of reach vs. volume relations. Run-out area is calculated using FlowR; the software is widely used for run-out assessment of debris flows and is adapted here for assessment of rock avalanches, including their potential to ascend opposing slopes. Under certain conditions, more sophisticated and complex numerical run-out models are also used. For rock avalanches with potential to reach a fjord or a lake the propagation and run-up area of triggered displacement waves is assessed. Empirical relations of wave run-up height as a function of rock avalanche volume and distance from impact location are derived from a national and international inventory of landslide-triggered displacement waves. These empirical relations are used in first-level hazard assessment and where necessary, followed by 2D or 3D displacement wave modelling. Finally, the population exposed in the rock avalanche run-out area and in the run-up area of a possible displacement wave is assessed taking into account different population groups: inhabitants, persons in critical infrastructure (hospitals and other emergency services), persons in schools and kindergartens, persons at work or in shops, tourists, persons on ferries and so on. Exposure levels are defined for each population group and vulnerability values are set for the rock avalanche run-out area (100%) and the run-up area of a possible displacement wave (70%). Finally, the total number of persons within the hazard area is calculated taking into account exposure and vulnerability. The method for consequence assessment is currently tested through several case studies in Norway and, thereafter, applied to all unstable rock slopes in the country to assess their risk level. Follow-up activities (detailed investigations, periodic displacement measurements or continuous monitoring and early-warning systems) can then be prioritized based on the risk level and with a standard approach for whole Norway.

  4. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  5. Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics

    NASA Astrophysics Data System (ADS)

    Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian

    2016-04-01

    Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides applications, which typically occur over vegetated scenarios largely affected by temporal and geometrical phenomena, the number of persistent scatterers (PSs) available is crucial. The better the density and reliability of PSs, the better the delineation and characterization of landslides. In this context, an advanced high-resolution processing based on the use of the Non-Local Interferometric SAR (NL-InSAR) filtering will be evaluated. Finally, since SAR systems are only sensitive to the detection of displacements in the line-of-sight (LOS) direction, the importance of projecting final PSI displacement products along the steepest gradient of the terrain slope will be put forward. The high-resolution COSMO-SkyMed sensor will be used for this application. The test site selected to evaluate the performance of the techniques proposed corresponds to the region of Northern Apennines (Italy), which is affected by both landslides and tectonics displacement phenomena. Sentinel-1 (for tectonics) and COSMO-SkyMed (for landslides) SAR data will be employed for the monitoring of the activity within the area of interest. Users of the DRM (Disaster Risk Management) community have been associated to the project, in order to, once validated the algorithms, further evaluate the proposed solution considering selected trial cases.

  6. Real time remote monitoring and pre-warning system for Highway landslide in mountain area.

    PubMed

    Zhang, Yonghui; Li, Hongxu; Sheng, Qian; Wu, Kai; Chen, Guoliang

    2011-06-01

    The wire-pulling trigger displacement meter with precision of 1 mm and the grid pluviometer with precision of 0.1 mm are used to monitor the surface displacement and rainfall for Highway slope, and the measured data are transferred to the remote computer in real time by general packet radio service (GPRS) net of China telecom. The wire-pulling trigger displacement meter, grid pluviometer, data acquisition and transmission unit, and solar power supply device are integrated to form a comprehensive monitoring hardware system for Highway landslide in mountain area, which proven to be economical, energy-saving, automatic and high efficient. Meantime, based on the map and geographic information system (MAPGIS) platform, the software system is also developed for three dimensional (3D) geology modeling and visualization, data inquiring and drawing, stability calculation, displacement forecasting, and real time pre-warning. Moreover, the pre-warning methods based on monitoring displacement and rainfall are discussed. The monitoring and forecasting system for Highway landslide has been successfully applied in engineering practice to provide security for Highway transportation and construction and reduce environment disruption. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Understanding pop-ins in spherical nanoindentation

    DOE PAGES

    Pathak, Siddhartha; Riesterer, Jessica L.; Kalidindi, Surya R.; ...

    2014-10-24

    In this study, pop-ins, or sudden displacement-bursts at constant load in a nanoindentation test, are typically attributed to the difficulty of setting up potent dislocation sources in the very small indentation zones in these experiments. Such displacement (and strain) bursts would intuitively indicate a sharp drop in stress during the pop-in event itself. However, spherical indentation stress-strain curves routinely exhibit a high and stable indentation stress value during the pop-in, and the indentation stresses decrease only after a further finite amount of additional indentation displacement has been applied. In order to understand this discrepancy, we utilize a combination of interruptedmore » spherical indentation tests along with depth profiling of the residual indentation surfaces using in-situ atomic force microscopy (AFM) to study pop-ins. The AFM surface profile maps show that there is an asymmetric profile change over a limited region around the indentation contact area for a single pop-in; the asymmetry disappears upon further loading beyond the pop-in. A plausible sequence of physical processes (related to metal plasticity) occurring underneath the indenter during and immediately after the occurrence of the pop-in is proposed to explain these observations.« less

  8. Understanding pop-ins in spherical nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Siddhartha, E-mail: pathak@lanl.gov, E-mail: siddharthapathak@gmail.com; Riesterer, Jessica L.; Michler, Johann

    2014-10-20

    Pop-ins, or sudden displacement-bursts at constant load in a nanoindentation test, are typically attributed to the difficulty of setting up potent dislocation sources in the very small indentation zones in these experiments. Such displacement (and strain) bursts would intuitively indicate a sharp drop in stress during the pop-in event itself. However, spherical indentation stress-strain curves routinely exhibit a high and stable indentation stress value during the pop-in, and the indentation stresses decrease only after a further finite amount of additional indentation displacement has been applied. In order to understand this discrepancy, we utilize a combination of interrupted spherical indentation testsmore » along with depth profiling of the residual indentation surfaces using in-situ atomic force microscopy (AFM) to study pop-ins. The AFM surface profile maps show that there is an asymmetric profile change over a limited region around the indentation contact area for a single pop-in; the asymmetry disappears upon further loading beyond the pop-in. A plausible sequence of physical processes (related to metal plasticity) occurring underneath the indenter during and immediately after the occurrence of the pop-in is proposed to explain these observations.« less

  9. Land Surface Properties near Terra Nova Bay, East Antarctica, Analyzed by Time-series Height, Coherence and Amplitude Maps Derived from COSMO-SkyMed One-day Tandem Pairs

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Han, H.; Lee, H.

    2014-12-01

    Analysis of the surface properties of Antarctica is very important to study the change of environment and climate in the polar region. Synthetic aperture radar (SAR) has been widely used to study Antarctic surface properties because it is independent of sun altitude and atmospheric conditions. Interferometric SAR (InSAR) observes surface topography and deformation, by calculating the phase differences between two or more SAR images obtained over same area. InSAR technique can be used for height mapping in stable areas with a few meter accuracy. However, the InSAR-derived height map can have errors if the phase differences due to surface deformation or change of the scattering center by microwave penetration into snow are misinterpreted as the elevation. In this study, we generated the height maps around Terra Nova Bay in East Antarctica from 13 COSMO-SkyMed one-day tandem InSAR pairs obtained from December 2010 to January 2012. By analyzing the height maps averaged over the 13 interferograms and its standard deviation (STD) map, we could classify the surface types into glacier, mountains and basin areas covered with snow. The mountain areas showed very small STD because its surface property is unchanged with time, except for the small STD values caused by the errors from the unwrapping processing, satellite orbit or atmospheric phase distortion. Over the basin areas, however, the STD of the height was much larger than the mountain area due to the variation of scattering center either from the change in surface property such as snowfall and sublimation or by the surface displacement of snow mass that are too slow. A year-long constant motion of such slow-creeping snow body was positively identified by its linear relationship between the misinterpreted elevation and the baseline perpendicular component of InSAR pair. Analysis of time-series coherence maps and amplitude maps have also contributed to clarify the surface properties and its changes due to various environmental factors such as snow fall, wind, sublimation, and the freezing-thawing processes in this Antarctic land surface. Acknowledgement - This research was supported by National Research Foundation of Korea through NRF-2013R1A1A2008062 and NRF-2013M1A3A3A02041853.

  10. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    USGS Publications Warehouse

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  11. Overhead View of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Planimetric (overhead view) map of the landing site, to a distance of 20 meters from the spacecraft. North is at the top in this and Plates 3-5. To produce this map, images were geometrically projected onto an assumed mean surface representing the ground. Features above the ground plane (primarily rocks) therefore appear displaced radially outward; the amount of distortion increases systematically with distance. The upper surfaces of the lander and rover also appear enlarged and displaced because of their height. Primary grid (white) is based on the Landing Site Cartographic (LSC) coordinate system, defined with X eastward, Y north, and Z up, and origin located at the mean ground surface immediately beneath the deployed position of the IMP camera gimbal center. Secondary ticks (cyan) are based on the Mars local level (LL) frame, which has X north, Y east, Z down, with origin in the center of the lander baseplate. Rover positions (including APXS measurements) are commonly reported in the LL frame. Yellow grid shows polar coordinates based on the LSC system. Cartographic image processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  12. The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault

    NASA Technical Reports Server (NTRS)

    Talebian, M.; Fielding, E. J.; Funning, G. J.; Ghorashi, M.; Jackson, J.; Nazari, H.; Parsons, B.; Priestley, K.; Rosen, P. A.; Walker, R.; hide

    2004-01-01

    A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.

  13. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space

    PubMed Central

    Martinez-Garcia, Marina; Martinez, Luis M.

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816

  14. Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.

    PubMed

    Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús

    2017-01-01

    Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.

  15. B4 2 After, 3D Deformation Field From Matching Pre- To Post-Event Aerial LiDAR Point Clouds, The 2010 El Mayor-Cucapah M7.2 Earthquake Case

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.

    2013-05-01

    Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the horizontal having the latter problems in flat areas as expected. Hybrid approaches, as simple differencing, could be taken in these areas. Outliers were removed from results. ICP detected extraction from quarries developed between the two dates of LiDAR collection and expressed as a negative vertical displacement close to the sites. To improve the accuracy of the 3D displacement field, we intend to reprocess the pre-event source survey data to reduce the systematic error introduced by the sensor. Multidisciplinary approach will be needed to make tectonic inferences from the 3D displacement field revealed by ICP, about the processes at depth expressed at surface.

  16. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Ogunleye, T

    2014-06-15

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquiredmore » under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior. Successful integration of multi-parametric MR and TRUS prostate images provides a prostate-cancer map for treatment planning, enables accurate dose planning and delivery, and potentially enhances prostate HDR treatment outcome.« less

  17. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing right-lateral motion. Both NS and UP components are well constrained while the residuals for the EW component are higher. Further analysis will be mainly focused on model improvements. References [1] Barnhart W.D., Murray J.R., Yun S. H., Svarc J. L., Samsonov S. V., Fielding E. J., Brooks B. A., Milillo P. (2015) - Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake. Seismological Research Letters, vol. 86, pp. 335-343, doi: http://dx.doi.org/10.1785/0220140210.

  18. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.

    2016-12-01

    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  19. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less

  20. a Range Based Method for Complex Facade Modeling

    NASA Astrophysics Data System (ADS)

    Adami, A.; Fregonese, L.; Taffurelli, L.

    2011-09-01

    3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes) and the final results (a more detailed and complex mesh versus an approximate and more simple solid model). Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and homogeneous point cloud of the complex architecture. From the point cloud we can extract a false colour map depending on the distance of each point from the average plane. In this way we can represent each point of the facades by a height map in grayscale. In this operation it is important to define the scale of the final result in order to set the correct pixel size in the map. The following step is concerning the use of a modifier which is well-known in computer graphics. In fact the modifier Displacement allows to simulate on a planar surface the original roughness of the object according to a grayscale map. The value of gray is read by the modifier as the distance from the reference plane and it represents the displacement of the corresponding element of the virtual plane. Similar to the bump map, the displacement modifier does not only simulate the effect, but it really deforms the planar surface. In this way the 3d model can be use not only in a static representation, but also in dynamic animation or interactive application. The setting of the plane to be deformed is the most important step in this process. In 3d Max the planar surface has to be characterized by the real dimension of the façade and also by a correct number of quadrangular faces which are the smallest part of the whole surface. In this way we can consider the modified surface as a 3d raster representation where each quadrangular face (corresponding to traditional pixel) is displaced according the value of gray (= distance from the plane). This method can be applied in different context, above all when the object to be represented can be considered as a 2,5 dimension such as facades of architecture in city model or large scale representation. But also it can be used to represent particular effect such as deformation of walls in a complete 3d way.

  1. Low footwall accelerations and variable surface rupture behavior on the Fort Sage Mountains fault, northeast California

    USGS Publications Warehouse

    Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon

    2013-01-01

    The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6  ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5  ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6  ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.

  2. Identifying a large landslide with small displacements in a zone of coseismic tectonic deformation; the Villa Del Monte landslide triggered by the 1989 Loma Prieta, California, earthquake

    USGS Publications Warehouse

    Keefer, David K.; Harp, Edwin L.; Griggs, Gary B.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    The Villa Del Monte landslide was one of 20 large and complex landslides triggered by the 1989 LomaPrieta, California, earthquake in a zone of pervasive coseismicground cracking near the fault rupture. The landslide was approximately 980 m long, 870 m wide, and encompassed an area of approximately 68 ha. Drilling data suggested that movement may have extended to depths as great as 85 m below the ground surface. Even though the landslide moved <1 m, it caused substantial damage to numerous dwellings and other structures, primarily as a result of differential displacements and internal Assuring. Surface cracks, scarps, and compression features delineating the Villa Del Monte landslide were discontinuous, probably because coseismic displacements were small; such discontinuous features were also characteristic of the other large, coseismic landslides in the area, which also moved only short distances during the earthquake. Because features marking landslide boundaries were discontinuous and because other types of coseismic ground cracks were widespread in the area, identification of the landslides required detailed mapping and analysis. Recognition that landslides such as that at Villa Del Monte may occur near earthquake-generating fault ruptures should aid in future hazard evaluations of areas along active faults.

  3. Elevation changes

    USGS Publications Warehouse

    Jayko, A. S.; Marshall, G.A.; Carver, G.A.

    1992-01-01

    Elevation changes, as well as horizontal displacements of the Earth's surface, are an expected consequence of dip-slip displacement on earthquake faults. the rock surrounding and overlying the fault is forced to stretch and bend to accommodate fault slip. Slip in the case of the April 25 mainshock is thought to have occurred on a gently inclined plane dipping to the northeast at a small angle (see article on preliminary seismological results in this issue).The associated fault-plane solution implies that rock overlying the fault plane (the hanging-wall block west and south of the epicenter) rose and shifted to the northeast. The map on the next page shows the location of the epicenter and approximate extent of uplift and subsidence derived from estimates of the geometry, location. and slip on the buried fault plane. 

  4. Drone based structural mapping at Holuhraun indicates fault reactivation and complexity

    NASA Astrophysics Data System (ADS)

    Mueller, Daniel; Walter, Thomas R.; Steinke, Bastian; Witt, Tanja; Schoepa, Anne; Duerig, Tobi; Gudmundsson, Magnus T.

    2016-04-01

    Accompanied by an intense seismic swarm in August 2014, a dike laterally formed, starting under Icelands Vatnajökull glacier, propagating over a distance of more than 45 km within only two weeks, leading to the largest eruption by volume since the 1783-84 Laki eruption. Along its propagation path, the dike caused intense surface displacements up to meters. Based on seismicity, GPS and InSAR, the propagation has already been analysed and described as segmented lateral dike growth. We now focus on few smaller regions of the dike. We consider the Terrasar-X tandem digital elevation map and aerial photos and find localized zones where structural fissures formed and curved. At these localized, regions we performed a field campaign in summer 2015, applying the close range remote sensing techniques Structure from Motion (SfM) and Terrestrial Laser Scanning (TLS). Over 4 TLS scan were collected, along with over 5,000 aerial images. Point clouds from SfM and TLS are merged and compared, and local structural lineaments analysed. As a result, we obtained an unprecedentedly high-resolution digital elevation map. With this map, we analyse the structural expression of the fissure eruption at the surface and improve understanding on the conditions that influenced the magma propagation path. We elaborate scenarios that lead to complexities of the surface structures and the link to the underlying dike intrusion.

  5. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  6. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch.

    PubMed

    de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.

  7. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch

    PubMed Central

    Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment. PMID:28961264

  8. On the role of horizontal displacements in the exhumation of high pressure metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Brun, J.-P.; Tirel, C.; Philippon, M.; Burov, E.; Faccenna, C.; Gueydan, F.; Lebedev, S.

    2012-04-01

    High pressure metamorphic rocks exposed in the core of many mountain belts correspond to various types of upper crustal materials that have been buried to mantle depths and, soon after, brought back to surface at mean displacement rates up to few cm/y, comparable to those of plate boundaries. The vertical component of HP rock exhumation velocity back to surface is commonly well constrained by pressure estimates from petrology and geochronological data whereas the horizontal component remains generally difficult or impossible to estimate. Consequently, most available models, if not all, attempt to simulate exhumation with a minimal horizontal component of displacement. Such models, require that the viscosity of HP rocks is low and/or the erosion rate large -i.e. at least equal to the rate of exhumation. However, in some regions like the Aegean, where the exhumation of blueschists and eclogites is driven by slab rollback, it can be shown that the horizontal component of exhumation related displacement, obtained from map view restoration, is 5 to 7 times larger than the vertical one, deduced from metamorphic pressure estimates. Using finite element models performed with FLAMAR, we show that such a situation simply results from the subduction of small continental blocks (< 500km) that stimulate subduction rollback. The continental block is dragged downward and sheared off the downgoing mantle slab by buoyancy force. Exhumation of the crustal block occurs through a one step Caterpillar-type walk, with the block's tail slipping along a basal décollement, approaching the head and making a large buckle, which then unrolls at surface as soon as the entire block is delaminated. Finally, the crustal block emplaces at surface in the space created by trench retreat. This process of exhumation requires neither rheological weakening of HP rocks nor high rates of erosion.

  9. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography.

    PubMed

    Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2016-01-01

    To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.

  10. Measuring soft tissue material properties using stereovision and indentation: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2013-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain. Recently, we have applied stereovision to track motion of the exposed cortical surface noninvasively for patients undergoing open skull neurosurgical operations. In this paper, we conduct a proof-of-concept study to evaluate the feasibility of the technique in measuring material properties of soft tissue in vivo using a tofu phantom. A block of soft tofu was prepared with black pepper randomly sprinkled on the top surface to provide texture to facilitate image-based displacement mapping. A disk-shaped indenter made of high-density tungsten was placed on the top surface to induce deformation through its weight. Stereoscopic images were acquired before and after indentation using a pair of stereovision cameras mounted on a surgical microscope with its optical path perpendicular to the imaging surface. Rectified left camera images obtained from stereovision reconstructions were then co-registered using optical flow motion tracking from which a 2D surface displacement field around the indenter disk was derived. A corresponding finite element model of the tofu was created subjected to the indenter weight and a hyperelastic material model was chosen to account for large deformation around the intender edges. By successively assigning different shear stiffness constant, computed tofu surface deformation was obtained, and an optimal shear stiffness was obtained that matched the model-derived surface displacements with those measured from the images. The resulting quasi-static, long-term shear stiffness for the tofu was 1.04 k Pa, similar to that reported in the literature. We show that the stereovision and free-weight indentation techniques coupled with an FE model are feasible for in vivo measurement of the human brain material properties, and it may also be feasible for other soft tissues.

  11. A new approach to ultrasonic elasticity imaging

    NASA Astrophysics Data System (ADS)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  12. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOEpatents

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  13. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method.

    PubMed

    Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

  14. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

    PubMed Central

    Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892

  15. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding.

    PubMed

    Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D

    2011-08-01

    The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.

  16. Poroelastic rebound along the Landers 1992 earthquake surface rupture

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1998-01-01

    Maps of surface displacement following the 1992 Landers, California, earthquake, generated by interferometric processing of ERS-1 synthetic aperture radar (SAR) images, reveal effects of various postseismic deformation processes along the 1992 surface rupture. The large-scale pattern of the postseismic displacement field includes large lobes, mostly visible on the west side of the fault, comparable in shape with the lobes observed in the coseismic displacement field. This pattern and the steep displacement gradient observed near the Emerson-Camp Rock fault cannot be simply explained by afterslip on deep sections of the 1992 rupture. Models show that horizontal slip occurring on a buried dislocation in a Poisson's material produces a characteristic quadripole pattern in the surface displacement field with several centimeters of vertical motion at distances of 10-20 km from the fault, yet this pattern is not observed in the postseismic interferograms. As previously proposed to explain local strain in the fault step overs [Peltzer et al., 1996b], we argue that poroelastic rebound caused by pore fluid flow may also occur over greater distances from the fault, compensating the vertical ground shift produced by fault afterslip. Such a rebound is explained by the gradual change of the crustal rocks' Poisson's ratio value from undrained (coseismic) to drained (postseismic) conditions as pore pressure gradients produced by the earthquake dissipate. Using the Poisson's ratio values of 0.27 and 0.31 for the drained and undrained crustal rocks, respectively, elastic dislocation models show that the combined contributions of afterslip on deep sections of the fault and poroelastic rebound can account for the range change observed in the SAR data and the horizontal displacement measured at Global Positioning System (GPS) sites along a 60-km-long transect across the Emerson fault [Savage and Svarc, 1997]. Using a detailed surface slip distribution on the Homestead Valley, Kickapoo, and Johnson Valley faults, we modeled the poroelastic rebound in the Homestead Valley pull apart. A Poisson's ratio value of 0.35 for the undrained gouge rocks in the fault zone is required to account for the observed surface uplift in the 3.5 years following the earthquake. This large value implies a seismic velocity ratio Vp/Vs of 2.1, consistent with the observed low Vs values of fault zone guided waves at shallow depth [Li et al., 1997]. The SAR data also reveal postseismic creep along shallow patches of the Eureka Peak and Burnt Mountain faults with a characteristic decay time of 0.8 years. Coseismic, dilatant hardening (locking process) followed by post-seismic, pore pressure controlled fault creep provide a plausible mechanism to account for the decay time of the observed slip rate along this section of the fault. Copyright 1998 by the American Geophysical Union.

  17. Evaluation of COPD's diaphragm motion extracted from 4D-MRI

    NASA Astrophysics Data System (ADS)

    Swastika, Windra; Masuda, Yoshitada; Kawata, Naoko; Matsumoto, Koji; Suzuki, Toshio; Iesato, Ken; Tada, Yuji; Sugiura, Toshihiko; Tanabe, Nobuhiro; Tatsumi, Koichiro; Ohnishi, Takashi; Haneishi, Hideaki

    2015-03-01

    We have developed a method called intersection profile method to construct a 4D-MRI (3D+time) from time-series of 2D-MRI. The basic idea is to find the best matching of the intersection profile from the time series of 2D-MRI in sagittal plane (navigator slice) and time series of 2D-MRI in coronal plane (data slice). In this study, we use 4D-MRI to semiautomatically extract the right diaphragm motion of 16 subjects (8 healthy subjects and 8 COPD patients). The diaphragm motion is then evaluated quantitatively by calculating the displacement of each subjects and normalized it. We also generate phase-length map to view and locate paradoxical motion of the COPD patients. The quantitative results of the normalized displacement shows that COPD patients tend to have smaller displacement compared to healthy subjects. The average normalized displacement of total 8 COPD patients is 9.4mm and the average of normalized displacement of 8 healthy volunteers is 15.3mm. The generated phase-length maps show that not all of the COPD patients have paradoxical motion, however if it has paradoxical motion, the phase-length map is able to locate where does it occur.

  18. Lateral spread hazard mapping of the northern Salt Lake Valley, Utah, for a M7.0 scenario earthquake

    USGS Publications Warehouse

    Olsen, M.J.; Bartlett, S.F.; Solomon, B.J.

    2007-01-01

    This paper describes the methodology used to develop a lateral spread-displacement hazard map for northern Salt Lake Valley, Utah, using a scenario M7.0 earthquake occurring on the Salt Lake City segment of the Wasatch fault. The mapping effort is supported by a substantial amount of geotechnical, geologic, and topographic data compiled for the Salt Lake Valley, Utah. ArcGIS?? routines created for the mapping project then input this information to perform site-specific lateral spread analyses using methods developed by Bartlett and Youd (1992) and Youd et al. (2002) at individual borehole locations. The distributions of predicted lateral spread displacements from the boreholes located spatially within a geologic unit were subsequently used to map the hazard for that particular unit. The mapped displacement zones consist of low hazard (0-0.1 m), moderate hazard (0.1-0.3 m), high hazard (0.3-1.0 m), and very high hazard (> 1.0 m). As expected, the produced map shows the highest hazard in the alluvial deposits at the center of the valley and in sandy deposits close to the fault. This mapping effort is currently being applied to the southern part of the Salt Lake Valley, Utah, and probabilistic maps are being developed for the entire valley. ?? 2007, Earthquake Engineering Research Institute.

  19. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  20. Single-shot real-time three dimensional measurement based on hue-height mapping

    NASA Astrophysics Data System (ADS)

    Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng

    2018-06-01

    A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.

  1. Magmatically triggered slow slip at Kilauea Volcano, Hawaii.

    PubMed

    Brooks, Benjamin A; Foster, James; Sandwell, David; Wolfe, Cecily J; Okubo, Paul; Poland, Michael; Myer, David

    2008-08-29

    We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.

  2. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  3. The TOPSAR interferometric radar topographic mapping instrument

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Madsen, Soren N.; Martin, Jan; Alberti, Giovanni; Vetrella, Sergio; Cucci, Alessandro

    1992-01-01

    The NASA DC-8 AIRSAR instrument was augmented with a pair of C-band antennas displaced across track to form an interferometer sensitive to topographic variations of the Earth's surface. The antennas were developed by the Italian consortium Co.Ri.S.T.A., under contract to the Italian Space Agency (ASI), while the AIRSAR instrument and modifications to it supporting TOPSAR were sponsored by NASA. A new data processor was developed at JPL for producing the topographic maps, and a second processor was developed at Co.Ri.S.T.A. All the results presented below were processed at JPL. During the 1991 DC-8 flight campaign, data were acquired over several sites in the United States and Europe, and topographic maps were produced from several of these flight lines. Analysis of the results indicate that statistical errors are in the 2-3 m range for flat terrain and in the 4-5 m range for mountainous areas.

  4. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    PubMed Central

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna M.; Dawson, Tim; Rubin, Ron; Ericksen, Todd L.; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests. PMID:28782026

  5. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    PubMed

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  6. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    USGS Publications Warehouse

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna; Dawson, Timothy E.; Rubin, Ron S.; Ericksen, Todd; Lockner, David A.; Hudnut, Kenneth W.; Langenheim, Victoria; Lutz, Andrew; Murray, Jessica R.; Schwartz, David P.; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  7. Fossil Shorelines Record Multiple Sea Level Highstands and Surface Deformation on Million Year Timescales at Cape Range National Park, Northwestern Australia

    NASA Astrophysics Data System (ADS)

    Sandstrom, R. M.; O'Leary, M.; Barham, M.; Cai, Y.; Jacome, A. P.; Raymo, M. E.

    2015-12-01

    Correcting fossil shorelines for vertical displacement subsequent to deposition is a vital consideration in estimating sea level and ice volume during past warm periods. Field observations of paleo-sea level indicators must be adjusted for local tectonic deformation, subsequent sediment loading, dynamic topography (DT), and glacial isostatic adjustment (GIA). Dynamic topography is often the most difficult of these corrections to determine, especially on million year timescales, but is essential when providing constraints on sea level and ice volume changes. GIA effects from high latitude ice sheets minimally impact northwestern Australia, making this region well suited for observing surface displacement due to mantle and tectonic processes. This study presents centimeter accuracy paleo-shoreline data from four distinct marine terraces in the Cape Range National Park, Australia, which document vertical displacement history along 100 kilometers of coastline. The mapped region has an anticlinal structure in the center that has been slowly uplifting the three older reef complexes over the Neogene, constraining the timing of deformation. These neotectonics are probably caused by reactivation of ancient fault zones normal to the principal horizontal compressive stress, resulting in the warping of overlaying units. The elevation data also suggests minimal vertical displacement since the last interglacial highstand. Well-preserved fossil coral were collected from each terrace and will be geochemically dated using Sr isotope and U-series dating methods. This dataset provides a better understanding of DT and neotectonic deformation in this region (useful for improving mantle viscosity models), and offers a means for improving past sea level reconstructions in northwestern Australia.

  8. Distortion correction of echo planar images applying the concept of finite rate of innovation to point spread function mapping (FRIP).

    PubMed

    Nunes, Rita G; Hajnal, Joseph V

    2018-06-01

    Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.

  9. Effect of Misalignment between Successive Corneal Videokeratography Maps on the Repeatability of Topography Data

    PubMed Central

    Bao, FangJun; Wang, JunJie; Huang, JinHai; Yu, Ye; Deng, ManLi; Li, LinNa; Yu, AYong; Wang, QinMei; Davey, Pinakin Gunvant; Elsheikh, Ahmed

    2015-01-01

    Purpose To improve the reliability of corneal topographic data through the development of a method to estimate the magnitude of misalignment between successive corneal videokeratography (VK) maps and eliminate the effect of misalignment on the repeatability of topography data. Methods Anterior and posterior topography maps were recorded twice for 124 healthy eyes of 124 participants using a Pentacam, and the repeatability of measurements was assessed by calculating the differences in elevation between each two sets of data. The repeatability of measurements was re-assessed following the determination of the magnitude of misalignment components (translational displacements: x0, y0 and z0, and rotational displacements: α, β and γ) between each two data sets and using them to modify the second data set within each pair based on an Iterative Closest Point (ICP) algorithm. The method simultaneously considered the anterior and posterior maps taken for the same eye since they were assumed to have the same set of misalignment components. A new parameter, named Combined Misalignment parameter (CM), has been developed to combine the effect of all six misalignment components on topography data and so enable study of the association between misalignment and the data repeatability test results. Results The repeatability tests resulted in average root mean square (RMS) differences in elevation data of 8.46±2.75 μm before ICP map matching when simultaneously considering anterior and posterior surfaces. With map matching and misalignment correction, the differences decreased to 7.28±2.58 μm (P = 0.00). When applied to only the anterior maps, misalignment correction led to a more pronounced reduction in elevation data differences from 4.58±1.84 μm to 2.97±1.29 μm (P = 0.00). CM was found to be associated with the repeatability error (P = 0.00), with posterior maps being responsible for most of the error due to their relatively lower accuracy compared to anterior maps. Conclusions The ICP algorithm can be used to estimate, and effectively correct for, the potential misalignment between successive corneal videokeratography maps. PMID:26599442

  10. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages, we collected surface and depth profile samples for 10Be cosmogenic exposure dating. We also identified sites for new paleoseismic excavations, and documented evidence of the last two earthquakes, each of which produced ~2.5 m of surface displacement. We expect new Holocene slip rates for the Agua Blanca Fault to be forthcoming in fall of 2015.

  11. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.

    PubMed

    Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki

    2017-02-01

    Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.

  12. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  13. Signal displacement in spiral-in acquisitions: simulations and implications for imaging in SFG regions.

    PubMed

    Brewer, Kimberly D; Rioux, James A; Klassen, Martyn; Bowen, Chris V; Beyea, Steven D

    2012-07-01

    Susceptibility field gradients (SFGs) cause problems for functional magnetic resonance imaging (fMRI) in regions like the orbital frontal lobes, leading to signal loss and image artifacts (signal displacement and "pile-up"). Pulse sequences with spiral-in k-space trajectories are often used when acquiring fMRI in SFG regions such as inferior/medial temporal cortex because it is believed that they have improved signal recovery and decreased signal displacement properties. Previously postulated theories explain differing reasons why spiral-in appears to perform better than spiral-out; however it is clear that multiple mechanisms are occurring in parallel. This study explores differences in spiral-in and spiral-out images using human and phantom empirical data, as well as simulations consistent with the phantom model. Using image simulations, the displacement of signal was characterized using point spread functions (PSFs) and target maps, the latter of which are conceptually inverse PSFs describing which spatial locations contribute signal to a particular voxel. The magnitude of both PSFs and target maps was found to be identical for spiral-out and spiral-in acquisitions, with signal in target maps being displaced from distant regions in both cases. However, differences in the phase of the signal displacement patterns that consequently lead to changes in the intervoxel phase coherence were found to be a significant mechanism explaining differences between the spiral sequences. The results demonstrate that spiral-in trajectories do preserve more total signal in SFG regions than spiral-out; however, spiral-in does not in fact exhibit decreased signal displacement. Given that this signal can be displaced by significant distances, its recovery may not be preferable for all fMRI applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Experimental Characterization of Guided Waves by Their Surface Displacement Vector Field

    NASA Astrophysics Data System (ADS)

    Barth, M.; Köhler, B.; Schubert, L.

    2009-03-01

    The development new nondestructive evaluation (NDE) and structural health monitoring (SHM) methods utilizing guided elastic waves needs a good understanding of wave propagation properties and the interaction of the waves with structures and defects. If the geometrical and stiffness properties of the components are well known, these effects can be studied very efficiently by numerical modeling. But very often there is a lack of precise knowledge of all necessary elastic properties; accurate and non-disturbing measurements are without alternative in these cases. The mapping of wave fields can be done by scanning laser vibrometers as demonstrated in a number of cases. Originally, a laser vibrometer provides only information from one displacement component. To get all three displacement components, the simultaneous measurement with three vibrometers is offered commercially. This is a very expensive approach. The paper describes a method which uses only one vibrometer sequentially for getting all three vector components. It allows determining additional parameters for characterizing wave modes as e.g. the ellipticity. The capability of this approach is demonstrated for the characterization of Lamb waves.

  15. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    DOE PAGES

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; ...

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers,more » which are of potential interest for flexible and high-density non-volatile memory devices.« less

  16. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    NASA Astrophysics Data System (ADS)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  17. Dynamic measurement of local displacements within curing resin-based dental composite using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.

    2016-04-01

    This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.

  18. Automated Radar Image of Deformation for Amatrice, Italy Earthquake

    NASA Image and Video Library

    2016-08-31

    Amatrice earthquake in central Italy, which caused widespread building damage to several towns throughout the region. This earthquake was the strongest in that area since the 2009 earthquake that destroyed the city of L'Aquila. The Advanced Rapid Imaging and Analysis (ARIA) data system, a collaborative project between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, automatically generated interferometric synthetic aperture radar images from the Copernicus Sentinel 1A satellite operated by the European Space Agency (ESA) for the European Commission to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement, as viewed by the satellite, during a 12-day interval between two Sentinel 1 images acquired on Aug. 15, 2016, and Aug. 27, 2016. The movement was caused almost entirely by the earthquake. In this map, the colors of the surface displacements are proportional to the surface motion. The red and pink tones show the areas where the land moved toward the satellite by up to 2 inches (5 centimeters). The area with various shades of blue moved away from the satellite, mostly downward, by as much as 8 inches (20 centimeters). Contours on the surface motion are 2 inches (5 centimeters) The green star shows the epicenter where the earthquake started as located by the U.S. Geological Survey National Earthquake Information Center. Black dots show town locations. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The map shows the fault or faults that moved in the earthquake is about 14 miles (22 kilometers) long between Amatrice and Norcia and slopes to the west beneath the area that moved downward. http://photojournal.jpl.nasa.gov/catalog/PIA20896

  19. Monitoring landslide kinematics by multi-temporal radar interferometry - the Corvara landslide case study

    NASA Astrophysics Data System (ADS)

    Thiebes, Benni; Cuozzo, Giovanni; Callegari, Mattia; Schlögel, Romy; Mulas, Marco; Corsini, Alessandro; Mair, Volkmar

    2016-04-01

    Corvara landslide in the Italian Dolomites is slow-moving landslide on which extensive research activities have been carried out since the 1990ies, including sub-surface techniques (e.g. drillings, piezometers and inclinometers), surface methods (e.g. geomorphological mapping and GPS measurements), and remote sensing techniques (e.g. multi-temporal radar interferometry (MTI), and recently amplitude-based offset-tracking and UAV-based photogrammetry). The currently active volume of Corvara landslide has been estimated to be approximately 25 million m³ with shear surfaces at depths of 40 m. Displacement velocities greatly vary spatially and temporally, with only a few cm per year in the accumulation zone, and more than 20 m per year in the highly active source zone. Autumn rainfall and spring snow melt, as well as accumulation of snow during winter have been identified as the major displacement triggering and accelerating events. The ongoing landslide movements pose a threat to the municipality of Corvara, the national road 244, extensive ski resort infrastructure and a golf course. Over the last years, the focus for monitoring the Corvara landslide was put on MTI using 16 artificial corner reflectors and on permanent and periodic differential GPS measurements. This aimed for (1) assessing the ongoing displacements of an active and complex landslide, and (2) analysing the benefits and limitations of MTI for landslide monitoring from the perspective of geomorphologists but also for administrative end-user such as civil protection and Geological surveys. Here, we present the latest results of these analyses, and report on the potential of MTI and related investigations, as well as future fields of research.

  20. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  1. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lackmore » of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).« less

  2. Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover

    NASA Technical Reports Server (NTRS)

    Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie

    2016-01-01

    This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.

  3. Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method

    NASA Astrophysics Data System (ADS)

    Seydel, Julia; Schuster, Thomas

    2017-12-01

    We consider the nonlinear inverse problem of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field as well as from surface sensor measurements. The displacement field is represented as a solution of Cauchy’s equation of motion, which is a nonlinear elastic wave equation. Hyperelasticity means that the first Piola-Kirchhoff stress tensor is given as the gradient of the stored energy function. We assume that a dictionary of suitable functions is available. The aim is to recover the stored energy with respect to this dictionary. The considered inverse problem is of vital interest for the development of structural health monitoring systems which are constructed to detect defects in elastic materials from boundary measurements of the displacement field, since the stored energy encodes the mechanical properties of the underlying structure. In this article we develop a numerical solver using the attenuated Landweber method. We show that the parameter-to-solution map satisfies the local tangential cone condition. This result can be used to prove local convergence of the attenuated Landweber method in the case that the full displacement field is measured. In our numerical experiments we demonstrate how to construct an appropriate dictionary and show that our method is well suited to localize damages in various situations.

  4. GIS-based landslide hazard evaluation at the regional scale: some critical points in the permanent displacement approach for seismically-induced landslide maps

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna; Parise, Mario

    2013-04-01

    Landslide susceptibility and hazard are commonly developed by means of GIS (Geographic Information Systems) tools. Many products such as DTM (Digital Terrain Models), and geological, morphological and lithological layers (often, to be downloaded for free and integrated within GIS) are nowadays available on the web and ready to be used for urban planning purposes. The multiple sources of public information enable the local authorities to use these products for predicting hazards within urban territories by limited investments on technological infrastructures. On the contrary, the necessary expertise required for conducting pertinent hazard analyses is high, and rarely available at the level of the local authorities. In this respect, taking into account the production of seismically-induced landslide hazard maps at regional scale drawn by GIS tool, these can be performed according to the permanent displacement approach derived by Newmark's sliding block method (Newmark, 1965). Some simplified assumptions are considered for occurrence of a seismic mass movement, listed as follows: (1) the Mohr-Coulomb criterion is used for the plastic displacement of the rigid block; (2) only downward movements are accounted for; (3) a translative sliding mechanism is assumed. Under such conditions, several expressions have been proposed for predicting permanent displacements of slopes during seismic events (Ambresys and Menu, 1988; Luzi and Pergalani 2000; Romeo 2000; Jibson 2007, among the others). These formulations have been provided by researchers for different ranges of seismic magnitudes, and for indexes describing the seismic action, such as peak ground acceleration, peak ground velocity, Arias Intensity, and damage potential. With respect to the resistant properties of the rock units, the critical acceleration is the relevant strength variable in every expressions; it is a function of local slope, groundwater level, unit weight shear resistance of the surficial sediments, and the assumed depth of the sliding surface. Thus, it is of paramount relevance to correctly understand and describe the dynamic behavior of the lithologies affected by the earthquake. Accordingly, we put here in evidence some critical points in the application of the permanent displacement formulations by considering the case study of Santa Susana Mountains (California, USA) shaken by the Northridge earthquake in 1994. During this earthquake, a high number of registrations has been collected, whilst soon after a careful inventory of the mass movements triggered by the shaking has been produced, together with analysis of the related failure mechanisms. Hence, these data allow to perform a back analysis in order to verify the reliability of some numerical expressions, such as those proposed by Ambraseys and Menu (1988), Romeo (2000), and Jibson (2007), with respect to the possible dynamic behavior of the lithologies affected by landslides. In this sector of California, the following lithologies crop out, that were involved in shallow landslides: (1) Quaternay deposits; (2) Saugus Formation; (3) Towsley Formation; (4) Pico Formation; (5) Topanga Formation; (6) Modelo Formation; (7) Simi Conglomerate; (8) Santa Susana Formation; (9) Llajas and Chatsworth Formations. The surveys carried out after the Northridge earthquake (Harp and Jibson, 1995), and the analysis of landslide distribution (Parise and Jibson 2000) pointed out that the strongest formations with slopes higher than 50° mainly suffered toppling or fall failures: thus, our hazard maps based on permanent displacements did not take into account such range of slopes. Further, areas with slopes lower than 10° were not affected by relevant mass movements. Thus, a limited range of slopes (between 10° and 45°) was considered in the analyses, with depth of the sliding surface varying between 1 and 3 m, and using the resistance parameters of involved lithologies obtained from in situ and laboratory tests performed by local practitioners. Seismically-induced landslide hazard maps have been drawn using the aforementioned three expressions. The preliminary results show Quaternary deposits (including alluvium deposits, slope wash, and terrace deposits) as the lithologies most affected by permanent displacement. Moreover, Towsley and Modelo formations, that are stiffer than the previous rock units, and consist mostly of shales, siltstones and subordinate sandstones, show high hazard value where the slopes increase. The relevant role of local slope in permanent displacement extent is evident where lithologies are characterized by both cohesive and frictional resistance components. Finally, a comparison among the maps produced by using the three expressions for permanent displacements is discussed. References Ambraseys N.N. and Menu J.M. (1988) Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics, 16: 985-1006. Harp E.L. and Jibson R.W. (1995) Inventory of landslides triggered by the 1994 Northridge, California earthquake. US Geol. Surv. Open-File Rep. 95-213 17 pp. Jibson R. (2007) Regression models for estimating coseismic landslide displacement. Engineering Geology, 91: 209-218. Luzi L. and Pergalani F. (2000) A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dynamics and Earthquake Engineering, 20: 301-313. Newmark N.M. (1965) Effects of earthquakes on dams and embankments. Geotechnique 965, 15(2): 139-160. Parise M. and Jibson R.W. (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering Geology, 58: 251-270. Romeo R. (2000) Seismically induced landslide displacements: a predictive model. Engineering Geology, 58: 337-351.

  5. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

    PubMed

    Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard

    2013-05-01

    The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement.

  6. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  7. Insights on surface spalling of rock

    NASA Astrophysics Data System (ADS)

    Tarokh, Ali; Kao, Chu-Shu; Fakhimi, Ali; Labuz, Joseph F.

    2016-07-01

    Surface spalling is a complex failure phenomenon that features crack propagation and detachment of thin pieces of rock near free surfaces, particularly in brittle rock around underground excavations when large in situ stresses are involved. A surface instability apparatus was used to study failure of rock close to a free surface, and damage evolution was monitored by digital image correlation (DIC). Lateral displacement at the free face was used as the feedback signal to control the post-peak response of the specimen. DIC was implemented in order to obtain the incremental displacement fields during the spalling process. Displacement fields were computed in the early stage of loading as well as close to the peak stress. Fracture from the spalling phenomenon was revealed by incremental lateral displacement contours. The axial and lateral displacements suggested that the displacement gradient was uniform in both directions at early loading stages and as the load increased, the free-face effect started to influence the displacements, especially the lateral displacement field. A numerical approach, based on the discrete element method, was developed and validated from element testing. Damage evolution and localization observed in numerical simulations were similar to those observed in experiments. By performing simulations in two- and three-dimensions, it was revealed that the intermediate principal stress and platen-rock interfaces have important effects on simulation of surface spalling.

  8. Motion of David Glacier in East Antarctica Observed by COSMO-SkyMed Differential SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Han, H.; Lee, H.

    2011-12-01

    David glacier, located in Victoria Land, East Antarctica (75°20'S, 161°15'E), is an outlet glacier of 13 km width near the grounding line and 50 km long from the source to the grounding line. David glacier flows into Ross Sea forming Drygalski Ice Tongue, 100 km long and 23 km wide. In this study, we extracted a surface displacement map of David by applying differential SAR interferometry (DInSAR) to one-day tandem pairs obtained from COSMO-SkyMed satellites on April 28-29 (descending orbit) and May 5-6 (ascending orbit), 2011, respectively. Terra ASTER global digital elevation model (GDEM) is used to remove the topographic effect from the COSMO-SkyMed interferograms. David glacier showed maximum displacement of 35 cm during April 28-29 and 20 cm during May 5-6 in the direction of radar line of sight. The glacier can be divided into several blocks by the disparities of displacement between the different sliding zone. Surface displacement map contains errors originated from orbit data, atmospheric conditions, DEM error. GDEM is generated from the ASTER optical images acquired from 2000 to 2008. It has the vertical accuracy of about 20 m at 95% confidence with the 30 m of horizontal posting. The accuracy of GDEM reduces when cloud cover is included in the ASTER image. Particularly in the snow and ice area, GDEM is inaccurate due to whiteout effect during stereo matching. The inaccuracy of GDEM could be a reason of the observed glacier motion in the opposite direction of gravity. This problem can be solved by using TanDEM-X DEM. Bistatic acquisition of SAR images from the constellation of TerraSAR-X and TanDEM-X will generate a global DEM with the vertical accuracy better than 2 m and the horizontal posting of 12 m. We plan to perform DInSAR of COSMO-SkyMed one-day tandem pairs again when the high-accuracy TanDEM-X DEM is available in the near future. As a conclusion, we could analyze the displacement of David glacier in East Antarctica. The glacier showed very fast motion forming a block of streamlines with different flow velocity. For more accurate analysis, we will use TanDEM-X DEM to perform the DInSAR. The flow characteristics, ice mass balance, ice discharge rate of David glacier remains as an ongoing research.

  9. Application of Time Series Insar Technique for Deformation Monitoring of Large-Scale Landslides in Mountainous Areas of Western China

    NASA Astrophysics Data System (ADS)

    Qu, T.; Lu, P.; Liu, C.; Wan, H.

    2016-06-01

    Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.

  10. A Detailed Study of the Delacroix Island Major Fault and Its Role on Stratigraphic Horizons from the Middle Miocene to Present

    NASA Astrophysics Data System (ADS)

    Levesh, J. L.; McLindon, C.; Kulp, M. A.

    2017-12-01

    An in-depth field study of the Delacroix Island producing field illustrates the evolution of the main East-West trending Delacroix Island fault over the last thirteen million years. Well log correlation and 3-D seismic interpretation of eighteen bio-stratigraphic horizons across the fault reveal a range of stratigraphic thicknesses. A cross section, created with wells upthrown and downthrown to the fault, visually demonstrates varying degrees of thickening and displacement of the stratigraphic intervals across the fault. One upthrown and one downthrown well, with well log curve data up to 30 meters below the surface, were used to calculate interval thicknesses between the main tops as well as five more Pliocene/Pleistocene biostratigraphic markers. Isopach maps, created with these interval thicknesses, depict two styles of interval thickening both of which indicate differential subsidence across the fault. An interval thickness analysis was plotted in both depth and time as well as plots showing the rate of sediment accumulation and depth versus fault displacement. A lineation on the marsh surface consistent with a projection of the fault plane suggests that the fault movement has been episodically continuous to the present and that recent movement may have played a role in submerging the downthrown side of the surface fault trace.

  11. Tectonic interpretation of the 13 february 2001, mw 6.6, El Salvador Earthquake: New evidences of coseismic surface rupture and paleoseismic activity.

    NASA Astrophysics Data System (ADS)

    Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.

    2009-04-01

    In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.

  12. Field and Laboratory Data From an Earthquake History Study of Scarps of the Lake Creek-Boundary Creek Fault Between the Elwha River and Siebert Creek, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Buck, Jason; Bradley, Lee-Ann; Wells, Ray E.; Schermer, Elizabeth R.

    2007-01-01

    Fault scarps recently discovered on Airborne Laser Swath Mapping (ALSM; also known as LiDAR) imagery show Holocene movement on the Lake Creek-Boundary Creek fault on the north flank of the Olympic Mountains of northwestern Washington State. Such recent movement suggests the fault is a potential source of large earthquakes. As part of the effort to assess seismic hazard in the Puget Sound region, we map scarps on ALSM imagery and show primary field and laboratory data from backhoe trenches across scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the fault. Although some scarp segments 0.5-2 km long along the fault are remarkably straight and distinct on shaded ASLM imagery, most scarps displace the ground surface <1 m, and, therefore, are difficult to locate in dense brush and forest. We are confident of a surface-faulting or folding origin and a latest Pleistocene to Holocene age only for scarps between Lake Aldwell and the easternmost fork of Siebert Creek, a distance of 22 km. Stratigraphy in five trenches at four sites help determine the history of surface-deforming earthquakes since glacier recession and alluvial deposition 11-17 ka. Although the trend and plunge of indicators of fault slip were measured only in the weathered basalt exposed in one trench, upward-splaying fault patterns and inconsistent displacement of successive beds along faults in three of the five trenches suggest significant lateral as well as vertical slip during the surface-faulting or folding earthquakes that produced the scarps. Radiocarbon ages on fragments of wood charcoal from two wedges of scarp-derived colluvium in a graben-fault trench suggest two surface-faulting earthquakes between 2,000 and 700 years ago. The three youngest of nine radiocarbon ages on charcoal fragments from probable scarp-derived colluvum in a fold-scarp trench 1.2 km to the west suggest a possible earlier surface-faulting earthquake less than 5,000 years ago.

  13. Estimating Earthquake Magnitude from the Kentucky Bend Scarp in the New Madrid Seismic Zone Using Field Geomorphic Mapping and High-Resolution LiDAR Topography

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.; Kirkendall, W. G.

    2014-12-01

    Recent suggestions that the 1811-1812 earthquakes in the New Madrid Seismic Zone (NMSZ) ranged from M6.8-7.0 versus M8.0 have implications for seismic hazard estimation in the central US. We more accurately identify the location of the NW-striking, NE-facing Kentucky Bend scarp along the northern Reelfoot fault, which is spatially associated with the Lake County uplift, contemporary seismicity, and changes in the Mississippi River from the February 1812 earthquake. We use 1m-resolution LiDAR hillshades and slope surfaces, aerial photography, soil surveys, and field geomorphic mapping to estimate the location, pattern, and amount of late Holocene coseismic surface deformation. We define eight late Holocene to historic fluvial deposits, and delineate younger alluvia that are progressively inset into older deposits on the upthrown, western side of the fault. Some younger, clayey deposits indicate past ponding against the scarp, perhaps following surface deformational events. The Reelfoot fault is represented by sinuous breaks-in-slope cutting across these fluvial deposits, locally coinciding with shallow faults identified via seismic reflection data (Woolery et al., 1999). The deformation pattern is consistent with NE-directed reverse faulting along single or multiple SW-dipping fault planes, and the complex pattern of fluvial deposition appears partially controlled by intermittent uplift. Six localities contain scarps across correlative deposits and allow evaluation of cumulative surface deformation from LiDAR-derived topographic profiles. Displacements range from 3.4±0.2 m, to 2.2±0.2 m, 1.4±0.3 m, and 0.6±0.1 m across four progressively younger surfaces. The spatial distribution of the profiles argues against the differences being a result of along-strike uplift variability. We attribute the lesser displacements of progressively younger deposits to recurrent surface deformation, but do not yet interpret these initial data with respect to possible earthquake magnitudes. Additional efforts hopefully will address shallow subsurface evidence of single- or multiple-deformational events at selected localities.

  14. Unravelling detailed kinematics of DSGSD morphostructures (Moosfluh, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Loew, Simon; Glueer, Franziska; Manconi, Andrea

    2017-04-01

    The Great Aletsch Glacier (Swiss Alps) is experiencing a remarkable retreat with rates in the order of 50 meters every year. In the current glacier tongue area, where several pre-existing landslides have been partially or completely unloaded from the glacier ice mass during the last 150 years, various types of landslide reactions (in terms of type, size and velocity) can be reconstructed and observed. In particular, a deep-seated gravitational slope instability located in the area called "Moosfluh" has shown during the past 20 years evidences of slow but progressive increase of surface displacement. The moving mass of the Moosfluh DSGSD affects an area of about 2 km2 and entails a volume estimated in the order of 150-200 Mm3. This DSGSD in gneissic rocks affects the entire slope and extents several 100 meters beyond the ridge separating the Aletsch from the Rhone valley. The slope morphology is complex and many ridges and depressions striking parallel to the slope have been observed and mapped in the past. Some of these ridges correspond to glacial trim lines, and could be dated as Egesen and Little Ice Age glacial re-advance stages. Other slope parallel structures were explained as up- and down-hill facing scarps, i.e. internal rupture planes, and most uphill facing scarps oriented parallel to the Alpine foliation were interpreted as toppling phenomena. However, most these structural and kinematic interpretations remained hypotheses, as all morphostructures were covered by soil and vegetation and no borehole displacement data were available, excluding direct verification of morphostructural interpretations. This is in fact a typical situation for many Alpine DSGSD, where observed phenomena developed slowly over long periods of time and can have many different structural and kinematic origins. In late summer 2016, an unusual acceleration of the Moosfluh DSGSD was observed in the central part of the landslide. Compared to previous years, when annual ground deformations were in the order of few centimeters or decimeters, in the period September-October 2016 maximum velocities have reached locally 1 m/day. Between middle of September and middle of October, when displacement rates decelerated again, some sectors of the slope were displaced by up to 50 meters. During this period we monitored the evolution of the Moosfluh instability with two robotized total stations, several permanent GNSS stations and time-lapse cameras. Detailed mapping on ground surface and with helicopter based photogrammetry allowed to study internal deformation phenomena in detail, and to explore and unravel the displacement characteristics of all observed morphostructural features. We can show that slope parallel ridges and depressions have various structural origins. New uphill facing scarps in bedrock or soil cover, which formed between September and October 2016, are caused either by toppling with block rotations of up to 17 degrees, throws of several meters and slope parallel extensions of several tens of meters, or by antithetic normal faults. Many antithetic faults show slumping of the hanging wall block, are listric in shape and belong to asymmetric graben structures. Lateral transition from the central rapidly moving sectors into less deformed landslide mass is accommodated along steeply dipping transform faults or en-echelon sets of tensile fractures. Displacements along most of these features were quantified in terms of slip vectors (throw and heave), horizontal extension or rotation. Comparison with surface displacement vector fields derived from total station measurements and digital image correlation allows to assess and explain local variations in strain fields and to develop a semi-quantitative kinematic model of the entire DSGSD including its structures at depth.

  15. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    NASA Astrophysics Data System (ADS)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  16. Influence of surface displacement on solid state flow induced by horizontally heterogeneous Joule heating in the inner core of the Earth

    NASA Astrophysics Data System (ADS)

    Takehiro, Shin-ichi

    2015-04-01

    We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.

  17. Global surface displacement data for assessing variability of displacement at a point on a fault

    USGS Publications Warehouse

    Hecker, Suzanne; Sickler, Robert; Feigelson, Leah; Abrahamson, Norman; Hassett, Will; Rosa, Carla; Sanquini, Ann

    2014-01-01

    This report presents a global dataset of site-specific surface-displacement data on faults. We have compiled estimates of successive displacements attributed to individual earthquakes, mainly paleoearthquakes, at sites where two or more events have been documented, as a basis for analyzing inter-event variability in surface displacement on continental faults. An earlier version of this composite dataset was used in a recent study relating the variability of surface displacement at a point to the magnitude-frequency distribution of earthquakes on faults, and to hazard from fault rupture (Hecker and others, 2013). The purpose of this follow-on report is to provide potential data users with an updated comprehensive dataset, largely complete through 2010 for studies in English-language publications, as well as in some unpublished reports and abstract volumes.

  18. Rheticus Displacement: an Automatic Geo-Information Service Platform for Ground Instabilities Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Chiaradia, M. T.; Samarelli, S.; Agrimano, L.; Lorusso, A. P.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.

    2016-12-01

    Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (service-oriented-architecture) model. Due to its architecture, where every functionality is well defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. Rheticus offers a portfolio of services, ranging from the detection and monitoring of geohazards and infrastructural instabilities, to marine water quality monitoring, wildfires detection or land cover monitoring. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (i.e., SPINUA), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub; S1 data are then handled by a mature running processing chain, which is responsible of producing displacement maps immediately usable to measure with sub-centimetric precision movements of coherent points. Examples are provided, concerning the automatic displacement map generation process, as well as the integration of point and distributed scatterers, the integration of multi-sensors displacement maps (e.g., Sentinel-1 IW and COSMO-SkyMed HIMAGE), the combination of displacement rate maps acquired along both ascending and descending passes. ACK: Study carried out in the framework of the FAST4MAP project and co-funded by the Italian Space Agency (Contract n. 2015-020-R.0). Sentinel-1A products provided by ESA. CSK® Products, ASI, provided by ASI under a license to use. Rheticus® is a registered trademark of Planetek Italia srl.

  19. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  20. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  1. Imaging the concealed section of the Whakatane fault below Whakatane city, New Zealand, with a shear wave land streamer system

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.

    2016-04-01

    The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth verification by drillings normal fault displacements of up to 15 m are visible in depths of 20-40 m, deeper rupture structures show displacements of up to 20 m. Furthermore, indications of strike-slip fault activities are visible. The concealed rupture structures found are not aligned along former estimated fault lineaments or main surface structures like the Whakatane river bed. Correlations exist with small topographic variations detected by LIDAR imaging and surface signatures on a historic map of 1867.

  2. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  3. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure.

    PubMed

    Özarslan, Evren; Koay, Cheng Guan; Shepherd, Timothy M; Komlosh, Michal E; İrfanoğlu, M Okan; Pierpaoli, Carlo; Basser, Peter J

    2013-09-01

    Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in "q-space," and the corresponding "mean apparent propagator (MAP)" describing molecular displacements in "r-space." We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit "displacement" sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions-the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful for investigating the functional organization of normal and pathologic nervous tissue. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Houston-Galveston Bay area, Texas, from space; a new tool for mapping land subsidence

    USGS Publications Warehouse

    Stork, Sylvia V.; Sneed, Michelle

    2002-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful new tool that uses radar signals to measure displacement (subsidence and uplift) of the Earth's crust at an unprecedented level of spatial detail and high degree of measurement resolution.The Houston-Galveston Bay area, possibly more than any other metropolitan area in the United States, has been adversely affected by land subsidence. Extensive subsidence, caused mainly by ground-water pumping but also by oil and gas extraction, has increased the frequency of flooding, caused extensive damage to industrial and transportation infrastructure, motivated major investments in levees, reservoirs, and surfacewater distribution facilities, and caused substantial loss of wetland habitat. Ongoing patterns of subsidence in the Houston area have been carefully monitored using borehole extensometers, Global Positioning System (GPS) and conventional spirit-leveling surveys, and more recently, an emerging technology—Interferometric Synthetic Aperture Radar (InSAR)—which enables development of spatially-detailed maps of land-surface displacement over broad areas. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the U.S. Fish and Wildlife Service, briefly summarizes the history of subsidence in the area and the local consequences of subsidence and describes the use of InSAR as one of several tools in an integrated subsidence-monitoring program in the area.

  5. Geostatistical Investigations of Displacements on the Basis of Data from the Geodetic Monitoring of a Hydrotechnical Object

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, Barbara; Wynalek, Janusz

    2017-12-01

    Geostatistical methods make the analysis of measurement data possible. This article presents the problems directed towards the use of geostatistics in spatial analysis of displacements based on geodetic monitoring. Using methods of applied (spatial) statistics, the research deals with interesting and current issues connected to space-time analysis, modeling displacements and deformations, as applied to any large-area objects on which geodetic monitoring is conducted (e.g., water dams, urban areas in the vicinity of deep excavations, areas at a macro-regional scale subject to anthropogenic influences caused by mining, etc.). These problems are very crucial, especially for safety assessment of important hydrotechnical constructions, as well as for modeling and estimating mining damage. Based on the geodetic monitoring data, a substantial basic empirical material was created, comprising many years of research results concerning displacements of controlled points situated on the crown and foreland of an exemplary earth dam, and used to assess the behaviour and safety of the object during its whole operating period. A research method at a macro-regional scale was applied to investigate some phenomena connected with the operation of the analysed big hydrotechnical construction. Applying a semivariogram function enabled the spatial variability analysis of displacements. Isotropic empirical semivariograms were calculated and then, theoretical parameters of analytical functions were determined, which approximated the courses of the mentioned empirical variability measure. Using ordinary (block) kriging at the grid nodes of an elementary spatial grid covering the analysed object, the values of the Z* estimated means of displacements were calculated together with the accompanying assessment of uncertainty estimation - a standard deviation of estimation σk. Raster maps of the distribution of estimated averages Z* and raster maps of deviations of estimation σk (in perspective) were obtained for selected years (1995 and 2007), taking the ground height 136 m a.s.l. into calculation. To calculate raster maps of Z* interpolated values, methods of quick interpolation were also used, such as the technique of the inverse distance squares, a linear model of kriging, a spline kriging, which made the recognition of the general background of displacements possible, without the accuracy assessment of Z* value estimation, i.e., the value of σk. These maps are also related to 1995 and 2007 and the elevation. As a result of applying these techniques, clear boundaries of subsiding areas, upthrusting and also horizontal displacements on the examined hydrotechnical object were marked out, which can be interpreted as areas of local deformations of the object, important for the safety of the construction. The effect of geostatistical research conducted, including the structural analysis, semivariograms modeling, estimating the displacements of the hydrotechnical object, are rich cartographic characteristic (semivariograms, raster maps, block diagrams), which present the spatial visualization of the conducted various analyses of the monitored displacements. The prepared geostatistical model (3D) of displacement variability (analysed within the area of the dam, during its operating period and including its height) will be useful not only in the correct assessment of displacements and deformations, but it will also make it possible to forecast these phenomena, which is crucial when the operating safety of such constructions is taken into account.

  6. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  7. A new adaptive light beam focusing principle for scanning light stimulation systems.

    PubMed

    Bitzer, L A; Meseth, M; Benson, N; Schmechel, R

    2013-02-01

    In this article a novel principle to achieve optimal focusing conditions or rather the smallest possible beam diameter for scanning light stimulation systems is presented. It is based on the following methodology: First, a reference point on a camera sensor is introduced where optimal focusing conditions are adjusted and the distance between the light focusing optic and the reference point is determined using a laser displacement sensor. In a second step, this displacement sensor is used to map the topography of the sample under investigation. Finally, the actual measurement is conducted, using optimal focusing conditions in each measurement point at the sample surface, that are determined by the height difference between camera sensor and the sample topography. This principle is independent of the measurement values, the optical or electrical properties of the sample, the used light source, or the selected wavelength. Furthermore, the samples can be tilted, rough, bent, or of different surface materials. In the following the principle is implemented using an optical beam induced current system, but basically it can be applied to any other scanning light stimulation system. Measurements to demonstrate its operation are shown, using a polycrystalline silicon solar cell.

  8. Correlation between land cover and ground vulnerability in Alexandria City (Egypt) using time series SAR interferometry and optical Earth observation data

    NASA Astrophysics Data System (ADS)

    Seleem, T.; Stergiopoulos, V.; Kourkouli, P.; Perrou, T.; Parcharidis, Is.

    2017-10-01

    The main scope of this study is to investigate the potential correlation between land cover and ground vulnerability over Alexandria city, Egypt. Two different datasets for generating ground deformation and land cover maps were used. Hence, two different approaches were followed, a PSI approach for surface displacement mapping and a supervised classification algorithm for land cover/use mapping. The interferometric results show a gradual qualitative and quantitative differentiation of ground deformation from East to West of Alexandria government. We selected three regions of interest, in order to compare the obtained interferometric results with the different land cover types. The ground deformation may be resulted due to different geomorphic and geologic factors encompassing the proximity to the active deltaic plain of the Nile River, the expansion of the urban network within arid regions of recent deposits, the urban density increase, and finally the combination of the above mentioned parameters.

  9. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    PubMed

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  10. Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.

    2014-12-01

    A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic displacements of about -30 to 30 cm, along the main surface rupture, using multiple aperture interferometry and SAR pixel offset calculation. We also processed the European Space Agency's Sentinel-1A data on Sep. 3 and compared the result with the CSK interferogram, finding a general agreement between the two observations of surface deformation.

  11. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    NASA Astrophysics Data System (ADS)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  12. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  13. Late Quaternary offset of alluvial fan surfaces along the Central Sierra Madre Fault, southern California

    USGS Publications Warehouse

    Burgette, Reed J.; Hanson, Austin; Scharer, Katherine M.; Midttun, Nikolas

    2016-01-01

    The Sierra Madre Fault is a reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. This study focuses on the Central Sierra Madre Fault (CSMF) in an effort to provide numeric dating on surfaces with ages previously estimated from soil development alone. We have refined previous geomorphic mapping conducted in the western portion of the CSMF near Pasadena, CA, with the aid of new lidar data. This progress report focuses on our geochronology strategy employed in collecting samples and interpreting data to determine a robust suite of terrace surface ages. Sample sites for terrestrial cosmogenic nuclide and luminescence dating techniques were selected to be redundant and to be validated through relative geomorphic relationships between inset terrace levels. Additional sample sites were selected to evaluate the post-abandonment histories of terrace surfaces. We will combine lidar-derived displacement data with surface ages to estimate slip rates for the CSMF.

  14. Structural interpretations based on ERTS-1 imagery, Bighorn Region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A.

    1973-01-01

    Structural analysis is being carried out on bands MSS 5 and 7 of scene 1085-17294. Geologic strucutre is primarily revealed in the topographic relief and drainage. Topographic linears are particularly well developed in the bighorn uplift. Many of these occur along known faults and shear zones in the Precambrian core; several have not been previously mapped. These linears, however, do not continue into the younger rocks of the flanks or do so in a much less marked manner than in the core. Linears are far less abundant in the basin or are manifested only in very subtle tonal contrasts and somewhat straight drainage segments. Some of the linears are aligned along trends previously postulated on the basis of surface mapping to be lineaments. The imagery reveals little or no evidence of strike-slip displacements along these lineaments.

  15. Mechanical Stress Measurement During Thin-Film Fabrication

    NASA Technical Reports Server (NTRS)

    Broadway, David M. (Inventor)

    2017-01-01

    A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.

  16. Investigation of possibility of surface rupture derived from PFDHA and calculation of surface displacement based on dislocation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Irikura, K.

    2013-12-01

    A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.

  17. Integrate-and-fire models with an almost periodic input function

    NASA Astrophysics Data System (ADS)

    Kasprzak, Piotr; Nawrocki, Adam; Signerska-Rynkowska, Justyna

    2018-02-01

    We investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic inputs have uniformly almost periodic displacements. We also show that in the case of μ-almost periodic drives it may happen that the displacement map is uniformly continuous, but is not μ-almost periodic (and thus cannot be Stepanov or uniformly almost periodic). By allowing discontinuous inputs, we extend some previous results, showing, for example, that the firing rate for the LIF models with Stepanov almost periodic input exists and is unique. This is a starting point for the investigation of the dynamics of almost-periodically driven integrate-and-fire systems.

  18. Characteristics of Quasi-Terminator Orbits Near Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Lantoine, Gregory; Grebow, Daniel J.

    2013-01-01

    Quasi-terminator orbits are introduced as a class of quasi-periodic trajectories in the solar radiation pressure (SRP) perturbed Hill dynamics. These orbits offer significant displacements along the Sun-direction without the need for station-keeping maneuvers. Thus, quasi-terminator orbits have application to primitive-body missions, where a variety of observation geometries relative to the Sun (or other directions) can be achieved. This paper describes the characteristics of these orbits as a function of normalized SRP strength and invariant torus frequency ratio and presents a discussion of mission design considerations for a global surface mapping orbit design.

  19. Mapping small elevation changes over large areas - Differential radar interferometry

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.

    1989-01-01

    A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.

  20. Mapping fault-controlled volatile migration in equatorial layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2006-12-01

    Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.

  1. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  2. On the use of SEM correlative tools for in situ mechanical tests.

    PubMed

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-01-01

    In situ SEM mechanical tests are key to study crystal plasticity. In particular, imaging and diffraction (EBSD) allow microstructure and surface kinematics to be monitored all along the test. However, to get a full benefit from different modalities, it is necessary to register all images and crystallographic orientation maps from EBSD into the same frame. Different correlative approaches tracking either Pt surface markings, crystal orientations or grain boundaries, allow such registrations to be performed and displacement as well as rotation fields to be measured, a primary information for crystal plasticity identification. However, the different contrasts that are captured in different modalities and unavoidable stage motions also give rise to artifacts that are to be corrected to register the different information onto the same material points. The same image correlation tools reveal very powerful to correct such artifacts. Illustrated by an in situ uniaxial tensile test performed on a bainitic-ferritic steel sample, recent advances in image correlation techniques are reviewed and shown to provide a comprehensive picture of local strain and rotation maps. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Payen, Thomas; Palermo, Carmine F.; Sastra, Stephen A.; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-08-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  4. Elasticity mapping of murine abdominal organs in vivo using Harmonic Motion Imaging (HMI)

    PubMed Central

    Payen, Thomas; Palermo, Carmine F.; Sastra, Steve; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-01-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5-MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50-Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8-MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression tests. HMI was able to provide reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. HMI displacement was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo providing a crucial tool to understand pathologies affecting organ elasticity. PMID:27401609

  5. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI).

    PubMed

    Payen, Thomas; Palermo, Carmine F; Sastra, Stephen A; Chen, Hong; Han, Yang; Olive, Kenneth P; Konofagou, Elisa E

    2016-08-07

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young's moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  6. Radar Shows Italy Area Moved 8 Inches by Amatrice Earthquake

    NASA Image and Video Library

    2016-08-27

    NASA and its partners are contributing observations and expertise to the ongoing response to the Aug. 23, 2016, magnitude 6.2 Amatrice earthquake in central Italy caused widespread building damage to several towns throughout the region. This earthquake was the strongest in that area since the 2009 earthquake that destroyed the city of L'Aquila. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement, as viewed by the satellite, during a seven-month interval between two ALOS-2 images acquired on Sept. 9, 2015 and Aug. 24, 2016. The movement was caused almost entirely by the earthquake. In this map, the colors of the surface displacements are proportional to the surface motion. The red and pink tones show the areas where the land moved toward the satellite by up to 2 inches (5 centimeters). The area with various shades of blue moved away from the satellite, mostly downward, by as much as 8 inches (20 centimeters). Contours on the surface motion are 2 inches (5 centimeters) The green star shows the epicenter where the earthquake started as located by the U.S. Geological Survey National Earthquake Information Center. Black dots show town locations. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The map shows the fault or faults that moved in the earthquake is about 14 miles (22 kilometers) long between Amatrice and Norcia and slopes to the west beneath the area that moved downward. The PALSAR-2 data were provided by JAXA through a science project. http://photojournal.jpl.nasa.gov/catalog/PIA20893

  7. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  8. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.

    PubMed

    Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E

    2000-01-01

    The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.

  9. Surface structural damage study in cortical bone due to medical drilling.

    PubMed

    Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge

    2017-05-01

    A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

  10. On- and off-fault deformation associated with the September 2013 Mw7.7 Balochistan earthquake: implications for geologic slip rate measurements

    USGS Publications Warehouse

    Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard; Barnhart, William; Hayes, Gavin; Wilson, Earl M.

    2015-01-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/− 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.

  11. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements

    NASA Astrophysics Data System (ADS)

    Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard W.; Barnhart, William D.; Hayes, Gavin P.; Wilson, Earl

    2015-10-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/- 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.

  12. Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study.

    PubMed

    Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K; Mitchell, Greg W; Hobson, Keith A; Norris, D Ryan

    2016-11-23

    The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size.

  13. Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study

    PubMed Central

    Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K.; Mitchell, Greg W.; Hobson, Keith A.; Norris, D. Ryan

    2016-01-01

    The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size. PMID:27876843

  14. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as follows: about 100 feet at Los Alamos Canyon, about 50 feet at upper Mortandad Canyon, and less than 30 feet at Twomile Canyon. These relations lead us to infer that the Rendija Canyon fault probably dies out just south of Twomile Canyon. In detail, the surface deformation expressed within the fault zones can be large, fairly simple normal faults, broad zones of smaller faults, largely unfaulted monocline, and faulted monocline. Our study indicates that the seismic surface rupture hazard, associated with the faults in the study area, is localized. South of the county landfill and Los Alamos Canyon, displacements on individual faults become very small, less than about 10 feet in the last 1.22 million years. Such small displacements imply that these little faults do not have much continuity along strike and in a worst-case scenario present a mean probabilistic fault displacement hazard of less than 0.67 inches in 10,000 years (Olig et al., 1998). We encourage, however, site-specific fault investigations for new construction in certain zones of our study area and that facility siting on potentially active faults be avoided.« less

  15. Road displacement model based on structural mechanics

    NASA Astrophysics Data System (ADS)

    Lu, Xiuqin; Guo, Qingsheng; Zhang, Yi

    2006-10-01

    Spatial conflict resolution is an important part of cartographic generalization, and it can deal with the problems of having too much information competing for too little space, while feature displacement is a primary operator of map generalization, which aims at resolving the spatial conflicts between neighbor objects especially road features. Considering the road object, this paper explains an idea of displacement based on structural mechanics. In view of spatial conflict problem after road symbolization, it is the buffer zones that are used to detect conflicts, then we focus on each conflicting region, with the finite element method, taking every triangular element for analysis, listing stiffness matrix, gathering system equations and calculating with iteration strategy, and we give the solution to road symbol conflicts. Being like this until all the conflicts in conflicting regions are solved, then we take the whole map into consideration again, conflicts are detected by reusing the buffer zones and solved by displacement operator, so as to all of them are handled.

  16. A Target-Less Vision-Based Displacement Sensor Based on Image Convex Hull Optimization for Measuring the Dynamic Response of Building Structures.

    PubMed

    Choi, Insub; Kim, JunHee; Kim, Donghyun

    2016-12-08

    Existing vision-based displacement sensors (VDSs) extract displacement data through changes in the movement of a target that is identified within the image using natural or artificial structure markers. A target-less vision-based displacement sensor (hereafter called "TVDS") is proposed. It can extract displacement data without targets, which then serve as feature points in the image of the structure. The TVDS can extract and track the feature points without the target in the image through image convex hull optimization, which is done to adjust the threshold values and to optimize them so that they can have the same convex hull in every image frame and so that the center of the convex hull is the feature point. In addition, the pixel coordinates of the feature point can be converted to physical coordinates through a scaling factor map calculated based on the distance, angle, and focal length between the camera and target. The accuracy of the proposed scaling factor map was verified through an experiment in which the diameter of a circular marker was estimated. A white-noise excitation test was conducted, and the reliability of the displacement data obtained from the TVDS was analyzed by comparing the displacement data of the structure measured with a laser displacement sensor (LDS). The dynamic characteristics of the structure, such as the mode shape and natural frequency, were extracted using the obtained displacement data, and were compared with the numerical analysis results. TVDS yielded highly reliable displacement data and highly accurate dynamic characteristics, such as the natural frequency and mode shape of the structure. As the proposed TVDS can easily extract the displacement data even without artificial or natural markers, it has the advantage of extracting displacement data from any portion of the structure in the image.

  17. The Characteristics of Cold Air Outbreaks in the Eastern United States and the Influence of Atmospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Smith, E. T.

    2017-12-01

    Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.

  18. A method for producing digital probabilistic seismic landslide hazard maps

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.; Michael, J.A.

    2000-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.

  19. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  20. Inherited structures impact on co-seismic surface deformation pattern during the 2013 Balochistan, Pakistan, earthquake

    NASA Astrophysics Data System (ADS)

    Vallage, Amaury; Klinger, Yann; Grandin, Raphael; Delorme, Arthur; Pierrot-Deseilligny, Marc

    2016-04-01

    The understanding of earthquake processes and the interaction of earthquake rupture with Earth's free surface relies on the resolution of the observations. Recent and detailed post-earthquake measurements bring new insights on shallow mechanical behavior of rupture processes as it becomes possible to measure and locate surficial deformation distribution. The 2013 Mw 7.7 Balochistan earthquake, Pakistan, offers a nice opportunity to comprehend where and why surficial deformation might differs from at-depth localized slip. This earthquake ruptured the Hoshab fault over 200 km; the motion was mainly left lateral with a small and discontinuous vertical component in the southern part of the rupture. Using images with the finest resolution currently available, we measured the surface displacement amplitude and its orientation at the ground surface (including the numerous tensile cracks). We combined these measurements with the 1:500 scale ground rupture map to focus on the behavior of the frontal rupture in the area where deformation distributes. Comparison with orientations of inherited tectonic structures, visible in older rocks formation surrounding the actual 2013 rupture, shows the control exercised by such structures on co-seismic rupture distribution. Such observation raises the question on how pre-existing tectonic structures in a medium, mapped in several seismically active places around the globe; can control the co-seismic distribution of the deformation during earthquakes.

  1. Advances in Distance-Based Hole Cuts on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Pandya, Shishir A.

    2015-01-01

    An automatic and efficient method to determine appropriate hole cuts based on distances to the wall and donor stencil maps for overset grids is presented. A new robust procedure is developed to create a closed surface triangulation representation of each geometric component for accurate determination of the minimum hole. Hole boundaries are then displaced away from the tight grid-spacing regions near solid walls to allow grid overlap to occur away from the walls where cell sizes from neighboring grids are more comparable. The placement of hole boundaries is efficiently determined using a mid-distance rule and Cartesian maps of potential valid donor stencils with minimal user input. Application of this procedure typically results in a spatially-variable offset of the hole boundaries from the minimum hole with only a small number of orphan points remaining. Test cases on complex configurations are presented to demonstrate the new scheme.

  2. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  3. Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

    PubMed

    Novaes, João Batista; Talma, Elissa; Las Casas, Estevam Barbosa; Aregawi, Wondwosen; Kolstad, Lauren Wickham; Mantell, Sue; Wang, Yan; Fok, Alex

    2018-01-01

    Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements. A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison. Group I showed a maximum occlusal displacement of 34.7±6.7μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4±3.8μm. The difference between the two groups was statistically significant (p-value=0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer. The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement could be detected by using the most accurate intraoral scanners currently available. Thus, subject to clinical validation, the occlusal displacement of a resin composite restoration may be used to assess its interfacial integrity. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of the database will be shown in the online map service (e.g. processed results of displacement measurements), while more detailed data will not (e.g. raw data of displacement measurements). Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site, a municipality, a county or the entire country. Selected data will also be downloadable free of charge. The present database on unstable rock slopes in Norway will further evolve in the coming years as the systematic mapping conducted by the Geological Survey of Norway progresses and as available techniques and tools evolve.

  5. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma. Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic-shaped "collapse shadow," or region of fault inactivity and aseismicity. We suggest that the outwardly migrating pattern of increased fault activity (active region) results from reduced integrated lithospheric strength caused by thermal effects of the hotspot. Conversely, the outwardly propagating quiescent region is the result of a reduction or "collapse" of crustal extension rates caused by increased integrated lithospheric strength. Lithospheric strength in this region is increased by addition of mafic materials at the base of the crust and at midcrustal levels. Although the strength of the mantle portion of the lithosphere is reduced, the increased strength of the crust results in a total integrated increase in lithospheric strength. Paradoxically, the surface heat flow data suggest that the region within the interior parabola has a higher heat flow (after accounting for the cooling effects of the eastern SRP aquifer) than the adjacent regions, yet the interior region exhibits significantly lower extension rates. It appears that in this region the surface heat flow is not a good predictor of rates of lithospheric extension.

  6. Map and description of the active part of the Slumgullion Landslide, Hinsdale County, Colorado

    USGS Publications Warehouse

    Fleming, R.W.; Baum, Rex L.; Giardino, Marco

    1999-01-01

    This text accompanies a map of many of the features on the active part of the Slumgullion landslide, Hinsdale County, Colo. Long-term movement creates and destroys a variety of structural features on the surface of the landslide including faults, fractures, and folds, as well as basins and ridges. The Slumgullion landslide consists of a large volume of inactive landslide deposits and a much smaller volume that is actively moving within the deposits of the older landslide. Previously, collapse of the south side of the scarp on Mesa Seco produced materials that blocked the Lake Fork of the Gunnison River and created Lake San Cristobal. The current landslide activity was triggered by a collapse, which apparently extended the preexisting headscarp toward the north. The loading induced by the deposition of the collapsed materials reactivated some of the older landslide deposits. Displacement rates in the active part of the landslide range from about 0.2 m/yr at the uppermost fractures to a maximum of 7.4 m/yr in the narrowest part of the landslide. From this maximum rate, displacement rate declines to 2 or less m/yr at the toe. The interplay between different displacement rates, varying width, and curving boundaries gives rise to the structures within the landslide. For purposes of description, the landslide has been divided into seven zones: head, zone of stretching, the hopper and neck, zone of pull-apart basins, pond deposits and emergent toe, zone of shortening and spreading, and active toe. Each zone has its characteristic kinematic expression that provides information on the internal deformation of the landslide. In general, the upper part of the landslide is characterized by features such as normal faults and tension cracks associated with stretching. The lowermost part of the landslide is characterized by thrust faults and other features associated with shortening. In between, features are a result of widening, bending, or narrowing of the landslide. Also, in places where the slope of the landslide is locally steeper than average, small landslides form on the surface of the larger landslide. On the basis of qualitative observations of changes in the morphology and displacement, we speculate that the landslide is unlikely to accelerate and is more likely to stop movement over a time scale of decades. This speculation is based on the observation that driving forces are gradually diminishing and resisting forces are increasing. Rejuvenation or reactivation probably requires collapse of a new block in the head of the landslide.

  7. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  8. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  9. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  10. Three-dimensional records of surface displacement on the Superstition Hills fault zone associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.; Saxton, J.L.

    1989-01-01

    Seven quadrilaterals, constructed at broadly distributed points on surface breaks within the Superstition Hills fault zone, were repeatedly remeasured after the pair of 24 November 1987 earthquakes to monitor the growing surface displacement. Changes in the dimensions of the quadrilaterals are recalculated to right-lateral and extensional components at millimeter resolution, and vertical components of change are resolved at 0.2mm precision. The displacement component data for four of the seven quadrilaterals record the complete fault movement with respect to an October 1986 base. The three-dimensional motion vectors all describe nearly linear trajectories throughout the observation period, and they indicate smooth shearing on their respective fault surfaces. The inclination of the shear surfaces is generally nearly vertical, except near the south end of the Superstition Hills fault zone where two strands dip northeastward at about 70??. Surface displacement on these strands is right reverse. Another kind of deformation, superimposed on the fault displacements, has been recorded at all quadrilateral sites. It consists of a northwest-southeast contraction or component of contraction that ranged from 0 to 0.1% of the quadrilateral lengths between November 1987 and April 1988. -from Authors

  11. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE PAGES

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  12. A Feasibility Study to Control Airfoil Shape Using THUNDER

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; Moses, Robert W.

    1997-01-01

    The objective of this study was to assess the capabilities of a new out-of-plane displacement piezoelectric actuator called thin-layer composite-unimorph ferroelectric driver and sensor (THUNDER) to alter the upper surface geometry of a subscale airfoil to enhance performance under aerodynamic loading. Sixty test conditions, consisting of combinations of five angles of attack, four dc applied voltages, and three tunnel velocities, were studied in a tabletop wind tunnel. Results indicated that larger magnitudes of applied voltage produced larger wafer displacements. Wind-off displacements were also consistently larger than wind-on. Higher velocities produced larger displacements than lower velocities because of increased upper surface suction. Increased suction also resulted in larger displacements at higher angles of attack. Creep and hysteresis of the wafer, which were identified at each test condition, contributed to larger negative displacements for all negative applied voltages and larger positive displacements for the smaller positive applied voltage (+102 V). An elastic membrane used to hold the wafer to the upper surface hindered displacements at the larger positive applied voltage (+170 V). Both creep and hysteresis appeared bounded based on the analysis of several displacement cycles. These results show that THUNDER can be used to alter the camber of a small airfoil under aerodynamic loads.

  13. Semi-automated fault system extraction and displacement analysis of an excavated oyster reef using high-resolution laser scanned data

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Székely, Balázs; Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Exner, Ulrike; Pfeifer, Norbert

    2015-04-01

    In this contribution we present a semi-automated method for reconstructing the brittle deformation field of an excavated Miocene oyster reef, in Stetten, Korneuburg Basin, Lower Austria. Oyster shells up to 80 cm in size were scattered in a shallow estuarine bay forming a continuous and almost isochronous layer as a consequence of a catastrophic event in the Miocene. This shell bed was preserved by burial of several hundred meters of sandy to silty sediments. Later the layers were tilted westward, uplifted and erosion almost exhumed them. An excavation revealed a 27 by 17 meters area of the oyster covered layer. During the tectonic processes the sediment volume suffered brittle deformation. Faults mostly with some centimeter normal component and NW-SE striking affected the oyster covered volume, dissecting many shells and the surrounding matrix as well. Faults and displacements due to them can be traced along the site typically at several meters long, and as fossil oysters are broken and parts are displaced due to the faulting, along some faults it is possible to follow these displacements in 3D. In order to quantify these varying displacements and to map the undulating fault traces high-resolution scanning of the excavated and cleaned surface of the oyster bed has been carried out using a terrestrial laser scanner. The resulting point clouds have been co-georeferenced at mm accuracy and a 1mm resolution 3D point cloud of the surface has been created. As the faults are well-represented in the point cloud, this enables us to measure the dislocations of the dissected shell parts along the fault lines. We used a semi-automatic method to quantify these dislocations. First we manually digitized the fault lines in 2D as an initial model. In the next step we estimated the vertical (i.e. perpendicular to the layer) component of the dislocation along these fault lines comparing the elevations on two sides of the faults with moving averaging windows. To estimate the strike-slip dislocation component, the surface points of the dissected shells on both sides of the fault planes were compared and displacement vectors were derived. The exact orientation of the fault planes cannot be accurately extracted automatically, so the distinction between normal and reverse fault is difficult. This makes the third component of the dislocation to be estimated inaccurately. These derived dislocation values are regarded as components of the dislocation vectors and were transformed back to the real world spatial coordinate system. Interpolating these dislocation vectors along fault lines we calculated and visualized the deformation field along the whole surface of the oyster reef. Although this deformation field is only a 2D section of the real 3D deformation field, its elaboration reveals the spatial variability of the deformation according to sediment inhomogeneity. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  14. Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss

    NASA Astrophysics Data System (ADS)

    Nielsen, Karina; Khan, Shfaqat A.; Spada, Giorgio; Wahr, John; Bevis, Michael; Liu, Lin; van Dam, Tonie

    2013-04-01

    We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between ˜5 and ˜150 km from the front of Jakobshavn Isbræ (JI) in west Greenland. Horizontal displacements during 2006-2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward north-west, suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006, 2009, and 2010. However, horizontal displacements during 2010-2012 at KAGA and ILUL are directed more towards the west suggesting a change in the spatial distribution of the ice mass loss. In addition, we observe an increase in the uplift rate during 2010-2012 as compared to 2006-2010. The sudden change in vertical and horizontal displacements is due to enhanced melt-induced ice loss in 2010 and 2012.

  15. Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, R.E.

    1993-04-01

    This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less

  16. Late Quaternary activity of the Ecemiş Fault Zone, Turkey; implications from cosmogenic 36Cl dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Akif Sarıkaya, Mehmet; Yıldırım, Cengiz; Çiner, Attila

    2014-05-01

    The Ecemiş Fault Zone is the southernmost segment of the Central Anatolian Fault Zone. The tectonic trough of the fault zone defines the boundary between the Central and Eastern Taurides Ranges. The presence of faulted alluvial fans and colluvium within this trough provide favorable conditions to unravel the Late Quaternary slip-rate of the fault zone by cosmogenic surface exposure dating. In this context, we focused on the main strand of the fault zone and also on the Cevizlik Fault that delimits the mountain front of the Aladaǧlar, Eastern Taurides. Geomorphic mapping and topographic surveying indicate four different alluvial fan levels deposited along the main strand. Our topographic survey reveals 60±5 m horizontal and 18±2 m vertical displacement of the oldest fan surface (AF1) associated with the main strand of the fault zone. We dated the surface of the AF1 with 13 cosmogenic 36Cl samples. Our results indicate that the AF1 surface was abandoned maximum 105.3±1.5 ka ago. Accordingly, we propose 0.57±0.05 mm/yr horizontal and 0.17±0.02 mm/yr vertical mean slip-rates since 100 ka for the main strand. On the other hand, we measured 20±2 m vertical displacement on the colluvium along the Cevizlik Fault. The surface exposure age of the colluvium yielded 21.9±0.3 ka that translates to 0.91±0.09 mm/yr vertical slip-rate for the Cevizlik Fault. Our results reveal significant Quaternary deformation, and low strain rates might indicate very long earthquake recurrence intervals along the fault zone.

  17. Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry

    NASA Astrophysics Data System (ADS)

    Lau, Nicholas; Tymofyeyeva, Ekaterina; Fialko, Yuri

    2018-06-01

    We present new Interferometric Synthetic Aperture Radar (InSAR) observations of surface deformation in the Altiplano-Puna region (South America) where previous studies documented a broad uplift at an average rate of ∼10 mm/yr. We use data from the Sentinel-1 satellite mission to produce high-resolution velocity maps and time series of surface displacements between years 2014-2017. The data reveal that the uplift has slowed down substantially compared to the 1992-2010 epoch and is characterized by short-term fluctuations on time scales of months to years. The observed variations in uplift rate may indicate a non-steady supply of melt and/or volatiles from the partially molten Altiplano-Puna Magma Body (APMB) into an incipient diapir forming in the roof of the APMB.

  18. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is high near Hualien, where an uplift of at least 0.6 m and probably more than 1 m occurred in the 1951 earthquake, and near and south of the 1946 faulting. Sudden uplifts can have serious consequences for installations near the shore. Investigation of this process, study of recently active faults, and continuing study of seismicity are necessary parts of a practical earthquake-hazard reduction program.

  19. Mapping the Landscape of Domain-Wall Pinning in Ferromagnetic Films Using Differential Magneto-Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Badea, Robert; Berezovsky, Jesse

    2016-06-01

    The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.

  20. Use of satellite gravimetry for estimating recent solid Earth changes

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume

    2014-05-01

    Since its launch in March 2002, the Gravity Recovery & Climate Experiment (GRACE) satellite mission provides a global mapping of the time variations of the Earth's gravity field for the recent period. Official centers such as Center of Space Research (CSR) in Austin, TX, Jet Propulsion Laboratory (JPL) in Pasadena, CA and GeoForschungZentrum (GFZ) in Potsdam, Germany, provide 10-day and monthly solutions of Stokes coefficients (i.e., spherical harmonic coefficients of the geopotential) up to harmonic degree 50-60 (or, equivalently, a spatial resolution of 300-400 km) for the timespan 2002-2012. Tiny variations of the gravity measured by GRACE are mainly due to the total water storage change on continents. Therefore, these solutions of water mass can be used to correct other datasets, and then isolate the gravity signatures of large and sudden earthquakes, as well as of the continuous Post Glacial Rebound (PGR) rate. As these measured seasonal variations of continental hydrology represent the variations of water mass load, it is also possible to derive the deformation of the terrestrial surface associated to this varying load using Love numbers. These latter numbers are obtained by assuming an elastic Earth model. In the center of the Amazon basin, the seasonal displacements of the surface due to hydrology reach amplitudes of a few centimeters typically. Time-series of GRACE-based radial displacement of the surface can be analysed and compared with independent local GPS records for validation.

  1. Application of synthetic aperture radars for the ground displacement monitoring in mineral mining areas

    NASA Astrophysics Data System (ADS)

    Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV

    2018-03-01

    The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.

  2. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  3. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  4. Experimental and FE displacement and polymerization stress of bonded restorations as a function of the C-Factor, volume and substrate stiffness.

    PubMed

    Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero

    2014-02-01

    To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans.

    PubMed

    Lee, Robert J; Pham, John; Choy, Michael; Weissheimer, Andre; Dougherty, Harry L; Sameshima, Glenn T; Tong, Hongsheng

    2014-03-01

    The purpose of this study was to develop a new methodology to visualize in 3 dimensions whole teeth, including the roots, at any moment during orthodontic treatment without the need for multiple cone-beam computed tomography (CBCT) scans. An extraoral typodont model was created using extracted teeth placed in a wax base. These teeth were arranged to represent a typical malocclusion. Initial records of the malocclusion, including CBCT and intraoral surface scans, were taken. Threshold segmentation of the CBCT was performed to generate a 3-dimensional virtual model. This model and the intraoral surface scan model were superimposed to generate a complete set of digital composite teeth composed of high-resolution surface scan crowns sutured to the CBCT roots. These composite teeth were individually isolated from their respective arches for single-tooth manipulations. Orthodontic treatment for the malocclusion typodont model was performed, and posttreatment intraoral surface scans before and after bracket removal were taken. A CBCT scan after bracket removal was also obtained. The isolated composite teeth were individually superimposed onto the posttreatment surface scan, creating the expected root position setup. To validate this setup, it was compared with the posttreatment CBCT scan, which showed the true positions of the roots. Color displacement maps were generated to confirm accurate crown superimpositions and to measure the discrepancies between the expected and the true root positions. Color displacement maps through crown superimpositions showed differences between the expected and true root positions of 0.1678 ± 0.3178 mm for the maxillary teeth and 0.1140 ± 0.1587 mm for the mandibular teeth with brackets. Once the brackets were removed, differences of 0.1634 ± 0.3204 mm for the maxillary teeth and 0.0902 ± 0.2505 mm for the mandibular teeth were found. A new reliable approach was demonstrated in an ex-vivo typdont model to have the potential to track the 3-dimensional positions of whole teeth including the roots, with only the initial CBCT scan and consecutive intraoral scans. Since the presence of brackets in the intraoral scan had a minimal influence in the analysis, this method can be applied at any stage of orthodontic treatment. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. Structural assessment and multi-parameter monitoring - an application to the Salcher landslide (Austria)

    NASA Astrophysics Data System (ADS)

    Engels, Alexander; Canli, Ekrem; Thiebes, Benni; Glade, Thomas

    2015-04-01

    Landslides pose a serious threat to many communities in Austria. The region of Lower Austria is underlayed, amongst others, by the lithological units of the Flysch Zone and the Gresten Klippenbelt. Both are particularly affected by landslides and the majority of episodic occurrences are bound to these two units. The active Salcher landslide is situated at the western border of the municipality of Gresten and is embedded in the geologic transition zone of the respective lithological units. The landslide is a reactivated and deep seated complex landslide that endangers buildings, parts of a road and lifelines such as power and optical fiber lines, fresh and sewage water supplies. Its varying movement rates are in the order of a few centimeters per year and consequently are classified as slow to extremely slow. Despite biannual geodetic surveys, little is known about the dynamic behavior including the triggering and controlling factors and its internal structure. Surface and subsurface investigations were therefore carried out on that landslide. With the intention to detect morphological surface changes, comparative geomorphologic mapping and terrestrial laser scanning was performed. Additionally, surface kinematical information was acquired by historical documents and GNSS measurements. The detailed present soil-physical conditions and their relation to current dynamics were investigated by six drill cores and three inclinometer installations. Soil specimens were obtained by percussion drilling. Particle size distribution, and water and carbonate content were subsequently analyzed in the laboratory. In addition, dynamic probing was performed at 13 sites across the landslide body and resistance values were compared to textural findings. The soil specimens show a heterogeneous texture and large variations in carbonate and water content. Soil wedges, originating from local displacements, were determined in two drill cores. Very high water content and resulting plastic behavior indicate the presence of weakness zones with the geometry of a translational landslide. The depths of the drill cores ranged from 5 m to 9 m. The sampling density of each respective core was less than one meter. The final depth of the three inclinometers ranged from 6.5 m to 13 m. The inclinometers were placed at prominent morphological landslide features like the head, bulged levee and the transitions zone and were maintained over the past eight months. Subsurface displacement measurements were then compared with the soils' texture. GNSS based geomorphological mapping revealed areas that underwent morphological changes. Surface displacements were analyzed by terrestrial laserscanning. These sites investigations are the basis for a detailed understanding of the landslide dynamics. In the future, the measurements will be applied in modelling concepts which will be embedded in a comprehensive landslide early warning system.

  7. Preliminary map of peak horizontal ground acceleration for the Hanshin-Awaji earthquake of January 17, 1995, Japan - Description of Mapped Data Sets

    USGS Publications Warehouse

    Borcherdt, R.D.; Mark, R.K.

    1995-01-01

    The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.

  8. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    PubMed

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  9. Microscopic Mapping of Subnanometric Motion with Multiple-Beam Differential Holographic Technique

    NASA Astrophysics Data System (ADS)

    Lin, Hungyi

    The measurement of ultrasmall displacement is usually performed by laser interferometry. In most cases, this method is specified for the surface measurement and requires a relatively smooth surface capable of reflecting light. In this research, a newly developed method, mutiple -beam microdifferential holography, is introduced to measure a small configuration change. This configuration change can happen on the surface of an object or inside a semitransparent object. In the experiment, two reference beams are used to record a pair of phase biased holographic images simultaneously. During the image reconstruction, the CCD image acquisition system is employed to record the pair of images one at a time and then process them digitally. The subtraction image intuitively shows that the deformation of tested object occurs between the double exposures applied during the holographic recording. A second object beam, usually a plane wave, is added to the imaging system for the purpose of image registration, which is required for the image processing. Several developments upgraded the system performance. The calibration was done with an extremely consistent moving object, a small air bubble drifting in a glycerine-filled capillary. Displacements as small as 0.4 nanometer are reported. In application, a living cell, a single frog muscle fiber, was under examination. This part of the research focused mainly on the crossbridge mechanism of striated muscle contraction. The images made at the plateau of tetanus suggest either that the cycling time constant is much longer than 10 msec, that the displacement for a power stroke is substantially less than 12 nanometer, or that the crossbridge is not cycling during the isometric force generation. The images made at the initial state of force development suggest that a large number of crossbridges shift toward the actin filament at the onset of the force development and stay there (at least without large scale rotation) even when the force has started to develop.

  10. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.

    PubMed

    Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-10-01

    A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.

  11. Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Hoeft, J. S.; Frankel, K. L.

    2010-12-01

    The eastern California shear zone (ECSZ) and Walker Lane represent an evolving segment of the Pacific-North America plate boundary. Understanding temporal variations in strain accumulation and release along plate boundary structures is critical to assessing how deformation is accommodated throughout the lithosphere. Late Pleistocene displacement along the Lone Mountain fault suggests the Silver Peak-Lone Mountain (SPLM) extensional complex is an important structure in accommodating and transferring strain within the ECSZ and Walker Lane. Using geologic and geomorphic mapping, differential global positioning system surveys, and terrestrial cosmogenic nuclide (TCN) geochronology, we determined rates of extension across the Lone Mountain fault in western Nevada. The Lone Mountain fault displaces the northwestern Lone Mountain and Weepah Hills piedmonts and is the northeastern component of the SPLM extensional complex, a series of down-to-the-northwest normal faults. We mapped seven distinct alluvial fan deposits and dated three of the surfaces using 10Be TCN geochronology, yielding ages of 16.5 ± 1.2 ka, 92 ± 9 ka, and 137 ± 25 ka for the Q3b, Q2c, and Q2b deposits, respectively. The ages were combined with scarp profile measurements across the displaced fans to obtain minimum rates of extension; the Q2b and Q2c surfaces yield an extension rate between 0.1 ± 0.1 and 0.2 ± 01 mm/yr and the Q3b surface yields a rate of 0.2 ± 0.1 to 0.4 ± 0.1 mm/yr, depending on the dip of the fault. Active extension on the Lone Mountain fault suggests that it helps partition strain off of the major strike-slip faults in the northern ECSZ and transfers deformation to the east around the Mina Deflection and northward into the Walker Lane. Combining our results with estimates from other faults accommodating dextral shear in the northern ECSZ reveals an apparent discrepancy between short- and long-term rates of strain accumulation and release. If strain rates have remained constant since the late Pleistocene, this could reflect transient strain accumulation, similar to the Mojave segment of the ECSZ. However, our data also suggest a potential increase in strain rates between ~92 ka and ~17 ka, and possibly to present day, which may also help explain the mismatch between long- and short-term rates of deformation in the region.

  12. Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.

    NASA Astrophysics Data System (ADS)

    Kenworthy, S. T.

    2002-12-01

    Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.

  13. Investigation of peak pressure index parameters for people with spinal cord injury using wheelchair tilt-in-space and recline: methodology and preliminary report.

    PubMed

    Lung, Chi-Wen; Yang, Tim D; Crane, Barbara A; Elliott, Jeannette; Dicianno, Brad E; Jan, Yih-Kuen

    2014-01-01

    The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration.

  14. SU-G-JeP1-04: Characterization of a High-Definition Optical Patient Surface Tracking System Across Five Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T; Ayan, A; Cochran, E

    Purpose: To assess the performance of Varian’s real-time, Optical Surface Monitoring System (OSMS) by measuring relative regular and irregular surface detection accuracy in 6 degrees of motion (6DoM), across multiple installations. Methods: Varian’s Intracranial SRS Package includes OSMS, which utilizes 3 HD camera/projector pods to map a patient surface, track intra-fraction motion, and gate the treatment beam if motion exceeds a threshold. To evaluate motion-detection accuracy of OSMS, we recorded shifts of a cube-shaped phantom on a single Varian TrueBeam linear accelerator as known displacements were performed incrementally across 6DoM. A subset of these measurements was repeated on identical OSMSmore » installations. Phantom motion was driven using the TrueBeam treatment couch, and incremented across ±2cm in steps of 0.1mm, 1mm, and 1cm in the cardinal planes, and across ±40° in steps of 0.1°, 1°, and 5° in the rotational (couch kick) direction. Pitch and Roll were evaluated across ±2.5° in steps of 0.1° and 1°. We then repeated this procedure with a frameless SRS setup with a head phantom in a QFix Encompass mask. Results: Preliminary data show OSMS is capable of detecting regular-surfaced phantom displacement within 0.03±0.04mm in the cardinal planes, and within 0.01±0.03° rotation across all planes for multiple installations. In a frameless SRS setup, OSMS is accurate to within 0.10±0.07mm and 0.04±0.07° across 6DoM. Additionally, a reproducible “thermal drift” was observed during the first 15min of monitoring each day, and characterized by recording displacement of a stationary phantom each minute for 25min. Drift settled after 15min to an average delta of 0.26±0.03mm and 0.38±0.03mm from the initial capture in the Y and Z directions, respectively. Conclusion: For both regular surfaces and clinical SRS situations, OSMS exceeds quoted detection accuracy. To reduce error, a warm-up period should be employed to allow camera/projector pod thermal stabilization.« less

  15. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-03-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

  16. Multi-parametric monitoring and assessment of High Intensity Focused Ultrasound (HIFU) boiling by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): An ex vivo feasibility study

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes. PMID:24556974

  17. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-03-07

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

  18. Borehole optical lateral displacement sensor

    DOEpatents

    Lewis, R.E.

    1998-10-20

    There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target`s image is monitored to determine the quantity and direction of any lateral displacement in the target`s image which represents lateral displacement in the surface being monitored. 4 figs.

  19. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    NASA Astrophysics Data System (ADS)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  20. Coulomb stress change of crustal faults in Japan for 21 years, estimated from GNSS displacement

    NASA Astrophysics Data System (ADS)

    Nishimura, T.

    2017-12-01

    Coulomb stress is one of the simplest index to show how the fault is close to a brittle failure (e.g., earthquake). Many previous studies used the Coulomb stress change (ΔCFS) to evaluate whether the fault approaches failure and successfully explained an earthquake triggered by previous earthquakes and volcanic sources. Most studies use a model of a half-space medium with given rheological properties, boundary conditions, dislocation, etc. to calculate ΔCFS. However, Ueda and Takahashi (2005) proposed to calculate DCFS directly from surface displacement observed by GNSS. There are 6 independent components of stress tensor in an isotropic elastic medium. On the surface of the half-space medium, 3 components should be zero because of no traction on the surface. This means the stress change on the surface is calculated from the surface strain change using Hooke's law. Although an earthquake does not occur on surface, the stress change on the surface may approximate that at a depth of a shallow crustal earthquake (e.g., 10 km) if the source is far from the point at which we calculate the stress change. We tested it by comparing ΔCFS from the surface displacement and that from elastic fault models for past earthquakes. We first estimate a strain change with a method of Shen et al.(1996 JGR) from surface displacement and then calculate ΔCFS for a targeted focal mechanism. Although ΔCFS in the vicinity of the source fault cannot be reproduced from the surface displacement, surface displacement gives a good approximation of ΔCFS in a region 50 km away from the source if the target mechanism is a vertical strike-slip fault. It suggests that GNSS observation can give useful information on a recent change of earthquake potential. We, therefore, calculate the temporal evolution of ΔCFS on active faults in southwest Japan from April 1996 using surface displacement at GNSS stations. We used parameters for the active faults used for evaluation of strong motion by the Earthquake Research Committee. When we use 0.4 for an effective frictional coefficient, ΔCFS increased at most active faults in the Kyushu region by up to 50 KPa for 21 years. On the other hand, ΔCFS did not always increase at active faults in the Kinki region.

  1. Simultaneous glacier surface elevation and flow velocity mapping from cross-track pushbroom satellite Imagery

    NASA Astrophysics Data System (ADS)

    Noh, M. J.; Howat, I. M.

    2017-12-01

    Glaciers and ice sheets are changing rapidly. Digital Elevation Models (DEMs) and Velocity Maps (VMs) obtained from repeat satellite imagery provide critical measurements of changes in glacier dynamics and mass balance over large, remote areas. DEMs created from stereopairs obtained during the same satellite pass through sensor re-pointing (i.e. "in-track stereo") have been most commonly used. In-track stereo has the advantage of minimizing the time separation and, thus, surface motion between image acquisitions, so that the ice surface can be assumed motionless in when collocating pixels between image pairs. Since the DEM extraction process assumes that all motion between collocated pixels is due to parallax or sensor model error, significant ice motion results in DEM quality loss or failure. In-track stereo, however, puts a greater demand on satellite tasking resources and, therefore, is much less abundant than single-scan imagery. Thus, if ice surface motion can be mitigated, the ability to extract surface elevation measurements from pairs of repeat single-scan "cross-track" imagery would greatly increase the extent and temporal resolution of ice surface change. Additionally, the ice motion measured by the DEM extraction process would itself provide a useful velocity measurement. We develop a novel algorithm for generating high-quality DEMs and VMs from cross-track image pairs without any prior information using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm and its sensor model bias correction capabilities. Using a test suite of repeat, single-scan imagery from WorldView and QuickBird sensors collected over fast-moving outlet glaciers, we develop a method by which RPC biases between images are first calculated and removed over ice-free surfaces. Subpixel displacements over the ice are then constrained and used to correct the parallax estimate. Initial tests yield DEM results with the same quality as in-track stereo for cases where snowfall has not occurred between the two images and when the images have similar ground sample distances. The resulting velocity map also closely matches independent measurements.

  2. Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.

    PubMed

    Graham, Sarah E; Smith, Richard D; Carlson, Heather A

    2018-02-26

    Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.

  3. A multi-technique approach for characterizing the geomorphological evolution of a Villerville-Cricqueboeuf coastal landslide (Normandy, France).

    NASA Astrophysics Data System (ADS)

    Lissak Borges, Candide; Maquaire, Olivier; Malet, Jean-Philippe; Gomez, Christopher; Lavigne, Franck

    2010-05-01

    The Villerville and Cricqueboeuf coastal landslides (Calvados, Normandy, North-West France) have occurred in marly, sandy and chalky formations. The slope instability probably started during the last Quaternary period and is still active over the recent historic period. Since 1982, the slope is affected by a permanent activity (following the Varnes classification) with an annual average displacement of 5-10 cm.y-1 depending on the season. Three major events occurred in 1988, 1995 and 2001 and are controlled by the hydro-climatic conditions. These events induced pluri-decimetres to pluri-meters displacements (e.g. 5m horizontal displacements have been observed in 2001 at Cricqueboeuf) and generated economical and physical damage to buildings and roads. The landslide morphology is characterized by multi-metres scarps, reverse slopes caused by the tilting of landslide blocks and evolving cracks. The objective of this paper is to present the methodology used to characterize the recent historical (since 1808) geomorphological evolution of the landslides, and to discuss the spatio-temporal pattern of observed displacements. A multi-technique research approach has been applied and consisted in historical research, geomorphological mapping, geodetic monitoring and engineering geotechnical investigation. Information gained from different documents and techniques has been combined to propose a conceptual model of landslide evolution: - a retrospective study on landslide events inventoried in the historic period (archive investigation, newspapers); - a multi-temporal (1955-2006) analysis of aerial photographs (image processing, traditional stereoscopic techniques and image orthorectification), ancient maps and cadastres; - the creation of a detailed geomorphological map in 2009; - an analysis of recent displacements monitored since 1985 with traditional geodetic techniques (tacheometry, dGPS, micro-levelling) - geophysical investigation by ground-penetrating radar along the main road in order to assess the subsidence of the road according to the thickness of the filling material. Integration of the knowledge allows to characterize the landscape changes over the historical time. Displacement values obtained over nearly 200 years reflect annual slow movement and crisis acceleration. Values are dispersed in space and time. An average of displacements of 12.30 m year-1 (σ = 8.50) between 1829 and 2006 is observed for the Villerville landslide. This average allows calculating an annual displacement of 0.07 m which can be compared to data recorded since 1985 and by annual DGPS measurement data between 2008 and 2009.

  4. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  5. Socio-Ecological Changes and Human Mobility in Landslide Zones of Chamoli District of Uttarakhand

    NASA Astrophysics Data System (ADS)

    Singh, Desh Deepak

    2017-04-01

    Disaster displacement represents one of the biggest humanitarian challenges of the 21st century. Between 2008 and 2014, 184.6 million people were forced from their homes due to different natural disasters, with 19.3 million newly displaced in 2014, according to the latest available data from the Internal Displacement Monitoring Centre (IDMC). In Uttarakhand state in India, hill slopes are known for their instability as they are ecologically fragile, tectonically and seismically active, and geologically sensitive that makes it prone to landslide hazards. Coupled to this, the rapid expansion of human societies often forces people to occupy highly dynamic and unstable environments. Repeated instances of landslide in highly populated areas have now forced many people to out migrate from vulnerable and high risk areas of Uttarakhand. The present study overlays the maps of geology, vegetation, route network, and settlement of Chamoli district of Uttarakhand to find out through overlay analysis, the landslide risk zonation map of Chamoli. Further, through primary survey in the high risk zones, the migration pattern and migration intensity has been analysed and a model for determining long term trend of migration in ecologically changing location has been developed. Keywords: Landslides, Uttarakhand, Migration, Risk Zonation Mapping

  6. Mapping-guided characterization of mechanical and electrical activation patterns in patients with normal systolic function using a sensor-based tracking technology.

    PubMed

    Piorkowski, Christopher; Breithardt, Ole-A; Razavi, Hedi; Nabutovsky, Yelena; Rosenberg, Stuart P; Markovitz, Craig D; Arya, Arash; Rolf, Sascha; John, Silke; Kosiuk, Jedrzej; Olson, Eric; Eitel, Charlotte; Huo, Yan; Döring, Michael; Richter, Sergio; Ryu, Kyungmoo; Gaspar, Thomas; Prinzen, Frits W; Hindricks, Gerhard; Sommer, Philipp

    2017-10-01

    In times of evolving cardiac resynchronization therapy, intra-procedural characterization of left ventricular (LV) mechanical activation patterns is desired but technically challenging with currently available technologies. In patients with normal systolic function, we evaluated the feasibility of characterizing LV wall motion using a novel sensor-based, real-time tracking technology. Ten patients underwent simultaneous motion and electrical mapping of the LV endocardium during sinus rhythm using electroanatomical mapping and navigational systems (EnSite™ NavX™ and MediGuide™, SJM). Epicardial motion data were also collected simultaneously at corresponding locations from accessible coronary sinus branches. Displacements at each mapping point and times of electrical and mechanical activation were combined over each of the six standard LV wall segments. Mechanical activation timing was compared with that from electrical activation and preoperative 2D speckle tracking echocardiography (echo). MediGuide-based displacement data were further analysed to estimate LV chamber volumes that were compared with echo and magnetic resonance imaging (MRI). The lateral and septal walls exhibited the largest (12.5 [11.6-15.0] mm) and smallest (10.2 [9.0-11.3] mm) displacement, respectively. Radial displacement was significantly larger endocardially than epicardially (endo: 6.7 [5.0-9.1] mm; epi: 3.8 [2.4-5.6] mm), while longitudinal displacement was significantly larger epicardially (endo: 8.0 [5.0-10.6] mm; epi: 10.3 [7.4-13.8] mm). Most often, the anteroseptal/anterior and lateral walls showed the earliest and latest mechanical activations, respectively. 9/10 patients had concordant or adjacent wall segments of latest mechanical and electrical activation, and 6/10 patients had concordant or adjacent wall segments of latest mechanical activation as measured by MediGuide and echo. MediGuide's LV chamber volumes were significantly correlated with MRI (R2= 0.73, P < 0.01) and echo (R2= 0.75, P < 0.001). The feasibility of mapping-guided intra-procedural characterization of LV wall motion was established. http://www.clinicaltrials.gov; Unique identifier: CT01629160. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  7. Spatial patterns of Armillaria populations in the walker branch watershed throughfall displacement experiment, Tennessee,USA.

    Treesearch

    Johann N. Bruhn; James A. Brenneman; James J., Jr. Wetteroff; Jeanne D. Mihail; Theodor D. Leininger

    1997-01-01

    Species in the white-rot fungal genus Armillaria vary in parasitic aggressiveness as root and butt rot pathogens of trees. Armillaria genets (individuals) were mapped in the Throughfall Displacement Experiment (TDE) using mushrooms and rhizomorphs collected in 1994 and 1995. Initiated in July 1993, the TDE consists of three 80 x 80...

  8. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude that the last surface-rupturing earthquake likely occurred between 3 and 8 ka BP and produced an average surface displacement of 2 m. According to scaling relationships, the associated earthquake would have reached Mw 7.2. In addition, cumulative deformation suggests an average vertical slip rate of 1 mm/yr for the Holocene.

  9. Basal Ganglia Shape Abnormalities in the Unaffected Siblings of Schizophrenia Patients

    PubMed Central

    Mamah, Daniel; Harms, Michael P.; Wang, Lei; Barch, Deanna; Thompson, Paul; Kim, Jaeyun; Miller, Michael I.; Csernansky, John G.

    2008-01-01

    Objective Abnormalities of basal ganglia structure in schizophrenia have been attributed to the effects of antipsychotic drugs. Our aim was to test the hypothesis that abnormalities of basal ganglia structure are intrinsic features of schizophrenia, by assessing basal ganglia volume and shape in the unaffected siblings of schizophrenia subjects. Method The study involved 25 pairs of schizophrenia subjects and their unaffected siblings and 40 pairs of healthy controls and their siblings. Large deformation, high-dimensional brain mapping was used to obtain surface representations of the caudate, putamen, and globus pallidus. Surfaces were derived from transformations of anatomical templates and shapes were analyzed using reduced-dimensional measures of surface variability (i.e. principal components and canonical analysis). Canonical functions were derived using schizophrenia and control groups, and were then used to compare shapes in the sibling groups. To visualize shape differences, maps of the estimated surface displacement between groups were created. Results In the caudate, putamen and globus pallidus, the degree of shape abnormality observed in the siblings of the schizophrenia subjects was intermediate between the schizophrenia subjects and the controls. In the schizophrenia subjects, significant correlations were observed between measures of caudate, putamen and globus pallidus structure and the selected measures of lifetime psychopathology. Conclusions Attenuated abnormalities of basal ganglia structure are present in the unaffected siblings of schizophrenia subjects. This finding implies that basal ganglia structural abnormalities observed in subjects with schizophrenia are at least in part an intrinsic feature of the illness. PMID:18295189

  10. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  11. Investigating the dynamics of surface-immobilized DNA nanomachines

    PubMed Central

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-01-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors. PMID:27387252

  12. Investigating the dynamics of surface-immobilized DNA nanomachines

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-07-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors.

  13. A deformation analysis of flat flexible gear and its equation of original curved surfaces

    NASA Technical Reports Server (NTRS)

    Yunwen, S.

    1985-01-01

    The equation of the original curved surface of end harmonic gearing is determined by displacement analysis of flat flexible gear. The displacement analysis is also used to calculate the strength and rigidity of the gear. The latter is regarded as a circular plate with two concentrated loads, since its torsional rigidity is much larger than its bending rigidity. Small-deflection theory of thin plates is used to solve for the displacement of any point in the middle plane of the gear. New expressions are given for radial and tangential displacements of the middle plane under asymmetrical loading. A digital computer is used to obtain numerical values for the displacements.

  14. 14 CFR 25.331 - Symmetric maneuvering conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Where sudden displacement of a control is specified, the assumed rate of control surface displacement... torque or maximum rate obtainable by a power control system.) (1) Maximum pitch control displacement at V..., whichever occurs first, need not be considered. (2) Specified control displacement. A checked maneuver...

  15. Automatic grinding apparatus to control uniform specimen thicknesses

    DOEpatents

    Bryner, Joseph S.

    1982-01-01

    This invention is directed to a new and improved grinding apparatus comprising (1) a movable grinding surface, (2) a specimen holder, (3) a displacing device for moving the holder and/or grinding surface toward one another, and (4) at least three devices for limiting displacement of the holder to the grinding surface.

  16. Simultaneous measurement of displacement current and absorption spectra of Langmuir film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Kubota, Tohru; Iwamoto, Mitsumasa

    1995-07-01

    A Maxwell-displacement-current measuring system coupled with the system used for the measurement of absorption spectra of monolayers on a water surface has been developed. Using this system, the displacement current and the absorbance across monolayers of squarylium dye at the air/water surface were detected. It was found that the change in J aggregate in the monolayers with monolayer compression was detectable using the system.

  17. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    NASA Astrophysics Data System (ADS)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  18. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    NASA Astrophysics Data System (ADS)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  19. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Marinozzi, F.; Bini, F.; Biagioni, A.; Grandoni, A.; Spicci, L.

    2013-09-01

    The paper reports the experimental investigation of the behavior of 2-2 Lead Zirconate Titanate (PZT)-polymer composite transducers array for clinical ultrasound equipments. Several 2-2 plate composites having the same dicing pitch of 0.11 mm and different volume fractions were manufactured and investigated. Measurements were performed through different techniques such as electrical impedance, pulse-echo, and Laser Doppler Vibrometer. With the last one, maps of the surface displacement were presented relative to thickness mode and first lateral mode resonance frequencies. The transducers with volume fractions of the 40% resulted markedly inefficient, whereas the largest bandwidth and best band shape were achieved by the 50%.

  20. Predictive modeling of neuroanatomic structures for brain atrophy detection

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  1. Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.

    2000-01-18

    We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line inmore » three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.« less

  2. El Niño rides again

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    Another weather-disrupting El Niño may be brewing in the Pacific Ocean, according to ocean measurements taken by NASA instruments on two orbiting satellites. Sea-surface height measurements taken by the radar altimeter on board the joint U.S.-French TOPEX/Poseidon satellite and wind data collected by the NASA scatterometer on Japan's Advanced Earth Observing Satellite (ADEOS) have been used together for the first time to predict changing weather conditions in the tropical Pacific Ocean.El Niño occurs when steady westward blowing trade winds weaken and reverse direction, moving the mass of warm water near Australia eastward to the coast of South America. The displacement of the warm water mass alters the atmospheric jet stream and weather patterns around the world. The TOPEX/Poseidon satellite uses an altimeter to bounce radar signals off the ocean's surface to make precise measurements of the distance between the satellite and sea surface. Researchers then map the barely perceptible hills and valleys of the sea surface by combining these data with measurements pinpointing the satellite's exact location in space.

  3. Interferometric surface mapping with variable sensitivity.

    PubMed

    Jaerisch, W; Makosch, G

    1978-03-01

    In the photolithographic process, presently employed for the production of integrated circuits, sets of correlated masks are used for exposing the photoresist on silicon wafers. Various sets of masks which are printed in different printing tools must be aligned correctly with respect to the structures produced on the wafer in previous process steps. Even when perfect alignment is considered, displacements and distortions of the printed wafer patterns occur. They are caused by imperfections of the printing tools or/and wafer deformations resulting from high temperature processes. Since the electrical properties of the final integrated circuits and therefore the manufacturing yield depend to a great extent on the precision at which such patterns are superimposed, simple and fast overlay measurements and flatness measurements as well are very important in IC-manufacturing. A simple optical interference method for flatness measurements will be described which can be used under manufacturing conditions. This method permits testing of surface height variations by nearly grazing light incidence by absence of a physical reference plane. It can be applied to polished surfaces and rough surfaces as well.

  4. Grazing-incidence X-ray diffraction from a crystal with subsurface defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaevskii, A. Yu., E-mail: transilv@mail.ru; Golentus, I. E.

    2015-03-15

    The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaksmore » are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.« less

  5. Method of making self-calibrated displacement measurements

    DOEpatents

    Pedersen, Herbert N.

    1977-01-01

    A method for monitoring the displacement of an object having an acoustically reflective surface at least partially submerged in an acoustically conductive medium. The reflective surface is designed to have a stepped interface responsive to an incident acoustic pulse to provide separate discrete reflected pulses to a receiving transducer. The difference in the time of flight of the reflected acoustic signals corresponds to the known step height and the time of travel of the signals to the receiving transducer provides a measure of the displacement of the object. Accordingly, the reference step length enables simultaneous calibration of each displacement measurement.

  6. Linear and angular retroreflecting interferometric alignment target

    DOEpatents

    Maxey, L. Curtis

    2001-01-01

    The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

  7. Applications of low altitude photogrammetry for morphometry, displacements, and landform modeling

    NASA Astrophysics Data System (ADS)

    Gomez, F. G.; Polun, S. G.; Hickcox, K.; Miles, C.; Delisle, C.; Beem, J. R.

    2016-12-01

    Low-altitude aerial surveying is emerging as a tool that greatly improves the ease and efficiency of measuring landforms for quantitative geomorphic analyses. High-resolution, close-range photogrammetry produces dense, 3-dimensional point clouds that facilitate the construction of digital surface models, as well as a potential means of classifying ground targets using spatial structure. This study presents results from recent applications of UAS-based photogrammetry, including high resolution surface morphometry of a lava flow, repeat-pass applications to mass movements, and fault scarp degradation modeling. Depending upon the desired photographic resolution and the platform/payload flown, aerial photos are typically acquired at altitudes of 40 - 100 meters above the ground surface. In all cases, high-precision ground control points are key for accurate (and repeatable) orientation - relying on low-precision GPS coordinates (whether on the ground or geotags in the aerial photos) typically results in substantial rotations (tilt) of the reference frame. Using common ground control points between repeat surveys results in matching point clouds with RMS residuals better than 10 cm. In arid regions, the point cloud is used to assess lava flow surface roughness using multi-scale measurements of point cloud dimensionality. For the landslide study, the point cloud provides a basis for assessing possible displacements. In addition, the high resolution orthophotos facilitate mapping of fractures and their growth. For neotectonic applications, we compare fault scarp modeling results from UAV-derived point clouds versus field-based surveys (kinematic GPS and electronic distance measurements). In summary, there is a wide ranging toolbox of low-altitude aerial platforms becoming available for field geoscientists. In many instances, these tools will present convenience and reduced cost compared with the effort and expense to contract acquisitions of aerial imagery.

  8. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  9. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    NASA Astrophysics Data System (ADS)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  10. 3D Deformation at the Coso Geothermal Field - Observations and Models

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; McClusky, S.; King, R. W.

    2001-12-01

    Over the past decade, rapid ground deformation has been measured over the Coso geothermal field in Eastern CA using InSAR and GPS. InSAR resolves changes in distance along the line-of-sight (LOS) to the satellite with high spatial coverage. In the Coso geothermal field the maximum LOS displacements are up to 35 mm/yr. The inclination of the LOS is acute (about 20 degrees), hence the majority of the deformation resolved with InSAR is vertical, however LOS displacements are also affected by horizontal displacements. The ratio of the sensitivity of LOS displacements to vertical and horizontal displacements is at most 5 to 2, for horizontal displacements inline with the LOS. GPS is able to resolve large horizontal displacements in this area, leading to the conclusion that the InSAR LOS displacement fields are non-trivially affected by horizontal displacements. Additionally, since the horizontal displacements are large, GPS is also able to resolve vertical displacements. Moreover, the GPS three component velocities are fairly consistent with the LOS displacements from InSAR. This deformation has been largely attributed to subsidence as fluid is extracted from the geothermal reservoir. The reservoir has been previously modeled as deflating elliptical volumes and as collapsing sills. The elliptical volumes are described as Mogi sources, which are mathematically given as point forces along a line. The collapsing sills are treated as Okada dislocations for finite area faults with pure tensile displacements across them. In both of these dislocation models of the reservoir, the elastic moduli of the rock remains constant with changing fluid pressure. Actual reservoirs are more likely composed of regions of rock permeated with fluid-filled cracks and pores. In such a composite material, changing the pore-fluid pressure changes the elastic moduli of the region. These moduli changes cause the region to deform under loading, thus resulting in observed surface displacements. The surface displacements resulting from models with varying moduli of the reservoir rock are markedly different from patterns of surface displacements resulting from models in which the reservoir is treated as dislocations. For a given reservoir size, the differences in displacements from the various models are clearest in the horizontal displacement field, differing by up to a factor of two. We use finite element models with simple reservoir geometries to investigate the sensitivity of both vertical and horizontal displacements to the chosen reservoir model.

  11. Displacement and Deflection of AN Optical Beam by Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Caron, James N.

    2008-02-01

    Gas-Coupled Laser Acoustic Detection enables laser-based sensing of ultrasound from a solid without contact of the surface, and independent of the optical properties of the solid surface. The interaction between the probe beam and acoustic field has typically been modeled as creating a deflection in the optical beam. This paper describes this interaction as a combination of displacement and deflection. Sensing displacement can significantly decrease the system's dependence of length.

  12. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias

    2017-07-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.

  13. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements

    NASA Astrophysics Data System (ADS)

    Arab-Sedze, Melanie; Heggy, Essam; Bretard, Frederic; Berveiller, Daniel; Jacquemoud, Stephane

    2014-07-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS - PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measure- ments. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a'a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a'a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI (Leaf Area Index) produced using SPOT 5 imagery allows us to quantify the effect of vegeta- tion density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.

  14. Kinematics of polygonal fault systems: observations from the northern North Sea

    NASA Astrophysics Data System (ADS)

    Wrona, Thilo; Magee, Craig; Jackson, Christopher A.-L.; Huuse, Mads; Taylor, Kevin G.

    2017-12-01

    Layer-bound, low-displacement normal faults, arranged into a broadly polygonal pattern, are common in many sedimentary basins. Despite having constrained their gross geometry, we have a relatively poor understanding of the processes controlling the nucleation and growth (i.e. the kinematics) of polygonal fault systems. In this study we use high-resolution 3-D seismic reflection and borehole data from the northern North Sea to undertake a detailed kinematic analysis of faults forming part of a seismically well-imaged polygonal fault system hosted within the up to 1000 m thick, Early Palaeocene-to-Middle Miocene mudstones of the Hordaland Group. Growth strata and displacement-depth profiles indicate faulting commenced during the Eocene to early Oligocene, with reactivation possibly occurring in the late Oligocene to middle Miocene. Mapping the position of displacement maxima on 137 polygonal faults suggests that the majority (64%) nucleated in the lower 500 m of the Hordaland Group. The uniform distribution of polygonal fault strikes in the area indicates that nucleation and growth were not driven by gravity or far-field tectonic extension as has previously been suggested. Instead, fault growth was likely facilitated by low coefficients of residual friction on existing slip surfaces, and probably involved significant layer-parallel contraction (strains of 0.01-0.19) of the host strata. To summarize, our kinematic analysis provides new insights into the spatial and temporal evolution of polygonal fault systems.

  15. Axisymmetric deformation of a poroelastic layer overlying an elastic half-space due to surface loading

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Rani, Sunita

    2017-11-01

    The axisymmetric deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half-space due to surface loads has been obtained. The fluid and the solid constituents of the porous layer are compressible and the permeability in vertical direction is different from its permeability in horizontal direction. The displacements and pore-pressure are taken as basic state variables. An analytical solution for the pore-pressure, displacements and stresses has been obtained using the Laplace-Hankel transform technique. The case of normal disc loading is discussed in detail. Diffusion of pore-pressure is obtained in the space-time domain. The Laplace inversion is evaluated using the fixed Talbot algorithm and the Hankel inversion using the extended Simpson's rule. Two different models of the Earth have been considered: continental crust model and oceanic crust model. For continental crust model, the layer is assumed to be of Westerly Granite and for the oceanic crust model of Hanford Basalt. The effect of the compressibilities of the fluid as well as solid constituents and anisotropy in permeability has been studied on the diffusion of pore-pressure. Contour maps have been plotted for the diffusion of pore-pressure for both models. It is observed that the pore-pressure changes to compression for the continental crust model with time, which is not true for the oceanic crust.

  16. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    PubMed

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  17. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  18. Effect of soil parameters on the kinetics of the displacement of Fe from FeEDDHA chelates by Cu.

    PubMed

    Schenkeveld, Walter D C; Reichwein, Arjen M; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2012-06-28

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is codetermined by the kinetics of the displacement reaction. In this study, the influence of soil parameters on the displacement kinetics has been examined in goethite suspensions. The displacement reaction predominantly takes place on the reactive surface rather than in solution. The rate at which the o,o-FeEDDHA concentration declined depended on the available reactive surface area, the Cu loading, and the FeEDDHA loading. Soil factors reducing FeEDDHA adsorption (high ionic strength, humic acid adsorption onto the goethite surface, and monovalent instead of divalent cations in the electrolyte) decreased the displacement rate. For meso o,o-FeEDDHA, the displacement rate equation was derived, which is first order in FeEDDHA loading and half order in Cu loading. For soil conditions, the equation can be simplified to an exponential decay function in meso o,o-FeEDDHA solution concentration.

  19. Kinematics Mapping and Monitoring of ''Swiss Cheese'' Features in the Polar Icy Regions Over Two Martian Years Base on HIRISE-MOC (NASA) Images

    NASA Astrophysics Data System (ADS)

    Aftabi, P.

    2016-06-01

    The mapping and monitoring of ''swiss cheese'' feature example of this paper achieved by pixel markers measurements pro-posed by author. This monoring suggest high amount of displacements in pits of Martian polar areas.

  20. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    USGS Publications Warehouse

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  1. Conflict, displacement and sexual and reproductive health services in Mali: analysis of 2013 health resources availability mapping system (HeRAMS) survey.

    PubMed

    Tunçalp, Özge; Fall, Ibrahima Socé; Phillips, Sharon J; Williams, Inga; Sacko, Massambou; Touré, Ousmane Boubacar; Thomas, Lisa J; Say, Lale

    2015-01-01

    Little is known specifically about the effects of conflict and displacement on provision of sexual and reproductive health (SRH) services. We aimed to understand the association between levels of conflict and displacement and the availability of SRH services in post-conflict Mali. A national assessment was conducted between April and May 2013 employing Health Systems Availability Mapping System (HeRAMS). Data from 1581 primary care facilities were analysed, focusing on SRH services. Descriptive analyses and multivariable logistic regression models were used to examine the availability of SRH services by different levels of conflict and displacement. Of 1581 facilities, 1551 had data available to identify the details of service provision. The majority of the facilities were part of the public sector (79.1 %), identified as basic community primary care facilities (71.9 %). Overall 15.7 % of the facilities were in the zones under occupation, 40.3 % in the areas with high concentration of displaced population and 44 % in areas with low concentration of displaced populations. Between zones of low concentration of displaced populations and under occupation the likelihood of service availability varied between OR: 2.9 (95 % CI 2.0-4.4) for basic emergency obstetric care and OR: 41.7 (95 % CI 20.4-85.3) for family planning. All of the services within the three domains of SRH were more likely to be available in the low and high concentration displaced population areas compared to the facilities in the under occupation zones, after adjusting for other facility-related variables. Areas with high concentration of displaced population had less service availability, and areas formerly under occupation had the least service availability. This suggests that those living in conflict areas, and many of those who are internally displaced, have poor access to essential SRH interventions. The systematic measurement of the availability of health services, including SRH, is feasible and can contribute to recovery planning in post-conflict and humanitarian settings.

  2. Explosion source strong ground motions in the Mississippi embayment

    USGS Publications Warehouse

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  3. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    PubMed

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  4. Simplified models for displaced dark matter signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  5. Simplified models for displaced dark matter signatures

    DOE PAGES

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian; ...

    2017-09-18

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  6. Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber

    NASA Astrophysics Data System (ADS)

    Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.

    2017-01-01

    The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.

  7. Modeling of normal contact of elastic bodies with surface relief taken into account

    NASA Astrophysics Data System (ADS)

    Goryacheva, I. G.; Tsukanov, I. Yu

    2018-04-01

    An approach to account the surface relief in normal contact problems for rough bodies on the basis of an additional displacement function for asperities is considered. The method and analytic expressions for calculating the additional displacement function for one-scale and two-scale wavy relief are presented. The influence of the microrelief geometric parameters, including the number of scales and asperities density, on additional displacements of the rough layer is analyzed.

  8. A novel craniotomy simulation system for evaluation of stereo-pair reconstruction fidelity and tracking

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2016-03-01

    Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.

  9. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  10. Complete Soil-Structure Interaction (SSI) Analyses of I-walls Embedded in Level Ground During Flood Loading

    DTIC Science & Technology

    2012-09-01

    at the ground surface el 0 ft versus water elevation...sheet pile at the ground surface . ................ 62  Figure 3.24. Total displacements for a water elevation of 16.5 ft and a gap tip elevation of -11...103  Figure 4.19. Relative horizontal displacements of the sheet pile at the ground surface

  11. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have spanned the majority of the Warm Springs section and possibly continued south into the Willow Creek Hills based on paleoseismic and surface-offset data. We conclude that the Willow Creek Hills structural boundary has likely moderated, but not completely impeded both prehistoric and 1983 ruptures of the northern LRFZ.

  12. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  13. Optimum Sea Surface Displacement and Fault Slip Distribution of the 2017 Tehuantepec Earthquake (Mw 8.2) in Mexico Estimated From Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Mulia, Iyan E.; Satake, Kenji

    2018-01-01

    The 2017 Tehuantepec earthquake (Mw 8.2) was the first great normal fault event ever instrumentally recorded to occur in the Middle America Trench. The earthquake generated a tsunami with an amplitude of 1.8 m (height = 3.5 m) in Puerto Chiapas, Mexico. Tsunami waveforms recorded at coastal tide gauges and offshore buoy stations were used to estimate the optimum sea surface displacement without assuming any fault. Our optimum sea surface displacement model indicated that the maximum uplift of 0.5 m is located near the trench and the maximum subsidence of 0.8 m on the coastal side near the epicenter. We then estimated the fault slip distribution that can best explain the optimum sea surface displacement assuming 10 different fault geometries. The best model suggests that a compact region of large slip (3-6 m) extends from a depth of 30 km to 90 km, centered at a depth of 60 km.

  14. Mapping the kinematics of the Blaubach landslide (Austria) using digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Kaufmann, V.; Lieb, G. K.

    2003-04-01

    The Blaubach landslide (12°08'E, 47°12'N, northern margin of the Hohe Tauern range, Austria) is located in the upper part of the catchment area of the Blaubach torrent. The latter follows an important Eastern Alpine fault. The area of interest is built of tectonically fractured rock favoring fluvial erosion, debris flows, and other types of mass movements triggered by widespread deep reaching gravitational slope deformations. The Blaubach landslide is characterized by high surface movement and a front with several secondary slides, which are free of vegetation and provide high quantities of material to the torrent below. This natural hazard has induced the construction of protective measures such as retaining walls in the torrent bed since 1950. However, as of yet no numerical data have been available concerning the surface kinematics of the landslide, such as flow/creep velocity, surface height change, or volumetric change. The Austrian Forest Engineering Service of Torrent and Avalanche Control therefore launched a project related to these questions. One task was to reconstruct the morphodynamics of the landslide area using historical multi-temporal aerial photographs. Aerial photographs at various image scales between 1:9,300 and 1:45,800 of 11 different data acquisition periods between 1953 and 1999 were acquired from the Austrian Federal Office of Surveying and Mapping. The photographs were scanned using the UltraScan 5000 of Vexcel Imaging Austria in order to facilitate digital photogrammetry. A special software package ADVM (Automatic Displacement Vector Measurement), originally developed at the Institute of Geodesy for monitoring debris-covered glaciers and rock glaciers, was used to automatically derive three-dimensional displacement vectors, both area-wide and dense, based on advanced image matching techniques. The digital photogrammetric method applied is based on quasi-orthophotos. This approach supports the fusion of multi-temporal aerial photographs irrespective of the geometrical differences in scale and orientation of the photographs. As a result, high-resolution digital terrain models were obtained for all periods, thus facilitating the computation of the changes in surface height and volume of the landslide in the course of the past 46 years. Maximum changes in surface height due to surface deformation were measured at +10.0 m and -15.0 m. A mean annual sediment load of 12,000 m3/year was estimated as an input to the Blaubach torrent for the 1990s. An average of 39,900 three-dimensional displacement vectors were obtained for all time periods calculated. Numerical and graphical representations of the results obtained show that the landslide was active throughout the observed time span, with maximum creep velocities of up to 1.6-1.8 m/year for the time period 1953-1962. For 1991-1999 a maximum creep velocity of 1.3 m/year was measured. In conclusion, slope deformation and creep velocity of the Blaubach landslide could be measured successfully with high spatial and temporal resolution using digital photogrammetric methods applied to time-series of aerial photographs from a public archive. However, the digital method proposed only works satisfactorily if the available photographs are of good quality and have distinct photo textures and if the landscape observed does not change too much in its surface representation during observation periods.

  15. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The restoring force on a dielectric in a parallel plate capacitor

    NASA Astrophysics Data System (ADS)

    Staunton, L. P.

    2014-09-01

    We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.

  17. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  18. Sentinel-1 Radar Shows Ground Motion From Sept. 2017 Oaxaca-Chiapas, Mexico Quake

    NASA Image and Video Library

    2017-09-20

    NASA and its partners are contributing important observations and expertise to the ongoing response to the Sept. 7, 2017 (local time), magnitude 8.1 Oaxaca-Chiapas earthquake in Mexico. This earthquake was the strongest in more than a century in Mexico. It has caused a significant humanitarian crisis, with widespread building damage and triggered landslides throughout the region. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory in Pasadena, California; and Caltech, also in Pasadena, analyzed interferometric synthetic aperture radar images from the radar instrument on the Copernicus Sentinel-1A and Sentinel-1B satellites operated by the European Space Agency (ESA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a six-day interval between radar images acquired by the two Sentinel-1 satellites on Sept. 7 and Sept. 13, 2017. In this map, the colors of the surface displacements are proportional to the surface motion. The red tones show the areas along the coast of Chiapas and Oaxaca have moved toward the satellite by as much as 9 inches (22 centimeters) in a combination of up and eastward motion. The area in between and farther north with various shades of blue moved away from the satellite, mostly downward or westward, by as much as 6 inches (15 centimeters). Areas without color are open water or heavy vegetation, which prevent the radar from measuring change between the satellite images. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The green star shows the location of the earthquake epicenter estimated by the United States Geological Survey (USGS) National Earthquake Information Center. Map contains modified Copernicus Sentinel data 2017, processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team. This research was carried out at JPL under a contract with NASA. Sentinel-1 data were accessed through the Copernicus Open Access Hub. An annotated figures is available at https://photojournal.jpl.nasa.gov/catalog/PIA21962

  19. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  20. Rapid evolution of the paraglacial Moosfluh rock slope instability (Swiss Alps) captured by Sentinel-1

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Glueer, Franziska; Loew, Simon

    2017-04-01

    The Great Aletsch Region (GAR, Swiss Alps) has undergone to several cycles of glacial advancement and retreat, which have deeply affected the evolution of the surrounding landscape. Currently, this region is one of the places where the effects of climate change can be strikingly observed, as the Aletsch glacier is experiencing a remarkable retreat with rates in the order of 50 meters every year. In particular, a deep-seated slope instability located in the area called "Moosfluh" has shown during the past 20 years evidences of a slow but progressive increase of surface displacement. The moving mass associated to the Moosfluh rockslide affects an area of about 2 km2 and entails a volume estimated in the order of 150-200 Mm3. In the late summer 2016, an unusual acceleration of the Moosfluh rockslide was observed. Compared to previous years, when ground deformations were in the order of few centimeters, in the period September-October 2016 maximum velocities have reached locally 1 m/day. Such a critical evolution resulted in an increased number of local rock failures and caused the generation of several deep tensile cracks, hindering the access to hiking paths visited by tourists. Moreover, surface deformations have also affected the Moosfluh cable car station, located near the crest of the unstable slope. In this critical framework, the information available on ground was not enough to disentangle the spatial extent of the most active region. To investigate that, we have processed a number of Sentinel-1 SAR images acquired over the GAR. We paired images with maximum temporal baseline spanning 12 and 24 days, in order to preserve the highest possible interferometric coherence over the target area. Secondly, by stacking surface displacements obtained from the differential interferograms, we have increased the signal-to-noise ratio to produce velocity maps of the Moosfluh landslide over the period of interest. This approach has allowed us to constrain the lateral borders of the most active area, and to define a strategy for the installation of additional in-situ monitoring targets. Thus, we have improved our capability to monitor in near-real-time the evolution of surface displacement, as well as to provide a better interpretation of the ongoing critical phase and to define evolutionary scenarios. Space borne DInSAR for the analysis of unstable slopes is experiencing a new Era. In former times, the combination of poor temporal sampling and rapid evolution of surface displacements has hindered this technique from performing analysis on landslides during critical acceleration phases. Indeed, the time spanning between the acquisition of a robust SAR dataset and the availability of reliable results were in the order months or, in some cases, even years. Nowadays, by leveraging the unprecedented spatial and temporal coverage provided by the ESA Sentinel-1 A and B, the time spanning from data acquisition to the generation of ground displacements has been reduced to weeks or, in some cases, days. Thus, we can now obtain information current stage of the slope instability and also to catch the rapid evolution towards a potential catastrophic failure.

  1. Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan

    NASA Astrophysics Data System (ADS)

    Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.

    2012-12-01

    The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.

  2. Holocene slip rate for the central Altyn Tagh Fault: Preliminary results from the Tuzidun site based on 14C and 10Be dating of a displaced fluvial terrace riser.

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Cowgill, E. S.; Arrowsmith, R.; Muretta, M.; Gosse, J.; Chen, X.; Wang, X.

    2007-12-01

    The active, left-slip Altyn Tagh Fault (ATF) defines the northern boundary of the Tibetan Plateau and is among the world's longest intracontinental strike-slip faults. Despite a decade of concentrated work, the Holocene slip rate for the central ATF is still disputed, with millennial slip rates derived from faulted landforms ranging from 9 to 27 mm/yr. To address this factor-of-three difference, we are investigating a new slip-rate site near Tuzidun (37.73N, 86.72E) along the Cherchen He reach of the fault. The new site is situated where a south-flowing, ephemeral stream channel crosses the N70E-striking, active trace of the ATF. This channel is flanked by a set of inset fluvial terraces along its eastern bank. North of the ATF, these terraces include both a younger/lower T1 tread and an older/higher T2 terrace, which are vertically separated by an intervening T2/T1 riser. South of the fault, the stream is inset into an alluvial fan, F1. The F1 fan is separated from the higher, T2 fluvial terrace tread to the east, by the T2/F1 riser. Our neotectonic mapping and survey data indicate that the T2/F1 riser on the south/downstream side of the ATF and the T2/T1 riser on the north/upstream side have been displaced from one another by left slip along the ATF. The present separation between these riser segments is ~56 m, though lateral erosion of the riser may have diminished the true offset. To account for this possibility, we have developed three end-member reconstructions that yield offsets ranging from 56 to105 m. Ongoing geochronologic and geomorphic analyses are designed further limit the range of possible displacements. Preliminary age analyses from the Tuzidun site include 22 new radiocarbon dates from buried organic materials and 7 analyses of 10Be concentration in quartz extracted from amalgamated samples of terrace conglomerates. The 14C analyses are from samples collected from within the T2 tread on both sides of the ATF and from loess deposits that cap the downstream T2/F1 riser face. The 10Be analyses are from samples collected in two depth profiles, north and south of the ATF, dug into the T2 deposit at the crest of the displaced riser. The calibrated 14C dates and 10Be surface-exposure ages are compatible, and indicate that the surfaces at the crest and toe of the riser were abandoned at ~6 ka and ~4.4 ka, respectively. To bracket the millennial slip rate at this site, we consider three end-member reconstructions. The first is an upper-terrace reconstruction, in which the riser started recording displacement as soon as the upper-terrace, T2, was abandoned, providing a minimum constraint on the slip rate of ~9 mm/yr since ~6 ka. An intermediate interpretation is a lower-terrace reconstruction, in which the riser accumulated no displacement until the lower surface, F1, was abandoned, yielding a slip rate of ~13 mm/yr since ~4.4 ka. The final reconstruction is one in which erosion of the upstream T2 surface, prior to T1/F1 deposition, diminished the present-day observed offset. In this case, up to 105 m of displacement has occurred since abandonment of the T2 surface, which permits a slip rate as high as ~18 mm/yr since ~6 ka. The new slip rate of 9-18 mm/yr for the Tuzidun site is consistent with our preliminary results from three additional slip-rate sites along the central ATF, and taken together, provides an upper limit of 18 mm/yr for the Holocene slip rate along this reach of the fault.

  3. Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective

    USGS Publications Warehouse

    Ziony, Joseph I.

    1985-01-01

    Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The geologic and seismologic record indicates that parts of the San Andreas and San Jacinto faults have generated major earthquakes having recurrence intervals of several tens to a few hundred years. In contrast, the geologic evidence at points along other active faults suggests recurrence intervals measured in many hundreds to several thousands of years. The distribution and character of late Quaternary surface faulting permit estimation of the likely location, style, and amount of future surface displacements. An extensive body of geologic and geotechnical information is used to evaluate areal differences in future levels of shaking. Bedrock and alluvial deposits are differentiated according to the physical properties that control shaking response; maps of these properties are prepared by analyzing existing geologic and soils maps, the geomorphology of surficial units, and. geotechnical data obtained from boreholes. The shear-wave velocities of near-surface geologic units must be estimated for some methods of evaluating shaking potential. Regional-scale maps of highly generalized shearwave velocity groups, based on the age and texture of exposed geologic units and on a simple two-dimensional model of Quaternary sediment distribution, provide a first approximation of the areal variability in shaking response. More accurate depictions of near-surface shear-wave velocity useful for predicting ground-motion parameters take into account the thickness of the Quaternary deposits, vertical variations in sediment .type, and the correlation of shear-wave velocity with standard penetration resistance of different sediments. A map of the upper Santa Ana River basin showing shear-wave velocities to depths equal to one-quarter wavelength of a 1-s shear wave demonstrates the three-dimensional mapping procedure. Four methods for predicting the distribution and strength of shaking from future earthquakes are presented. These techniques use different measures of strong-motion

  4. Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2009-01-01

    Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.

  5. TU-CD-BRA-11: Application of Bone Suppression Technique to Inspiratory/expiratory Chest Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, R; Sanada, S; Sakuta, K

    Purpose: The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images normally obtained by the dual-energy subtraction technique. This study was performed to investigate the usefulness of bone suppression technique in quantitative analysis of pulmonary function in inspiratory/expiratory chest radiography. Methods: Commercial bone suppression image processing software (ClearRead; Riverain Technologies) was applied to paired inspiratory/expiratory chest radiographs of 107 patients (normal, 33; abnormal, 74) to create corresponding bone suppression images. The abnormal subjects had been diagnosed with pulmonary diseases, such as pneumothorax, pneumonia, emphysema, asthma, and lung cancer.more » After recognition of the lung area, the vectors of respiratory displacement were measured in all local lung areas using a cross-correlation technique. The measured displacement in each area was visualized as displacement color maps. The distribution pattern of respiratory displacement was assessed by comparison with the findings of lung scintigraphy. Results: Respiratory displacement of pulmonary markings (soft tissues) was able to be quantified separately from the rib movements on bone suppression images. The resulting displacement map showed a left-right symmetric distribution increasing from the lung apex to the bottom region of the lung in many cases. However, patients with ventilatory impairments showed a nonuniform distribution caused by decreased displacement of pulmonary markings, which were confirmed to correspond to area with ventilatory impairments found on the lung scintigrams. Conclusion: The bone suppression technique was useful for quantitative analysis of respiratory displacement of pulmonary markings without any interruption of the rib shadows. Abnormal areas could be detected as decreased displacement of pulmonary markings. Inspiratory/expiratory chest radiography combined with the bone suppression technique has potential for predicting local lung function on the basis of dynamic analysis of pulmonary markings. This work was partially supported by Nakatani Foundation, Grant-in-aid for Scientific Research (C) of Ministry of Education, Culture, Sports, Science and Technology, JAPAN (Grant number : 24601007), and Nakatani Foundation, Mitsubishi Foundation, and the he Mitani Foundation for Research and Development. Yasushi Kishitani is a staff of TOYO corporation.« less

  6. Recent developments with the Mars Observer Camera graphite/epoxy structure

    NASA Astrophysics Data System (ADS)

    Telkamp, Arthur R.

    1992-09-01

    The Mars Observer Camera (MOC) is one of the instruments aboard the Mars Observer Spacecraft to be launched not later than September 1992, whose mission is to geologically and climatologically map the Martian surface and atmosphere over a period of one Martian year. This paper discusses the events in the development of MOC that took place in the past two years, with special attention given to the implementation of thermal blankets, shields, and thermal control paints to limit solar absorption while controlling stray light; vibration testing of Flight Unit No.1; and thermal expansion testing. Results are presented of thermal-vac testing Flight Unit No. 1. It was found that, although the temperature profiles were as predicted, the thermally-induced focus displacements were not.

  7. The influence on the interferometry due to the instability of ground-based synthetic aperture radar work platform

    NASA Astrophysics Data System (ADS)

    Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming

    2018-03-01

    There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.

  8. Maps of upper Mississippi embayment Paleozoic and Precambrian rocks

    USGS Publications Warehouse

    Dart, Richard L.

    1995-01-01

    The Mississippi Embayment regional seismic hazard (Fuller, 1912; Nuttli, 1973, 1982, 1983), associated with the New Madrid seismic zone (NMSZ) is attributed to displacement on seismogenic structures primarily within the failed Reelfoot rift (Burke and Dewey, 1973; Ervin and McGinnis, 1975; Hildenbrand, 1977; Johnston and Shedlock, 1992). Hildenbrand and others (1977) and Hildenbrand (1985) used potential field data to show the northeast trend of the buried rift and the existence of related intrusive bodies. The Mississippi Valley graben (Hildenbrand and others, 1977; Kane and others, 1981; Hildenbrand, 1985; Wheeler and others, 1993), also referred to as the Reelfoot graben (Hildenbrand and Hendricks, 1995), is here considered to be the structural expression of the Reelfoot rift at the Precambrian basement surface.

  9. Prismatic displacement effect of progressive multifocal glasses on reaction time and accuracy in elderly people.

    PubMed

    Ellison, Ashton C; Campbell, A John; Robertson, M Clare; Sanderson, Gordon F

    2014-01-01

    Multifocal glasses (bifocals, trifocals, and progressives) increase the risk of falling in elderly people, but how they do so is unclear. To explain why glasses with progressive addition lenses increase the risk of falls and whether this can be attributed to false projection, this study aimed to 1) map the prismatic displacement of a progressive lens, and 2) test whether this displacement impaired reaction time and accuracy. The reaction times of healthy ≥75-year-olds (31 participants) were measured when grasping for a bar and touching a black line. Participants performed each test twice, wearing their progressives and new, matched single vision (distance) glasses in random order. The line and bar targets were positioned according to the maximum and minimum prismatic displacement effect through the progressive lens, mapped using a focimeter. Progressive spectacle lenses have large areas of prismatic displacement in the central visual axis and edges. Reaction time was faster for progressives compared with single vision glasses with a centrally-placed horizontal grab bar (mean difference 101 ms, P=0.011 [repeated measures analysis]) and a horizontal black line placed 300 mm below center (mean difference 80 ms, P=0.007). There was no difference in accuracy between the two types of glasses. Older people appear to adapt to the false projection of progressives in the central visual axis. This adaptation means that swapping to new glasses or a large change in prescription may lead to a fall. Frequently updating glasses may be more beneficial.

  10. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  11. The San Andreas Fault System, California

    USGS Publications Warehouse

    Wallace, Robert E.

    1990-01-01

    Maps of northern and southern California printed on flyleaf inside front cover and on adjacent pages show faults that have had displacement within the past 2 million years. Those that have had displacement within historical time are shown in red. Bands of red tint emphasize zones of historical displacement; bands of orange tint emphasize major faults that have had Quaternary displacement before historical time. Faults are dashed where uncertain, dotted where covered by sedimentary deposits, and queried when doubtful. Arrows indicate direction of relative movement; sawteeth on upper plate of thrust fault. These maps are reproductions, in major part, of selected plates from the "Fault Map of California," published in 1975 by the California Division of Mines and Geology at a scale of 1:750,000; the State map was compiled and data interpreted by Charles W. Jennings. New data about faults, not shown on the 1975 edition, required modest revisions, primarily additions however, most of the map was left unchanged because the California Division of Mines and Geology is currently engaged in a major revision and update of the 1975 edition. Because of the reduced scale here, names of faults and places were redrafted or omitted. Faults added to the reduced map are not as precise as on the original State map, and the editor of this volume selected certain faults and omitted others. Principal regions for which new information was added are the region north of the San Francisco Bay area and the offshore regions.Many people have contributed to the present map, but the editor is solely responsible for any errors and omissions. Among those contributing informally, but extensively, and the regions to which each contributed were G.A. Carver, onland region north of lat 40°N.; S.H. Clarke, offshore region north of Cape Mendocino; R.J. McLaughlin, onland region between lat 40°00' and 40°30' N. and long 123°30' and 124°30' W.; D.S. McCulloch offshore region between lat 35° and 40° N.; J.G. Vedder, offshore reglor south of lat 35° N.; and D.G. Herd, southern San Francisco Bay region. The Fault Evaluation Program of the California Division of Mines and Geology under the direction of E.W. Hart, provided much data about many faults. Unpublished material about the Bartlett Springs fault zone that was gathered by Geomatrix Consultants for the Pacific Gas and Electric Co. was very useful. In addition, selected publications that provided invaluable data include Bortugno (1982), Herd (1977), Herd and Helley (1977), Pampeyan and others (1981), and Yerkes and others (1980). 

  12. A strand graph semantics for DNA-based computation

    PubMed Central

    Petersen, Rasmus L.; Lakin, Matthew R.; Phillips, Andrew

    2015-01-01

    DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is a general strategy for implementing a broad range of nanoscale computations, including any computation that can be expressed as a chemical reaction network. Modelling and analysis of DNA strand displacement systems is an important part of the design process, prior to experimental realisation. As experimental techniques improve, it is important for modelling languages to keep pace with the complexity of structures that can be realised experimentally. In this paper we present a process calculus for modelling DNA strand displacement computations involving rich secondary structures, including DNA branches and loops. We prove that our calculus is also sufficiently expressive to model previous work on non-branching structures, and propose a mapping from our calculus to a canonical strand graph representation, in which vertices represent DNA strands, ordered sites represent domains, and edges between sites represent bonds between domains. We define interactions between strands by means of strand graph rewriting, and prove the correspondence between the process calculus and strand graph behaviours. Finally, we propose a mapping from strand graphs to an efficient implementation, which we use to perform modelling and simulation of DNA strand displacement systems with rich secondary structure. PMID:27293306

  13. Urban ventilation corridors mapping using surface morphology data based GIS analysis

    NASA Astrophysics Data System (ADS)

    Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna

    2017-04-01

    This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128. Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.

  14. Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler

    NASA Technical Reports Server (NTRS)

    Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.

    1992-01-01

    A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.

  15. Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Novellino, A.; Cigna, F.; Sowter, A.; Ramondini, M.; Calcaterra, D.

    2017-03-01

    A large scale study of landslide processes was undertaken by coupling conventional geomorphological field surveys with aerial photographs along with an advanced Interferometric Synthetic Aperture Radar (InSAR) analysis of ground instability in north-western Sicily. COSMO-SkyMed satellite images for the period between 2008 and 2011 were processed using the Intermittent Small BAseline Subset (ISBAS) technique, recently developed at the Department of Civil Engineering of the University of Nottingham. The use of ISBAS allowed the derivation of ground surface displacements across non-urbanized areas, thus overcoming one of the main limitations of conventional interferometric techniques. ISBAS provides ground motion information not only for urban but also for rural, woodland, grassland and agricultural terrains, which cover > 60% of north-western Sicily, thereby improving by 40 times in some cases, the slope instability investigation capabilities of InSAR methods. ISBAS ground motion data enabled the updating of the landslide inventory for the areas of Piana degli Albanesi and Marineo (over 130 km2), which encompass a number of active, dormant and inactive landslides according to the pre-existing landslide inventory maps produced through aerial photo-interpretation and local field checks. An average of ∼ 7000 ISBAS pixels km- 2 allowed the detection of small displacements in regions difficult to access. In particular, 226 landslides - mainly slides, flows and creep and four badlands were identified, comprising a total area of 25.3 km2. When compared to the previous landslide inventory maps, 84 phenomena were confirmed, 67 new events were detected and 79 previously mapped events were re-assessed, modifying their typology, boundary and/or state of activity. Because the InSAR method used here is designed to measure slow rates of velocity and therefore may not detect fast-moving, events such as falls and topples, the results for Piana degli Albanesi and Marineo demonstrate the validity of this method to support land management, underlying the time and cost benefits of a combined approach using traditional monitoring procedures and satellite InSAR methods especially if slow-moving slope movements prevail.

  16. Retrieval of interseismic displacement from multi-temporal InSAR measurements: challenges and solutions

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ding, X.; Lu, Z.; Wen, Y.; Hu, J.

    2016-12-01

    High-resolution measurements of interseismic displacement are critical for understanding the earthquake cycle and for assessing earthquake hazard. Compared with sparsely located GNSS sites, it is well-known that by jointly analyzing a set of data over the same area acquired on different dates, multi-temporal InSAR (MTInSAR) is capable of remotely imaging interseismic deformation at an unprecedented level of spatial resolution. However conventional MTInSAR cannot hold a considerate promise for the precise retrieval of interseismic deformation in tectonically active zones where complicated atmospheric delay, orbital errors, and localized seasonal ground fluctuations commonly exist. Of interest in this study is to develop reliable solutions to correct or suppress these unwanted signals thereby to improve the accuracy of mapped interseismic displacement. Our technical innovations lie in the following aspects. According to different spatial-temporal characteristics, a joint model that takes both orbit errors and interseismic displacement as parameters is designed to isolate long wavelength motion from orbit error even in the case these two types of signals exhibit similar spatial patterns. To suppress the localized impacts (e.g., a portion of atmospheric artifacts and small-scale anthropogenic deformation), spatial correlation is employed as a constraint during the parameter estimation. The proposed solutions are evaluated by synthetic tests and applied to map the interseismic displacement over Eastern Turkey that spans the Arabia-Eurasia plate boundary zone from a large set of radar images acquired by Envisat/ASAR and Sentinel-1. The derived interseismic displacement validated by GPS data is further used to invert the slip rate and locking depth for the North and East Anatolian Faults. A cross-comparison with published results is also conducted.

  17. Mapping of spatial and temporal heterogeneity of plantar flexor muscle activity during isometric contraction: correlation of velocity-encoded MRI with EMG

    PubMed Central

    Csapo, Robert; Malis, Vadim; Sinha, Usha

    2015-01-01

    The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17–39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions. PMID:26112239

  18. Comparison of two fractal interpolation methods

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has strong periodicity, which is suitable for simulating periodic surface.

  19. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  20. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    NASA Astrophysics Data System (ADS)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.

  1. Archuleta County CO Lineaments

    DOE Data Explorer

    Richard E. Zehner

    2012-01-01

    This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.

  2. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  3. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.

  4. Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992-99

    USGS Publications Warehouse

    Pavelko, Michael T.; Hoffmann, Jörn; Damar, Nancy A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Nevada Department of Conservation and Natural Resources-Division of Water Resources and the Las Vegas Valley Water District, compiled 44 individual interferograms and 1 stacked interferogram comprising 29 satellite synthetic aperture radar acquisitions of Las Vegas Valley, Nevada, from 1992 to 1999. The interferograms, which depict short-term, seasonal, and long-term trends in land subsidence and uplift, are viewable with an interactive map. The interferograms show that land subsidence and uplift generally occur in localized areas, are responsive to ground-water pumpage and artificial recharge, and, in part, are fault controlled. Information from these interferograms can be used by water and land managers to mitigate land subsidence and associated damage. Land subsidence attributed to ground-water pumpage has been documented in Las Vegas Valley since the 1940s. Damage to roads, buildings, and other engineered structures has been associated with this land subsidence. Land uplift attributed to artificial recharge and reduced pumping has been documented since the 1990s. Measuring these land-surface changes with traditional benchmark and Global Positioning System surveys can be costly and time consuming, and results typically are spatially and temporally sparse. Interferograms are relatively inexpensive and provide temporal and spatial resolutions previously not achievable. The interferograms are viewable with an interactive map. Landsat images from 1993 and 2000 are viewable for frames of reference to locate areas of interest and help determine land use. A stacked interferogram for 1992-99 is viewable to visualize the cumulative vertical displacement for the period represented by the individual interferograms. The interactive map enables users to identify and estimate the magnitude of vertical displacement, visually analyze deformation trends, and view interferograms and Landsat images side by side. The interferograms and Landsat images are available for download, in formats for use with Geographic Information System software.

  5. The postseismic response to the 2002 M 7.9 Denali Fault earthquake: Constraints from InSAR 2003-2005

    USGS Publications Warehouse

    Biggs, J.; Burgmann, R.; Freymueller, J.T.; Lu, Z.; Parsons, B.; Ryder, I.; Schmalzle, G.; Wright, Tim

    2009-01-01

    InSAR is particularly sensitive to vertical displacements, which can be important in distinguishing between mechanisms responsible for the postseismic response to large earthquakes (afterslip, viscoelastic relaxation). We produce maps of the surface displacements resulting from the postseismic response to the 2002 Denali Fault earthquake, using data from the Canadian Radarsat-1 satellite from the periods summer 2003, summer 2004 and summer 2005. A peak-to-trough signal of amplitude 4 cm in the satellite line of sight was observed between summer 2003 and summer 2004. By the period between summer 2004 and summer 2005, the displacement rate had dropped below the threshold required for observation with InSAR over a single year. The InSAR observations show that the principal postseismic relaxation process acted at a depth of ∼50 km, equivalent to the top of the mantle. However, the observations are still incapable of distinguishing between distributed (viscoelastic relaxation) and localized (afterslip) deformation. The imposed coseismic stresses are highest in the lower crust and, assuming a Maxwell rheology, a viscosity ratio of at least 5 between lower crust and upper mantle is required to explain the contrast in behaviour. The lowest misfits are produced by mixed models of viscoelastic relaxation in the mantle and shallow afterslip in the upper crust. Profiles perpendicular to the fault show significant asymmetry, which is consistent with differences in rheological structure across the fault.

  6. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, John W.

    1993-01-01

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  7. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, J.W.

    1993-07-13

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  8. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  9. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    PubMed Central

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

  10. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz.

    PubMed

    Rosowski, John J; Cheng, Jeffrey Tao; Ravicz, Michael E; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-07-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f>4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined.

  11. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  12. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  13. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces

    NASA Astrophysics Data System (ADS)

    Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro

    2012-11-01

    To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.

  14. Seasonal and Surface Hydrologic Loading Signals at GPS Stations Processed by the GAGE Facility

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Meertens, C. M.; Phillips, D.

    2017-12-01

    UNAVCO is now producing hydrologic displacement model time series at GPS station coordinates in the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility, including the Plate Boundary Observatory (PBO). The surface loads are obtained from global and national land data assimilation systems (GLDAS and NLDAS, respectively) land surface models produced by the Goddard Earth Sciences Data and Information Services Center (GES DISC). The land surface models are available as monthly files of environmental parameters documenting water, pressure, temperature, and other measures mass/energy transfer on a grid at the Earth's surface. Grids are 1º for the global GLDAS models and 0.125º for the NLDAS models in the conterminous US. UNAVCO extracts the soil moisture, snowpack, and water stored in vegetation parameters and calculates displacements in an elastic half-space at selected points, i.e., GPS station locations. UNAVCO has recently upgraded its hydrologic data products from GLDAS version 1 to version 2 and added NLDAS-based models, and the new data products are now available from the UNAVCO ftp server (ftp://data-out.unavco.org/pub/products/hydro) and will soon be available through web services. The GLDAS v2 models supersede those based on v1, which will no longer be updated. UNAVCO updates its hydrologic products on a quarterly basis. Seasonal signals in the GAGE GPS position time series have amplitudes on the order of several millimeters, which vary across the PBO network depending on local climate and geology. The signals are thought to be a combination of elastic displacement from surface loading and poroelastic displacement from groundwater depletion and recharge. We present a description of the hydrologic displacement modeling and provide examples of loading and resulting displacement. The GLDAS and NLDAS models are compared with each other and with GPS position time series at selected stations in different geographic regions.

  15. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  16. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  17. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less

  18. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  19. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  20. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  1. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  2. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  3. On the possibility of detecting local refractive index changes in optically transparent objects by means of a point nanoantenna attached to a fibre microaxicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulchin, Yu N; Vitrik, O B; Kuchmizhak, A A

    2014-10-31

    It is shown theoretically that the use of the spectral registration of the dipole local plasmon resonance (DLPR) displacement in a single spherical gold nanoantenna, placed near the surface of a homogeneous dielectric medium, allows the mapping of extremely small variations (to 5 × 10{sup -4}) of the refractive index (RI) of this medium. Using the quasi-static approximation, we have developed an analytic model that allows evaluation of the spectral displacement of the nanoantenna DLPR depending on the variation in the medium refractive index. The point probe based on a fibre microaxicon with a gold spherical nanoantenna attached to itsmore » top is proposed that allows practical implementation of the developed RI scanning method. Numerical calculations of the probe characteristics using the time-domain finite-difference method are presented, and it is shown that for the case of a gold spherical nanoantenna of small size, comparable with the skin layer thickness in gold, the relative spectral shift value is in good agreement with the results obtained by using the developed analytic model. (laser applications and other topics in quantum electronics)« less

  4. Measurement of an Elasticity Map in the Human Cornea

    PubMed Central

    Mikula, Eric R.; Jester, James V.; Juhasz, Tibor

    2016-01-01

    Purpose The biomechanical properties of the cornea have an important role in determining the shape of the cornea and visual acuity. Since the cornea is a nonhomogeneous tissue, it is thought that the elastic properties vary throughout the cornea. We aim to measure a map of corneal elasticity across the cornea. Methods An acoustic radiation force elasticity microscope (ARFEM) was used to create a map of corneal elasticity in the human cornea. This ARFEM uses a low frequency, high intensity acoustic force to displace a femtosecond laser-generated microbubble, while using a high frequency, low intensity ultrasound to monitor the position of the microbubble within the cornea. From the displacement of the bubble and the magnitude of the acoustic radiation force, the local value of corneal elasticity is calculated in the direction of the displacement. Measurements were conducted at 6 locations, ranging from the central to peripheral cornea at anterior and posterior depths. Results The mean anterior elastic moduli were 4.2 ± 1.2, 3.4 ± 0.7, and 1.9 ± 0.7 kPa in the central, mid, and peripheral regions, respectively, while the posterior elastic moduli were 2.3 ± 0.7, 1.6 ± 0.3, and 2.9 ± 1.2 kPa in the same radial locations. Conclusions We found that there is a unique distribution of elasticity axially and radially throughout the cornea. PMID:27327584

  5. Sentinel-1 and ground-based sensors for a continuous monitoring of the Corvara landslide kinematic (South Tirol, Italy)

    NASA Astrophysics Data System (ADS)

    Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio

    2017-04-01

    Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded by the Euregio Science Fund.

  6. The Integration of TLS and Continuous GPS to Study Landslide Deformation: A Case Study at the El Yunque National Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Wang, G.; Joyce, J.; Rivera, F. O.; Galan, G.; Meertens, C. M.

    2010-12-01

    Terrestrial Laser Scanning (TLS) and Global Positioning System (GPS) technologies provide comprehensive information of landslide deformation in the both spatial and temporal domains, which are critical to study the dynamics and kinematics of landslides. TLS allows the generation of a precise 3D model of a landslide surface by deriving spatial deformation from consecutive TLS campaigns. Continuous GPS (CGPS) monitoring allows the generation of the displacement time series of single points. Integrated TLS and CGPS datasets were collected at the base of a 500-600 meter long landslide on a steep mountain slope in the El Yunque National Rainforest in Puerto Rico. Major movements of this landslide in 2004 and 2005 caused the closing of one of three remaining access roads to the national forest. A retaining wall was constructed to restrain the landslide and allow the road reopen. Prior to termination of the wall a significant portion of the northwest end of the wall failed. This portion was repaired but prior to final termination in August 2009 significant soil displacements behind the failed section thwarted final grading efforts. Geologic investigation indicated that the landslide extended much further upslope than indicated and involved bedrock as well as overlying residual soils. Striations along flank escarpments indicated displacement of the entire landslide to the northwest but active displacement could only be certified in the lower most portions behind the retaining wall. The northwest portion of the wall continued to show flexural deformation until it finally burst in July 2010. The size and displacement magnitude of the presently moving mass has become a major focus of investigation. To precisely identify the present boundaries and displacement magnitude of the lower portions of the landslide, we performed two TLS campaigns at the landslide site in May and August 2010. A continuous GPS array consisting of 3 stations was also installed at the site, one of which was located outside of the landslide as a stable reference point. Topcon GB-1000 dual frequency receivers and PG-A1 antennas were used to collect the GPS data. GPS data were processed using Topcon software. A Riegl VZ-400 laser scanner, provided by UNAVCO, was used to collect the TLS data. This scanner provides high resolution, high-speed data acquisition using a narrow infrared laser beam and a fast scanning mechanism. Centimeter-level scans from 12 scan positions were performed during each TLS campaign. TLS data acquisition and global registration were performed using RIEGL RiSCAN-PRO software. The Generic Mapping Tools (GMT, http://gmt.soest.hawaii.edu), a software package widely utilized in the geophysical community, was used for data post processing and map plotting. Our TLS and GPS results have clearly identified the boundaries, the rate and direction of displacement, and the volume change of the lower portions of presently sliding mass. Rainfall data from a local USGS weather station were also integrated to this study. Our results indicate close correlation between landslide movements and rainfall.

  7. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern through satellite geodesy and surface faults show that the principal factor for defining these hazardous areas is best determined not by solely using the subsidence magnitude rates but rather by using a combined magnitude and horizontal subsidence gradient analysis. This approach is used as the basis for the generation of subsidence-induced surface faulting hazard maps for the studied urban areas.

  8. From local to national scale DInSAR analysis for the comprehension of Earth's surface dynamics.

    NASA Astrophysics Data System (ADS)

    De Luca, Claudio; Casu, Francesco; Manunta, Michele; Zinno, Ivana; lanari, Riccardo

    2017-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. While the application of SBAS to ERS and ENVISAT data at local scale is widely testified, very few examples involving those archives for analysis at huge spatial scale are available in literature. This is mainly due to the required processing power (in terms of CPUs, memory and storage) and the limited availability of automatic processing procedures (unsupervised tools), which are mandatory requirements for obtaining displacement results in a time effective way. Accordingly, in this work we present a methodology for generating the Vertical and Horizontal (East-West) components of Earth's surface deformation at very large (national/continental) spatial scale. In particular, it relies on the availability of a set of SAR data collected over an Area of Interest (AoI), which could be some hundreds of thousands of square kilometers wide, from ascending and descending orbits. The exploited SAR data are processed, on a local basis, through the Parallel SBAS (P-SBAS) approach thus generating the displacement time series and the corresponding mean deformation velocity maps. Subsequently, starting from the so generated DInSAR results, the proposed methodology lays on a proper mosaicking procedure to finally retrieve the mean velocity maps of the Vertical and Horizontal (East-West) deformation components relevant to the overall AoI. This technique permits to account for possible regional trends (tectonics trend) not easily detectable by the local scale DInSAR analyses. We tested the proposed methodology with the ENVISAT ASAR archives that have been acquired, from ascending and descending orbits, over California (US), covering an area of about 100.000 km2. The presented methodology can be easily applied also to other SAR satellite data. Above all, it is particularly suitable to deal with the very large data flow provided by the Sentinel-1 constellation, which collects data with a global coverage policy and an acquisition mode specifically designed for interferometric applications.

  9. Surface faulting. A preliminary view

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    This description of surface faulting near Spitak, Armenia, is based on a field inspection made December 22-26, 1988. The surface rupture west of Spitak, displacement of the ground surface, pre-earthquake surface expressions of the fault, and photolineaments in landsat images are described and surface faulting is compared to aftershocks. It is concluded that the 2 meters of maximum surface displacement fits well within the range of reliably measured maximum surface offsets for historic reverse and oblique-reverse faulting events throughout the world. By contrast, the presently known length of surface rupture near Spitak, between 8 and 13 km, is shorter than any other reverse or oblique-reverse event of magnitude greater than 6.0. This may be a reason to suppose that additional surface rupture might remain unmapped.

  10. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Khan, Muhammad Asif

    2010-10-01

    Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.

  11. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2007-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  12. SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005

    USGS Publications Warehouse

    Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig

    2008-01-01

    Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.

  13. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts

    NASA Astrophysics Data System (ADS)

    Saavedra V., Oscar; Elettro, Hervé; Melo, Francisco

    2018-04-01

    Confined two-dimensional assemblies of floating particles, known as granular rafts, are prone to develop a highly nonlinear response under compression. Here we investigate the transition to the friction-dominated jammed state and map the gradual development of the internal stress profile with flexible pressure sensors distributed along the raft surface. Surprisingly, we observe that the surface stress screening builds up much more slowly than previously thought and that the typical screening distance later dramatically decreases. We explain this behavior in terms of progressive friction mobilization, where the full amplitude of the frictional forces is only reached after a macroscopic local displacement. At further stages of compression, rafts of large length-to-width aspect ratio experience much stronger screenings than the full mobilization limit described by the Janssen's model. We solve this paradox using a simple mathematical analysis and show that such enhanced screening can be attributed to a localized compaction front, essentially shielding the far field from compressive stresses.

  14. Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro

    2013-12-01

    We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.

  15. Investigating the Tectonics of Mare Crisium with Topographic Data

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; Klimczak, C.; Solomon, S. C.

    2013-12-01

    Mare Crisium is a 560-km-diameter lunar mare, 170,500 km2 in area. Like other lunar maria, Crisium has been tectonically deformed by wrinkle ridges. Early studies of the tectonics of Crisium were hampered by poor resolution or illumination conditions, however. The recent availability of high-resolution digital topographic models (DTMs) from Lunar Orbiter Laser Altimeter (LOLA) data enables a fresh assessment of lunar tectonics, including those in Mare Crisium. LOLA DTMs show that the basin is replete with wrinkle ridges, consistent with previous observations; we observe over 170. The largest such structures follow the basin outline and verge towards the interior, most notably from 30°-180° and 270°-330° azimuth (measured clockwise from north). Artificially illuminated hillshade maps derived from the DTMs, for solar azimuth angles of 0° and 180°, reveal ~east-west-orientated structures that are not readily visible in photogeological data. We identify 10 partially buried craters within Crisium, but we note a further five demarcated only by wrinkle ridges, the largest of which is ~95 km in diameter, that have no other surface manifestation. Moreover, LOLA topographic data reveal subtle ridge-like changes in relief across the mare that are virtually impossible to detect otherwise. We interpret these 13 ridges, ~30-100 km in length, as additional shortening structures that have no surficial faulted component. Surface displacement models can be fit to topographic profiles across structures to estimate displacements and geometries of the underlying faults. Models fit to one such profile (see accompanying figure) across an inward-verging ridge with 500 m of relief in the southeast of Crisium indicate that its fault dips 22°, penetrates to a depth of ~20 km (far beneath the base of the mare deposits), and accumulated ~1 km of along-slip displacement. This result, given the other large structures and inferred buried ridges in Crisium, implies that this mare experienced substantial shortening. Lunar wrinkle ridges are ascribed to some combination of mare subsidence and global contraction; if representative of lunar maria in general, our findings for Crisium suggest that these processes have shaped lunar tectonics to an extent greater than previously recognized. Structural map of Mare Crisium showing wrinkle ridges (flags give down-dip direction), buried ridges (arrows give down-slope direction), buried craters, superposed craters >5 km in diameter, and the location of the topographic profile (green line); inset shows topographic (green) and model (blue) profiles. Graticule has 10° increments in latitude and longitude.

  16. Finite element simulation for damage detection of surface rust in steel rebars using elastic waves

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.

  17. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    PubMed

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  18. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: a molecular dynamics study

    PubMed Central

    Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.

    2017-01-01

    While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain. PMID:28169377

  19. Prismatic displacement effect of progressive multifocal glasses on reaction time and accuracy in elderly people

    PubMed Central

    Ellison, Ashton C; Campbell, A John; Robertson, M Clare; Sanderson, Gordon F

    2014-01-01

    Background Multifocal glasses (bifocals, trifocals, and progressives) increase the risk of falling in elderly people, but how they do so is unclear. To explain why glasses with progressive addition lenses increase the risk of falls and whether this can be attributed to false projection, this study aimed to 1) map the prismatic displacement of a progressive lens, and 2) test whether this displacement impaired reaction time and accuracy. Methods The reaction times of healthy ≥75-year-olds (31 participants) were measured when grasping for a bar and touching a black line. Participants performed each test twice, wearing their progressives and new, matched single vision (distance) glasses in random order. The line and bar targets were positioned according to the maximum and minimum prismatic displacement effect through the progressive lens, mapped using a focimeter. Results Progressive spectacle lenses have large areas of prismatic displacement in the central visual axis and edges. Reaction time was faster for progressives compared with single vision glasses with a centrally-placed horizontal grab bar (mean difference 101 ms, P=0.011 [repeated measures analysis]) and a horizontal black line placed 300 mm below center (mean difference 80 ms, P=0.007). There was no difference in accuracy between the two types of glasses. Conclusion Older people appear to adapt to the false projection of progressives in the central visual axis. This adaptation means that swapping to new glasses or a large change in prescription may lead to a fall. Frequently updating glasses may be more beneficial. PMID:24872674

  20. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Grauch, V.J.S.; Ruleman, Chester A.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  1. Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh

    Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabimore » and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, they intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most complicated near the X-point and forms the largest lobes there. On average, the field lines cover a distance of about 9 m per turn. Poloidal rotation of the lines has large gradients in the poloidal direction. The average normal displacement of the lines on the separatrix varies from 5 mm to 7 cm. Average outward displacement of the lines is considerably larger than the inward displacement; however, on the average more lines are displaced inside than outside of the separatrix. The field line diffusion normal to the separatrix has extremely wide variation and very large poloidal gradients. Half of all the lines are lost in less than 6 turns. Complicated electric potentials will be required to maintain the neutrality of the plasma, and the E × B drifts from these fields can modify plasma confinement and influence the edge physics (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014))« less

  2. Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh

    2014-12-01

    Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, they intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most complicated near the X-point and forms the largest lobes there. On average, the field lines cover a distance of about 9 m per turn. Poloidal rotation of the lines has large gradients in the poloidal direction. The average normal displacement of the lines on the separatrix varies from 5 mm to 7 cm. Average outward displacement of the lines is considerably larger than the inward displacement; however, on the average more lines are displaced inside than outside of the separatrix. The field line diffusion normal to the separatrix has extremely wide variation and very large poloidal gradients. Half of all the lines are lost in less than 6 turns. Complicated electric potentials will be required to maintain the neutrality of the plasma, and the E × B drifts from these fields can modify plasma confinement and influence the edge physics (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)).

  3. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  4. Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS.

    PubMed

    Wilkinson, Maxwell W; McCaffrey, Ken J W; Jones, Richard R; Roberts, Gerald P; Holdsworth, Robert E; Gregory, Laura C; Walters, Richard J; Wedmore, Luke; Goodall, Huw; Iezzi, Francesco

    2017-07-04

    The temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30 th October 2016 M w 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove fault system, close to new surface ruptures. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing (i.e. capable) fault array, as a direct and immediate response to the 30 th October earthquake. Large near-field displacement ceased within 6-8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.

  5. Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.

    2015-12-01

    Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA

  6. Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K. (Inventor); Goldstein, Richard M. (Inventor); Zebker, Howard A. (Inventor)

    1990-01-01

    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes.

  7. Reversible and irreversible reactions of three oxygen precursors on InAs(0 0 1)-(4 × 2)/ c(8 × 2)

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Droopad, Ravi; Kummel, Andrew C.

    2010-10-01

    The substrate reactions of three common oxygen sources for gate oxide deposition on the group III rich InAs(0 0 1)-(4 × 2)/ c(8 × 2) surface are compared: water, hydrogen peroxide (HOOH), and isopropyl alcohol (IPA). Scanning tunneling microscopy reveals that surface atom displacement occurs in all cases, but via different mechanisms for each oxygen precursor. The reactions are examined as a function of post-deposition annealing temperature. Water reaction shows displacement of surface As atoms, but it does not fully oxidize the As; the reaction is reversed by high temperature (450 °C) annealing. Exposure to IPA and subsequent low-temperature annealing (100 °C) show the preferential reaction on the row features of InAs(0 0 1)-(4 × 2)/ c(8 × 2), but higher temperature anneals result in permanent surface atom displacement/etching. Etching of the substrate is observed with HOOH exposure for all annealing temperatures. While nearly all oxidation reactions on group IV semiconductors are irreversible, the group III rich surface of InAs(0 0 1) shows that oxidation displacement reactions can be reversible at low temperature, thereby providing a mechanism of self-healing during oxidation reactions.

  8. Wind-driven currents in a shallow lake or sea

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.

  9. Selection and application of strand displacement probes for a fumonisin B1 aptamer

    USDA-ARS?s Scientific Manuscript database

    Fumonisin B1 (FB1) is a toxin produced by Fusarium moniliforme, mainly on contaminated maize and maize products. In this study a solid surface chain displacement strategy was used to isolate oligonucleotide displacement probes for a FB1 aptamer. The probes were used as the basis for the development ...

  10. Computing Fault Displacements from Surface Deformations

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory; Parker, Jay; Donnellan, Andrea; Panero, Wendy

    2006-01-01

    Simplex is a computer program that calculates locations and displacements of subterranean faults from data on Earth-surface deformations. The calculation involves inversion of a forward model (given a point source representing a fault, a forward model calculates the surface deformations) for displacements, and strains caused by a fault located in isotropic, elastic half-space. The inversion involves the use of nonlinear, multiparameter estimation techniques. The input surface-deformation data can be in multiple formats, with absolute or differential positioning. The input data can be derived from multiple sources, including interferometric synthetic-aperture radar, the Global Positioning System, and strain meters. Parameters can be constrained or free. Estimates can be calculated for single or multiple faults. Estimates of parameters are accompanied by reports of their covariances and uncertainties. Simplex has been tested extensively against forward models and against other means of inverting geodetic data and seismic observations. This work

  11. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface trace of both the Polaris fault and the Dog Valley fault system are within composite swaths defined by overlapping seismo-lineaments. Composite seismo-lineaments indicate that multiple historic earthquakes might be associated with a fault. This apparently successful correlation of earthquakes with faults in an area where geologic mapping is good suggests another use for SLAM in areas where fault mapping is incomplete, inadequate or made particularly difficult because of vegetative cover. If no previously mapped fault exists along a composite swath generated using well constrained focal mechanism solutions, the swath might be used to guide the design of a LiDAR survey in support of reconnaissance for the causative fault. The acquisition and geomorphic analysis of LiDAR data along a compound seismo-lineament swath might reveal geomorphic evidence of a previously unrecognized fault trace that is worthy of additional field study.

  12. Animal behaviour: geomagnetic map used in sea-turtle navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Ehrhart, Llewellyn M; Bagley, Dean A; Swing, Timothy

    2004-04-29

    Migratory animals capable of navigating to a specific destination, and of compensating for an artificial displacement into unfamiliar territory, are thought to have a compass for maintaining their direction of travel and a map sense that enables them to know their location relative to their destination. Compasses are based on environmental cues such as the stars, the Sun, skylight polarization and magnetism, but little is known about the sensory mechanism responsible for the map sense. Here we show that the green sea-turtle (Chelonia mydas) has a map that is at least partly based on geomagnetic cues.

  13. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the G-III Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    In support of the Adaptive Compliant Trailing Edge [ACTE] project at the NASA Armstrong Flight Research Center, displacement transfer functions were applied to the swept wing of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) to obtain deformed shape predictions. Four strainsensing lines (two on the lower surface, two on the upper surface) were used to calculate the deformed shape of the G III wing under bending and torsion. There being an insufficient number of surface strain sensors, the existing G III wing box finite element model was used to generate simulated surface strains for input to the displacement transfer functions. The resulting predicted deflections have good correlation with the finite-element generated deflections as well as the measured deflections from the ground load calibration test. The convergence study showed that the displacement prediction error at the G III wing tip can be reduced by increasing the number of strain stations (for each strain-sensing line) down to a minimum error of l.6 percent at 17 strain stations; using more than 17 strain stations yielded no benefit because the error slightly increased to 1.9% when 32 strain stations were used.

  14. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less

  15. Sensitivity of Tsunami Waves and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction zone

    NASA Astrophysics Data System (ADS)

    Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.

    2015-12-01

    Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high-resolution bathymetric/topographic computational grids to identify accurate tsunami impact and flooding limits for the west of USA.

  16. Landslide movement mapping by sub-pixel amplitude offset tracking - case study from Corvara landslide

    NASA Astrophysics Data System (ADS)

    Darvishi, Mehdi; Schlögel, Romy; Cuozzo, Giovanni; Callegari, Mattia; Thiebes, Benni; Bruzzone, Lorenzo; Mulas, Marco; Corsini, Alessandro; Mair, Volkmar

    2016-04-01

    Despite the advantages of Differential Synthetic Aperture Radar Interferometry (DInSAR) methods for quantifying landslide deformation over large areas, some limitations remain. These include for example geometric distortions, atmospheric artefacts, geometric and temporal decorrelations, data and scale constraints, and the restriction that only 1-dimentional line-of-sight (LOS) deformations can be measured. At local scale, the major limitations are dense vegetation, as well as large displacement rates which can lead to decorrelation between SAR acquisitions also for high resolution images and temporal baselines. Sub-pixel offset tracking was proposed to overcome some of these limitations. Two of the most important advantages of this technique are the mapping of 2-D displacements (azimuth and range directions), and the fact that there is no need for complex phase unwrapping algorithms which could give wrong results or fail in case of decorrelation or fast ground deformations. As sub-pixel offset tracking is highly sensitive to the spatial resolution of the data, latest generations of SAR sensors such as TerraSAR-X and COSMO-SkyMed providing high resolution data (up to 1m) have great potential to become established methods in the field of ground deformation monitoring. In this study, sub-pixel offset tracking was applied to COSMO SkyMed X-band imagery in order to quantify ground displacements and to evaluate the feasibility of offset tracking for landslide movement mapping and monitoring. The study area is the active Corvara landslide located in the Italian Alps, described as a slow-moving and deep-seated landslide with annual displacement rates of up to 20 m. Corner reflectors specifically designed for X-band were installed on the landslide and used as reference points for sub-pixel offset tracking. Satellite images covering the period from 2013 to 2015 were analyzed with an amplitude tracking tool for calculating the offsets and extracting 2-D displacements. Sub-pixel offset tracking outputs were integrated with DInSAR results and correlated to differential GPS measurements recorded at the same time as the SAR data acquisitions.

  17. Recently active contractile deformation in the forearc of southern Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.

  18. Looking at Op Art from a computational viewpoint.

    PubMed

    Zanker, Johannes M

    2004-01-01

    Arts history tells an exciting story about repeated attempts to represent features that are crucial for the understanding of our environment and which, at the same time, go beyond the inherently two-dimensional nature of a flat painting surface: depth and motion. In the twentieth century, Op artists such as Bridget Riley began to experiment with simple black and white patterns that do not represent motion in an artistic way but actually create vivid dynamic illusions in static pictures. The cause of motion illusions in such paintings is still a matter of debate. The role of involuntary eye movements in this phenomenon is studied here with a computational approach. The possible consequences of shifting the retinal image of synthetic wave gratings, dubbed as 'riloids', were analysed by a two-dimensional array of motion detectors (2DMD model), which generates response maps representing the spatial distribution of motion signals generated by such a stimulus. For a two-frame sequence reflecting a saccadic displacement, these motion signal maps contain extended patches in which local directions change only little. These directions, however, do not usually precisely correspond to the direction of pattern displacement that can be expected from the geometry of the curved gratings as an instance of the so-called 'aperture problem'. The patchy structure of the simulated motion detector response to the displacement of riloids resembles the motion illusion, which is not perceived as a coherent shift of the whole pattern but as a wobbling and jazzing of ill-defined regions. Although other explanations are not excluded, this might support the view that the puzzle of Op Art motion illusions could potentially have an almost trivial solution in terms of small involuntary eye movement leading to image shifts that are picked up by well-known motion detectors in the early visual system. This view can have further consequences for our understanding of how the human visual system usually compensates for eye movements, in order to let us perceive a stable world despite continuous image shifts generated by gaze instability.

  19. a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface

    NASA Astrophysics Data System (ADS)

    Westlund, Jonathan; Boström, Anders

    2010-02-01

    2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.

  20. Mapping Seabird Sensitivity to Offshore Wind Farms

    PubMed Central

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  1. Mapping seabird sensitivity to offshore wind farms.

    PubMed

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  2. Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseyenko, Rayisa P.; Georgia Institute of Technology, UMI Georgia Tech – CNRS, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 rue Marconi, 57070 Metz-Technopole; Liu, Jingfei

    The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugatedmore » one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.« less

  3. On the mechanical interaction between a fluid-filled fracture and the earth's surface

    USGS Publications Warehouse

    Pollard, D.D.; Holzhausen, G.

    1979-01-01

    The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2) tensile stresses of magnitude greater than the pressure in the slit are concentrated along the free surface. The relative surface displacements over a shallow vertical slit are downward over the slit and upward to both sides of this area. The tensile stress acting parallel to the free surface over a shallow vertical slit is concentrated in two maxima adjacent to a point of very low stress immediately over the slit. The solution is used to estimate the length-to-depth ratio at which igneous sills have gained sufficient leverage on overlying strata to bend these strata upward and form a laccolith. The pronounced mode II stress intensity associated with shallow horizontal slits explains the tendency for some sills to climb to higher stratigraphie horizons as they grow in length. The bimodal tensile stress concentration over shallow vertical slits correlates qualitatively with the distribution of cracks and normal faults which flank fissure eruptions on volcanoes. The solution may be used to analyze surface displacements and tilts over massive hydraulic fractures in oil fields and to understand the behavior of hydraulic fractures in granite quarries. ?? 1979.

  4. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation

    NASA Astrophysics Data System (ADS)

    Kääb, Andreas; Altena, Bas; Mascaro, Joseph

    2017-05-01

    Satellite measurements of coseismic displacements are typically based on synthetic aperture radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very high-resolution satellites, or air photos. Here, we evaluate a new class of optical satellite images for this purpose - data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2-4 m-resolution visible and near-infrared frame images of approximately 20-30 km × 9-15 km in size, acquired in continuous sequence along an orbit of approximately 375-475 km height. From single scenes or mosaics from before and after the earthquake, we observe surface displacements of up to almost 10 m and estimate matching accuracies from PlanetScope data between ±0.25 and ±0.7 pixels (˜ ±0.75 to ±2.0 m), depending on time interval and image product type. Thereby, the most optimistic accuracy estimate of ±0.25 pixels might actually be typical for the final, sun-synchronous, and near-polar-orbit PlanetScope constellation when unrectified data are used for matching. This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat 8 and Sentinel-2 data.

  5. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. Combining seismic and geodetic data

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    2001-01-01

    Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.

  6. Transducer senses displacements of panels subjected to vibration

    NASA Technical Reports Server (NTRS)

    Pea, R. O.

    1965-01-01

    Inductive vibration sensor measures the surface displacement of nonferrous metal panels subjected to vibration or flutter. This transducer does not make any physical contact with the test panel when measuring.

  7. Transmission electron diffraction determination of the Ge(001)-(2 × 1) surface structure

    NASA Astrophysics Data System (ADS)

    Collazo-Davila, C.; Grozea, D.; Landree, E.; Marks, L. D.

    1997-04-01

    The lateral displacements in the Ge(001)-(2 × 1) surface reconstruction have been determined using transmission electron diffraction (TED). The best-fit model includes displacements extending six layers into the bulk. The atomic positions found agree with X-ray studies to within a few hundredths of an ångström. With the positions determined so precisely, it is suggested that the Ge(001)-(2 × 1) surface can now serve as a standard for comparison with theoretical surface structure calculations. The results from the currently available theoretical studies on the surface are compared with the experimentally determined structure.

  8. MO-C-17A-08: Evaluation of Lung Deformation Using Three Dimensional Strain Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, T; Huang, Q; Miller, W

    2014-06-15

    Purpose: To develop a systematic approach to generate three dimensional (3D) strain maps of lung using the displacement vector field (DVF) during the respiratory deformation, and to demonstrate its application in evaluating deformable image registration (DIR). Methods: A DVF based strain tensor at each voxel of interest (VOI) was calculated from the relative displacements between the VOI and each of the six nearest neighbors. The maximum and minimum stretches of a VOI can be determined by the principal strains (E{sub 1}, E{sub 2} and E{sub 3}), which are the eigenvalues and the corresponding strain tensors. Two healthy volunteers enrolled inmore » this study under IRB-approved protocol, each was scanned using 3D Hyperpolarized He-3 tagging-MRI and 3D proton-MRI with TrueFISP sequence at the endof- inhalation (EOI) and the end-of-exhalation (EOE) phases. 3D DVFs of tagging- and proton-MRI were obtained by the direct measurements of the tagging grid trajectory and by the DIR method implemented in commercial software. Results: 3D strain maps were successfully generated for all DVFs. The principal strain E1s were calculated as 0.43±0.05 and 0.17±0.25 for tagging-MRI and proton-MRI, respectively. The large values of E{sub 1} indicate the predominant lung motion in the superior-inferior (SI) direction. Given that the DVFs from the tagging images are considered as the ground truth, the discrepancies in the DIR-based strain maps suggest the inaccuracy of the DIR algorithm. In the E{sub 1} maps of tagging-MRI for subject 1, the fissures were distinguishable by the larger values (0.49±0.02) from the adjacent tissues (0.41±0.03) due to the larger relative displacement between the lung lobes. Conclusion: We have successfully developed a methodology to generate DVF-based 3D strain maps of lung. It can potentially enable us to better understand the pulmonary biomechanics and to evaluate and improve the DIR algorithms for the lung deformation. We are currently studying more subjects to evaluate this tool.« less

  9. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    DTIC Science & Technology

    2017-05-01

    1 Fig. 2 Load vs. displacement for RT (no conditioning) samples .................... 6 Fig. 3...Load vs. displacement for RT (hot/wet conditioning) samples ............ 7 Fig. 5 Failure surface for RT (hot/wet conditioning) samples. MSAT ID...20140469, mode of failure = adhesive. ................................................. 8 Fig. 6 Load vs. displacement for ET samples (66 °C postcure

  10. Study on the evaluation method for fault displacement based on characterized source model

    NASA Astrophysics Data System (ADS)

    Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.

    2016-12-01

    In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  11. The 2011 Virginia M5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. seismicity

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Spear, D.B.; Gilmer, A.K.; McNamara, Daniel E.

    2015-01-01

    The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6– 8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic refl ection profi le acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profi le shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly refl ective zone at 7– 12 km depth. Refl ectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profi le. Although the Paleozoic structures appear to infl uence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specifi c fault systems mapped at the surface or imaged on seismic profiles.

  12. Experimental study on the sealing clearance between the labyrinth sealing displacer and cylinder in the 10 K G-M refrigerator

    NASA Astrophysics Data System (ADS)

    Hao, X. H.; Ju, Y. L.; Lu, Y. J.

    2011-05-01

    The labyrinth sealing displacer has been optimal designed to improve the operating stability and life-time of 10 K G-M refrigerator. The displacer was made of stainless steel 304 or inconel 718, coated with PTFE on its outer surface. Compared to the traditional piston-ring sealing displacer, the sealing clearance between the ridge of the labyrinth sealing displacer and cylinder is critical to the cooling performance of the G-M refrigerator. The displacers with different sealing clearances were experimentally studied, and the optimal clearance was given. The effects of the materials of the displacers and the system charge pressures on the performance of the labyrinth sealing were also tested and analyzed.

  13. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre-stress conditions, such as values of the seismic parameter S = 0.45 to 2.0, and tends to stop for S = 2.5. If rupture initiates in the north on the SAF, we find that it is easier for it to propagate across the entire stepover region. The results have implications for potential earthquakes in the region, with the possibility of a preferred direction of rupture propagation through the stepover.

  14. Way-finding in displaced clock-shifted bees proves bees use a cognitive map.

    PubMed

    Cheeseman, James F; Millar, Craig D; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D M; Gallistel, Charles R; Warman, Guy R; Menzel, Randolf

    2014-06-17

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.

  15. Way-finding in displaced clock-shifted bees proves bees use a cognitive map

    PubMed Central

    Cheeseman, James F.; Millar, Craig D.; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D. M.; Gallistel, Charles R.; Warman, Guy R.; Menzel, Randolf

    2014-01-01

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass–referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees. PMID:24889633

  16. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    PubMed Central

    Gutiérrez, J. J.; Russell, James K.

    2016-01-01

    Background. Cardiopulmonary resuscitation (CPR) feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin's back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%). Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p < 0.001). Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p < 0.001). Median error in rate was 0.9 cpm (1.0%), with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces. PMID:27999808

  17. Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps

    PubMed Central

    Antolík, Ján

    2017-01-01

    Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869

  18. Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation

    USGS Publications Warehouse

    Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.

    2014-01-01

    Periodic movement of large, thick landslides on discrete basal surfaces produces modifications of the topographic surface, creates faults and folds, and influences the locations of springs, ponds, and streams (Baum, et al., 1993; Coe et al., 2009). The geometry of the basal-slip surface, which can be controlled by geological structures (e.g., fold axes, faults, etc.; Revellino et al., 2010; Grelle et al., 2011), and spatial variation in the rate of displacement, are responsible for differential deformation and kinematic segmentation of the landslide body. Thus, large landslides are often composed of several distinct kinematic elements. Each element represents a discrete kinematic domain within the main landslide that is broadly characterized by stretching (extension) of the upper part of the landslide and shortening (compression) near the landslide toe (Baum and Fleming, 1991; Guerriero et al., in review). On the basis of this knowledge, we used photo interpretive and GPS field mapping methods to map structures on the surface of the Montaguto earth flow in the Apennine Mountains of southern Italy at a scale of 1:6,000. (Guerriero et al., 2013a; Fig.1). The earth flow has been periodically active since at least 1954. The most extensive and destructive period of activity began on April 26, 2006, when an estimated 6 million m3 of material mobilized, covering and closing Italian National Road SS90, and damaging residential structures (Guerriero et al., 2013b). Our maps show the distribution and evolution of normal faults, thrust faults, strike-slip faults, flank ridges, and hydrological features at nine different dates (October, 1954; June, 1976; June, 1991; June, 2003; June, 2005; May, 2006; October, 2007; July, 2009; and March , 2010) between 1954 and 2010. Within the earth flow we recognized several kinematic elements and associated structures (Fig.2a). Within each kinematic element (e.g. the earth flow neck; Fig.2b), the flow velocity was highest in the middle, and lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.

  19. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  20. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Shahani, Amir Reza; Sharifi Torki, Hamid

    2018-01-01

    The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.

  1. 77 FR 68144 - Information Collection Activities: Oil and Gas Production Measurement, Surface Commingling, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... records & calibration runs. practices to Record mechanical- verify accuracy displacement prover, of... needed. 1202(f)(2) Copy & submit 16.5 minutes mechanical- displacement prover & tank prover calibration...

  2. LIDAR Helps Identify Source of 1872 Earthquake Near Chelan, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Blakely, R. J.; Weaver, C. S.

    2015-12-01

    One of the largest historic earthquakes in the Pacific Northwest occurred on 15 December 1872 (M6.5-7) near the south end of Lake Chelan in north-central Washington State. Lack of recognized surface deformation suggested that the earthquake occurred on a blind, perhaps deep, fault. New LiDAR data show landslides and a ~6 km long, NW-side-up scarp in Spencer Canyon, ~30 km south of Lake Chelan. Two landslides in Spencer Canyon impounded small ponds. An historical account indicated that dead trees were visible in one pond in AD1884. Wood from a snag in the pond yielded a calibrated age of AD1670-1940. Tree ring counts show that the oldest living trees on each landslide are 130 and 128 years old. The larger of the two landslides obliterated the scarp and thus, post-dates the last scarp-forming event. Two trenches across the scarp exposed a NW-dipping thrust fault. One trench exposed alluvial fan deposits, Mazama ash, and scarp colluvium cut by a single thrust fault. Three charcoal samples from a colluvium buried during the last fault displacement had calibrated ages between AD1680 and AD1940. The second trench exposed gneiss thrust over colluvium during at least two, and possibly three fault displacements. The younger of two charcoal samples collected from a colluvium below gneiss had a calibrated age of AD1665- AD1905. For an historical constraint, we assume that the lack of felt reports for large earthquakes in the period between 1872 and today indicates that no large earthquakes capable of rupturing the ground surface occurred in the region after the 1872 earthquake; thus the last displacement on the Spencer Canyon scarp cannot post-date the 1872 earthquake. Modeling of the age data suggests that the last displacement occurred between AD1840 and AD1890. These data, combined with the historical record, indicate that this fault is the source of the 1872 earthquake. Analyses of aeromagnetic data reveal lithologic contacts beneath the scarp that form an ENE-striking, curvilinear zone ~2.5 km wide and ~55 km long. This zone coincides with monoclines mapped in Mesozoic bedrock and Miocene flood basalts. This study ends uncertainty regarding the source of the 1872 earthquake and provides important information for seismic hazard analyses of major infrastructure projects in Washington and British Columbia.

  3. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  4. Measuring the Coseismic Displacements of 2010 Ms7.1 Yushu Earthquake by Using SAR and High Resolution Optical Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, J.; Shi, F.

    2017-09-01

    After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.

  5. Mechanisms of anterior-posterior stability of the knee joint under load-bearing.

    PubMed

    Reynolds, Ryan J; Walker, Peter S; Buza, John

    2017-05-24

    The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior. Copyright © 2017. Published by Elsevier Ltd.

  6. Holographic Moire, An Optical Tool For The Determination Of Displacements, Strains, Contours, And Slopes Of Surfaces

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1982-06-01

    In conventional holographic interferometry, the observed fringe patterns are determined by the object displacement and deformation, and by the illumination and observation configurations. The obtained information may not be in the most convenient form for further data processing. To overcome this problem, and to create new possibilities, holographic fringe patterns can be changed by modifying the optical setup. As a result of these modifications, well-known procedures of the moire method can be applied to holographic interferometry. Components of displacement and components of the strain tensor can be isolated and measured separately. Surface contours and slopes can also be determined.

  7. An example of slip instability resulting from displacement-varying strength

    USGS Publications Warehouse

    Lockner, D.; Byerlee, J.

    1990-01-01

    A rock cylinder, containing a clay-filled sawcut making an angle of 30?? to the sample axis, was deformed at constant confining and pore pressures and constant remote shortening rate. The sawcut surfaces contained a series of regularly spaced ridges and grooves oriented perpendicular to the direction of shear. The interaction of these grooved surfaces resulted in a sliding strength which varied periodically with displacement. By varying the effective machine stiffness through the use of an electronic feedback circuit, a range of stable and unstable slip behavior was achieved. In this way, we examined fault slip behavior which was dominated by displacement-dependent strength. ?? 1990 Birkha??user Verlag.

  8. Coseismic fault zone deformation caused by the 2014 Mw=6.2 Nagano-ken-hokubu, Japan, earthquake on the Itoigawa-Shizuoka Tectonic Line revealed with differential LiDAR

    NASA Astrophysics Data System (ADS)

    Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.

    2015-12-01

    The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.

  9. General Series Solutions for Stresses and Displacements in an Inner-fixed Ring

    NASA Astrophysics Data System (ADS)

    Jiao, Yongshu; Liu, Shuo; Qi, Dexuan

    2018-03-01

    The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.

  10. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching.

    PubMed

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-10-21

    The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.

  11. MEMS tactile display: from fabrication to characterization

    NASA Astrophysics Data System (ADS)

    Miki, Norihisa; Kosemura, Yumi; Watanabe, Junpei; Ishikawa, Hiroaki

    2014-03-01

    We report fabrication and characterization of MEMS-based tactile display that can display users various tactile information, such as Braille codes and surface textures. The display consists of 9 micro-actuators that are equipped with hydraulic displacement amplification mechanism (HDAM) to achieve large enough displacement to stimulate the human tactile receptors. HDAM encapsulates incompressible liquids. We developed a liquid encapsulation process, which we termed as Bonding-in-Liquid Technique, where bonding with a UV-curable resin in glycerin is conducted in the liquid, which prevented interfusion of air bubbles and deformation of the membrane during the bonding. HDAM successfully amplified the displacement generated by piezoelectric actuators by a factor of 6. The display could virtually produce "rough" and "smooth" surfaces, by controlling the vibration frequency, displacement, and the actuation periods of an actuator until the adjacent actuator was driven. We introduced a sample comparison method to characterize the surfaces, which involves human tactile sensation. First, we prepared samples whose mechanical properties are known. We displayed a surface texture to the user by controlling the parameters and then, the user selects a sample that has the most similar surface texture. By doing so, we can correlate the parameters with the mechanical properties of the sample as well as find the sets of the parameters that can provide similar tactile information to many users. The preliminary results with respect to roughness and hardness is presented.

  12. Postseismic deformation of the 2015 Mw 6.5 Pishan, Xijiang earthquake from Sentinel-1 observations

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Feng, Y.; Xu, C.; Liu, Y.; Jiang, G.

    2017-12-01

    On 3 July 2015, a Mw 6.5 earthquake struck Pishan in Xinjiang, western China, which is located in the boundary between the southwestern Tarim Basin and the northwestern Tibetan Plateau. The event caused at least four deaths, 48 injuries and hundreds of building collapses. Due to its unique location, the event provides an opportunity to help us better understand the tectonic behaviors of the Tarim and surrounding regions. In this study, a multitemporal Interferometric SAR (InSAR) time series technique is used to map the postseismic motion following the Pishan event. Firstly, SAR data from two ascending tracks and one descending track of Sentinel-1 satellite under Terrain Observation with Progressive Scans (TOPS) mode are used to generate interferograms with GAMMA software. Then a global high-resolution atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (HRES-ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Finally, InSAR time series technique is adopted to derive the displacement time series within 1.5 year after the event. The results show that displacement in radar line of sight is about 2 cm around the epicenter during the period and decays with time. The observed surface displacements are consistent with afterslip on the shallow part of the coseismic fault plane, which indicates that the unreleased accumulated strain energy is mainly released by the afterslip. The magnitude of accumulated afterslip is about Mw 6.4, which is slightly smaller than the main event.

  13. Canine left ventricle electromechanical behavior under different pacing modes.

    PubMed

    Vo Thang, Thanh-Thuy; Thibault, Bernard; Finnerty, Vincent; Pelletier-Galarneau, Matthieu; Khairy, Paul; Grégoire, Jean; Harel, François

    2012-10-01

    Cardiac resynchronization therapy may improve survival and quality of life in patients suffering from heart failure with left ventricular (LV) contraction dyssynchrony. While several studies have investigated electrical or mechanical determinants of synchronous contraction, few have focused on activation contraction coupling at a macroscopic level. The objective of the study was to characterize LV electromechanical behavior and response to pacing in a heart failure model. We analyzed data from 3D electroanatomic non-contact mapping and blood pool SPECT for 12 dogs with right ventricular (RV) tachycardia pacing-induced dilated cardiomyopathy. Surfaces generated by the two modalities were registered. Electrical signals were analyzed, and endocardial wall displacement curves were portrayed. Rapid pacing decreased the mean LV ejection fraction (LVEF) to 20.9 % and prolonged the QRS duration to 79 ± 10 ms (normal range: 40-50 ms). QRS duration remained unchanged with biventricular pacing (88.5 ms), while single site pacing further prolonged the QRS duration (113.3 ms for RV pacing and 111.6 ms for LV pacing). No trend was observed in LV systolic function. Activation duration time was significantly increased with all pacing modes compared to baseline. Finally, electromechanical delay, as defined by the delay between electrical activation and mechanical response, was increased by single site pacing (172.9 ms for RV pacing and 174.6 ms for LV pacing) but not by biventricular pacing (162.4 ms). Combined temporal and spatial coregistration electroanatomic maps and baseline gated blood pool SPECT imaging allowed us to quantify activation duration time, electromechanical delay, and LVEF for different pacing modes. Even if pacing modes did not significantly modify LVEF or activation duration, they produced alterations in electromechanical delay, with biventricular pacing significantly decreasing the electromechanical delay as measured by surface tracings and endocardial non-contact mapping.

  14. Process tool monitoring and matching using interferometry technique

    NASA Astrophysics Data System (ADS)

    Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.

  15. Wave propagation in anisotropic medium due to an oscillatory point source with application to unidirectional composites

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.

    1986-01-01

    The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and wave surface are used to describe the geometry of the wave propagation process. It is shown that the decay of the wave amplitudes depends not only on the distance from the source (as in isotropic media) but also depends on the direction of the point of interest from the source. As an example, the displacement field is computed for a laboratory fabricated unidirectional fiberglass epoxy composite. The solution for the displacements is expressed as an amplitude distribution and is presented in polar diagrams. This analysis has potential usefulness in the acoustic emission (AE) and ultrasonic nondestructive evaluation of composite materials. For example, the transient localized disturbances which are generally associated with AE sources can be modeled via this analysis. In which case, knowledge of the displacement field which arrives at a receiving transducer allows inferences regarding the strength and orientation of the source, and consequently perhaps the degree of damage within the composite.

  16. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    PubMed

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques. Published by Elsevier Inc.

  17. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.

  18. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    In experiments performed at room temperature on gouges, a characteristic clast size distribution (CSD) is produced with increasing strain, and shear localization is documented to begin after few millimetres of sliding. But in natural faults active at depth in the crust, mechanical processes are associated with fluid-rock interactions, which might control the deformation and strength recovery. We aim to investigate the microstructural, geochemical and mineralogical evolution of low-displacement faults with increasing shear strain. The faults (cataclasite- and pseudotachylyte-bearing) are hosted in tonalite and were active at 9-11 km and 250-300°C. The samples were collected on a large glacier-polished outcrop, where major faults (accommodating up to 4300 mm of displacement) exploit pre-existing magmatic joints and are connected by a network of secondary fractures and faults (accommodating up to 500 mm of displacement) breaking intact tonalite. We performed optical and cathodoluminescence (CL) microscope, Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Rietveld X-Ray Powder Diffraction and microprobe chemical analysis in deformation zones of secondary faults with various offsets in order to evaluate the transfer of chemical species between dissolution zones and protected zones. Image analysis techniques were applied on SEM-BSE and optical microscope images to compute the CSD in samples, which experienced an increasing amount of strain. The secondary fractures are up to 5 mm thick. Within the first 20 mm of displacement, shear localizes along Y and R1 surfaces and a cataclastic foliation develops. The CSD evolves from a fractal dimension D of 1.3 in fractures without visible displacement to values above 2 after the first 500 mm of displacement. Chemical maps and CL images indicate that the foliation in cataclasite results from the rotation and fragmentation of clasts, with dissolution of quartz and passive concentration of Ti oxides and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  19. Summary of workshops concerning regional seismic source zones of parts of the conterminous United States, convened by the U.S. Geological Survey, 1979-1980, Golden, Colorado

    USGS Publications Warehouse

    Thenhaus, P.C.; McKeown, F.A.; Bucknam, R.C.; Ross, D.C.; Anderson, R.E.; Irwin, W.P.; Russ, D.P.; Diment, W.H.; Thenhaus, Paul C.

    1983-01-01

    Workshops were convened by the U.S. Geological Survey to obtain the latest information and concepts relative to defining seismic source zones for five regions of the United States. The zones, with some modifications, have been used in preparation of new national probabilistic ground motion hazard maps by the U.S. Geological Survey. The five regions addressed are the Great Basin, the Northern Rocky Mountains, the Southern Rocky Mountains, the Central Interior, and the northeastern United States. Discussions at the workshops focussed on possible temporal and spatial variations of seismicity within the regions, latest ages of surface-fault displacements, most recent uplift or subsidence, geologic structural provinces as they relate to seismicity, and speculation on earthquake causes. Within the Great Basin region, the zones conform to areas characterized by a predominance of faults that have certain ages of latest surface displacements. In the Northern and Southern Rocky Mountain regions, zones primarily conform to distinctive structural terrane. In the Central Interior, primary emphasis was placed on an interpretation of the areal distribution of historic seismicity, although geophysical studies in the Reelfoot rift area provided data for defining zones in the New Madrid earthquake area. An interpretation of the historic seismicity also provided the basis for drawing the zones of the New England region. Estimates of earthquake maximum magnitudes and of recurrence times for these earthquakes are given for most of the zones and are based on either geologic data or opinion.

  20. Geological evidence of pre-2012 Emilia, Italy, seismic events

    NASA Astrophysics Data System (ADS)

    Caputo, Riccardo; Minarelli, Luca; Papathanassiou, Giorgos; Poli, Eliana M.; Rapti-Caputo, Dimitra; Sboras, Sotiris; Stefani, Marco; Zanferrari, Adriano

    2013-04-01

    In May 2012, two moderate (ML = 5.9 and 5.8) earthquakes, associated with a noticeable aftershock sequence, affected the eastern sector of the Po Plain, Italy. The causative faults are two segments of the Ferrara Arc thrust system representing the most frontal portion of the buried Northern Apennines fold-and-thrust belt. Few weeks after the earthquake, a palaeoseismological trench was excavated south of the San Carlo village (western Ferrara Province), where a system of aligned ground ruptures were observed. In the trench walls we observed several features documenting the occurrence of past liquefaction events affecting the same site. For example, i) 10 cm-thick dikes filled with injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface before the excavation; ii) some thick dikes are arrested below the ploughed level or even by older sedimentary layers; iii) along the internal slope of the palaeo-channel exposed by the trench, load structures and slided blocks are observed; iv) in correspondence with the ground fractures characterised by vertical displacement and opening occurred during the 2012 earthquake and thick dikes, observed at the surface and in the trench's walls, respectively, sand and water ejection did not occur. In conclusion, the results of the palaeoseismological investigation document for the first time that shacking (i.e. seismic) events occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, but likely stronger than, the May 2012 earthquake. A likely candidate is the November 17, 1570 Ferrara earthquake.

  1. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  2. Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-11-01

    The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed

  3. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    and technology types from 1994-2015 Last update March 2017 View Graph Graph Download Data of displacement by all fuel and technology types from 1994-2015 Last update March 2017 View Graph

  4. Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.

    1977-01-01

    Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.

  5. Glacier surface velocity estimation in the West Kunlun Mountain range from L-band ALOS/PALSAR images using modified synthetic aperture radar offset-tracking procedure

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Guo, Huadong; Liu, Guang; Yan, Shiyong

    2014-01-01

    Glacier movement is closely related to changes in climatic, hydrological, and geological factors. However, detecting glacier surface flow velocity with conventional ground surveys is challenging. Remote sensing techniques, especially synthetic aperture radar (SAR), provide regular observations covering larger-scale glacier regions. Glacier surface flow velocity in the West Kunlun Mountains using modified offset-tracking techniques based on ALOS/PALSAR images is estimated. Three maps of glacier flow velocity for the period 2007 to 2010 are derived from procedures of offset detection using cross correlation in the Fourier domain and global offset elimination of thin plate smooth splines. Our results indicate that, on average, winter glacier motion on the North Slope is 1 cm/day faster than on the South Slope-a result which corresponds well with the local topography. The performance of our method as regards the reliability of extracted displacements and the robustness of this algorithm are discussed. The SAR-based offset tracking is proven to be reliable and robust, making it possible to investigate comprehensive glacier movement and its response mechanism to environmental change.

  6. Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

    PubMed

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

  7. Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization

    PubMed Central

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345

  8. Normal and Differential SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential interferometry (Cap.5...and F. Adragna , 1994. Radar Interferometric Mapping of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet...D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer, K. Feigi, and T. Rabaute, 1993. The Displacement Field of the Landers Earthquake Mapped by Radar

  9. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  10. Brownian self-driven particles on the surface of a sphere

    NASA Astrophysics Data System (ADS)

    Apaza, Leonardo; Sandoval, Mario

    2017-08-01

    We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere. The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular (azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular mean-square displacement are offered. Finally, the particles' steady marginal angular probability density functions are also elucidated.

  11. Partitioning the components of maxillary tooth displacement by the comparison of data from three cephalometric superimpositions.

    PubMed

    Baumrind, S; Ben-Bassat, Y; Bravo, L A; Curry, S; Korn, E L

    1996-01-01

    Using roentgenographic cephalograms from a sample of subjects with metallic implants, appropriately superimposed tracings were used to distinguish developmental and treatment-associated displacements of the maxillary central incisor and first molar associated "local" changes within the periodontium from "secondary" changes which reflect sutural and appositional growth at more distant osseous loci. Tracings were superimposed on anterior cranial base (ACB), on the maxillary implants only (IMP_MAX), and according to the best fit of maxillary anatomic structures without reference to the implants (A_MAX). Using the IMP_MAX superimposition, one could measure total local displacement at any landmark taking into consideration the effects of all appositional and resorptive changes on the superior and anterior surfaces of the palate, whereas using the A_MAX superimposition one could measure local displacement without consideration of surface appositional and resorptive changes. If the second of these measurements were subtracted from the first, the result would be a direct measurement of the effects of surface appositional and resorptive changes as they are expressed at that particular landmark. This strategy has enabled us to quantify and report the amount of accommodation which occurs at the location of each dental landmark in association with the resorptive and appositional changes which occur through time on the superior and anterior surfaces of the hard palate.

  12. Effective medium model for a granular monolayer on an elastic substrate

    NASA Astrophysics Data System (ADS)

    Maznev, Alexei

    Effective medium models have been shown to work well in describing experimental observations of the interaction of surface Rayleigh waves with contact vibrations of a monolayer of microspheres . However, these models contain intrinsic conceptual problems: for example, the local displacement of the substrate at the contact point is equated to the effective medium average value of the surface displacement. I will present a rigorous derivation of the effective medium model for a random arrangement of mass-spring oscillators on an elastic half-space using elastodynamic surface Green's function formalism. We will see that the model equating the local surface displacement to the effective medium displacement is indeed valid if the spring constant of the oscillators is modified to include the stiffness of the contact calculated in the quasistatic approximation. In the case of contact vibrations of microspheres, this means using the spring constant calculated using the Hertzian contact model. Thus the results obtained in the prior work were correct despite the apparent inconsistencies in the model. The presented analysis will provide a solid foundation for effective medium models used to describe dynamics of microparticle arrays adhered to a solid substrate. This work was supported by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies under Grant W911NF-13-D-0001.

  13. Creating gradient wetting surfaces via electroless displacement of zinc-coated carbon steel by nickel ions

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Liu, Huicong; Liang, Weitao; Zhu, Liqun; Li, Weiping; Chen, Haining

    2018-03-01

    Gradient wetting surfaces are getting increasing attention due to their wide application in multiple fields such as droplet movement and biosorption. However, the fabrication processes of full gradient wetting surfaces are still complex and costly. In present work, a facile and low-cost chemical immersion method was used to create a full gradient wetting surface. By controlling the displacement time in Ni2+ solution, the prepared surfaces perform hydrophilic to superhydrophilic. After being modified by stearic acid, the gradient hydrophilic surfaces convert into hydrophobic. The surface morphology, composition, and wetting behaviors of the as-prepared surfaces were systematically studied and discussed. The gradient wetting property could be attributed to the change in microroughness and surface energy. In addition, these surfaces also exhibited excellent self-cleaning and wax prevention properties. Furthermore, high stability and corrosion resistance were also found for these surfaces, which further highlight their promising practical applications in many fields.

  14. Determination of high temperature strains using a PC based vision system

    NASA Astrophysics Data System (ADS)

    McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.

    1992-09-01

    With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.

  15. Deformation of a flexible disk bonded to an elastic half space-application to the lung.

    PubMed

    Lai-Fook, S J; Hajji, M A; Wilson, T A

    1980-08-01

    An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.

  16. Stiffness map of the grasping contact areas of the human hand.

    PubMed

    Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L

    2013-10-18

    The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.

  17. The influence of plasma flows bringing the magnetotail back to a more symmetric configuration

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Østgaard, N.; Laundal, K.; Tenfjord, P.; Snekvik, K.; Haaland, S.; Milan, S. E.; Ohma, A.; Grocott, A.; Oksavik, K.

    2017-12-01

    Research from the past decades, most importantly conjugate studies, have shown extensive evidence of the Earth's closed magnetotail being highly displaced from the quiet-day configuration in response to the IMF interacting with the magnetosphere. By displaced we here refer to the mapping of magnetic field-lines from one hemisphere to the other. The large-scale ionospheric convection related to such displaced closed field-lines has also been studied, showing that the footprint in one hemisphere tend to move faster to reduce the displacement, a process we refer to as the restoring of symmetry. Although the appearance and occurrence of the plasma flows related to the restoring of symmetry has been shown to have a strong Interplanetary Magnetic Field (IMF) control, its dynamics and relation to internal magnetospheric processes are unknown. Using multiple years of line-of-sight measurements of the ionospheric plasma convection from the Super Dual Auroral Radar Network binned by IMF, season, and SML index, we have found that the restoring symmetry flows dominate the average convection pattern in the nightside ionosphere during low levels of magnetotail activity, quantified by the SML index. For increasing magnetotail activity, signatures of the restoring symmetry process become less and less pronounced in the global average convection maps. This effect is seen for all clock angles away from IMF By = 0. These results are relevant in order to better understand the dynamic evolution of flux-tubes in the asymmetric magnetosphere.

  18. Multi-temporal terrestrial laser scanning for identifying rockslide modifications: potentialities and problems

    NASA Astrophysics Data System (ADS)

    Castagnetti, Cristina; Bertacchini, Eleonora; Capra, Alessandro; Rivola, Riccardo

    2013-04-01

    The heart of this research is to provide an efficient methodology for a reliable acquisition and interpretation of Terrestrial Laser Scanner (TLS) data in the application field of landslide monitoring. In particular, rockslides, which are characterized by vertical walls of rock and by a complex morphology, are of great concern in the study. In these cases the airborne laser scanning is not able to provide useful and reliable description and the terrestrial laser scanning might be the only possible choice to obtain a good and reliable description of the geomorphology or to identify the changes occurred over time. The last purpose is still a challenging task when long distances are involved because the accurate and punctual identification of displacements is not possible due to the laser beam divergence. The final purpose of the research is a proposal of a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested together with algorithms both for filtering and post-processing. The case study is the Collagna Landslide that is located in the North Appennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector that, after high precipitation rates, disrupted the National Road 63 in December 2008. An integrated monitoring system is installed since 2009 and comprises both point-based technologies such as extensometers, total station and global positioning system, and also area-based technologies such as airborne laser scanner, long-range TLS and ground-based radar. This choice allows to couple the advantages of both approaches. The research focuses on TLS surveys for trying to detect displacements which might be responsible for instability. Four point clouds acquired in the last two years allow to monitor the spatial displacements of the whole slope, especially focusing on the rockslide sector. It is worth to underline an important aspect which contributes to highlight the significance of the work: the mean scanning distance is about 1.3 km. Few examples exist in literature about the use of very long-range TLS for displacements investigation. By sequentially analyzing TLS surfaces, displacement maps have been obtained for the rockslide area. Confirmation have been achieved by comparing results with movements of reflectors sited on the entire slope and continuously measured by total station. Such validation strengthens the idea that TLS has serious potentialities to be successfully used for analyzing instability. Comparing surfaces is not easy at all, thus a discussion about the encountered problems will be taken into account: any significant detail about potentialities and difficulties of the alignment strategy and the processing procedure will be given together with details about the specific algorithm implemented for filtering displacements by taking into account actual geomorphological conditions.

  19. Identification of mine collapses, explosions and earthquakes using INSAR: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxall, B; Sweeney, J J; Walter, W R

    1998-07-07

    Interferograms constmcted from satellite-borne synthetic aperture radar images have the capability of mapping sub-cm ground surface deformation over areas on the order of 100 x 100 km with a spatial resolution on the order of 10 meters. We investigate the utility of synthetic aperture radar interferomehy (InSAR) used in conjunction with regional seismic methods in detecting and discriminating different types of seismic events in the context of special event analysis for the CTBT. For this initial study, we carried out elastic dislocation modeling of underground explosions, mine collapses and small (M<5.5) shallow earthquakes to produce synthetic interferograms and then analyzedmore » satellite radar data for a large mine collapse. The synthetic modeling shows that, for a given magnitude each type of event produces a distinctive pattern of ground deformation that can be recognized in, and recovered from, the corresponding interferogram. These diagnostic characteristics include not only differences in the polarities of surface displacements but also differences in displacement amplitudes from the different sources. The technique is especially sensitive to source depth, a parameter that is crucial in discriminating earthquakes from the other event types but is often very poorly constrained by regional seismic data alone. The ERS radar data analyzed is from a M L 5.2 seismic event that occurred in southwestern Wyoming on February 3,1995. Although seismic data from the event have some characteristics of an underground explosion, based on seismological and geodetic data it has been identified as being caused by a large underground collapse in the Solvay Mine. Several pairs of before-collapse and after-collapse radar images were phase processed to obtain interferograms. The minimum time separation for a before-collapse and after-collapse pair was 548 days. Even with this long time separation, phase coherence between the image pairs was acceptable and a deformation map was successfully obtained. Two images, separated by 1 day and occurring after the mine collapse, were used to form a digital elevation map (DEM) that was used to correct for topography. The interferograms identify the large deformation at the Solvay Mine as well as some areas of lesser deformation near other mines in the area. The large amount of deformation at the Solvay Mine was identified, but (as predicted by our dislocation modeling) could not be quantified absolutely because of the incoherent interference pattern it produced« less

  20. Distinct Element Modeling of the Large Block Test

    NASA Astrophysics Data System (ADS)

    Carlson, S. R.; Blair, S. C.; Wagoner, J. L.

    2001-12-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada as a potential nuclear waste repository site. As part of this effort, the Large Block, a 3m x 3m x 4.5m rectangular prism of Topopah Spring tuff, was excavated at Fran Ridge near Yucca Mountain. The Large Block was heated to a peak temperature of 145\\deg C along a horizontal plane 2.75m below the top of the block over a period of about one-year. Displacements were measured in three orthogonal directions with an array of six Multiple Point Borehole Extensometers (MPBX) and were numerically simulated in three dimensions with 3DEC, a distinct element code. The distinct element method was chosen to incorporate discrete fractures in the simulations. The model domain was extended 23m below the ground surface and, in the subsurface, 23m outward from each vertical face so that fixed displacement boundary conditions could be applied well away from the heated portion of the block. A single continuum model and three distinct element models, incorporating six to twenty eight mapped fractures, were tested. Two thermal expansion coefficients were tested for the six-fracture model: a higher value taken from laboratory measurements and a lower value from an earlier field test. The MPBX data show that the largest displacements occurred in the upper portion of the block despite the higher temperatures near the center. The continuum model was found to under-predict the MPBX displacements except in the east west direction near the base of the block. The high thermal expansion model over-predicted the MPBX displacements except in the north south direction near the top of the block. The highly fractured model under-predicted most of the MPBX displacements and poorly simulated the cool-down portion of the test. Although no model provided the single best fit to all of the MPBX data, the six and seven fracture models consistently provided good fits and in most cases showed much improvement over the other three models. Both provided particularly good fits to the east west displacements in the upper portion of the block throughout the entire test. This exercise demonstrates that distinct element models can surpass continuum models in their ability to simulate fractured rock mass deformation, but care needs to be taken in the selection of fractures incorporated in the models. *This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  1. Looking and homing: how displaced ants decide where to go.

    PubMed

    Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang

    2014-01-01

    We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s(-1) and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information.

  2. Simultaneous displacement and slope measurement in electronic speckle pattern interferometry using adjustable aperture multiplexing.

    PubMed

    Lu, Min; Wang, Shengjia; Aulbach, Laura; Koch, Alexander W

    2016-08-01

    This paper suggests the use of adjustable aperture multiplexing (AAM), a method which is able to introduce multiple tunable carrier frequencies into a three-beam electronic speckle pattern interferometer to measure the out-of-plane displacement and its first-order derivative simultaneously. In the optical arrangement, two single apertures are located in the object and reference light paths, respectively. In cooperation with two adjustable mirrors, virtual images of the single apertures construct three pairs of virtual double apertures with variable aperture opening sizes and aperture distances. By setting the aperture parameter properly, three tunable spatial carrier frequencies are produced within the speckle pattern and completely separate the information of three interferograms in the frequency domain. By applying the inverse Fourier transform to a selected spectrum, its corresponding phase difference distribution can thus be evaluated. Therefore, we can obtain the phase map due to the deformation as well as its slope of the test surface from two speckle patterns which are recorded at different loading events. By this means, simultaneous and dynamic measurements are realized. AAM has greatly simplified the measurement system, which contributes to improving the system stability and increasing the system flexibility and adaptability to various measurement requirements. This paper presents the AAM working principle, the phase retrieval using spatial carrier frequency, and preliminary experimental results.

  3. Locked nailing for the treatment of displaced articular fractures of the calcaneus: description of a new procedure with calcanail(®).

    PubMed

    Goldzak, Mario; Mittlmeier, Thomas; Simon, Patrick

    2012-05-01

    Although open reduction and internal fixation is considered the best method for treating displaced articular fractures of the calcaneus, lateral approach is at high risk for wound healing complications. For this reason, the authors developed a posterior approach and a new implant to perform both intrafocal reduction and internal fixation. The aim of this technical note is to describe this method of treatment for displaced articular fractures of the calcaneus, which offered the following advantages: (a) the creation of a working channel that provides also a significant bone autograft, (b) the intrafocal reduction of the displaced articular surface, (c) the insertion of a locking nail that maintains the reduced articular surface at the right height, (d) the possibility to switch from an ORIF to a reconstruction arthrodesis with the same approach and instrumentation in case of severely damaged posterior facet.

  4. Geologic map of the Ute Mountain 7.5' quadrangle, Taos County, New Mexico, and Conejos and Costilla Counties, Colorado

    USGS Publications Warehouse

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations and are indicated as such on the map sheet.

  5. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  6. Surface Assisted Transient Displacement Charge Technique. II. Effect of Gases on Photoinduced Charge Transfer in Self-Assembled Monolayers

    PubMed Central

    Krasnoslobodtsev, Alexey V.; Smirnov, Sergei N.

    2008-01-01

    Surface assisted photoinduced transient displacement charge (SPTDC) technique was used to study charge transfer in self-assembled monolayers of 7-diethylaminocoumarin covalently linked to oxide surface in atmosphere of different gases. The dipole signal was found to be opposite to that in solution and dependent on the nature of gas and its pressure. The results were explained by collision-induced relaxation that impedes uninhibited tilting of molecules onto the surface. Collisions with paramagnetic oxygen induce intersystem crossing to long-lived triplet dipolar states of coumarin with the rate close to the half of that for the collision rate. PMID:16956285

  7. [Synthesis and evaluation of a novel injectable and water-swelling gingival displacement materials].

    PubMed

    Xu, Xiaohua; Zhu, Xiaopeng; Ning, Tianyun; Liu, Wei; Li, Quanli

    2012-04-01

    To synthesize and evaluate a novel injectable and water-swelling gingival displacement materials. A kind of water-swelling polymer, kaolin and aluminum chloride were mechanically mixed at certain ratio in water solution, resulting to a novel paste materials for gingival displacement. Then, its stability in aqueous solution and water swelling properties were evaluated in vitro. The effect on gingival displacement was evaluated by animal experiments in dogs. A commercial gingival displacement materials paste of Expasyl was used as control. While contacting with water, the novel gingival displacement paste did not collapse, maintained its integrity structure, and could expand for adsorbing water. Animal experiments in dogs showed that the materials could lead to displace the gingival margins from the dental root surfaces. The novel injectable and expanded gingival displacement material is efficient to retract free gingival margin with potential clinical application.

  8. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  9. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nicol, Andrew; Van Dissen, Russell

    2002-09-01

    Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.

  10. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    PubMed Central

    Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761

  11. Measuring earthquakes from optical satellite images.

    PubMed

    Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J

    2000-07-10

    Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.

  12. Geologic structure in California: Three studies with ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1974-01-01

    Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.

  13. Magnitude, Timing, and Geometry of Extension in the Southern Sevier Desert Basin From Piercing Points, Seismic-Stratigraphic Reconstruction, and Deep well Data

    NASA Astrophysics Data System (ADS)

    Coogan, J. C.; Decelles, P. G.

    2007-12-01

    Palinspastic reconstruction of Mesozoic thrust sheets provides the main constraint for an estimated 47 km of Cenozoic extensional displacement along the Sevier Desert detachment (SDD) in the central Sevier Desert Basin. Hanging wall and footwall piercing points indicate that the SDD accommodated a minimum of 35 km of extensional displacement in the narrower southern part of the basin. The piercing points for the SDD are defined by the intersection of the SDD, the Canyon Range thrust (CRT), and a regional early Cenozoic erosion surface (ES). The hanging wall piercing point lies immediately northeast of the Cricket Mountains, where the SDD-CRT- ES intersection is narrowly defined by intersecting structure maps derived from published seismic reflection data. The footwall piercing point lies in the southern foothills of the Canyon Range, where the SDD breakaway plane is well constrained by an industry seismic line that lies within 2 km of the exposed intersection of the CRT with the base of the Oligocene Oak City Formation. Timing of extension in the southern Sevier Desert basin is constrained by a kinematic reconstruction of detachment and imbricate fault displacement, footwall uplift, and supradetachment sedimentation for Oligocene, Miocene, and Plio-Pleistocene seismic sequences. The reconstruction is centered on a seismic reflection and gravity interpretation along the published Pan Canadian profiles 2 and 3 that is tied to dated intervals in six industry wells. Fault restoration indicates that Oligocene and Miocene phases of slip each accounted for about 40 percent of the total displacement. Simultaneous backstripping of the Oligocene, Miocene, and Plio-Pleistocene supradetachment sequences records hanging wall subsidence simultaneous with footwall uplift, with a footwall burial history that is consistent with published Miocene apatite and zircon fission-track ages of footwall samples. The geometric evolution of the southern SDD extensional system is consistent with its development above a broad westward-migrating "rolling hinge" zone associated with isostatic uplift of the detachment footwall. Hanging wall normal faults east of the footwall crest exhibit small post-Miocene displacement, with demonstrable Quaternary slip restricted to the crest and western limb of the uplift, most notably along the Black Rock and Clear Lake fault zones. Early abandonment of the eastern part of the detachment may explain the indistinct geomorphic and structural expression of the break-away zone at the surface. The deepest level of the southern SDD also presents a complex geometry and kinematic history. The 1996 Chevron 1-29 Black Rock Federal well through the western basin margin penetrated a normal fault that places Jurassic over lower Cambrian strata at 4650 m measured depth, well above the principal SDD seismic reflection. The fault is not correlated to any large- displacement high-angle fault at shallow levels, and may form the abandoned roof to an extensional duplex.

  14. Stability Criteria Analysis for Landing Craft Utility

    DTIC Science & Technology

    2017-12-01

    Square meter m/s Meters per Second m/s2 Meters per Second Squared n Vertical Displacement of Sea Water Free Surface n3 Ship’s Heave... Displacement n5 Ship’s Pitch Angle p(ξ) Rayleigh Distribution Probability Function POSSE Program of Ship Salvage Engineering pk...Spectrum Constant γ JONSWAP Wave Spectrum Peak Factor Γ(λ) Gamma Probability Function Δ Ship’s Displacement Δω Small Frequency

  15. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage containing line ornamentation, and (5) a scanned topographic base at a scale of 1:24,000. The coverages include attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  16. A Markov Chain Monte Carlo Inversion Approach For Inverting InSAR Data With Application To Subsurface CO2 Injection

    NASA Astrophysics Data System (ADS)

    Ramirez, A. L.; Foxall, W.

    2011-12-01

    Surface displacements caused by reservoir pressure perturbations resulting from CO2 injection can often be measured by geodetic methods such as InSAR, tilt and GPS. We have developed a Markov Chain Monte Carlo (MCMC) approach to invert surface displacements measured by InSAR to map the pressure distribution associated with CO2 injection at the In Salah Krechba field, Algeria. The MCMC inversion entails sampling the solution space by proposing a series of trial 3D pressure-plume models. In the case of In Salah, the range of allowable models is constrained by prior information provided by well and geophysical data for the reservoir and possible fluid pathways in the overburden, and injection pressures and volumes. Each trial pressure distribution source is run through a (mathematical) forward model to calculate a set of synthetic surface deformation data. The likelihood that a particular proposal represents the true source is determined from the fit of the calculated data to the InSAR measurements, and those having higher likelihoods are passed to the posterior distribution. This procedure is repeated over typically ~104 - 105 trials until the posterior distribution converges to a stable solution. The solution to each stochastic inversion is in the form of Bayesian posterior probability density function (pdf) over the range of the alternative models that are consistent with the measured data and prior information. Therefore, the solution provides not only the highest likelihood model but also a realistic estimate of the solution uncertainty. Our InSalah work considered three flow model alternatives: 1) The first model assumed that the CO2 saturation and fluid pressure changes were confined to the reservoir; 2) the second model allowed the perturbations to occur also in a damage zone inferred in the lower caprock from 3D seismic surveys; and 3) the third model allowed fluid pressure changes anywhere within the reservoir and overburden. Alternative (2) yielded optimal fits to the data in inversions of InSAR data collected in 2007. The results indicate that pressure changes developed near the injection well and then penetrated into the lower caprock along the postulated damage zone. As in many geophysical inverse problems, inversion of surface displacement data for subsurface sources of deformation is inherently uncertain and non-unique. We will also discuss the approach used to characterize solution uncertainty. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.

    PubMed

    Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina

    2018-01-16

    The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.

  18. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI

    PubMed Central

    Zhong, Xiaodong; Meyer, Craig H.; Schlesinger, David J.; Sheehan, Jason P.; Epstein, Frederick H.; Larner, James M.; Benedict, Stanley H.; Read, Paul W.; Sheng, Ke; Cai, Jing

    2009-01-01

    Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal∕spatial resolution and sensitivity. PMID:19746774

  19. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    PubMed

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    NASA Astrophysics Data System (ADS)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.

  1. Accuracy enhancement of point triangulation probes for linear displacement measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Kim, Jong-Ahn; Oh, SeBaek; Kim, Soo Hyun; Kwak, Yoon Keun

    2000-03-01

    Point triangulation probes (PTBs) fall into a general category of noncontact height or displacement measurement devices. PTBs are widely used for their simple structure, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability; measurement errors from inclinations of an object surface, probe signal fluctuations generated by speckle effects, power variation of a light source, electronic noises, and so on. In this paper, we propose a novel signal processing algorithm, named as EASDF (expanded average square difference function), for a newly designed PTB which is composed of an incoherent source (LED), a line scan array detector, a specially selected diffuse reflecting surface, and several optical components. The EASDF, which is a modified correlation function, is able to calculate displacement between the probe and the object surface effectively even if there are inclinations, power fluctuations, and noises.

  2. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  3. Friction drive position transducer

    NASA Astrophysics Data System (ADS)

    Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.

    1991-10-01

    A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact therebetween so that the wheel turns as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the types of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.

  4. Friction drive position transducer

    NASA Astrophysics Data System (ADS)

    Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.

    1993-06-01

    A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact there between so that the wheel turn as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the type of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.

  5. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe

  6. Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher William

    The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral propagation and early linkage of the precursor fault strands at depth before the fault segment broke surface, followed by the accumulation of displacement on the linked fault segment with minimal lateral propagation. This style of fault growth contrasts conventional fault growth models by which growth occurs through incremental increases in both displacement and length through time. The evolution of normal fault populations and fault zones exerts a first- order control on basin physiography and sediment supply, and therefore, the architecture and distribution of coeval syn-rift stratigraphy. The early syn-rift continental, Abu Zenima Formation, to shallow marine, Nukhul Formation show a pronounced westward increase in thickness controlled by the series of synthetic and antithetic faults up to 3 km west of present day Thai fault. The orientation of these faults controlled the location of fluvial conglomerates, sandstones and mudstones that shifted to the topographic lows created. The progressive localisation of displacement onto the Sarbut El Gamal fault segment during rift-climax resulted in an overall change in basin geometry. Accelerated subsidence rates led to sedimentation rates being outpaced by subsidence resulting in the development of a marine, sediment-starved, underfilled hangingwall depocentre characterised by slope-to-basinal depositional environments, with a laterally continuous slope apron in the immediate hangingwall, and point-sourced submarine fans. Controls on the spatial distribution, three dimensional architecture, and facies stacking patterns of coeval syn-rift deposits are identified as: I) structural style of the evolution and linkage of normal fault populations, ii) basin physiography, iii) evolution of drainage catchments, iv) bedrock lithology, and v) variations in sea/lake level.

  7. Preliminary paleoseismic observations along the western Denali fault, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into the fan across the main fault scarp and adjacent graben, exposed sheared debris fan parent material at its north and south ends, separated by a central zone of stacked scarp-derived colluvium and weakly developed peaty soils. Stratigraphic relations and upward fault terminations clearly record the occurrence of the past three surface-faulting earthquakes and suggest four or more such events. Results of pending 14C analyses are expected to provide new information on earthquake timing and recurrence. A Holocene slip rate for this section of the fault will be developed using back-slip models and an estimate of the age of the fan constrained by our detailed surveys of channel offsets and pending cosmogenic 10Be exposure ages for surface boulders, respectively.

  8. Static Rupture Model of the 2010 M7.2 El Mayor-Cucapah Earthquake from ALOS, ENVISAT, SPOT and GPS Data

    NASA Astrophysics Data System (ADS)

    Fialko, Y.; Gonzalez, A.; Gonzalez-Garcia, J. J.; Barbot, S.; Leprince, S.; Sandwell, D. T.; Agnew, D. C.

    2010-12-01

    The April 4, 2010 "Easter Sunday" earthquake on the US-Mexico border was the largest event to strike Southern California in the last 18 years. The earthquake occurred on a northwest trending fault close to, but not coincident with the identified 1892 Laguna Salada rupture. We investigate coseismic deformation due to the 2010 El Mayor-Cucapah earthquake using Synthetic Aperture Radar (SAR) imagery form ENVISAT and ALOS satellites, optical imagery from SPOT-5 satellite, and continuous and campaign GPS data. The earliest campaign postseismic GPS survey was conducted within days after the earthquake, and provided the near-field cosesmic offsets. Along-track SAR interferograms and amplitude cross-correlation of optical images reveal a relatively simple continuous fault trace with maximum offsets of the order of 3 meters. This is in contrast to the results of geological mapping that portrayed a complex broad zone of distributed faulting. Also, SAR data indicate that the rupture propagated bi-laterally from the epicenter near the town of Durango both to the North-West into the Cucapah mountains and to the South-East into the Mexically valley. The inferred South-East part of the rupture was subsequently field-checked and associated with several fresh scarps, although overall the earthquake fault does not have a conspicuous surface trace South-East of the hypocenter. It is worth noting that the 2010 earthquake propagated into stress shadows of prior events - the Laguna Salada earthquake that ruptured the North-West part of the fault in 1892, and several M6+ earthquakes that ruptured the South-East part of the fault over the last century. Analysis of the coseismic displacement field at the Earth's surface (in particular, the full 3-component displacement field retrieved from SAR and optical imagery) shows a pronounced asymmetry in horizontal displacements across both nodal planes. The maximum displacements are observed in the North-Eastern and South-Western quadrants. This pattern cannot be explained by oblique slip on a quasi-planar fault. Multi-parametric inversions of the space geodetic data suggest that the El Mayor-Cucapah earthquake occurred on a helix-shaped rupture, with Eastward dip in the Northern section and Westward dip in the Southern section. This interpretation is consistent with field observations of the surface rupture and aftershock data, and provides an explanation for a strong non-double-couple component suggested by the seismic moment tensor solution. The total geodetic moment of our best-fitting model is in a good agreement with the seismic moment. We will also discuss effects of the elastic structure on the inferred static rupture model, and observations of early postseismic deformation.

  9. Hydrostructural maps of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.

    2002-01-01

    The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system (DVRFS), which covers 80,000 square km in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics may serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities. The faults shown on maps A and B are largely from Workman and others (in press), and fit one or more of the following criteria: (1) faults that are more than 10 km in map length; (2) faults with more than 500 m of displacement; and (3) faults in sets that define a significant structural fabric that characterizes a particular domain of the DVRFS. The following fault types are shown: Neogene normal, Neogene strike-slip, Neogene low-angle normal, pre-Tertiary thrust, and structural boundaries of Miocene calderas. We have highlighted faults that have late Pleistocene to Holocene displacement (Piety, 1996). Areas of thick Neogene basin-fill deposits (thicknesses 1-2 km, 2-3 km, and >3 km) are shown on map A, based on gravity anomalies and depth-to-basement modeling by Blakely and others (1999). We have interpreted the positions of faults in the subsurface, generally following the interpretations of Blakely and others (1999). Where geophysical constraints are not present, the faults beneath late Tertiary and Quaternary cover have been extended based on geologic reasoning. Nearly all of these concealed faults are shown with continuous solid lines on maps A and B, in order to provide continuous structures for incorporation into the hydrogeologic framework model (HFM). Map A also shows the potentiometric surface, regional springs (25-35 degrees Celsius, D'Agnese and others, 1997), and cold springs (Turner and others, 1996).

  10. Constraints on geothermal reservoir volume change calculations from InSAR surface displacements and injection and production data

    NASA Astrophysics Data System (ADS)

    Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez

    2017-04-01

    Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.

  11. Role of Growth Faulting in the Quaternary Development of Mississippi-River Delta

    NASA Astrophysics Data System (ADS)

    Mohrig, D.; George, T. J.; Straub, K. M.

    2008-12-01

    We use an industry grade seismic volume and observations of present-day surface topography to resolve the influence of growth faulting on evolution of Mississippi delta in southeastern Louisiana from the Pleistocene to Recent. The volume of seismic data covers an area roughly 1400 square kilometers in size and it resolves many normal faults with displacements that can be tied to movement of Jurassic Louann Salt in the subsurface. We have defined the Quaternary activity associated with 6 of these normal faults by measuring the progressive offset of strata deposited on the delta surface over time. These measurements of fault displacement were restricted to the sedimentary section positioned 150 to 1500 m beneath the delta surface. Total vertical offsets measured within this Quaternary section range from 60 to 150 m. These fault displacements represent abrupt spatial variations in subsidence rate that are between 4 and 8 percent of the regional, long-term deposition rate. Our best estimates for the Quaternary rates of fault displacement vary between 0.1 and 1 mm/yr. Five faults can be connected to deformation of the modern delta surface. Wetland on the footwall is replaced by open water on the hanging wall of these structures. In spite of this evidence for modern surface deformation, the orientations of buried, seismically resolved channel bodies do not appear to be affected by the positions of active growth faults. We will evaluate the competition between subsidence and sedimentation patterns that leads to this style of channelized stratigraphy.

  12. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  13. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  14. Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping

    2003-04-01

    A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.

  15. Reply to the discussion by Pinyol et al. (2016) on Gutiérrez et al. (2015) "Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological-geomorphological mapping, trenching and electrical resistivity imaging"

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Linares, Rogelio; Roqué, Carles; Zarroca, Mario; Carbonel, Domingo; Rosell, Joan; Gutiérrez, Mateo

    2016-06-01

    Gutiérrez et al. (2015) in their paper published in Geomorphology document for the first time five large landslides (L1, L2, L3, L5, L6) in the Canelles Reservoir (Spanish Pyrenees) on the basis of detailed geomorphological-geological mapping. They also analyse a large 40 × 106 m3 translational landslide reactivated in 2006 by a severe decline in the reservoir water level (L4 or Canelles landslide). This landslide was discovered because a 1.1 km long fissure-scarp less than 0.5 m in width and height developed along the head of the landslide. The investigation concerning the Canelles landslide included the construction of site-specific stratigraphic columns, detailed mapping, electrical resistivity imaging, and trenching in the upper part of the landslide. The retrodeformation analysis of the trench log together with radiocarbon dates revealed two displacement events older and larger in magnitude than the 2006 event. Those episodes occurred in the 6th to 7th Centuries and in 1262-1679 yr AD, the latter one probably triggered by the 1373 Ribagorza earthquake (Mw 6.2). Based on these new data, Gutiérrez et al. (2015) discuss the hypothesis proposed in a previous paper by Pinyol et al. (2012) on the kinematic behaviour of the Canelles landslide. Pinyol et al. (2012), based on a thermo-hydro-mechanical numerical model that assumes dilation in the sliding surface induced by frictional heating under undrained conditions, predict a catastrophic reactivation. They forecast that at 35 s after the initiation of the movement, the landslide would reach a displacement of 250 m and a speed of 16 m s- 1, capable of generating an impulse-water wave (tsunami). Pinyol et al. (2016) address three issues in their discussion on Gutiérrez et al. (2015): (1) the geological model used; (2) the validity of the prediction of an extremely rapid reactivation; (3) the effectiveness of the corrective measures proposed. They also add a section with additional comments.

  16. Engine Performance Test of the 1975 GM 140-CID

    DOT National Transportation Integrated Search

    1976-06-01

    An engine test of the 1975 GM 140 cubic-inch-displacement, 4-cylinder engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, and NO/sub x/) maps. The data acquired are summarized.

  17. An object-mediated updating account of insensitivity to transsaccadic change

    PubMed Central

    Tas, A. Caglar; Moore, Cathleen M.; Hollingworth, Andrew

    2012-01-01

    Recent evidence has suggested that relatively precise information about the location and visual form of a saccade target object is retained across a saccade. However, this information appears to be available for report only when the target is removed briefly, so that the display is blank when the eyes land. We hypothesized that the availability of precise target information is dependent on whether a post-saccade object is mapped to the same object representation established for the presaccade target. If so, then the post-saccade features of the target overwrite the presaccade features, a process of object mediated updating in which visual masking is governed by object continuity. In two experiments, participants' sensitivity to the spatial displacement of a saccade target was improved when that object changed surface feature properties across the saccade, consistent with the prediction of the object-mediating updating account. Transsaccadic perception appears to depend on a mechanism of object-based masking that is observed across multiple domains of vision. In addition, the results demonstrate that surface-feature continuity contributes to visual stability across saccades. PMID:23092946

  18. A flattened cloud core in NGC 2024

    NASA Technical Reports Server (NTRS)

    Ho, Paul T. P.; Peng, Yun-Lou; Torrelles, Jose M.; Gomez, Jose F.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    The (J, K) (1, 1) and (2, 2) NH3 lines were mapped toward a molecular cloud core in NGC 2024 using the VLA in its C/D-configuration. This region is associated with one of the most highly collimated molecular outflows. We find that the molecular condensations associated with the far-infrared sources FIR 5, FIR 6, and FIR 7 have kinetic temperatures of about 40 K. We also find line broadening toward FIR 6 and FIR 7. This suggests that these condensations may not be protostars heated by gravitational energy released during collapse but that they have an internal heating source. A flattened structure of ammonia emission is found extending parallel to the unipolar CO outflow structure, but displaced systematically to the east. If the NH3 emission traces the denser gas environment, there is no evidence that a dense gas structure is confining the molecular outflow. Instead, the location of the high-velocity outflow along the surface of the NH3 structure suggests that a wind is sweeping material from the surface of this elongated cloud core.

  19. A 3D geological and geomechanical model of the 1963 Vajont landslide

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. The chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments. Finally 3D FEM analyses using the code MidasGTS have been performed adopting the 3D geological model. A c-phi reduction procedure was employed along the pre-defined failure surface until the onset of the landslide occurred. The initiation of the rock mass movements is properly described by considering the evolution of plastic shear strain in the failure surface. The stress, strain and displacement fields of the rock mass were analysed in detail and compared with the monitored data.

  20. Predicting cerulean warbler habitat use in the Cumberland Mountains of Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, D.A.; Welton, M.J.; Beachy, T.A.

    2006-12-15

    We developed a habitat model to predict cerulean warbler (Dendroica cerulea) habitat availability in the Cumberland Mountains of eastern Tennessee. We used 7 remotely sensed vegetation and topographic landform explanatory variables and known locations of territorial male cerulean warblers mapped in 2003 as the response variable to develop a Mahalanobis distance statistic model of potential habitat. We evaluated the accuracy of the model based on field surveys for ceruleans during the 2004 breeding season. The model performed well with an 80% correct classification of cerulean presence based on the validation data, although prediction of absence was only 54% correct. Wemore » extrapolated from potential habitat to cerulean abundance based on density estimates from territory mapping on 8 20-ha plots in 2005. Over the 200,000-ha study area, we estimated there were 80,584 ha of potential habitat, capable of supporting about 36,500 breeding pairs. We applied the model to the 21,609-ha state-owned Royal Blue Wildlife Management Area to evaluate the potential effects of coal surface mining as one example of a potential conflict between land use and cerulean warbler conservation. Our models suggest coal surface mining could remove 2,954 ha of cerulean habitat on Royal Blue Wildlife Management Area and could displace 2,540 breeding pairs (23% of the Royal Blue population). A comprehensive conservation strategy is needed to address potential and realized habitat loss and degradation on the breeding grounds, during migration, and on the wintering grounds.« less

  1. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  2. An improved data integration algorithm to constrain the 3D displacement field induced by fast deformation phenomena tested on the Napa Valley earthquake

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Fernández, José; Albano, Matteo; Bignami, Christian; Palano, Mimmo; Stramondo, Salvatore

    2017-12-01

    In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.

  3. Longitudinal curvature and displacement speed effects on incompressible laminar boundary layers.

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Wornom, S. F.

    1972-01-01

    The title problem is considered for the case of flow past a circular cylinder placed normal to a uniform mainstream with Reynolds numbers from 40 to 200. Implicit finite difference numerical solutions are obtained for a set of boundary-layer equations that account for the second order effects associated with surface curvature and displacement speed. It was found that both of these contributors have a significant influence on the internal structure of the viscous region and that an accurate estimate of the surface pressure distribution is essential for estimating the surface shear stress.

  4. Influence of electrochemical potential on the displacement of aqueous electrolyte from a copper surface by oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendig, M.W.; Fadner, T.A.

    1985-02-01

    The forces responsible for the meniscus formed during the dynamic displacement of a 0.1 M H/sub 3/BO/sub 3/ + 0.5 M NaClO/sub 4/ solution by oil from a copper surface depend on the electrochemical potential of the copper and on an active component in the oil. For a nonpolar mineral oil containing oleic acid, a negative potential applied to copper produces hydrophilic behavior of the copper surface in the aqueous phase. This result is attribute largely to electrochemical destabilization of metallic soaps and possibly to electroosmotic transport.

  5. Methods of and apparatus for levitating an eddy current probe

    DOEpatents

    Stone, William J.

    1988-05-03

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  6. A Surface Wave Dispersion Study of the Middle East and North Africa for Monitoring the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Walter, W. R.; Hazler, S. E.

    - We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined MS measurements, which we hope can be used to extend the threshold of mb:MS discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.

  7. Surface Displacement Measurements, Strain and Vibrational Analysis using Speckle Metrology Techniques.

    DTIC Science & Technology

    1980-03-01

    Ennos, A. E., " Measurement by Laser Photography," National Physical Laboratory, Division of Optical Metrology, Teddington, Middlesex, U.K. 9. Archbold...Field Measurement ," Optics and Laser TechnoloZ, pp. 216 - 219, October 1776. 149 37. Khetan, R. P., and Chiang, F. P., "Strain Analysis by One Beam...AD-AO85 145 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 17/8 SURFACE DISPLACEMENT MEASUREMENTS , STRAIN AND VIBRATIONAL ANALY-ETC(U) MAR GO A B

  8. Interferometric Constraints on Surface Brightness Asymmetries in Long-Period Variable Stars: A Threat to Accurate Gaia Parallaxes

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.

    2011-09-01

    A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.

  9. Coastal foredune displacement and recovery, Barrett Beach-Talisman, Fire Island, New York, USA

    USGS Publications Warehouse

    Psuty, N.P.; Pace, J.P.; Allen, J.R.

    2005-01-01

    Coastal foredune mobility has been tracked at Fire Island National Seashore since 1976 with annual field surveys and analysis of frequent aerial photography. Sequential mapping of the foredune crestline depicts nearly islandwide displacement during major storm events, such as in 1992, and localized displacement during alongshore passage of inshore circulation cells during other years. An instance of localized landward erosion and curvilinear displacement along approximately 400 m of foredune occurred in 1994, followed by recovery over the next nine years. Data from annual surveys and partially supported by four LIDAR flights establish that volume recovery rates in the foredune ranged from about 1.0 m3/m/yr to nearly 12.0 m 3/m/yr. Analysis of the foredune morphology and location shows nearly complete recovery of foredune shape and dimension during this interval and it also demonstrates that there has been inland displacement of the foredune crestline of up to 40 m. Total volume recovery within the localized foredune erosion site was greatest, between 34 m3/m to 47 m3/m, in areas of greatest displacement and eventually contributed to creation of a foredune of similar dimension along the entire eroded zone. This process of erosion and recovery describes a mechanism for foredune dimension retention during episodic erosion and displacement and may be a model for foredune persistence accompanying barrier island migration. ?? 2005 Gebru??der Borntraeger.

  10. Coastal foredune displacement and recovery, Barrett Beach-Talisman, Fire Island, New York, USA

    USGS Publications Warehouse

    Psuty, N.P.; Pace, J.P.; Allen, J.R.; Psuty, Norbert P.; Sherman, Douglas J.; Meyer-Arendt, Klaus

    2005-01-01

    Coastal foredune mobility has been tracked at Fire Island National Seashore since 1976 with annual field surveys and analysis of frequent aerial photography. Sequential mapping of the foredune crestline depicts nearly islandwide displacement during major storm events, such as in 1992, and localized displacement during alongshore passage of inshore circulation cells during other years. An instance of localized landward erosion and curvilinear displacement along approximately 400 m of foredune occurred in 1994, followed by recovery over the next nine years. Data from annual surveys and partially supported by four LIDAR flights establish that volume recovery rates in the foredune ranged from about 1.0 m3/m/yr to nearly 12.0 m3/m/yr. Analysis of the foredune morphology and location shows nearly complete recovery of foredune shape and dimension during this interval and it also demonstrates that there has been inland displacement of the foredune crestline of up to 40 m. Total volume recovery within the localized foredune erosion site was greatest, between 34 m3/m to 47 m3/m, in areas of greatest displacement and eventually contributed to creation of a foredune of similar dimension along the entire eroded zone. This process of erosion and recovery describes a mechanism for foredune dimension retention during episodic erosion and displacement and may be a model for foredune persistence accompanying barrier island migration.

  11. Study of correlation between overlay and displacement measured by Coherent Gradient Sensing (CGS) interferometry

    NASA Astrophysics Data System (ADS)

    Mileham, Jeffrey; Tanaka, Yasushi; Anberg, Doug; Owen, David M.; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    Within the semiconductor lithographic process, alignment control is one of the most critical considerations. In order to realize high device performance, semiconductor technology is approaching the 10 nm design rule, which requires progressively smaller overlay budgets. Simultaneously, structures are expanding in the 3rd dimension, thereby increasing the potential for inter-layer distortion. For these reasons, device patterning is becoming increasingly difficult as the portion of the overlay budget attributed to process-induced variation increases. After lithography, overlay gives valuable feedback to the lithography tool; however overlay measurements typically have limited density, especially at the wafer edge, due to throughput considerations. Moreover, since overlay is measured after lithography, it can only react to, but not predict the process-induced overlay. This study is a joint investigation in a high-volume manufacturing environment of the portion of overlay associated with displacement induced by a single process across many chambers. Displacement measurements are measured by Coherent Gradient Sensing (CGS) interferometry, which generates high-density displacement maps (>3 million points on a 300 mm wafer) such that the stresses induced die-by-die and process-by-process can be tracked in detail. The results indicate the relationship between displacement and overlay shows the ability to forecast overlay values before the lithographic process. Details of the correlation including overlay/displacement range, and lot-to-lot displacement variability are considered.

  12. Elastic Model Transitions: A Hybrid Approach Utilizing Quadratic Inequality Constrained Least Squares (LSQI) and Direct Shape Mapping (DSM)

    NASA Technical Reports Server (NTRS)

    Hannan, Mike R.; Jurenko, Robert J.; Bush, Jason; Ottander, John

    2014-01-01

    A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes a hybrid approach for determining physical displacements by augmenting the original quadratically constrained least squares (LSQI) algorithm with Direct Shape Mapping (DSM) and modifying the energy constraints. The approach presented is applicable to simulation of the elastic behavior of launch vehicles and other structures that utilize discrete LTI finite element model (FEM) derived mode sets (eigenvalues and eigenvectors) that are propagated throughout time. The time invariant nature of the elastic data presents a problem of how to properly transition elastic states from the prior to the new model while preserving motion across the transition and ensuring there is no truncation or excitation of the system. A previous approach utilizes a LSQI algorithm with an energy constraint to effect smooth transitions between eigenvector sets with no requirement that the models be of similar dimension or have any correlation. This approach assumes energy is conserved across the transition, which results in significant non-physical transients due to changing quasi-steady state energy between mode sets, a phenomenon seen when utilizing a truncated mode set. The computational burden of simulating a full mode set is significant so a subset of modes is often selected to reduce run time. As a result of this truncation, energy between mode sets may not be constant and solutions across transitions could produce non-physical transients. In an effort to abate these transients an improved methodology was developed based on the aforementioned approach, but this new approach can handle significant changes in energy across mode set transitions. It is proposed that physical velocities due to elastic behavior be solved for using the LSQI algorithm, but solve for displacements using a two-step process that independently addresses the quasi-steady-state and non-steady-state contributions to the elastic displacement. For structures subject to large external forces, such as thrust or atmospheric drag, it is imperative to capture these forces when solving for elastic displacement. To simplify the mathematical formulation, assumptions are made regarding mass matrix normalization, constant external forcing, and constant viscous damping. These simplifications allow for direct solutions to the quasi-steady-state displacements through a process titled Direct Shape Mapping. DSM solves for the displacements using the eigenvalues of the elastic modes and the external forcing and returns a set of elastic displacements dictated by the eigenvectors of the post-transition mode set. For the non-steady-state contributions to displacement we formulate a LSQI problem that is constrained by energy of the non-steady state terms. The contributions from the quasi-steady-state and non-steady state solutions are then combined to obtain the physical displacements associated with the new set of eigenvectors. Results for the LSQI-DSM approach show significant reduction/complete removal of transients across mode set transitions while maintaining elastic motion from the prior state. For time propagation applications employing discrete elastic models that need to be transitioned in time and where running with full a full mode set is not feasible, the method developed offers a practical solution to simulating vehicle elasticity.

  13. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  14. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  15. True navigation and magnetic maps in spiny lobsters.

    PubMed

    Boles, Larry C; Lohmann, Kenneth J

    2003-01-02

    Animals are capable of true navigation if, after displacement to a location where they have never been, they can determine their position relative to a goal without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey. So far, only a few animals, all vertebrates, have been shown to possess true navigation. Those few invertebrates that have been carefully studied return to target areas using path integration, landmark recognition, compass orientation and other mechanisms that cannot compensate for displacements into unfamiliar territory. Here we report, however, that the spiny lobster Panulirus argus oriented reliably towards a capture site when displaced 12-37 km to unfamiliar locations, even when deprived of all known orientation cues en route. Little is known about how lobsters and other animals determine position during true navigation. To test the hypothesis that lobsters derive positional information from the Earth's magnetic field, lobsters were exposed to fields replicating those that exist at specific locations in their environment. Lobsters tested in a field north of the capture site oriented themselves southwards, whereas those tested in a field south of the capture site oriented themselves northwards. These results imply that true navigation in spiny lobsters, and perhaps in other animals, is based on a magnetic map sense.

  16. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings

  17. Volumetric strain in relation to particle displacements for body and surface waves in a general viscoelastic half-space

    USGS Publications Warehouse

    Borcherdt, R.D.

    1988-01-01

    Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author

  18. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  19. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    NASA Astrophysics Data System (ADS)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  20. Modeling equine race surface vertical mechanical behaviors in a musculoskeletal modeling environment.

    PubMed

    Symons, Jennifer E; Fyhrie, David P; Hawkins, David A; Upadhyaya, Shrinivasa K; Stover, Susan M

    2015-02-26

    Race surfaces have been associated with the incidence of racehorse musculoskeletal injury, the leading cause of racehorse attrition. Optimal race surface mechanical behaviors that minimize injury risk are unknown. Computational models are an economical method to determine optimal mechanical behaviors. Previously developed equine musculoskeletal models utilized ground reaction floor models designed to simulate a stiff, smooth floor appropriate for a human gait laboratory. Our objective was to develop a computational race surface model (two force-displacement functions, one linear and one nonlinear) that reproduced experimental race surface mechanical behaviors for incorporation in equine musculoskeletal models. Soil impact tests were simulated in a musculoskeletal modeling environment and compared to experimental force and displacement data collected during initial and repeat impacts at two racetracks with differing race surfaces - (i) dirt and (ii) synthetic. Best-fit model coefficients (7 total) were compared between surface types and initial and repeat impacts using a mixed model ANCOVA. Model simulation results closely matched empirical force, displacement and velocity data (Mean R(2)=0.930-0.997). Many model coefficients were statistically different between surface types and impacts. Principal component analysis of model coefficients showed systematic differences based on surface type and impact. In the future, the race surface model may be used in conjunction with previously developed the equine musculoskeletal models to understand the effects of race surface mechanical behaviors on limb dynamics, and determine race surface mechanical behaviors that reduce the incidence of racehorse musculoskeletal injury through modulation of limb dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top