Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.
2009-01-01
NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.
Display technologies: application for the discovery of drug and gene delivery agents
Sergeeva, Anna; Kolonin, Mikhail G.; Molldrem, Jeffrey J.; Pasqualini, Renata; Arap, Wadih
2007-01-01
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed. PMID:17123658
Development of exosome surface display technology in living human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu
Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated themore » successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.« less
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2013-09-09
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors.
Han, Lei; Zhao, Yukun; Cui, Shan; Liang, Bo
2018-06-01
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Research and Development of Large Area Color AC Plasma Displays
NASA Astrophysics Data System (ADS)
Shinoda, Tsutae
1998-10-01
Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.
A photophoretic-trap volumetric display
NASA Astrophysics Data System (ADS)
Smalley, D. E.; Nygaard, E.; Squire, K.; van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M.; Costner, K.; Monk, A.; Pearson, M.; Haymore, B.; Peatross, J.
2018-01-01
Free-space volumetric displays, or displays that create luminous image points in space, are the technology that most closely resembles the three-dimensional displays of popular fiction. Such displays are capable of producing images in ‘thin air’ that are visible from almost any direction and are not subject to clipping. Clipping restricts the utility of all three-dimensional displays that modulate light at a two-dimensional surface with an edge boundary; these include holographic displays, nanophotonic arrays, plasmonic displays, lenticular or lenslet displays and all technologies in which the light scattering surface and the image point are physically separate. Here we present a free-space volumetric display based on photophoretic optical trapping that produces full-colour graphics in free space with ten-micrometre image points using persistence of vision. This display works by first isolating a cellulose particle in a photophoretic trap created by spherical and astigmatic aberrations. The trap and particle are then scanned through a display volume while being illuminated with red, green and blue light. The result is a three-dimensional image in free space with a large colour gamut, fine detail and low apparent speckle. This platform, named the Optical Trap Display, is capable of producing image geometries that are currently unobtainable with holographic and light-field technologies, such as long-throw projections, tall sandtables and ‘wrap-around’ displays.
Heterologous surface display on lactic acid bacteria: non-GMO alternative?
Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš
2015-01-01
Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164
Heterologous surface display on lactic acid bacteria: non-GMO alternative?
Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš
2015-01-01
Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.
Applications of yeast surface display for protein engineering
Cherf, Gerald M.; Cochran, Jennifer R.
2015-01-01
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074
Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.; Wills, Robert W.; Smith, Kathryn A.; Shipman, Floyd S.; Bryant, Wayne H.; Eckhardt, Dave E., Jr.
1998-01-01
A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results.
Autotransporter-based cell surface display in Gram-negative bacteria.
Nicolay, Toon; Vanderleyden, Jos; Spaepen, Stijn
2015-02-01
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Evolution of phage display technology: from discovery to application.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Ahmadzadeh, Vahideh; Akbari, Bahman
2017-03-01
Phage display technology as a selection-based system is an attractive method for evolution of new biological drugs. Unique ability of phage libraries for displaying proteins on bacteriophage surfaces enable them to make a major contribution in diverse fields of researches related to the diagnosis and therapy of diseases. One of the great challenges facing researchers is the modification of phage display technology and the development of new applications. This article reviews the molecular basis of phage display library, and summarizes the novel and specific applications of this technique in the field of biological drugs development including therapeutic antibodies, peptides, vaccines, and catalytic antibodies.
Virtual surface characteristics of a tactile display using magneto-rheological fluids.
Lee, Chul-Hee; Jang, Min-Gyu
2011-01-01
Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.
Optical characterization of display screens by speckle patterns
NASA Astrophysics Data System (ADS)
Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel
2013-10-01
In recent years, flat-panel display (FPD) technology has undergone great development, and now FPDs appear in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surfaces, which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider these displays to show more vivid colors compared with matte-screen displays. However, on the glossy screens, external light sources may cause unpleasant reflections that can be reduced by a matte treatment in the front surface. In this work, we present a method to characterize FPD screens using laser-speckle patterns. We characterize three FPDs: a Samsung XL2370 LCD monitor of 23 in. with matte screen, a Toshiba Satellite A100 LCD laptop of 15.4 in. with glossy screen, and a Grammata Papyre 6.1 electronic book reader of 6 in. with ePaper screen (E-ink technology). The results show great differences in speckle-contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs that have different types of front surfaces.
Establishment of cell surface engineering and its development.
Ueda, Mitsuyoshi
2016-07-01
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Highly Stable Nanolattice Structures using Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Tokel, Onur; Ergecen, Emre; Pavlov, Ihor; Makey, Ghaith; Ilday, Fatih Omer
Periodic nanopatterning is crucial for multiple technologies, including photovoltaics and display technologies. Conventional optical lithography techniques require complex masks, while e-beam and ion-beam lithography require expensive equipment. With the Nonlinear Laser Lithography (NLL) technique, we had recently shown that various surfaces can be covered with extremely periodic nanopatterns with ultrafast lasers through a single-step, maskless and inexpensive method. Here, we expand NLL nanopatterns to flexible materials, and also present a fully predictive model for the formation of NLL nanostructures as confirmed with experiments. In NLL, a nonlocal positive feedback mechanism (dipole scattering) competes with a rate limiting negative feedback mechanism. Here, we show that judicious use of the laser polarisation can constrain the lattice symmetry, while the nonlinearities regulate periodicity. We experimentally demonstrate that in addition to one dimensional periodic stripes, two dimensional lattices can be produced on surfaces. In particular, hexagonal and square lattices were produced, which are highly desired for display technologies. Notably, with this approach, we can tile flexible substrates, which can find applications in next generation display technologies.
Chen, Xianzhong
2017-03-04
The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed.
Chen, Xianzhong
2017-01-01
ABSTRACT The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed. PMID:27459271
Panoramic projection avionics displays
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.
2003-09-01
Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.
Recent advances in yeast cell-surface display technologies for waste biorefineries.
Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko
2016-09-01
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.
2006-01-01
Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.
Phage display—A powerful technique for immunotherapy
Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej
2012-01-01
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display. PMID:22906939
Evaluation of Equivalent Vision Technologies for Supersonic Aircraft Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan P.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
Twenty-four air transport-rated pilots participated as subjects in a fixed-based simulation experiment to evaluate the use of Synthetic/Enhanced Vision (S/EV) and eXternal Vision System (XVS) technologies as enabling technologies for future all-weather operations. Three head-up flight display concepts were evaluated a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of the display type and AOA condition being evaluated or whether or not there were peripheral cues in the side windows. Longitudinal touchdown and glideslope tracking were affected by the display concepts. Larger FOV display concepts showed improved longitudinal touchdown control, superior glideslope tracking, significant situation awareness improvements and workload reductions compared to smaller FOV display concepts.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Apridah Cameliawati; Hara, Kiyotaka Y; Asai-Nakashima, Nanami; Teramura, Hiroshi; Andriani, Ade; Tominaga, Masahiro; Wakai, Satoshi; Kahar, Prihardi; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko
2016-01-01
Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.
Recent advances and product enhancements in reflective cholesteric displays
NASA Astrophysics Data System (ADS)
Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.
2005-04-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.
Optical characterization of display screens by speckle-contrast measurements
NASA Astrophysics Data System (ADS)
Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel
2012-10-01
In recent years, the flat-panel display (FPD) technology has undergone great development. Currently, FPDs are present in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surface which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider images shown in these types of displays to have more vivid colours compared with matte-screen displays. However, external light sources may cause unpleasant reflections on the glossy screens. These reflections can be reduced by a matte treatment in the front surface of FPDs. In this work, we present a method to characterize the front surface of FPDs using laser speckle patterns. We characterized three FPDs: a Samsung XL2370 LCD monitor of 23" with matte screen, a Toshiba Satellite A100 laptop of 15.4" with glossy screen, and a Papyre electronic book reader. The results show great differences in speckle contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs which have different types of front surfaces.
Sheehan, Jared; Marasco, Wayne A
2015-02-01
Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.
Head-Up Display (HUD) Technology Demonstration.
1983-07-01
changrd, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/AA T, W-PAFB...S. E. Shields ’ 9. PERFORMING ORGANIZATION NAME ANO ADORESS 10. PROGRAM LEMENT. PROJECT TASK Display Technology Staff AREA P O ORK UNIT N.UME.RS...stains, it did indicate that the stains contained organic structures that could not be explained by exposure to atmosphere. The results of the surface
Flight demonstration of integrated airport surface automation concepts
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.
1995-01-01
A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results.
Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation
NASA Astrophysics Data System (ADS)
Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian
2017-10-01
During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.
Engineering yeast consortia for surface-display of complex cellulosome structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wilfred
As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach wasmore » to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the yeast surface and a significant improvement in cellulosic ethanol production. Although this adaptive strategy is ideal for assembling more complex cellulosome for large-scale production of cellulosic ethanol, a substantially larger number of enzymes (up to 10 to 12) is needed to better mimic the natural cellulosome structures for practical usage of the technology.« less
Engineering M13 for phage display.
Sidhu, S S
2001-09-01
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.
NASA Astrophysics Data System (ADS)
Shin, Dong-Youn; Brakke, Kenneth A.
2009-06-01
Piezo drop-on-demand inkjet printing technology has attracted the attention of display industries for the production of colour filters for thin film transistor liquid crystal displays (TFT LCD) because of the opportunity of reducing manufacturing cost. Colourant ink droplets ejected from inkjet nozzles selectively fill subpixels surrounded with black matrix (BM). Surface energy differences between the glass substrate and the BM generally guide this ink filling process. This colourant ink filling process, however, results from the complex hydrodynamic interaction of ink with the substrate and the BM. Neither computationally expensive numerical methods nor time and cost expensive experiments are suitable for the derivation of optimum surface conditions at the early development stage. In this study, a more concise surface evolution technique is proposed and ways to find the optimum surface conditions for the fabrication of TFT LCD colour filters and polymer light emitting devices are discussed, which might be useful for chemists and developers of ink and BM material, as well as for process engineers in display industries.
A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen
NASA Astrophysics Data System (ADS)
Luo, ZhiJie; Luo, JianKun; Zhao, WenWen; Cao, Yang; Lin, WeiJie; Zhou, GuoFu
2018-02-01
Electrowetting display technology is realized by tuning the surface energy of a hydrophobic surface by applying a voltage based on electrowetting mechanism. With the rapid development of the electrowetting industry, how to analyze efficiently the quality of an electrowetting display screen has a very important significance. There are two kinds of dead pixels on the electrowetting display screen. One is that the oil of pixel cannot completely cover the display area. The other is that indium tin oxide semiconductor wire connecting pixel and foil was burned. In this paper, we propose a high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. First, we built an aperture ratio-capacitance model based on the electrical characteristics of electrowetting display. A field-programmable gate array is used as the integrated logic hub of the system for a highly reliable and efficient control of the circuit. Dead pixels can be detected and displayed on a PC-based 2D graphical interface in real time. The proposed dead pixel detection scheme reported in this work has promise in automating electrowetting display experiments.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Actively addressed single pixel full-colour plasmonic display
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-05-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
NASA Astrophysics Data System (ADS)
Cooperstock, Jeremy R.; Wang, Guangyu
2009-02-01
We conducted a comparative study of different stereoscopic display modalities (head-mounted display, polarized projection, and multiview lenticular display) to evaluate their efficacy in supporting manipulation and understanding of 3D content, specifically, in the context of neurosurgical visualization. Our study was intended to quantify the differences in resulting task performance between these choices of display technology. The experimental configuration involved a segmented brain vasculature and a simulated tumor. Subjects were asked to manipulate the vasculature and a pen-like virtual probe in order to define a vessel-free path from cortical surface to the targeted tumor. Because of the anatomical complexity, defining such a path can be a challenging task. To evaluate the system, we quantified performance differences under three different stereoscopic viewing conditions. Our results indicate that, on average, participants achieved best performance using polarized projection, and worst with the multiview lenticular display. These quantitative measurements were further reinforced by the subjects' responses to our post-test questionnaire regarding personal preferences.
Advances in lenticular lens arrays for visual display
NASA Astrophysics Data System (ADS)
Johnson, R. Barry; Jacobsen, Gary A.
2005-08-01
Lenticular lens arrays are widely used in the printed display industry and in specialized applications of electronic displays. In general, lenticular arrays can create from interlaced printed images such visual effects as 3-D, animation, flips, morph, zoom, or various combinations. The use of these typically cylindrical lens arrays for this purpose began in the late 1920's. The lenses comprise a front surface having a spherical crosssection and a flat rear surface upon where the material to be displayed is proximately located. The principal limitation to the resultant image quality for current technology lenticular lenses is spherical aberration. This limitation causes the lenticular lens arrays to be generally thick (0.5 mm) and not easily wrapped around such items as cans or bottles. The objectives of this research effort were to develop a realistic analytical model, to significantly improve the image quality, to develop the tooling necessary to fabricate lenticular lens array extrusion cylinders, and to develop enhanced fabrication technology for the extrusion cylinder. It was determined that the most viable cross-sectional shape for the lenticular lenses is elliptical. This shape dramatically improves the image quality. The relationship between the lens radius, conic constant, material refractive index, and thickness will be discussed. A significant challenge was to fabricate a diamond-cutting tool having the proper elliptical shape. Both true elliptical and pseudo-elliptical diamond tools were designed and fabricated. The plastic sheets extruded can be quite thin (< 0.25 mm) and, consequently, can be wrapped around cans and the like. Fabrication of the lenticular engraved extrusion cylinder required remarkable development considering the large physical size and weight of the cylinder, and the tight mechanical tolerances associated with the lenticular lens molds cut into the cylinder's surface. The development of the cutting tool and the lenticular engraved extrusion cylinder will be presented in addition to an illustrative comparison of current lenticular technology and the new technology. Three U.S. patents have been issued as a consequence of this research effort.
Functional display of family 11 endoxylanases on the surface of phage M13.
Beliën, T; Hertveldt, K; Van den Brande, K; Robben, J; Van Campenhout, S; Volckaert, G
2005-02-09
Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.
Nano-Filament Field Emission Cathode Development Final Report CRADA No. TSB-0731-93
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, Tony; Fahlen, Ted
At the time the CRADA was established, Silicon Video Corporation, of Cupertino, CA was a one-year-old rapidly growing start-up company. SVC was developing flat panel displays (FPDs) to replace Cathode Ray Terminals (CRTs) for personal computers, work stations and televisions. They planned to base their products on low cost and energy efficient field emission technology. It was universally recognized that the display was both the dominant cost item and differentiating feature of many products such as laptop computers and hand-held electronics and that control of the display technology through U.S. sources was essential to success in these markets. The purposemore » of this CRADA project was to determine if electrochemical planarization would be a viable, inexpensive alternative to current optical polishing techniques for planarizing the surface of a ceramic backplate of a thin film display.« less
Flight Testing of an Airport Surface Guidance, Navigation, and Control System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.
Actively addressed single pixel full-colour plasmonic display
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-01-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video. PMID:28488671
Effect of protein properties on display efficiency using the M13 phage display system.
Imai, S; Mukai, Y; Takeda, T; Abe, Y; Nagano, K; Kamada, H; Nakagawa, S; Tsunoda, S; Tsutsumi, Y
2008-10-01
The M13 phage display system is a powerful technology for engineering proteins such as functional mutant proteins and peptides. In this system, it is necessary that the protein is displayed on the phage surface. Therefore, its application is often limited when a protein is poorly displayed. In this study, we attempted to understand the relationship between a protein's properties and its display efficiency using the well-known pIII and pVIII type phage display system. The display of positively charged SV40 NLS and HIV-1 Tat peptides on pill was less efficient than that of the neutrally charged RGDS peptide. When different molecular weight proteins (1.5-58 kDa) were displayed on pIII and pVIII, their display efficiencies were directly influenced by their molecular weights. These results indicate the usefulness in predicting a desired protein's compatibility with protein and peptide engineering using the phage display system.
3D Visualization of Urban Area Using Lidar Technology and CityGML
NASA Astrophysics Data System (ADS)
Popovic, Dragana; Govedarica, Miro; Jovanovic, Dusan; Radulovic, Aleksandra; Simeunovic, Vlado
2017-12-01
3D models of urban areas have found use in modern world such as navigation, cartography, urban planning visualization, construction, tourism and even in new applications of mobile navigations. With the advancement of technology there are much better solutions for mapping earth’s surface and spatial objects. 3D city model enables exploration, analysis, management tasks and presentation of a city. Urban areas consist of terrain surfaces, buildings, vegetation and other parts of city infrastructure such as city furniture. Nowadays there are a lot of different methods for collecting, processing and publishing 3D models of area of interest. LIDAR technology is one of the most effective methods for collecting data due the large amount data that can be obtained with high density and geometrical accuracy. CityGML is open standard data model for storing alphanumeric and geometry attributes of city. There are 5 levels of display (LoD0, LoD1, LoD2, LoD3, LoD4). In this study, main aim is to represent part of urban area of Novi Sad using LIDAR technology, for data collecting, and different methods for extraction of information’s using CityGML as a standard for 3D representation. By using series of programs, it is possible to process collected data, transform it to CityGML and store it in spatial database. Final product is CityGML 3D model which can display textures and colours in order to give a better insight of the cities. This paper shows results of the first three levels of display. They consist of digital terrain model and buildings with differentiated rooftops and differentiated boundary surfaces. Complete model gives us a realistic view of 3D objects.
An oral vaccine against candidiasis generated by a yeast molecular display system.
Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Miyoshi, Ayuko; Tafuku, Senji; Sewaki, Tomomitsu; Ueda, Mitsuyoshi
2013-12-01
Enolase 1 (Eno1p) of Candida albicans is an immunodominant antigen. However, conventional technologies for preparing an injectable vaccine require purification of the antigenic protein and preparation of an adjuvant. To develop a novel type of oral vaccine against candidiasis, we generated Saccharomyces cerevisiae cells that display the Eno1p antigen on their surfaces. Oral delivery of the engineered S. cerevisiae cells prolonged survival rate of mice that were subsequently challenged with C. albicans. Given that a vaccine produced using molecular display technology avoids the need for protein purification, this oral vaccine offers a promising alternative to the use of conventional and injectable vaccines for preventing a range of infectious diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Flight Demonstration of Integrated Airport Surface Movement Technologies
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike
2011-06-01
NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzell, Lawrence J.; Williams, Steven P.; Bailey, Randall E.; Shelton, Kevin J.; Norman, R. Mike
2011-01-01
NASA is researching innovative technologies for the Next Generation Air Transportation System (NextGen) to provide a "Better-Than-Visual" (BTV) capability as adjunct to "Equivalent Visual Operations" (EVO); that is, airport throughputs equivalent to that normally achieved during Visual Flight Rules (VFR) operations rates with equivalent and better safety in all weather and visibility conditions including Instrument Meteorological Conditions (IMC). These new technologies build on proven flight deck systems and leverage synthetic and enhanced vision systems. Two piloted simulation studies were conducted to access the use of a Head-Worn Display (HWD) with head tracking for synthetic and enhanced vision systems concepts. The first experiment evaluated the use a HWD for equivalent visual operations to San Francisco International Airport (airport identifier: KSFO) compared to a visual concept and a head-down display concept. A second experiment evaluated symbology variations under different visibility conditions using a HWD during taxi operations at Chicago O'Hare airport (airport identifier: KORD). Two experiments were conducted, one in a simulated San Francisco airport (KSFO) approach operation and the other, in simulated Chicago O'Hare surface operations, evaluating enhanced/synthetic vision and head-worn display technologies for NextGen operations. While flying a closely-spaced parallel approach to KSFO, pilots rated the HWD, under low-visibility conditions, equivalent to the out-the-window condition, under unlimited visibility, in terms of situational awareness (SA) and mental workload compared to a head-down enhanced vision system. There were no differences between the 3 display concepts in terms of traffic spacing and distance and the pilot decision-making to land or go-around. For the KORD experiment, the visibility condition was not a factor in pilot's rating of clutter effects from symbology. Several concepts for enhanced implementations of an unlimited field-of-regard BTV concept for low-visibility surface operations were determined to be equivalent in pilot ratings of efficacy and usability.
Synthetic Vision Enhanced Surface Operations With Head-Worn Display for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Norman, R. M.
2007-01-01
Experiments and flight tests have shown that airport surface operations can be enhanced by using synthetic vision and associated technologies, employed on a Head-Up Display (HUD) and head-down display electronic moving maps (EMM). Although HUD applications have shown the greatest potential operational improvements, the research noted that two major limitations during ground operations were its monochrome form and limited, fixed field-of-regard. A potential solution to these limitations may be the application of advanced Head Worn Displays (HWDs) particularly during low-visibility operations wherein surface movement is substantially limited because of the impaired vision of pilots and air traffic controllers. The paper describes the results of ground simulation experiments conducted at the NASA Langley Research Center. The results of the experiments showed that the fully integrated HWD concept provided significantly improved path performance compared to using paper charts alone. When comparing the HWD and HUD concepts, there were no statistically-significant differences in path performance or subjective ratings of situation awareness and workload. Implications and directions for future research are described.
Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads
NASA Astrophysics Data System (ADS)
Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don
2010-10-01
This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Norman, Robert M.
2007-01-01
Experiments and flight tests have shown that a Head-Up Display (HUD) and a head-down, electronic moving map (EMM) can be enhanced with Synthetic Vision for airport surface operations. While great success in ground operations was demonstrated with a HUD, the research noted that two major HUD limitations during ground operations were their monochrome form and limited, fixed field of regard. A potential solution to these limitations found with HUDs may be emerging Head Worn Displays (HWDs). HWDs are small, lightweight full color display devices that may be worn without significant encumbrance to the user. By coupling the HWD with a head tracker, unlimited field-of-regard may be realized for commercial aviation applications. In the proposed paper, the results of two ground simulation experiments conducted at NASA Langley are summarized. The experiments evaluated the efficacy of head-worn display applications of Synthetic Vision and Enhanced Vision technology to enhance transport aircraft surface operations. The two studies tested a combined six display concepts: (1) paper charts with existing cockpit displays, (2) baseline consisting of existing cockpit displays including a Class III electronic flight bag display of the airport surface; (3) an advanced baseline that also included displayed traffic and routing information, (4) a modified version of a HUD and EMM display demonstrated in previous research; (5) an unlimited field-of-regard, full color, head-tracked HWD with a conformal 3-D synthetic vision surface view; and (6) a fully integrated HWD concept. The fully integrated HWD concept is a head-tracked, color, unlimited field-of-regard concept that provides a 3-D conformal synthetic view of the airport surface integrated with advanced taxi route clearance, taxi precision guidance, and data-link capability. The results of the experiments showed that the fully integrated HWD provided greater path performance compared to using paper charts alone. Further, when comparing the HWD with the HUD concept, there were no differences in path performance. In addition, the HWD and HUD concepts were rated via paired-comparisons the same in terms of situational awareness and workload. However, there were over twice as many taxi incursion events with the HUD than the HWD.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Effect of Traffic Position Accuracy for Conducting Safe Airport Surface Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.
2014-01-01
The Next Generation Air Transportation System (NextGen) concept proposes many revolutionary operational concepts and technologies, such as display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability to conduct safe and efficient airport surface operations while utilizing an AMM displaying traffic of various position accuracies as well as the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability. Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near collisions still occurred; when indications or alerts were generated in these same scenarios, the incidences were averted.
Head-Worn Display Concepts for Surface Operations for Commerical Aircraft
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Norman, Robert M.
2008-01-01
Experiments and flight tests have shown that a Head-Up Display (HUD) and a head-down electronic moving map (EMM) can be enhanced with Synthetic Vision for airport surface operations. While great success in ground operations was demonstrated with a HUD, the research noted that two major HUD limitations during ground operations were its monochrome form and limited, fixed field-of-regard. A potential solution to these limitations found with HUDs may be emerging with Head Worn Displays (HWDs). HWDs are small display devices that may be worn without significant encumbrance to the user. By coupling the HWD with a head tracker, unlimited field-of-regard may be realized. The results of three ground simulation experiments conducted at NASA Langley Research Center are summarized. The experiments evaluated the efficacy of head-worn display applications of Synthetic Vision and Enhanced Vision technology to improve transport aircraft surface operations. The results of the experiments showed that the fully integrated HWD provided greater pilot performance with respect to staying on the path compared to using paper charts alone. Further, when comparing the HWD with the HUD concept, there were no differences in path performance. In addition, the HWD and HUD concepts were rated via paired-comparisons the same in terms of situation awareness and workload.
Xiao, Yan; Chen, Xianzhong; Shen, Wei; Yang, Haiquan; Fan, You
2015-12-01
Production of bioethanol using starch as raw material has become a very prominent technology. However, phytate in the raw material not only decreases ethanol production efficiency, but also increases phosphorus discharge. In this study, to decrease phytate content in an ethanol fermentationprocess, Saccharomyces cerevisiae was engineered forheterologous expression of phytase on the cell surface. The phy gene encoding phytase gene was fused with the C-terminal-half region of α-agglutinin and then inserted downstream of the secretion signal gene, to produce a yeast surface-display expression vector pMGK-AG-phy, which was then transformed into S. cerevisiae. The recombinant yeast strain, PHY, successfully displayed phytase on the surface of cells producing 6.4 U/g wet cells and its properties were further characterized. The growthrate and ethanol production of the PHY strain were faster than the parent S. cerevisiae strain in the fermentation medium by simultaneous saccharification and fermentation. Moreover, the phytate concentration decreased by 91% in dry vinasse compared to the control. In summary, we constructed recombinant S. cerevisiae strain displaying phytase on the cell surface, which could effectively reduce the content of phytate, improve the utilization value of vinasse and reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.
Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo
2016-10-01
Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.
Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures
NASA Astrophysics Data System (ADS)
Bellingham, Alyssa
Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.
Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael
2018-01-01
ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.
Andreu, Cecilia; Del Olmo, Marcel Lí
2018-03-01
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Phage display as a technology delivering on the promise of peptide drug discovery.
Hamzeh-Mivehroud, Maryam; Alizadeh, Ali Akbar; Morris, Michael B; Church, W Bret; Dastmalchi, Siavoush
2013-12-01
Phage display represents an important approach in the development pipeline for producing peptides and peptidomimetics therapeutics. Using randomly generated DNA sequences and molecular biology techniques, large diverse peptide libraries can be displayed on the phage surface. The phage library can be incubated with a target of interest and the phage which bind can be isolated and sequenced to reveal the displayed peptides' primary structure. In this review, we focus on the 'mechanics' of the phage display process, whilst highlighting many diverse and subtle ways it has been used to further the drug-development process, including the potential for the phage particle itself to be used as a drug carrier targeted to a particular pathogen or cell type in the body. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evolving Our Evaluation of Luminous Environments
NASA Technical Reports Server (NTRS)
Clark, Toni
2016-01-01
The advance in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting systems. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. This project investigated large luminous surface lamps as an alternative or supplement to overhead lighting. The efficiency of the technology was evaluated for uniformity and power consumption.
Validation and evaluation of common large-area display set (CLADS) performance specification
NASA Astrophysics Data System (ADS)
Hermann, David J.; Gorenflo, Ronald L.
1998-09-01
Battelle is under contract with Warner Robins Air Logistics Center to design a Common Large Area Display Set (CLADS) for use in multiple Command, Control, Communications, Computers, and Intelligence (C4I) applications that currently use 19- inch Cathode Ray Tubes (CRTs). Battelle engineers have built and fully tested pre-production prototypes of the CLADS design for AWACS, and are completing pre-production prototype displays for three other platforms simultaneously. With the CLADS design, any display technology that can be packaged to meet the form, fit, and function requirements defined by the Common Large Area Display Head Assembly (CLADHA) performance specification is a candidate for CLADS applications. This technology independent feature reduced the risk of CLADS development, permits life long technology insertion upgrades without unnecessary redesign, and addresses many of the obsolescence problems associated with COTS technology-based acquisition. Performance and environmental testing were performed on the AWACS CLADS and continues on other platforms as a part of the performance specification validation process. A simulator assessment and flight assessment were successfully completed for the AWACS CLADS, and lessons learned from these assessments are being incorporated into the performance specifications. Draft CLADS specifications were released to potential display integrators and manufacturers for review in 1997, and the final version of the performance specifications are scheduled to be released to display integrators and manufacturers in May, 1998. Initial USAF applications include replacements for the E-3 AWACS color monitor assembly, E-8 Joint STARS graphics display unit, and ABCCC airborne color display. Initial U.S. Navy applications include the E-2C ACIS display. For these applications, reliability and maintainability are key objectives. The common design will reduce the cost of operation and maintenance by an estimated 3.3M per year on E-3 AWACS alone. It is realistic to anticipate savings of over 30M per year as CLADS is implemented widely across DoD applications. As commonality and open systems interfaces begin to surface in DoD applications, the CLADS architecture can easily and cost effectively absorb the changes, and avoid COTS obsolescence issues.
Rajaram, Kaushik; Losada-Pérez, Patricia; Vermeeren, Veronique; Hosseinkhani, Baharak; Wagner, Patrick; Somers, Veerle; Michiels, Luc
2015-01-01
Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.
A Framework for Realistic Modeling and Display of Object Surface Appearance
NASA Astrophysics Data System (ADS)
Darling, Benjamin A.
With advances in screen and video hardware technology, the type of content presented on computers has progressed from text and simple shapes to high-resolution photographs, photorealistic renderings, and high-definition video. At the same time, there have been significant advances in the area of content capture, with the development of devices and methods for creating rich digital representations of real-world objects. Unlike photo or video capture, which provide a fixed record of the light in a scene, these new technologies provide information on the underlying properties of the objects, allowing their appearance to be simulated for novel lighting and viewing conditions. These capabilities provide an opportunity to continue the computer display progression, from high-fidelity image presentations to digital surrogates that recreate the experience of directly viewing objects in the real world. In this dissertation, a framework was developed for representing objects with complex color, gloss, and texture properties and displaying them onscreen to appear as if they are part of the real-world environment. At its core, there is a conceptual shift from a traditional image-based display workflow to an object-based one. Instead of presenting the stored patterns of light from a scene, the objective is to reproduce the appearance attributes of a stored object by simulating its dynamic patterns of light for the real viewing and lighting geometry. This is accomplished using a computational approach where the physical light sources are modeled and the observer and display screen are actively tracked. Surface colors are calculated for the real spectral composition of the illumination with a custom multispectral rendering pipeline. In a set of experiments, the accuracy of color and gloss reproduction was evaluated by measuring the screen directly with a spectroradiometer. Gloss reproduction was assessed by comparing gonio measurements of the screen output to measurements of the real samples in the same measurement configuration. A chromatic adaptation experiment was performed to evaluate color appearance in the framework and explore the factors that contribute to differences when viewing self-luminous displays as opposed to reflective objects. A set of sample applications was developed to demonstrate the potential utility of the object display technology for digital proofing, psychophysical testing, and artwork display.
Protein and Antibody Engineering by Phage Display
Frei, J.C.; Lai, J.R.
2017-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328
NASA Technical Reports Server (NTRS)
Arthur, Jarvis (Trey) J., III; Shelton, Kevin J.; Prinzel, Lawrence J.; Nicholas, Stephanie N.; Williams, Steven P.; Ellis, Kyle E.; Jones, Denise R.; Bailey, Randall E.; Harrison, Stephanie J.; Barnes, James R.
2017-01-01
Research, development, test, and evaluation of fight deck interface technologies is being conducted by the National Aeronautics and Space Administration (NASA) to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). One specific area of research was the use of small Head-Worn Displays (HWDs) to serve as a possible equivalent to a Head-Up Display (HUD). A simulation experiment and a fight test were conducted to evaluate if the HWD can provide an equivalent level of performance to a HUD. For the simulation experiment, airline crews conducted simulated approach and landing, taxi, and departure operations during low visibility operations. In a follow-on fight test, highly experienced test pilots evaluated the same HWD during approach and surface operations. The results for both the simulation and fight tests showed that there were no statistical differences in the crews' performance in terms of approach, touchdown and takeoff; but, there are still technical hurdles to be overcome for complete display equivalence including, most notably, the end-to-end latency of the HWD system.
Evaluation of Head-Worn Display Concepts for Commercial Aircraft Taxi Operations
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.
2007-01-01
Previous research has demonstrated that a Head-Up Display (HUD) can be used to enable more capacity and safer aircraft surface operations. This previous research also noted that the HUD exhibited two major limitations which hindered the full potential of the display concept: 1) the monochrome HUD format; and, 2) a limited, fixed field of regard. Full-color Head Worn Displays (HWDs) with very small sizes and weights are emerging to the extent that this technology may be practical for commercial and business aircraft operations. By coupling the HWD with a head tracker, full-color, out-the-window display concepts with an unlimited field-of-regard may be realized to improve efficiency and safety in surface operations. A ground simulation experiment was conducted at NASA Langley to evaluate the efficacy of head-worn display applications which may directly address the limitations of the HUD while retaining all of its advantages in surface operations. The simulation experiment used airline crews to evaluate various displays (HUD, HWD) and display concepts in an operationally realistic environment by using a Chicago, O Hare airport database. The results pertaining to the implications of HWDs for commercial business and transport aviation applications are presented herein. Overall HWD system latency was measured and found to be acceptable, but not necessarily optimal. A few occurrences of simulator sickness were noted while wearing the HWD, but overall there appears to be commercial pilot acceptability and usability to the concept. Many issues were identified which need to be addressed in future research including continued reduction in user encumbrance due to the HWD, and improvement in image alignment, accuracy, and boresighting.
Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping
2015-04-28
Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.
Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang
2013-01-01
The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Display of a maize cDNA library on baculovirus infected insect cells.
Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A
2008-08-12
Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.
Deng, William Nanqiao; Wang, Shuo; Ventrici de Souza, Joao; Kuhl, Tonya L; Liu, Gang-Yu
2018-06-25
Scanning probe microscopy (SPM), such as atomic force microscopy (AFM), is widely known for high-resolution imaging of surface structures and nanolithography in two dimensions (2D), providing important physical insights into surface science and material science. This work reports a new algorithm to enable construction and display of layer-by-layer 3D structures from SPM images. The algorithm enables alignment of SPM images acquired during layer-by-layer deposition and removal of redundant features and faithfully constructs the deposited 3D structures. The display uses a "see-through" strategy to enable the structure of each layer to be visible. The results demonstrate high spatial accuracy as well as algorithm versatility; users can set parameters for reconstruction and display as per image quality and research needs. To the best of our knowledge, this method represents the first report to enable SPM technology for 3D imaging construction and display. The detailed algorithm is provided to facilitate usage of the same approach in any SPM software. These new capabilities support wide applications of SPM that require 3D image reconstruction and display, such as 3D nanoprinting and 3D additive and subtractive manufacturing and imaging.
Flatbed-type 3D display systems using integral imaging method
NASA Astrophysics Data System (ADS)
Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki
2006-10-01
We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.
Bacteriophages and medical oncology: targeted gene therapy of cancer.
Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid
2014-08-01
Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.
Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.
Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin
2016-03-01
With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.
Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags
Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...
2016-02-02
In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb 3+ could be effectively recovered usingmore » citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb 3+ by citrate. No reduction in Tb 3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less
Virtual reality: a reality for future military pilotage?
NASA Astrophysics Data System (ADS)
McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.
2009-05-01
Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.
Yeung, Yik A; Wittrup, K Dane
2002-01-01
Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.
Effect of Display Technology on Perceived Scale of Space.
Geuss, Michael N; Stefanucci, Jeanine K; Creem-Regehr, Sarah H; Thompson, William B; Mohler, Betty J
2015-11-01
Our goal was to evaluate the degree to which display technologies influence the perception of size in an image. Research suggests that factors such as whether an image is displayed stereoscopically, whether a user's viewpoint is tracked, and the field of view of a given display can affect users' perception of scale in the displayed image. Participants directly estimated the size of a gap by matching the distance between their hands to the gap width and judged their ability to pass unimpeded through the gap in one of five common implementations of three display technologies (two head-mounted displays [HMD] and a back-projection screen). Both measures of gap width were similar for the two HMD conditions and the back projection with stereo and tracking. For the displays without tracking, stereo and monocular conditions differed from each other, with monocular viewing showing underestimation of size. Display technologies that are capable of stereoscopic display and tracking of the user's viewpoint are beneficial as perceived size does not differ from real-world estimates. Evaluations of different display technologies are necessary as display conditions vary and the availability of different display technologies continues to grow. The findings are important to those using display technologies for research, commercial, and training purposes when it is important for the displayed image to be perceived at an intended scale. © 2015, Human Factors and Ergonomics Society.
Yeast Surface-Displayed H5N1 Avian Influenza Vaccines
Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey
2016-01-01
Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309
Protein and Antibody Engineering by Phage Display.
Frei, J C; Lai, J R
2016-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.
2012-12-11
ment, and difficulties creating high aspect ratio features. In addition, conventional mask-based lithography cannot create curved surfaces in the...There are three types of digital mask technologies: (1) liquid crystal display (LCD); (2) digital micromirror device (DMD); and (3) LCoS. LCD is the
Jose, Joachim; von Schwichow, Steffen
2004-04-02
Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).
Geuijen, Cecilia A W; Clijsters-van der Horst, Marieke; Cox, Freek; Rood, Pauline M L; Throsby, Mark; Jongeneelen, Mandy A C; Backus, Harold H J; van Deventer, Els; Kruisbeek, Ada M; Goudsmit, Jaap; de Kruif, John
2005-07-01
Application of antibody phage display to the identification of cell surface antigens with restricted expression patterns is often complicated by the inability to demonstrate specific binding to a certain cell type. The specificity of an antibody can only be properly assessed when the antibody is of sufficient high affinity to detect low-density antigens on cell surfaces. Therefore, a robust and simple assay for the prediction of relative antibody affinities was developed and compared to data obtained using surface plasmon resonance (SPR) technology. A panel of eight anti-CD46 antibody fragments with different affinities was selected from phage display libraries and reformatted into complete human IgG1 molecules. SPR was used to determine K(D) values for these antibodies. The association and dissociation of the antibodies for binding to CD46 expressed on cell surfaces were analysed using FACS-based assays. We show that ranking of the antibodies based on FACS data correlates well with ranking based on K(D) values as measured by SPR and can therefore be used to discriminate between high- and low-affinity antibodies. Finally, we show that a low-affinity antibody may only detect high expression levels of a surface marker while failing to detect lower expression levels of this molecule, which may lead to a false interpretation of antibody specificity.
NASA Technical Reports Server (NTRS)
Johnson, Jerome B.; Boynton, William V.; Davis, Keil; Elphic, Richard; Glass, Brian; Haldemann, Albert F. C.; Adams, Frederick W.
2005-01-01
The Construction Resource Utilization Explorer (CRUX) is a technology maturation project for the U.S. National Aeronautics and Space Administration to provide enabling technology for lunar and planetary surface operations (LPSO). The CRUX will have 10 instruments, a data handling function (Mapper - with features of data subscription, fusion, interpretation, and publication through geographical information system [GIs] displays), and a decision support system DSS) to provide information needed to plan and conduct LPSO. Six CRUX instruments are associated with an instrumented drill to directly measure regolith properties (thermal, electrical, mechanical, and textural) and to determine the presence of water and other hydrogen sources to a depth of about 2 m (Prospector). CRUX surface and geophysical instruments (Surveyor) are designed to determine the presence of hydrogen, delineate near subsurface properties, stratigraphy, and buried objects over a broad area through the use of neutron and seismic probes, and ground penetrating radar. Techniques to receive data from existing space qualified stereo pair cameras to determine surface topography will also be part of the CRUX. The Mapper will ingest information from CRUX instruments and other lunar and planetary data sources, and provide data handling and display features for DSS output. CRUX operation will be semi-autonomous and near real-time to allow its use for either planning or operations purposes.
Bacterial Cell Surface Adsorption of Rare Earth Elements
NASA Astrophysics Data System (ADS)
Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.
2015-12-01
Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.
Active learning in optics and photonics: Liquid Crystal Display in the do-it-yourself
NASA Astrophysics Data System (ADS)
Vauderwange, Oliver; Haiss, Ulrich; Wozniak, Peter; Israel, Kai; Curticapean, Dan
2015-10-01
Monitors are in the center of media productions and hold an important function as the main visual interface. Tablets and smartphones are becoming more and more important work tools in the media industry. As an extension to our lecture contents an intensive discussion of different display technologies and its applications is taking place now. The established LCD (Liquid Crystal Display) technology and the promising OLED (Organic Light Emitting Diode) technology are in the focus. The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves. The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop "Liquid Crystal Display in the do-it-yourself".
Biodiscovery of aluminum binding peptides
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra
2013-05-01
Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.
Design and simulation of a tactile display based on a CMUT array
NASA Astrophysics Data System (ADS)
Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.
2012-10-01
In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.
Hess, Gaelen T; Cragnolini, Juan J; Popp, Maximilian W; Allen, Mark A; Dougan, Stephanie K; Spooner, Eric; Ploegh, Hidde L; Belcher, Angela M; Guimaraes, Carla P
2012-07-18
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.
Hess, Gaelen T.; Cragnolini, Juan J.; Popp, Maximilian W.; Allen, Mark A.; Dougan, Stephanie K.; Spooner, Eric; Ploegh, Hidde L.; Belcher, Angela M.; Guimaraes, Carla P.
2013-01-01
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool. PMID:22759232
Emerging Technologies: Something Borrowed, Something New
NASA Astrophysics Data System (ADS)
Heinhorst, Sabine; Cannon, Gordon
1999-04-01
The cover of the July 16, 1998 issue of Nature features a remarkable new "smart material" that can be used to print electronically on a variety of surfaces, including paper, plastic, and metal. The electrophoretic ink developed in J. Jacobson's lab at the Massachusetts Institute of Technology consists of liquid with dispersed, oppositely charged black and white microparticles that are contained in microcapsules. Application of a potential results in migration of the microparticles to opposite sides of the microcapsule, thereby generating either a white or black image that depends on the direction of the potential. Unlike liquid crystal displays, the image generated with electrophoretic ink is stable even after the power has been turned off. Cost and resolution of this new technology compare favorably with most other electronic image display systems currently in use or under development. Promising applications for electrophoretic ink in the future may range from street signs to electronic books (Comiskey et al., Vol. 394, pp 253-255; "News and Views" commentary by R. Wisnieff on pp 225-227).
Ma, En; Xu, Zhenming
2013-12-15
In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.
Inkjet Printing of Functional Materials for Optical and Photonic Applications
Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos
2016-01-01
Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032
Li, Guogang; Lin, Jun
2014-01-01
Nowadays there are several technologies used for flat panel displays (FPDs) and the development of FPDs with enhanced energy efficiency and improved display quality is strongly required. Field emission displays (FEDs) have been considered as one of the most promising next generation flat panel display technologies due to their excellent display performance and low energy consumption. For the development of FEDs, phosphors are irreplaceable components. In the past decade, the study of highly efficient low-voltage cathodoluminescent materials, namely FED phosphors, has become the focus of enhancing energy efficiency and realizing high-quality displays. This review summaries the recent progress in the chemical synthesis and improvement of novel, rare-earth and transition metal ions activated inorganic cathodoluminescent materials in powder and thin film forms. The discussion is focused on the modification of morphology, size, surface, composition and conductivity of phosphors and the corresponding effects on their cathodoluminescent properties. Special emphases are given to the selection of host and luminescent centers, the adjustment of emission colors through doping concentration optimization, energy transfer and mono- or co-doping activator ions, the improvement of chromaticity, color stability and color gamut as well as the saturation behavior and the degradation behavior of phosphors under the excitation of a low-voltage electron beam. Finally, the research prospects and future directions of FED phosphors are discussed with recommendations to facilitate the further study of new and highly efficient low-voltage cathodoluminescent materials.
Engineering RNA phage MS2 virus-like particles for peptide display
NASA Astrophysics Data System (ADS)
Jordan, Sheldon Keith
Phage display is a powerful and versatile technology that enables the selection of novel binding functions from large populations of randomly generated peptide sequences. Random sequences are genetically fused to a viral structural protein to produce complex peptide libraries. From a sufficiently complex library, phage bearing peptides with practically any desired binding activity can be physically isolated by affinity selection, and, since each particle carries in its genome the genetic information for its own replication, the selectants can be amplified by infection of bacteria. For certain applications however, existing phage display platforms have limitations. One such area is in the field of vaccine development, where the goal is to identify relevant epitopes by affinity-selection against an antibody target, and then to utilize them as immunogens to elicit a desired antibody response. Today, affinity selection is usually conducted using display on filamentous phages like M13. This technology provides an efficient means for epitope identification, but, because filamentous phages do not display peptides in the high-density, multivalent arrays the immune system prefers to recognize, they generally make poor immunogens and are typically useless as vaccines. This makes it necessary to confer immunogenicity by conjugating synthetic versions of the peptides to more immunogenic carriers. Unfortunately, when introduced into these new structural environments, the epitopes often fail to elicit relevant antibody responses. Thus, it would be advantageous to combine the epitope selection and immunogen functions into a single platform where the structural constraints present during affinity selection can be preserved during immunization. This dissertation describes efforts to develop a peptide display system based on the virus-like particles (VLPs) of bacteriophage MS2. Phage display technologies rely on (1) the identification of a site in a viral structural protein that is present on the surface of the virus particle and can accept foreign sequence insertions without disruption of protein folding and viral particle assembly, and (2) on the encapsidation of nucleic acid sequences encoding both the VLP and the peptide it displays. The experiments described here are aimed at satisfying the first of these two requirements by engineering efficient peptide display at two different sites in MS2 coat protein. First, we evaluated the suitability of the N-terminus of MS2 coat for peptide insertions. It was observed that random N-terminal 10-mer fusions generally disrupted protein folding and VLP assembly, but by bracketing the foreign sequences with certain specific dipeptides, these defects could be suppressed. Next, the suitability of a coat protein surface loop for foreign sequence insertion was tested. Specifically, random sequence peptides were inserted into the N-terminal-most AB-loop of a coat protein single-chain dimer. Again we found that efficient display required the presence of appropriate dipeptides bracketing the peptide insertion. Finally, it was shown that an N-terminal fusion that tended to interfere specifically with capsid assembly could be efficiently incorporated into mosaic particles when co-expressed with wild-type coat protein.
Roll-Out and Turn-Off Display Software for Integrated Display System
NASA Technical Reports Server (NTRS)
Johnson, Edward J., Jr.; Hyer, Paul V.
1999-01-01
This report describes the software products, system architectures and operational procedures developed by Lockheed-Martin in support of the Roll-Out and Turn-Off (ROTO) sub-element of the Low Visibility Landing and Surface Operations (LVLASO) program at the NASA Langley Research Center. The ROTO portion of this program focuses on developing technologies that aid pilots in the task of managing the deceleration of an aircraft to a pre-selected exit taxiway. This report focuses on software that produces a system of redundant deceleration cues for a pilot during the landing roll-out, and presents these cues on a head up display (HUD). The software also produces symbology for aircraft operational phases involving cruise flight, approach, takeoff, and go-around. The algorithms and data sources used to compute the deceleration guidance and generate the displays are discussed. Examples of the display formats and symbology options are presented. Logic diagrams describing the design of the ROTO software module are also given.
Antibody phage display: overview of a powerful technology that has quickly translated to the clinic.
Kotlan, Beatrix; Glassy, Mark C
2009-01-01
Antibody-based immunologic reagents are useful for identifying, isolating, or eliminating cells with particular characteristics related to different diseases. Phage display is a highly valuable technique for antibody selection related to this purpose. In brief, a diverse group of antibody genes prepared from a patient or generated in vitro are inserted into a phagemid vector or the phage genome so that when the protein is expressed, it becomes anchored on the surface of the phage by fusion to a coat protein. A diverse library of recombinant antibodies is generated in this way and can then be exposed or panned on the antigen of interest, typically, this being a molecule associated with a particular pathological condition. Phage that carry proteins or peptides bind preferentially to the target and can thus be isolated from the library. The viruses that are recovered in this way also carry the gene for the binding moiety facilitating its over-expression or manipulation. Recent reviews highlight key milestones in the development of antibody libraries and their screening by phage display, and the impact of these technologies on drug discovery seems assured.
New ultraportable display technology and applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Lewis, Nancy D.
1998-08-01
MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.
Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena
2013-01-01
Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089
Flexible Display and Integrated Communication Devices (FDICD) Technology. Volume 2
2008-06-01
AFRL-RH-WP-TR-2008-0072 Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II David Huffman Keith Tognoni...14 April 2004 – 20 June 2008 4. TITLE AND SUBTITLE Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II 5a...14. ABSTRACT This flexible display and integrated communication devices (FDICD) technology program sought to create a family of powerful
A passive cooling system proposal for multifunction and high-power displays
NASA Astrophysics Data System (ADS)
Tari, Ilker
2013-03-01
Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.
Status review of field emission displays
NASA Astrophysics Data System (ADS)
Ghrayeb, Joseph; Daniels, Reginald
2001-09-01
Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.
Display technology - Human factors concepts
NASA Astrophysics Data System (ADS)
Stokes, Alan; Wickens, Christopher; Kite, Kirsten
1990-03-01
Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.
NASA Technical Reports Server (NTRS)
Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John
2006-01-01
CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.
Solid models for CT/MR image display: accuracy and utility in surgical planning
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott
1991-05-01
Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.
A Laboratory-Based Course in Display Technology
ERIC Educational Resources Information Center
Sarik, J.; Akinwande, A. I.; Kymissis, I.
2011-01-01
A laboratory-based class in flat-panel display technology is presented. The course introduces fundamental concepts of display systems and reinforces these concepts through the fabrication of three display devices--an inorganic electroluminescent seven-segment display, a dot-matrix organic light-emitting diode (OLED) display, and a dot-matrix…
Simulation Evaluation of Equivalent Vision Technologies for Aerospace Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan J.; Arthur, Jarvis J.
2009-01-01
A fixed-based simulation experiment was conducted in NASA Langley Research Center s Integration Flight Deck simulator to investigate enabling technologies for equivalent visual operations (EVO) in the emerging Next Generation Air Transportation System operating environment. EVO implies the capability to achieve or even improve on the safety of current-day Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and perhaps even retain VFR procedures - all independent of the actual weather and visibility conditions. Twenty-four air transport-rated pilots evaluated the use of Synthetic/Enhanced Vision Systems (S/EVS) and eXternal Vision Systems (XVS) technologies as enabling technologies for future all-weather operations. The experimental objectives were to determine the feasibility of XVS/SVS/EVS to provide for all weather (visibility) landing capability without the need (or ability) for a visual approach segment and to determine the interaction of XVS/EVS and peripheral vision cues for terminal area and surface operations. Another key element of the testing investigated the pilot's awareness and reaction to non-normal events (i.e., failure conditions) that were unexpectedly introduced into the experiment. These non-normal runs served as critical determinants in the underlying safety of all-weather operations. Experimental data from this test are cast into performance-based approach and landing standards which might establish a basis for future all-weather landing operations. Glideslope tracking performance appears to have improved with the elimination of the approach visual segment. This improvement can most likely be attributed to the fact that the pilots didn't have to simultaneously perform glideslope corrections and find required visual landing references in order to continue a landing. Lateral tracking performance was excellent regardless of the display concept being evaluated or whether or not there were peripheral cues in the side window. Although workload ratings were significantly less when peripheral cues were present compared to when there were none, these differences appear to be operationally inconsequential. Larger display concepts tested in this experiment showed significant situation awareness (SA) improvements and workload reductions compared to smaller display concepts. With a fixed display size, a color display was more influential in SA and workload ratings than a collimated display.
NASA Technical Reports Server (NTRS)
1972-01-01
The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.
Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits.
Lee, Jaebum; Sieweke, Janet H; Rodriguez, Nancy A; Schüpbach, Peter; Lindström, Håkan; Susin, Cristiano; Wikesjö, Ulf M E
2009-07-01
The objective of this study was to screen candidate nano-technology-modified, micro-structured zirconia implant surfaces relative to local bone formation and osseointegration. Proprietary nano-technology surface-modified (calcium phosphate: CaP) micro-structured zirconia implants (A and C), control micro-structured zirconia implants (ZiUnite), and titanium porous oxide implants (TiUnite) were implanted into the femoral condyle in 40 adult male New Zealand White rabbits. Each animal received one implant in each hind leg; thus, 20 animals received A and C implants and 20 animals received ZiUnite and TiUnite implants in contralateral hind legs. Ten animals/group were euthanized at weeks 3 and 6 when biopsies of the implant sites were processed for histometric analysis using digital photomicrographs produced using backscatter scanning electron microscopy. The TiUnite surface demonstrated significantly greater bone-implant contact (BIC) (77.6+/-2.6%) compared with the A (64.6+/-3.6%) and C (62.2+/-3.1%) surfaces at 3 weeks (p<0.05). Numerical differences between ZiUnite (70.5+/-3.1%) and A and C surfaces did not reach statistical significance (p>0.05). Similarly, there were non-significant differences between the TiUnite and the ZiUnite surfaces (p>0.05). At 6 weeks, there were no significant differences in BIC between the TiUnite (67.1+/-4.2%), ZiUnite (69.7+/-5.7%), A (68.6+/-1.9%), and C (64.5+/-4.1%) surfaces (p>0.05). TiUnite and ZiUnite implant surfaces exhibit high levels of osseointegration that, in this model, confirm their advanced osteoconductive properties. Addition of CaP nano-technology to the ZiUnite surface does not enhance the already advanced osteoconductivity displayed by the TiUnite and ZiUnite implant surfaces.
Display Techniques for Advanced Crew Stations (DTACS). Phase 1. Display Techniques Study.
1984-03-01
26 3.1.3 Off Screen Displays .. ................... 27 3.1.4 Flat Panel Displays. .. ................. 27 3.2 FORMAT REQUIREMENTS...Head-Up Display ....... .................... ... 96 4.5.2 Display Panel .... ................. 98 4.5.3 RGB Calligraphic Display ................ 99...117 3.4 VOICE WARNING/RESPONSE TECHNOLOGY .............. . i.117 5.5 TOUCH PANEL TECHNOLOGY ..... ................ ... 118 5.6
Multimission helicopter information display technology
NASA Astrophysics Data System (ADS)
Terry, William S.
1995-06-01
A new Operator display subsystem is being incorporated as part of the next generation United States Navy (USN) helicopter avionics system to be integrated into the Multi-Mission Helicopter (MMH) which will replace both the SH-60B and the SH- 60F in 2001. This subsystem exploits state-of-the-art technology for the display hardware, the display driver hardware, information presentation methodologies, and software architecture. The technologies to be base technologies have evolved during the development period and the solution has been modified to include current elements including high resolution AMLCD color displays that are sunlight readable, highly reliable, and significantly lighter that CRT technology, as well as Reduced Instruction Set Computer (RISC) based high-performance display generators that have only recently become feasible to implement in a military aircraft. This paper describes the overall subsystem architecture, some detail on the individual elements along with supporting rationale, the manner in which the display subsystem provides the necessary tools to significantly enhance the performance of the weapon system through the vital Operator-System Interface. Also addressed is a summary of the evolution of design leading to the current approach to MMH Operator displays and display processing as well as the growth path that the MMH display subsystem will most likely follow as additional technology evolution occurs.
Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...
2015-08-25
Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.
Mobile display technologies: Past developments, present technologies, and future opportunities
NASA Astrophysics Data System (ADS)
Ohshima, Hiroyuki
2014-01-01
It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.
Head-Mounted Display Technology for Low Vision Rehabilitation and Vision Enhancement
Ehrlich, Joshua R.; Ojeda, Lauro V.; Wicker, Donna; Day, Sherry; Howson, Ashley; Lakshminarayanan, Vasudevan; Moroi, Sayoko E.
2017-01-01
Purpose To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement. Design Expert perspective. Methods An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. Results Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups. Conclusions Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations. PMID:28048975
Fabrication system, method and apparatus for microelectromechanical devices
NASA Technical Reports Server (NTRS)
Johnson, A. David (Inventor); Busta, Heinz H. (Inventor); Nowicki, Ronald S. (Inventor)
1999-01-01
A fabrication system and method of fabrication for producing microelectromechanical devices such as field-effect displays using thin-film technology. A spacer is carried at its proximal end on the surface of a substrate having field-effect emitters with the spacer being enabled for tilting movement from a nested position to a deployed position which is orthogonal to the plane of the substrate. An actuator is formed with one end connected with the substrate and another end connected with spacer. The actuator is made of a shape memory alloy material which contracts when heated through the material's phase-change transition temperature. Contraction of the actuator exerts a pulling force on the spacer which is tilted to the deployed position. A plurality of the spacers are distributed over the area of the display. A glass plate having a phosphor-coated surface is fitted over the distal ends of the deployed spacer.
Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang
2016-03-01
Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.
Airport Surface Movement Technologies: Atlanta Demonstrations Overview
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Young, Steven D.
1997-01-01
A flight demonstration was conducted in August 1997 at the Hartsfield Atlanta (ATL) International Airport as part of low visibility landing and surface operations (LVLASO) research activities. This research was aimed at investigating technology to improve the safety and efficiency of aircraft movements on the surface during the operational phases of roll-out, turnoff, and taxi in any weather condition down to a runway visual range of 300 feet. The system tested at ATL was composed of airborne and ground-based components that were integrated to provide both the flight crew and controllers with supplemental information to enable safe, expedient surface operations. Experimental displays were installed on a Boeing 757-200 research aircraft in both headup and head-down formats. On the ground, an integrated system maintained surveillance of the airport surface and a controller interface provided routing and control instructions. While at ATL, the research aircraft performed a series of flight and taxi operations to show the validity of the operational concept at a major airport facility, to validate simulation findings, and to assess each of the individual technologies performance in an airport environment. The concept was demonstrated to over 100 visitors from the Federal Aviation Administration (FAA) and the aviation community. This paper gives an overview of the LVLASO system and ATL test activities.
Versatile microbial surface-display for environmental remediation and biofuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred
2008-02-14
Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.
Basics of Antibody Phage Display Technology.
Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H
2018-06-09
Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.
Motion-Base Simulator Evaluation of an Aircraft Using an External Vision System
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Arthur, J. J.; Rehfeld, Sherri A.; Harrison, Stephanie
2012-01-01
Twelve air transport-rated pilots participated as subjects in a motion-base simulation experiment to evaluate the use of eXternal Vision Systems (XVS) as enabling technologies for future supersonic aircraft without forward facing windows. Three head-up flight display concepts were evaluated -a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of AOA, display FOV, display collimation or whether peripheral cues were present. However, the data showed glide slope approach tracking appears to be affected by display size (i.e., FOV) and collimation. The monochrome, collimated HUD and color, uncollimated XVS with Full FOV display had (statistically equivalent) glide path performance improvements over the XVS with HUD FOV display. Approach path performance results indicated that collimation may not be a requirement for an XVS display if the XVS display is large enough and employs color. Subjective assessments of mental workload and situation awareness also indicated that an uncollimated XVS display may be feasible. Motion cueing appears to have improved localizer tracking and touchdown sink rate across all displays.
Flexible Substrates Comparison for Pled Technology
NASA Astrophysics Data System (ADS)
Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.
2008-08-01
Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.
Further advances in autostereoscopic technology at Dimension Technologies Inc.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1992-06-01
Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.
Romao, Ema; Morales-Yanez, Francisco; Hu, Yaozhong; Crauwels, Maxine; De Pauw, Pieter; Hassanzadeh, Gholamreza Ghassanzadeh; Devoogdt, Nick; Ackaert, Chloe; Vincke, Cecile; Muyldermans, Serge
2016-01-01
The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology.
Han, Hau-Vei; Lin, Huang-Yu; Lin, Chien-Chung; Chong, Wing-Cheung; Li, Jie-Ru; Chen, Kuo-Ju; Yu, Peichen; Chen, Teng-Ming; Chen, Huang-Ming; Lau, Kei-May; Kuo, Hao-Chung
2015-12-14
Colloidal quantum dots which can emit red, green, and blue colors are incorporated with a micro-LED array to demonstrate a feasible choice for future display technology. The pitch of the micro-LED array is 40 μm, which is sufficient for high-resolution screen applications. The method that was used to spray the quantum dots in such tight space is called Aerosol Jet technology which uses atomizer and gas flow control to obtain uniform and controlled narrow spots. The ultra-violet LEDs are used in the array to excite the red, green and blue quantum dots on the top surface. To increase the utilization of the UV photons, a layer of distributed Bragg reflector was laid down on the device to reflect most of the leaked UV photons back to the quantum dot layers. With this mechanism, the enhanced luminous flux is 194% (blue), 173% (green) and 183% (red) more than that of the samples without the reflector. The luminous efficacy of radiation (LER) was measured under various currents and a value of 165 lm/Watt was recorded.
Recent developments in stereoscopic and holographic 3D display technologies
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2014-06-01
Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.
Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.
2015-01-01
The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365
ERIC Educational Resources Information Center
Edstrom, Malin
1987-01-01
Discusses the characteristics of different computer screen technologies including the possible harmful effects on health of cathode ray tube (CRT) terminals. CRT's are compared to other technologies including liquid crystal displays, plasma displays, electroluminiscence displays, and light emitting diodes. A chart comparing the different…
Determining minimal display element requirements for surface map displays
DOT National Transportation Integrated Search
2003-04-14
There is a great deal of interest in developing electronic surface map displays to enhance safety and reduce incidents and incursions on or near the airport surface. There is a lack of research, however, detailing the minimal display elements require...
Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.
Image quality metrics for volumetric laser displays
NASA Astrophysics Data System (ADS)
Williams, Rodney D.; Donohoo, Daniel
1991-08-01
This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
Krueger, Wesley W O
2011-01-01
An eyewear mounted visual display ("User-worn see-through display") projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-posttest design for patients in vestibular rehabilitation. Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales, whereas 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to posttherapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance.
Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.
Wang, He; Wang, Yunxiang; Yang, Ruijin
2017-02-01
With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.
Qin, Chang-Fei; Li, Guan-Cheng
2014-12-01
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies. Copyright © 2014 Elsevier B.V. All rights reserved.
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
Space Station Displays and Controls Technology Evolution
NASA Technical Reports Server (NTRS)
Blackburn, Greg C.
1990-01-01
Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.
Wang, Tiantian; Sun, Hui; Zhang, Jie; Liu, Qing; Wang, Longjiang; Chen, Peipei; Wang, Fangkun; Li, Hongmei; Xiao, Yihong; Zhao, Xiaomin
2014-03-01
In the present study, an a-agglutinin-based Saccharomyces boulardii surface display system was successfully established using a single expression vector. Based on the two protein co-expression vector pSP-G1 built by Partow et al., a S. boulardii surface display vector-pSDSb containing all the display elements was constructed. The display results of heterologous proteins were confirmed by successfully displaying enhanced green fluorescent protein (EGFP) and chicken Eimeria tenella Microneme-2 proteins (EtMic2) on the S. boulardii cell surface. The DNA sequence of AGA1 gene from S. boulardii (SbAGA1) was determined and used as the cell wall anchor partner. This is the first time heterologous proteins have been displayed on the cell surface of S. boulardii. Because S. boulardii is probiotic and eukaryotic, its surface display system would be very valuable, particularly in the development of a live vaccine against various pathogenic organisms especially eukaryotic pathogens such as protistan parasites. Copyright © 2013 Elsevier Inc. All rights reserved.
Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka
2011-04-01
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.
NASA Technical Reports Server (NTRS)
Cassell, Rick; Evers, Carl; Hicok, Dan; Lee, Derrick
1999-01-01
NASA conducted a series of flight experiments at Hartsfield Atlanta International Airport as part of the Low Visibility Landing and Surface Operations (LVLASO) Program. LVLASO is one of the subelements of the NASA Terminal Area Productivity (TAP) Program, which is focused on providing technology and operating procedures for achieving clear-weather airport capacity in instrument-weather conditions, while also improving safety. LVLASO is investigating various technologies to be applied to airport surface operations, including advanced flight deck displays and surveillance systems. The purpose of this report is to document the performance of the surveillance systems tested as part of the LVLASO flight experiment. There were three surveillance sensors tested: primary radar using Airport Surface Detection Equipment (ASDE-3) and the Airport Movement Area Safety System (AMASS), Multilateration using the Airport Surface Target Identification System (ATIDS), and Automatic Dependent Surveillance - Broadcast (ADS-B) operating at 1090 MHz. The performance was compared to the draft requirements of the ICAO Advanced Surface Movement Guidance and Control System (A-SMGCS). Performance parameters evaluated included coverage, position accuracy, and update rate. Each of the sensors was evaluated as a stand alone surveillance system.
Yeast surface display of dehydrogenases in microbial fuel-cells.
Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital
2016-12-01
Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Cholesteric Liquid Crystal Based Reflex Color Reflective Displays
NASA Astrophysics Data System (ADS)
Khan, Asad
2012-02-01
Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer products and related markets. This is a development that spans a wide space of highly technical development and fundamental science to products and commercialization to enable the entry of the technology into consumer markets.
Virtual Environments in Scientific Visualization
NASA Technical Reports Server (NTRS)
Bryson, Steve; Lisinski, T. A. (Technical Monitor)
1994-01-01
Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.
Ko, Hyeok-Jin; Park, Eunhye; Song, Joseph; Yang, Taek Ho; Lee, Hee Jong; Kim, Kyoung Heon
2012-01-01
Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 104 molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli. PMID:22344647
Review of the evolution of display technologies for next-generation aircraft
NASA Astrophysics Data System (ADS)
Tchon, Joseph L.; Barnidge, Tracy J.
2015-05-01
Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.
Highly Reflective Multi-stable Electrofluidic Display Pixels
NASA Astrophysics Data System (ADS)
Yang, Shu
Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary results of a simplified design and fabrication method are demonstrated. As advanced research topics regarding the device optical performance, firstly an optical model for evaluating reflective displays' light out-coupling efficiency is established to guide the pixel design; Furthermore, Aluminum surface diffusers are analytically modeled and then fabricated onto multi-stable electrofluidic display pixels to demonstrate truly "white" multi-stable electrofluidic display modules. The achieved results successfully promoted multi-stable electrofluidic display as excellent candidate for the ultimate E-paper device especially for larger scale signage applications.
Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M
2013-02-26
Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.
Ren, Guina; Song, Yuanming; Li, Xiangming; Wang, Bo; Zhou, Yanli; Wang, Yuyan; Ge, Bo; Zhu, Xiaotao
2018-07-15
Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address. Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min. Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property. Copyright © 2018 Elsevier Inc. All rights reserved.
Science and Technology Metrics
2005-01-01
15. Mandelbrot, BB, Passoja DE , Paullay AJ. Fractal Character Of Fracture Surfaces Of Metals . Nature. 308 (5961): 721-722 1984. 218 APPENDIX 4 DISPLAY...journals. Proposal of weighted impact factor and a quality index?. PSICOTHEMA 15 (1): 23-35. Buela-Casal, G; Carretero- Dios , H; de los Santos-Riog, M... Dios , JG; Moya, M. 1999. The neuropediatry and the other pediatric subspecialities: Analysis by means of bibliometry. REVISTA DE NEUROLOGIA 28 (5
2003-05-06
KENNEDY SPACE CENTER, FLA. - A.K. Love, with Instrumentation Technology Associates, Inc., displays one of the boxes used for cancer cell research, an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Real-time data display for AFTI/F-16 flight testing
NASA Technical Reports Server (NTRS)
Harney, P. F.
1982-01-01
Advanced fighter technologies to improve air to air and air to surface weapon delivery and survivability is demonstrated. Real time monitoring of aircraft operation during flight testing is necessary not only for safety considerations but also for preliminary evaluation of flight test results. The complexity of the AFTI/F-16 aircraft requires an extensive capability to accomplish real time data goals; that capability and the resultant product are described.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - A.K. Love, with Instrumentation Technology Associates, Inc., displays one of the boxes used for cancer cell research, an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Space Vehicle Chemical Interactions and Technologies
2015-05-26
the signal intensities for product and transmitted primary ions and applying the Lambert - Beer expression. Measurements are corrected for reactions...other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...a function of the emitted cluster radius. The surface electric field is calculated from Coulomb’s law and levels off at approximately the
Metabolic glycoengineering: Sialic acid and beyond
Du, Jian; Meledeo, M Adam; Wang, Zhiyun; Khanna, Hargun S; Paruchuri, Venkata D P; Yarema, Kevin J
2009-01-01
This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems – such as the human brain – through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous – and sometime quite unexpected – biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the “druggability” of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated “scaffold-dependent” activities, are summarized. PMID:19675091
Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.
Tanaka, Tsutomu; Kondo, Akihiko
2015-02-01
In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Display of adenoregulin with a novel Pichia pastoris cell surface display system.
Ren, Ren; Jiang, Zhengbing; Liu, Meiyun; Tao, Xinyi; Ma, Yushu; Wei, Dongzhi
2007-02-01
Two Pichia pastoris cell surface display vectors were constructed. The vectors consisted of the flocculation functional domain of Flo1p with its own secretion signal sequence or the alpha-factor secretion signal sequence, a polyhistidine (6xHis) tag for detection, an enterokinase recognition site, and the insertion sites for target proteins. Adenoregulin (ADR) is a 33-amino-acid antimicrobial peptide isolated from Phyllomedusa bicolor skin. The ADR was expressed and displayed on the Pichia pastoris KM71 cell surface with the system reported. The displayed recombinant ADR fusion protein was detected by fluorescence microscopy and confocal laser scanning microscopy (CLSM). The antimicrobial activity of the recombinant adenoregulin was detected after proteolytic cleavage of the fusion protein on cell surface. The validity of the Pichia pastoris cell surface display vectors was proved by the displayed ADR.
SWIR hyperspectral imaging detector for surface residues
NASA Astrophysics Data System (ADS)
Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick
2013-05-01
ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.
Military display market segment: avionics (Invited Paper)
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Hopper, Darrel G.
2005-05-01
The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.
Status of display systems in B-52H
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.; Meyer, Frederick M.; Wodke, Kenneth E.
1999-08-01
Display technologies for the B-52 were selected some 40 years ago have become unsupportable. Electromechanical and old cathode ray tube technologies, including an exotic six-gun 13 in. tube, have become unsupportable due to the vanishing vendor syndrome. Thus, it is necessary to insert new technologies which will be available for the next 40 years to maintain the capability heretofore provided by those now out of favor with the commercial sector. With this paper we begin a look at the status of displays in the B-52H, which will remain in inventory until 2046 according to current plans. From a component electronics technology perspective, such as displays, the B-52H provides several 10-year life cycle cost (LCC) planning cycles to consider multiple upgrades. Three Productivity, Reliability, Availability, and Maintainability (PRAM) projects are reviewed to replace 1950s CRTs in several sizes: 3, 9, and 13 in. A different display technology has been selected in each case. Additional display upgrades in may be anticipated and are discussed.
Survey of multi-function display and control technology
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Tonkin, M. H.
1982-01-01
The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described.
Spatial constraints of stereopsis in video displays
NASA Technical Reports Server (NTRS)
Schor, Clifton
1989-01-01
Recent development in video technology, such as the liquid crystal displays and shutters, have made it feasible to incorporate stereoscopic depth into the 3-D representations on 2-D displays. However, depth has already been vividly portrayed in video displays without stereopsis using the classical artists' depth cues described by Helmholtz (1866) and the dynamic depth cues described in detail by Ittleson (1952). Successful static depth cues include overlap, size, linear perspective, texture gradients, and shading. Effective dynamic cues include looming (Regan and Beverly, 1979) and motion parallax (Rogers and Graham, 1982). Stereoscopic depth is superior to the monocular distance cues under certain circumstances. It is most useful at portraying depth intervals as small as 5 to 10 arc secs. For this reason it is extremely useful in user-video interactions such as telepresence. Objects can be manipulated in 3-D space, for example, while a person who controls the operations views a virtual image of the manipulated object on a remote 2-D video display. Stereopsis also provides structure and form information in camouflaged surfaces such as tree foliage. Motion parallax also reveals form; however, without other monocular cues such as overlap, motion parallax can yield an ambiguous perception. For example, a turning sphere, portrayed as solid by parallax can appear to rotate either leftward or rightward. However, only one direction of rotation is perceived when stereo-depth is included. If the scene is static, then stereopsis is the principal cue for revealing the camouflaged surface structure. Finally, dynamic stereopsis provides information about the direction of motion in depth (Regan and Beverly, 1979). Clearly there are many spatial constraints, including spatial frequency content, retinal eccentricity, exposure duration, target spacing, and disparity gradient, which - when properly adjusted - can greatly enhance stereodepth in video displays.
Military display market: third comprehensive edition
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Hopper, Darrel G.
2002-08-01
Defense displays comprise a niche market whose continually high performance requirements drive technology. The military displays market is being characterized to ascertain opportunities for synergy across platforms, and needs for new technology. All weapons systems are included. Some 382,585 displays are either now in use or planned in DoD weapon systems over the next 15 years, comprising displays designed into direct-view, projection-view, and virtual- image-view applications. This defense niche market is further fractured into 1163 micro-niche markets by the some 403 program offices who make decisions independently of one another. By comparison, a consumer electronics product has volumes of tens-of-millions of units for a single fixed design. Some 81% of defense displays are ruggedized versions of consumer-market driven designs. Some 19% of defense displays, especially in avionics cockpits and combat crewstations, are custom designs to gain the additional performance available in the technology base but not available in consumer-market-driven designs. Defense display sizes range from 13.6 to 4543 mm. More than half of defense displays are now based on some form of flat panel display technology, especially thin-film-transistor active matrix liquid crystal display (TFT AMLCD); the cathode ray tube (CRT) is still widely used but continuing to drop rapidly in defense market share.
Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria
2015-01-01
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
Conducting Safe and Efficient Airport Surface Operations in a NextGen Environment
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.
2016-01-01
The Next Generation Air Transportation System (NextGen) vision proposes many revolutionary operational concepts, such as surface trajectory-based operations (STBO) and technologies, including display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability of a flight crew to conduct safe and efficient airport surface operations while utilizing an AMM. Position accuracy of traffic was varied, and the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability was measured. Another goal was to evaluate the crew's ability to safely conduct STBO by assessing the impact of providing traffic intent information, CD&R system capability, and the display of STBO guidance to the flight crew on both head-down and head-up displays (HUD). Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near-collisions still occurred; when indications or alerts were generated in these same scenarios, the incidents were averted. During the STBO testing, the flight crews met their required time-of-arrival at route end within 10 seconds on 98 percent of the trials, well within the acceptable performance bounds of 15 seconds. Traffic intent information was found to be useful in determining the intent of conflicting traffic, with graphical presentation preferred. The CD&R system was only minimally effective during STBO because the prevailing visibility was sufficient for visual detection of conflicting traffic. Overall, the pilots indicated STBO increased general situation awareness but also negatively impacted workload, reduced the ability to watch for other traffic, and increased head-down time.
Introduction to the National Information Display Laboratory
NASA Technical Reports Server (NTRS)
Carlson, Curtis R.
1992-01-01
The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.
Sunlight readable avionics displays
NASA Astrophysics Data System (ADS)
Visinski, Joseph R.
1998-09-01
The theme of the Cockpit Displays V Conference of 'Custom versus Consumer -- Grade Displays in Defense Applications' reflects the Raytheon Systems Company field emission display (FED) development effort. Raytheon chose to license commercial FED technology and subsequently participate in a commercial industry 'FED Alliance' to insert this technology into commercial and avionics defense applications. The unaffordability of custom military displays makes them an unfeasible choice to build a business upon. The major differences between consumer FEDs and those adapted for military/avionics installations are: (1) high brightness for sunlight visibility; (2) extended environmental range; (3) high resolution; (4) wider dimming range for sunlight to NVIS operation; (5) extended gray scales; (6) lifetime product support well beyond two year consumer market life. The transition to defense applications is further being accomplished via industry/government partnerships as the DARPA Technology Reinvestment Project (TRP) and BAA 97-31. FEDs combine cathode ray tube (CRT) and matrix addressed flat panel display technology, parts, manufacturing, and test equipment, plus open systems interfaces into a new display.
Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols.
Escorihuela, Jorge; Zuilhof, Han
2017-04-26
Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2-18 h) or the use of UV light (10-30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1-2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers.
Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols
2017-01-01
Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2–18 h) or the use of UV light (10–30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and can be accelerated with UV light irradiation, reducing the reaction time to 1–2 min. This grafting procedure leads to densely packed organic monolayers that are hydrolytically stable (even up to 30 days at pH 3 or 11) and can display excellent antifouling behavior against a range of organic polymers. PMID:28409624
NASA Astrophysics Data System (ADS)
Chi, X. F.
2017-10-01
This article investigated laser re-manufacturing technology application in mining industry. The research focused on green re-manufacturing of failure spur. Leave the main gear body stay intact after the dirty, rust, fatigue and injured part were removed completely before the green re-manufacturing procedure begin. The optimized laser operating parameters paved the road for excellent mechanical properties and comparatively neat shape which often means less post processing. The laser re-manufactured gear surface was systematically examined, including microstructure observation, and dry wear test at room temperature. The test results were compared with new gear surface and used but not broken gear surface. Finally, it proved that the green re-manufactured gear surface displayed best comprehensive mechanical properties, followed the new gear surface. The resistance of dry wear properties of used but not broken gear surface was the worst.
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.
2000-08-01
Displays were invented just in the last century. The human visual system evolved over millions of years. The disparity between the natural world 'display' and that 'sampled' by year 2000 technology is more than a factor of one million. Over 1000X of this disparity between the fidelity of current electronic displays and human visual capacity is in 2D resolution alone. Then there is true 3D, which adds an additional factor of over 1000X. The present paper focuses just on the 2D portion of this grand technology challenge. Should a significant portion of this gap be closed, say just 10X by 2010, display technology can help drive a revolution in military affairs. Warfighter productivity must grow dramatically, and improved display technology systems can create a critical opportunity to increase defense capability while decreasing crew sizes.
Two-panel LCOS-based projection system: a potentially compact high-resolution avionics display
NASA Astrophysics Data System (ADS)
Sharp, Gary D.; Chen, Jianmin; Robinson, Michael B.; Korah, John K.
2003-09-01
Military displays have been limited first by the availability of CRT and then AMLCD for color multifunctional displays. Projection display technology has been offered as an alternative. With the growth of the LCOS based consumer projection display industry, commercially off the shelf (COTS) components and technology are becoming readily available. A projection display system addresses the lessons learned from the CRT or AMLCD based attempts. This approach presents multiple vendors and user defined aspect ratio, resolution, brightness and color. This paper will present the latest work at ColorLink, Inc. on a two-panel LCOS based projection light engine developed for the consumer industry driven Rear Projection Television (RPTV) market. This engine demonstrates throughput, contrast and color performance that exceeds military requirements using COTS technology and components. We will introduce the core technology and philosophy followed by this industry in defining such a product.
Solving bezel reliability and CRT obsolescence
NASA Astrophysics Data System (ADS)
Schwartz, Richard J.; Bowen, Arlen R.; Knowles, Terry
2003-09-01
Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.
Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.
Dai, Jingwen; Chung, Chi-Kit Ronald
2014-08-01
We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.
A Research Program in Computer Technology
1979-01-01
barrier walls within the cell in a grid or "waffle" pattern, sepnrnting each pixel from its neighbors. The walls need not extend to the front surface...migration and degradation of display p(.rformanco. The grid can be made of photoresist film by standard photolithographic techniques. I xtruurrs. Using the EP...this variation is normally quite smooth, but significant. However, for use in a smart terminal, where visible cursor feedback is available or where
Range Image Processing for Local Navigation of an Autonomous Land Vehicle.
1986-09-01
such as doing long term exploration missions on the surface of the planets which mankind may wish to investigate . Certainly, mankind will soon return...intelligence programming, walking technology, and vision sensors to name but a few. 10 The purpose of this thesis will be to investigate , by simulation...bitmap graphics, both of which are important to this simulation. Finally, the methodology for displaying the symbolic information generated by the
Optical touch sensing: practical bounds for design and performance
NASA Astrophysics Data System (ADS)
Bläßle, Alexander; Janbek, Bebart; Liu, Lifeng; Nakamura, Kanna; Nolan, Kimberly; Paraschiv, Victor
2013-02-01
Touch sensitive screens are used in many applications ranging in size from smartphones and tablets to display walls and collaborative surfaces. In this study, we consider optical touch sensing, a technology best suited for large-scale touch surfaces. Optical touch sensing utilizes cameras and light sources placed along the edge of the display. Within this framework, we first find a sufficient number of cameras necessary for identifying a convex polygon touching the screen, using a continuous light source on the boundary of a circular domain. We then find the number of cameras necessary to distinguish between two circular objects in a circular or rectangular domain. Finally, we use Matlab to simulate the polygonal mesh formed from distributing cameras and light sources on a circular domain. Using this, we compute the number of polygons in the mesh and the maximum polygon area to give us information about the accuracy of the configuration. We close with summary and conclusions, and pointers to possible future research directions.
Krueger, Wesley W.O.
2010-01-01
Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon and aligned with user movement, has demonstrated substantial benefit for individuals susceptible to motion intolerance and spatial disorientation and those undergoing vestibular rehabilitation. The technology developed has applications in any environment where motion sensitivity affects human performance. PMID:21181963
NASA Astrophysics Data System (ADS)
Bartlett, Christopher T.
2000-08-01
The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.
The iMoD display: considerations and challenges in fabricating MOEMS on large area glass substrates
NASA Astrophysics Data System (ADS)
Chui, Clarence; Floyd, Philip D.; Heald, David; Arbuckle, Brian; Lewis, Alan; Kothari, Manish; Cummings, Bill; Palmateer, Lauren; Bos, Jan; Chang, Daniel; Chiang, Jedi; Wang, Li-Ming; Pao, Edmon; Su, Fritz; Huang, Vincent; Lin, Wen-Jian; Tang, Wen-Chung; Yeh, Jia-Jiun; Chan, Chen-Chun; Shu, Fang-Ann; Ju, Yuh-Diing
2007-01-01
QUALCOMM has developed and transferred to manufacturing iMoD displays, a MEMS-based reflective display technology. The iMoD array architecture allows for development at wafer scale, yet easily scales up to enable fabrication on flat-panel display (FPD) lines. In this paper, we will describe the device operation, process flow and fabrication, technology transfer issues, and display performance.
Advanced and tendencies in the development of display technologies
NASA Astrophysics Data System (ADS)
Kompanets, I. N.
2006-06-01
Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.
NASA Astrophysics Data System (ADS)
Khan, Asad
Reflective Cholesteric Liquid Crystals have been the subject of much research, development, and commercialization - in display technology as well as other embodiments, such as sensors, privacy films, etc. The liquid Crystal Institute (LCI) at Kent State University (KSU) served as a hot bed of much of the research and development in this field in the early 1990's. From here, the reflective technology was licensed to Kent Displays (KDI) to further develop and commercialize. The 90's saw some development in flexible technologies, drive scheme, display design, as well as materials. The early part of the century took a turn with a strong effort in encapsulation based flexible display development. In 2006, KDI engineers and technologists started firming up ambitious plans for the world's first roll-to-roll manufacturing line for bistable cholesteric displays. In 2009, this became a reality! In early 2010, the first eWriter product was launched into the consumer market under the brand Boogie Board®. Within months, this became a success forcing the rapid development of the manufacturing process for the flexible displays. Today, the company has two manufacturing lines, 24 hour roll-to-roll production of flexible displays, millions of Boogie Board products in the global market place, and a growing OEM business in the Boogie Board technology. KDI continues to do basic research, development, and exploration in the bistable display field. It also has had to become an expert in the supply chain management of the unique raw materials needed for flexible display manufacturing, while still managing global operations with sales offices in several continents and a growing and diversified group of individuals. In this presentation, we will present the story, research, development, technology, and latest trends in bistable cholesteric liquid crystal materials with a particular emphasis on the eWriter technology and market.
Advances in phage display technology for drug discovery.
Omidfar, Kobra; Daneshpour, Maryam
2015-06-01
Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Refreshing Refreshable Braille Displays.
Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M
2015-01-01
The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.
Flight Simulator: Use of SpaceGraph Display in an Instructor/Operator Station. Final Report.
ERIC Educational Resources Information Center
Sher, Lawrence D.
This report describes SpaceGraph, a new computer-driven display technology capable of showing space-filling images, i.e., true three dimensional displays, and discusses the advantages of this technology over flat displays for use with the instructor/operator station (IOS) of a flight simulator. Ideas resulting from 17 brainstorming sessions with…
NCAP projection displays: key issues for commercialization
NASA Astrophysics Data System (ADS)
Tomita, Akira; Jones, Philip J.
1992-06-01
Recently there has been much interest in a new polymer nematic dispersion technology, often called as NCAP, PDLC, PNLC, LCPC, etc., since projection displays using this technology have been shown to produce much brighter display images than projectors using conventional twisted nematic (TN) lightvalves. For commercializing projection displays based on this polymer nematic dispersion technology, the new materials must not only meet various electro- optic requirements, e.g., operational voltage, `off-state'' scattering angle, voltage holding ratio and hysteresis, but must also be stable over the lifetime of the product. This paper reports recent progress in the development of NCAP based projection displays and discusses some of the key commercialization issues.
Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin
2016-04-01
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Application of Tessellation in Architectural Geometry Design
NASA Astrophysics Data System (ADS)
Chang, Wei
2018-06-01
Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.
NASA Astrophysics Data System (ADS)
Picard, Francis; Ilias, Samir; Asselin, Daniel; Boucher, Marc-André; Duchesne, François; Jacob, Michel; Larouche, Carl; Vachon, Carl; Niall, Keith K.; Jerominek, Hubert
2011-02-01
A MEMS based technology for projection display is reviewed. This technology relies on mechanically flexible and reflective microbridges made of aluminum alloy. A linear array of such micromirrors is combined with illumination and Schlieren optics to produce a pixels line. Each microbridge in the array is individually controlled using electrostatic actuation to adjust the pixels intensities. Results of the simulation, fabrication and characterization of these microdevices are presented. Activation voltages below 250 V with response times below 10 μs were obtained for 25 μm × 25 μm micromirrors. With appropriate actuation voltage waveforms, response times of 5 μs and less are achievable. A damage threshold of the mirrors above 8 kW/cm2 has been evaluated. Development of the technology has produced projector engines demonstrating this light modulation principle. The most recent of these engines is DVI compatible and displays VGA video streams at 60 Hz. Recently applications have emerged that impose more stringent requirements on the dimensions of the MEMS array and associated optical system. This triggered a scale down study to evaluate the minimum micromirror size achievable, the impact of this reduced size on the damage threshold and the achievable minimum size of the associated optical system. Preliminary results of this scale down study are reported. FRAM with active surface as small as 5 μm × 5 μm have been investigated. Simulations have shown that such micromirrors could be activated with 107 V to achieve f-number of 1.25. The damage threshold has been estimated for various FRAM sizes. Finally, design of a conceptual miniaturized projector based on 1000×1 array of 5 μm × 5 μm micromirrors is presented. The volume of this projector concept is about 12 cm3.
3D Image Display Courses for Information Media Students.
Yanaka, Kazuhisa; Yamanouchi, Toshiaki
2016-01-01
Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators.
Zadravec, Petra; Štrukelj, Borut
2015-01-01
Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617
Architectural design of deep metallic sub-wavelength grating for practical holography display
NASA Astrophysics Data System (ADS)
Zhu, WenLiang; Shen, Chuan; Zhang, MingHua; Wei, Sui; Wang, XiangXiang; Wang, Ye
2017-10-01
Spatial light modulator (SLM) is the core device of holographic display, which requires a large space-bandwidth product (SBP), especially needing a wide viewing angle. According to the grating theory, the scale of the holographic display unit should be close to the wavelength of light. The transmission resonances of deep metallic sub-wavelength grating structure, which is produced by the surface plasmon and Fabry-Perot (FP) resonance based on metal grating phenomenon of Wood's anomaly, especially the metal-insulator-metal (MIM) structure provides a theoretical and effective technique for enhancing the reflection resonances and can be used for implementing the holographic display unit technology. In this paper, we replace the top electrode layer of the LCOS with a metallic deep sub-wavelength grating structure and change the grating period, slit width and spacer thickness. The simulation results by aid of CST software are given, which demonstrate that the improved device with dielectric medium parameter within liquid crystal refractive rate range (1.4 1.7) can reach 0 to 2π phase modulation in the visible wavelength range. Moreover, it also decrease the difficulty of device processing.
Automotive displays and controls : existing technology and future trends
DOT National Transportation Integrated Search
1987-11-01
This report presents overview information on high-technology displays and : controls that are having a substantial effect on the driving environment. Advances : in electronics and computers, in addition to cost advantages, increase the : technologies...
Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei
2018-04-30
Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.
Polyvalent Display of Biomolecules on Live Cells.
Shi, Peng; Zhao, Nan; Lai, Jinping; Coyne, James; Gaddes, Erin R; Wang, Yong
2018-06-04
Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two-step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
NASA Astrophysics Data System (ADS)
Venter, Petrus J.; Bogalecki, Alfons W.; du Plessis, Monuko; Goosen, Marius E.; Nell, Ilse J.; Rademeyer, P.
2011-03-01
Display technologies always seem to find a wide range of interesting applications. As devices develop towards miniaturization, niche applications for small displays may emerge. While OLEDs and LCDs dominate the market for small displays, they have some shortcomings as relatively expensive technologies. Although CMOS is certainly not the dominating semiconductor for photonics, its widespread use, favourable cost and robustness present an attractive potential if it could find application in the microdisplay environment. Advances in improving the quantum efficiency of avalanche electroluminescence and the favourable spectral characteristics of light generated through the said mechanism may afford CMOS the possibility to be used as a display technology. This work shows that it is possible to integrate a fully functional display in a completely standard CMOS technology mainly geared towards digital design while using light sources completely compatible with the process and without any post processing required.
Design of the control system for full-color LED display based on MSP430 MCU
NASA Astrophysics Data System (ADS)
Li, Xue; Xu, Hui-juan; Qin, Ling-ling; Zheng, Long-jiang
2013-08-01
The LED display incorporate the micro electronic technique, computer technology and information processing as a whole, it becomes the most preponderant of a new generation of display media with the advantages of bright in color, high dynamic range, high brightness and long operating life, etc. The LED display has been widely used in the bank, securities trading, highway signs, airport and advertising, etc. According to the display color, the LED display screen is divided into monochrome screen, double color display and full color display. With the diversification of the LED display's color and the ceaseless rise of the display demands, the LED display's drive circuit and control technology also get the corresponding progress and development. The earliest monochrome screen just displaying Chinese characters, simple character or digital, so the requirements of the controller are relatively low. With the widely used of the double color LED display, the performance of its controller will also increase. In recent years, the full color LED display with three primary colors of red, green, blue and grayscale display effect has been highly attention with its rich and colorful display effect. Every true color pixel includes three son pixels of red, green, blue, using the space colour mixture to realize the multicolor. The dynamic scanning control system of LED full-color display is designed based on MSP430 microcontroller technology of the low power consumption. The gray control technology of this system used the new method of pulse width modulation (PWM) and 19 games show principle are combining. This method in meet 256 level grayscale display conditions, improves the efficiency of the LED light device, and enhances the administrative levels feels of the image. Drive circuit used 1/8 scanning constant current drive mode, and make full use of the single chip microcomputer I/O mouth resources to complete the control. The system supports text, pictures display of 256 grayscale full-color LED screen.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- During this year's NASA MarsPort Engineering Design Student Competition 2002 conference, the University of Colorado at Boulder presents this display. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts.
Three-Dimensional Display Technologies for Anatomical Education: A Literature Review
NASA Astrophysics Data System (ADS)
Hackett, Matthew; Proctor, Michael
2016-08-01
Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.
Large-screen display technology assessment for military applications
NASA Astrophysics Data System (ADS)
Blaha, Richard J.
1990-08-01
Full-color, large screen display systems can enhance military applications that require group presentation, coordinated decisions, or interaction between decision makers. The technology already plays an important role in operations centers, simulation facilities, conference rooms, and training centers. Some applications display situational, status, or briefing information, while others portray instructional material for procedural training or depict realistic panoramic scenes that are used in simulators. While each specific application requires unique values of luminance, resolution, response time, reliability, and the video interface, suitable performance can be achieved with available commercial large screen displays. Advances in the technology of large screen displays are driven by the commercial applications because the military applications do not provide the significant market share enjoyed by high definition television (HDTV), entertainment, advertisement, training, and industrial applications. This paper reviews the status of full-color, large screen display technologies and includes the performance and cost metrics of available systems. For this discussion, performance data is based upon either measurements made by our personnel or extractions from vendors' data sheets.
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2015-05-01
Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.
EAP actuators aid the quest for the 'Holy Braille' of tactile displays
NASA Astrophysics Data System (ADS)
Runyan, Noel; Blazie, Deane
2010-04-01
The authors present the worldwide need for electronic Braille displays to promote literacy among the blind. The use of of EAP's to produce Braille displays is encouraged and detailed descriptions of the technology of Braille are presented. Prior art is covered since the early 1950's through present day displays based mostly on piezoelectric technologies. EAP's offer the promise of the "Holy Braille", the ability to display a full page of Braille electronically. Details on "how not to make a Braille display" are covered in prior art.
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
Bandgap Tuning of Silicon Quantum Dots by Surface Functionalization with Conjugated Organic Groups.
Zhou, Tianlei; Anderson, Ryan T; Li, Huashan; Bell, Jacob; Yang, Yongan; Gorman, Brian P; Pylypenko, Svitlana; Lusk, Mark T; Sellinger, Alan
2015-06-10
The quantum confinement and enhanced optical properties of silicon quantum dots (SiQDs) make them attractive as an inexpensive and nontoxic material for a variety of applications such as light emitting technologies (lighting, displays, sensors) and photovoltaics. However, experimental demonstration of these properties and practical application into optoelectronic devices have been limited as SiQDs are generally passivated with covalently bound insulating alkyl chains that limit charge transport. In this work, we show that strategically designed triphenylamine-based surface ligands covalently bonded to the SiQD surface using conjugated vinyl connectivity results in a 70 nm red-shifted photoluminescence relative to their decyl-capped control counterparts. This suggests that electron density from the SiQD is delocalized into the surface ligands to effectively create a larger hybrid QD with possible macroscopic charge transport properties.
Cell surface engineering of microorganisms towards adsorption of heavy metals.
Li, Peng-Song; Tao, Hu-Chun
2015-06-01
Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.
Sunlight-readable display technology: a dual-use case study
NASA Astrophysics Data System (ADS)
Blanchard, Randall D.
1996-05-01
This paper describes our vision of sunlight readable color display requirements, an alternate technology that offers a high level of performance, and how we implemented it for the military avionics display market. This knowledge base and product development experience was then applied with a comparable level of performance to commercial applications. The successful dual use of this technology for these two diverse markets is presented. Details of the technical commonality and a comparison of the design and performance differences are presented. A basis for specifying the required level of performance for a sunlight readable full color display is discussed. With the objective of providing a high level of image brightness and high ambient light rejection, a display architecture using collimated light is used. The resulting designs of two military cockpit display products, with contrast ratios above 20:1 in sunlight are shown. The performance of a commercial display providing several thousand foot- Lamberts of image brightness is presented.
Advancement and applications of peptide phage display technology in biomedical science.
Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung
2016-01-19
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Evaluation of display technologies for Internet of Things (IoT)
NASA Astrophysics Data System (ADS)
Sabo, Julia; Fegert, Tobias; Cisowski, Matthäus Stephanus; Marsal, Anatolij; Eichberger, Domenik; Blankenbach, Karlheinz
2017-02-01
Internet of Things (IoT) is a booming industry. We investigated several (semi-) professional IoT devices in combination with displays (focus on reflective technologies) and LEDs. First, these displays were compared for reflectance and ambient light performance. Two measurement set-ups with diffuse conditions were used for simulating typical indoor lighting conditions of IoT displays. E-paper displays were evaluated best as they combine a relative high reflectance with large contrast ratio. Reflective monochrome LCDs show a lower reflectance but are widely available. Second we studied IoT microprocessors interfaces to displays. A µP can drive single LEDs and one or two Seg 8 LED digits directly by GPIOs. Other display technologies require display controllers with a parallel or serial interface to the microprocessor as they need dedicated waveforms for driving the pixels. Most suitable are display modules with built-in display RAM as only pixel data have to be transferred which changes. A HDMI output (e.g. Raspberry Pi) results in high cost for the displays, therefore AMLCDs are not suitable for low to medium cost IoT systems. We compared and evaluated furthermore status indicators, icons, text and graphics IoT display systems regarding human machine interface (HMI) characteristics and effectiveness as well as power consumption. We found out that low resolution graphics bistable e-paper displays are the most appropriate display technology for IoT systems as they show as well information after a power failure or power switch off during maintenance or e.g. QR codes for installation. LED indicators are the most cost effective approach which has however very limited HMI capabilities.
Active Matrix OLED Test Report
NASA Technical Reports Server (NTRS)
Salazar, George
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.
Panoramic, large-screen, 3-D flight display system design
NASA Technical Reports Server (NTRS)
Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.
1995-01-01
The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.
A preliminary study of flat-panel displays
NASA Technical Reports Server (NTRS)
Yancey, K. E.
1986-01-01
Six display technologies that might be of future value in a spacelab workstation are discussed. Some have been developed to the point where they could be used as a computer display while others have not. The display technologies studied are electroluminescents, light-emitting didodes, gas plasma, liquid crystal, electrochromic, and electrophoretic. An explanation of each mechanism is provided along with the state-of-the-art development.
Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes
NASA Astrophysics Data System (ADS)
Rother, Paul
1989-07-01
This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.
Electrofluidic systems for contrast management
NASA Astrophysics Data System (ADS)
Rebello, Keith J.; Maranchi, Jeffrey P.; Tiffany, Jason E.; Brown, Christopher Y.; Maisano, Adam J.; Hagedon, Matthew A.; Heikenfeld, Jason C.
2012-06-01
Operating in dynamic lighting conditions and in greatly varying backgrounds is challenging. Current paints and state-ofthe- art passive adaptive coatings (e.g. photochromics) are not suitable for multi- environment situations. A semi-active, low power, skin is needed that can adapt its reflective properties based on the background environment to minimize contrast through the development and incorporation of suitable pigment materials. Electrofluidic skins are a reflective display technology for electronic ink and paper applications. The technology is similar to that in E Ink but makes use of MEMS based microfluidic structures, instead of simple black and white ink microcapsules dispersed in clear oil. Electrofluidic skin's low power operation and fast switching speeds (~20 ms) are an improvement over current state-ofthe- art contrast management technologies. We report on a microfluidic display which utilizes diffuse pigment dispersion inks to change the contrast of the underlying substrate from 5.8% to 100%. Voltage is applied and an electromechanical pressure is used to pull a pigment dispersion based ink from a hydrophobic coated reservoir into a hydrophobic coated surface channel. When no voltage is applied, the Young-Laplace pressure pushes the pigment dispersion ink back down into the reservoir. This allows the pixel to switch from the on and off state by balancing the two pressures. Taking a systems engineering approach from the beginning of development has enabled the technology to be integrated into larger systems.
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Burek, T.; Halley-Gotway, J.
2015-12-01
NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.
Ribosome display: next-generation display technologies for production of antibodies in vitro.
He, Mingyue; Khan, Farid
2005-06-01
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.
Displays enabling mobile multimedia
NASA Astrophysics Data System (ADS)
Kimmel, Jyrki
2007-02-01
With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.
NASA Technical Reports Server (NTRS)
Marmolejo, Jose (Inventor); Smith, Stephen (Inventor); Plough, Alan (Inventor); Clarke, Robert (Inventor); Mclean, William (Inventor); Fournier, Joseph (Inventor)
1990-01-01
A helmet mounted display device is disclosed for projecting a display on a flat combiner surface located above the line of sight where the display is produced by two independent optical channels with independent LCD image generators. The display has a fully overlapped field of view on the combiner surface and the focus can be adjusted from a near field of four feet to infinity.
NASA Technical Reports Server (NTRS)
Hatfield, Jack J.; Villarreal, Diana
1990-01-01
The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.
NASA Astrophysics Data System (ADS)
Venolia, Dan S.; Williams, Lance
1990-08-01
A range of stereoscopic display technologies exist which are no more intrusive, to the user, than a pair of spectacles. Combining such a display system with sensors for the position and orientation of the user's point-of-view results in a greatly enhanced depiction of three-dimensional data. As the point of view changes, the stereo display channels are updated in real time. The face of a monitor or display screen becomes a window on a three-dimensional scene. Motion parallax naturally conveys the placement and relative depth of objects in the field of view. Most of the advantages of "head-mounted display" technology are achieved with a less cumbersome system. To derive the full benefits of stereo combined with motion parallax, both stereo channels must be updated in real time. This may limit the size and complexity of data bases which can be viewed on processors of modest resources, and restrict the use of additional three-dimensional cues, such as texture mapping, depth cueing, and hidden surface elimination. Effective use of "full 3D" may still be undertaken in a non-interactive mode. Integral composite holograms have often been advanced as a powerful 3D visualization tool. Such a hologram is typically produced from a film recording of an object on a turntable, or a computer animation of an object rotating about one axis. The individual frames of film are multiplexed, in a composite hologram, in such a way as to be indexed by viewing angle. The composite may be produced as a cylinder transparency, which provides a stereo view of the object as if enclosed within the cylinder, which can be viewed from any angle. No vertical parallax is usually provided (this would require increasing the dimensionality of the multiplexing scheme), but the three dimensional image is highly resolved and easy to view and interpret. Even a modest processor can duplicate the effect of such a precomputed display, provided sufficient memory and bus bandwidth. This paper describes the components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
OLED displays in a ground-mobile application
NASA Astrophysics Data System (ADS)
Thomas, J.; Lorimer, S.
2008-04-01
OLED technology has matured sufficiently to consider it a realistic candidate for military display applications. Manufacturing sources are transitioning from an early developer to a business focused and often rationalised supply base that already has a sustainable business model. New commercial products, with a growing list of applications are slowly swelling the list of available OLED display components that can be considered for military requirements. This paper describes an exploratory application of OLED technology to the Towed Artillery Digitisation (TAD) programme. The Gunners Display function in this system endures the most difficult environment available in Army programmes. By replicating the Gunners Display, we have confirmed that OLED technology is compatible with and technically almost ready for rugged military applications using newly available commercial sources.
Klatzky, Roberta L; Giudice, Nicholas A; Bennett, Christopher R; Loomis, Jack M
2014-01-01
Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface.
Projection displays and MEMS: timely convergence for a bright future
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1995-09-01
Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.
MEMS-based microprojection system with a 1.5cc optical engine
NASA Astrophysics Data System (ADS)
Kilcher, Lucio; Abelé, Nicolas
2012-03-01
Lemoptix develops next-generation of Micro-Opto-Electromechanical Systems (MOEMS)-based laser scanning and microprojection technologies and products for professional and industrial applications. Lemoptix LSCAN laser scanning micromirrors are designed to be integrated by OEM (original equipment manufacturer) customers into a number of applications such as printers and industrial sensors, enhancing performances and enabling the development of smaller, higher resolution and lower cost products. Lemoptix MVIEW, world's smallest laser microprojection systems are ideal for integration by OEMs and ODMs (original design manufacturers) into various demanding applications such as headup displays in cars or mobile devices. Embedded MVIEW modules will enable the projection of content and information directly from the device on any nearby surface, enabling users to conveniently view and share information and content without the typical limitations of physical displays.
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
Phage display-derived human antibodies in clinical development and therapy
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-01-01
ABSTRACT Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years. PMID:27416017
Phage display-derived human antibodies in clinical development and therapy.
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-10-01
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
Light-field and holographic three-dimensional displays [Invited].
Yamaguchi, Masahiro
2016-12-01
A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
Nanoscale bacteriophage biosensors beyond phage display.
Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi
2013-01-01
Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.
Nanoscale bacteriophage biosensors beyond phage display
Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi
2013-01-01
Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology. PMID:24143096
Head-Worn Displays for NextGen
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Shelton, Kevin J.; Arthur, J. J.
2011-01-01
The operating concepts emerging under the Next Generation air transportation system (NextGen) require new technology and procedures - not only on the ground-side - but also on the flight deck. Flight deck display and decision support technologies are specifically targeted to overcome aircraft safety barriers that might otherwise constrain the full realization of NextGen. One such technology is the very lightweight, unobtrusive head-worn display (HWD). HWDs with an integrated head-tracking system are being researched as they offer significant potential benefit under emerging NextGen operational concepts. Two areas of benefit for NextGen are defined. First, the HWD may be designed to be equivalent to the Head-Up Display (HUD) using Virtual HUD concepts. As such, these operational credits may be provided to significantly more aircraft for which HUD installation is neither practical nor possible. Second, the HWD provides unique display capabilities, such as an unlimited field-of-regard. These capabilities may be integral to emerging NextGen operational concepts, eliminating safety issues which might otherwise constrain the full realization of NextGen. The paper details recent research results, current HWD technology limitations, and future technology development needed to realize HWDs as a enabling technology for NextGen.
AMLCD head-down displays for avionic applications
NASA Astrophysics Data System (ADS)
Davis, Alan J.
1997-02-01
Smiths Industries has been involved in the design, manufacture and supply of products used for the presentation of information, in one form or another, from its early pioneering years through to the present day. In the mid 1980s Smiths Industries began to invest in the then emerging active matrix liquid crystal display (AMLCD) technology which the company believed would eventually take over from the cathode ray tube. To date Smiths Industries has made a significant investment in acquiring the enabling technology needed to produce active matrix liquid crystal color head- down displays for fast jet, helicopter and civil aircraft applications. The significant improvement in AMLCD product quality and manufacturing capability over recent years has enabled market penetration of AMLCD technology products to be achieved in military and civil avionic markets. Virtually all new contracts for head-down displays are now demanding the use of AMLCD technology rather than the cathode ray tube. A significant decision to move to AMLCD technology was made by McDonnell Douglas Helicopters in 1995, when a contract to supply over 4000 head-down display products for the Apache Helicopter was let. This has paved the way for the future of AMLCD technology.
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2000-04-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection television segment. But rear LCD (liquid crystal display) and rear reflective (DLP, or Digital Light ProcessingTM) televisions are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are still popular in the high-end home theater market. Front LCD technology and front DLP technology dominate the business market. Traditional light valve technology was the only solution for applications requiring high light outputs, but new three-chip DLP projectors meet the higher light output requirements at a lower price. In the last few years the strongest growth has been in the business market for multimedia presentation applications. This growth was due to the continued increase in display pixel formats, the continued reduction in projector weight, and the improved price/performance ratio. The projection display market will grow at a significant rate during the next five years, driven by the growth in ultraportable (< 10 pound) projectors and the shift in the consumer market to digital and HDTV products.
The use of interpractive graphic displays for interpretation of surface design parameters
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1981-01-01
An interactive computer graphics technique known as the Graphic Display Data method has been developed to provide a convenient means for rapidly interpreting large amounts of surface design data. The display technique should prove valuable in such disciplines as aerodynamic analysis, structural analysis, and experimental data analysis. To demonstrate the system's features, an example is presented of the Graphic Data Display method used as an interpretive tool for radiation equilibrium temperature distributions over the surface of an aerodynamic vehicle. Color graphic displays were also examined as a logical extension of the technique to improve its clarity and to allow the presentation of greater detail in a single display.
2002-05-14
KENNEDY SPACE CENTER, FLA. -- A presentation by Franklin W. Olin College of Engineering is on display at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. Participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com
2014-04-24
We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.
1998-01-01
including the surface they lie on and the edge curves that bind them. Also stored is topological information indicating how all these elements are connected...microchip. This technology researched by Texas Instruments is referred to as a Digital Micromirror Device (DMD) (Burdea & Coiffet, 1994). It has the...stereoscopic imaging system designed to resemble traditional designer drafting boards. The Visionarium uses a 180 degree curved screen providing users with
2003-05-06
George D'Heilly and John Cassanto, scientists with Instrumentation Technology Associates, Inc., display for the media part of the apparatus recovered during the search for Columbia debris. It was part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
An examination of OLED display application to military equipment
NASA Astrophysics Data System (ADS)
Thomas, J.; Lorimer, S.
2010-04-01
OLED display technology has developed sufficiently to support small format commercial applications such as cell-phone main display functions. Revenues seem sufficient to finance both performance improvements and to develop new applications. The situation signifies the possibility that OLED technology is on the threshold of credibility for military applications. This paper will examine both performance and some possible applications for the military ground mobile environment, identifying the advantages and disadvantages of this promising new technology.
Electrophoretic display technologies for e-book readers: system integration aspects
NASA Astrophysics Data System (ADS)
Gentric, Philippe
2011-03-01
Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.
NASA Astrophysics Data System (ADS)
Whaley, Sandra Renee
A peptide combinatorial approach, also known as phage display, was used to isolate peptides with the ability to bind semiconductor (GaAs, GaN, and InP) and magnetic (Fe2O3 and Fe3O4) materials. The commercially available combinatorial libraries contain randomized peptides either twelve (Ph.D-12(TM)) or seven (Ph.D-C7C(TM)) amino acids in length. The peptides are displayed on the pIII protein of M13 bacteriophage, which have been imaged by atomic force microscopy and transmission electron microscopy. After seven rounds of phage selection with a constrained seven amino acid sequence library (Ph.D-C7C(TM)), two sequences were isolated for binding Fe3O4 (MG-127 and MG-78). The haematite surface was screened with the same library and four unique sequences were isolated after six rounds of selection (HM-95, HM-101, HM-103, and HM-111). According to binding experiments (MG-78 v. MG-127 on Fe3O 4, MG-127 v. HM-95 on Fe3O4 and Fe2O 3, and MG-127 v. HM-95 on gamma-Fe2O3), the MG-127 clone had the highest affinity for iron oxide surfaces (magnetite, haematite, and maghemite) among the clones tested. The Fe3O 4 clone MG-127 displayed the ability to organize Fe3O 4 nanoparticles along bundles of phage. The synthetic peptide analog of this clone was used in the organization of nanoparticles onto the surface of latex beads. The surfaces of the III-V semiconductors were studied using x-ray photoelectron spectroscopy to determine their reactivity in the aqueous conditions used for phage selection. The GaN surface was shown to oxidize the least under these conditions, aiding in the ability to isolate a consensus amino acid sequence responsible for binding to this surface. The G1-3 clone isolated for binding the GaAs (100) surface displayed preferential binding to the GaAs (100) surface over Si (100), GaAs (111) A, GaAs (111) B, and AlGaAs. The synthetic peptide analog of the G12-3 clone was found to preferentially bind to GaAs (100) over either GaAs (111) surfaces or InP (100). This peptide was used to immobilize 10 nm gold particles onto the surface of GaAs within ten minutes. From these results we have shown that it is possible to isolate peptides with high affinities for binding technologically relevant materials, even those not found in nature. These peptides can be used for the organization of pre-formed nanoparticles in solution and on the surface of semiconductor materials.
NASA Astrophysics Data System (ADS)
Kim, Jongbin; Kim, Minkoo; Kim, Jong-Man; Kim, Seung-Ryeol; Lee, Seung-Woo
2014-09-01
This paper reports transient response characteristics of active-matrix organic light emitting diode (AMOLED) displays for mobile applications. This work reports that the rising responses look like saw-tooth waveform and are not always faster than those of liquid crystal displays. Thus, a driving technology is proposed to improve the rising transient responses of AMOLED based on the overdrive (OD) technology. We modified the OD technology by combining it with a dithering method because the conventional OD method cannot successfully enhance all the rising responses. Our method can improve all the transitions of AMOLED without modifying the conventional gamma architecture of drivers. A new artifact is found when OD is applied to certain transitions. We propose an optimum OD selection method to mitigate the artifact. The implementation results show the proposed technology can successfully improve motion quality of scrolling texts as well as moving pictures in AMOLED displays.
64.1: Display Technologies for Therapeutic Applications of Virtual Reality
Hoffman, Hunter G.; Schowengerdt, Brian T.; Lee, Cameron M.; Magula, Jeff; Seibel, Eric J.
2015-01-01
A paradigm shift in image source technology for VR helmets is needed. Using scanning fiber displays to replace LCD displays creates lightweight, safe, low cost, wide field of view, portable VR goggles ideal for reducing pain during severe burn wound care in hospitals and possibly in austere combat-transport environments. PMID:26146424
Displays: Entering a New Dimension
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…
Dröge, Melloney J; Boersma, Ykelien L; Braun, Peter G; Buining, Robbert Jan; Julsing, Mattijs K; Selles, Karin G A; van Dijl, Jan Maarten; Quax, Wim J
2006-07-01
Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.
NASA Astrophysics Data System (ADS)
Freer, J.; Richardson, T. S.
2012-04-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Full resolution hologram-like autostereoscopic display
NASA Technical Reports Server (NTRS)
Eichenlaub, Jesse B.; Hutchins, Jamie
1995-01-01
Under this program, Dimension Technologies Inc. (DTI) developed a prototype display that uses a proprietary illumination technique to create autostereoscopic hologram-like full resolution images on an LCD operating at 180 fps. The resulting 3D image possesses a resolution equal to that of the LCD along with properties normally associated with holograms, including change of perspective with observer position and lack of viewing position restrictions. Furthermore, this autostereoscopic technique eliminates the need to wear special glasses to achieve the parallax effect. Under the program a prototype display was developed which demonstrates the hologram-like full resolution concept. To implement such a system, DTI explored various concept designs and enabling technologies required to support those designs. Specifically required were: a parallax illumination system with sufficient brightness and control; an LCD with rapid address and pixel response; and an interface to an image generation system for creation of computer graphics. Of the possible parallax illumination system designs, we chose a design which utilizes an array of fluorescent lamps. This system creates six sets of illumination areas to be imaged behind an LCD. This controlled illumination array is interfaced to a lenticular lens assembly which images the light segments into thin vertical light lines to achieve the parallax effect. This light line formation is the foundation of DTI's autostereoscopic technique. The David Sarnoff Research Center (Sarnoff) was subcontracted to develop an LCD that would operate with a fast scan rate and pixel response. Sarnoff chose a surface mode cell technique and produced the world's first large area pi-cell active matrix TFT LCD. The device provided adequate performance to evaluate five different perspective stereo viewing zones. A Silicon Graphics' Iris Indigo system was used for image generation which allowed for static and dynamic multiple perspective image rendering. During the development of the prototype display, we identified many critical issues associated with implementing such a technology. Testing and evaluation enabled us to prove that this illumination technique provides autostereoscopic 3D multi perspective images with a wide range of view, smooth transition, and flickerless operation given suitable enabling technologies.
DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.
Franzini, Raphael M; Neri, Dario; Scheuermann, Jörg
2014-04-15
DNA-encoded chemical libraries (DECLs) represent a promising tool in drug discovery. DECL technology allows the synthesis and screening of chemical libraries of unprecedented size at moderate costs. In analogy to phage-display technology, where large antibody libraries are displayed on the surface of filamentous phage and are genetically encoded in the phage genome, DECLs feature the display of individual small organic chemical moieties on DNA fragments serving as amplifiable identification barcodes. The DNA-tag facilitates the synthesis and allows the simultaneous screening of very large sets of compounds (up to billions of molecules), because the hit compounds can easily be identified and quantified by PCR-amplification of the DNA-barcode followed by high-throughput DNA sequencing. Several approaches have been used to generate DECLs, differing both in the methods used for library encoding and for the combinatorial assembly of chemical moieties. For example, DECLs can be used for fragment-based drug discovery, displaying a single molecule on DNA or two chemical moieties at the extremities of complementary DNA strands. DECLs can vary substantially in the chemical structures and the library size. While ultralarge libraries containing billions of compounds have been reported containing four or more sets of building blocks, also smaller libraries have been shown to be efficient for ligand discovery. In general, it has been found that the overall library size is a poor predictor for library performance and that the number and diversity of the building blocks are rather important indicators. Smaller libraries consisting of two to three sets of building blocks better fulfill the criteria of drug-likeness and often have higher quality. In this Account, we present advances in the DECL field from proof-of-principle studies to practical applications for drug discovery, both in industry and in academia. DECL technology can yield specific binders to a variety of target proteins and is likely to become a standard tool for pharmaceutical hit discovery, lead expansion, and Chemical Biology research. The introduction of new methodologies for library encoding and for compound synthesis in the presence of DNA is an exciting research field and will crucially contribute to the performance and the propagation of the technology.
Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael
2008-09-01
The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.
A new helper phage for improved monovalent display of Fab molecules.
Beaber, John W; Tam, Eric M; Lao, Llewelyn S; Rondon, Isaac J
2012-02-28
Phage display technology is a powerful tool for the identification of novel antibodies for drug discovery. Phage display libraries have been constructed with massive diversity, but their use may be hindered by limited antibody display levels when rescued with the M13KO7 helper phage. Variants of M13KO7 have been constructed previously that increase the levels of display of rescued phage, but all produce phage that display multiple copies of the antibody fragment on their surface and have reduced titer and infectivity. In this study, we describe a new helper phage, XP5, which increased the display level of Fab molecules more than two-fold compared to phage rescued with M13KO7. XP5 uses a combination of ribosome binding site spacing alterations and rare codon clusters to reduce the expression of pIII from the helper phage. This reduction in pIII expression leads to an increase in the incorporation of pIII-Fab fusions during phage rescue. The rescued phage displayed a single copy of the Fab molecule, preventing any avidity effects during the selection process. This also suggests that the percentage of the population of phage displaying a Fab molecule is increased when rescued with XP5. Additionally, the phage titers and infectivity are comparable to libraries rescued with M13KO7. After two rounds of panning we observed a nearly 5-fold increase in the number of antigen binding Fab molecules compared to panning conducted with the same library rescued with M13KO7. The nature of the mutations in XP5 makes it a universal substitute for M13KO7 in pIII-based phage display, compatible with most phagemids and bacterial strains. Copyright © 2011 Elsevier B.V. All rights reserved.
[Peptide phage display in biotechnology and biomedicine].
Kuzmicheva, G A; Belyavskaya, V A
2016-07-01
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Straker, L; Burgess-Limerick, R; Pollock, C; Murray, K; Netto, K; Coleman, J; Skoss, R
2008-04-01
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
Yeast cell surface display for lipase whole cell catalyst and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Zhang, Rui; Lian, Zhongshuai
The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less
Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III
2011-01-01
A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.
Runway Incursion Prevention System Simulation Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2002-01-01
A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.
Research of an optimization design method of integral imaging three-dimensional display system
NASA Astrophysics Data System (ADS)
Gao, Hui; Yan, Zhiqiang; Wen, Jun; Jiang, Guanwu
2016-03-01
The information warfare needs a highly transparent environment of battlefield, it follows that true three-dimensional display technology has obvious advantages than traditional display technology in the current field of military science and technology. It also focuses on the research progress of lens array imaging technology and aims at what restrict the development of integral imaging, main including low spatial resolution, narrow depth range and small viewing angle. This paper summarizes the principle, characteristics and development history of the integral imaging. A variety of methods are compared and analyzed that how to improve the resolution, extend depth of field, increase scope and eliminate the artifact aiming at problems currently. And makes a discussion about the experimental results of the research, comparing the display performance of different methods.
NASA Astrophysics Data System (ADS)
Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.
1997-07-01
Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.
Molecular biomimetics: nanotechnology through biology.
Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K-Y; Schulten, Klaus; Baneyx, François
2003-09-01
Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1994-01-01
The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.
Shinawi, Lana Ahmed
2017-01-01
Background The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. Aim To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. Methods This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. Results ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. Conclusion CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits. PMID:28713496
Shinawi, Lana Ahmed
2017-05-01
The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.
Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report
NASA Technical Reports Server (NTRS)
Salazar, George A.
2013-01-01
This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.
The New Visual Displays That Are "Floating" Your Way. Building Digital Libraries
ERIC Educational Resources Information Center
Huwe, Terence K.
2005-01-01
In this column, the author describes three very experimental visual display technologies that will affect library collections and services in the near future. While each of these new display strategies is unique in its technological approach, there is a common denominator to all three: better freedom of mobility that will allow people to interact…
Cell surface engineering of industrial microorganisms for biorefining applications.
Tanaka, Tsutomu; Kondo, Akihiko
2015-11-15
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
BrainNet Viewer: a network visualization tool for human brain connectomics.
Xia, Mingrui; Wang, Jinhui; He, Yong
2013-01-01
The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).
Surface Development and Test Facility (SDTF) New R&D Simulator for Airport Operations
NASA Technical Reports Server (NTRS)
Dorighi, Nancy S.
1997-01-01
A new simulator, the Surface Development and Test Facility (SDTF) is under construction at the NASA Ames Research Center in Mountain View, California. Jointly funded by the FAA (Federal Aviation Administration) and NASA, the SDTF will be a testbed for airport surface automation technologies of the future. The SDTF will be operational in the third quarter of 1998. The SDTF will combine a virtual tower with simulated ground operations to allow evaluation of new technologies for safety, effectiveness, reliability, and cost benefit. The full-scale level V tower will provide a seamless 360 degree high resolution out-the-window view, and a full complement of ATC (air traffic control) controller positions. The imaging system will be generated by two fully-configured Silicon Graphics Onyx Infinite Reality computers, and will support surface movement of up to 200 aircraft and ground vehicles. The controller positions, displays and consoles can be completely reconfigured to match the unique layout of any individual airport tower. Dedicated areas will accommodate pseudo-airport ramp controllers, pseudo-airport operators, and pseudo-pilots. Up to 33 total personnel positions will be able to participate in simultaneous operational scenarios. A realistic voice communication infrastructure will emulate the intercom and telephone communications of a real airport tower. Multi-channel audio and video recording and a sophisticated data acquisition system will support a wide variety of research and development areas, such as evaluation of automation tools for surface operations, human factors studies, integration of terminal area and airport technologies, and studies of potential airport physical and procedural modifications.
Adapter-directed display: a modular design for shuttling display on phage surfaces.
Wang, Kevin Caili; Wang, Xinwei; Zhong, Pingyu; Luo, Peter Peizhi
2010-02-05
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems. Copyright 2009 Elsevier Ltd. All rights reserved.
Bao, S; Yu, S; Guo, X; Zhang, F; Sun, Y; Tan, L; Duan, Y; Lu, F; Qiu, X; Ding, C
2015-07-01
To construct and demonstrate a surface display system that could be used to identify mycoplasma adhesion proteins. Using the N-terminal domain of InaZ (InaZN) as the anchoring motif and the enhanced green fluorescent protein (EGFP) as the reporter, the surface display system pET-InaZN-EGFP was constructed. Then, the mgc2 gene which encodes an adhesin and the holB gene which encodes DNA polymerase III subunit delta' (nonadhesin, negative control) of Mycoplasma gallisepticum were cloned into the pET-InaZN-EGFP respectively. The fusion proteins were expressed in Escherichia coli BL21 (DE3). The distribution of the fusion proteins in E. coli cells was determined using SDS-PAGE followed by Western blotting, based on cell fractionation. Escherichia coli cell surface display of the fusion protein was confirmed by immunofluorescence microscopy. The results indicated that the fusion proteins were not only anchored to the outer membrane fraction but also were successfully displayed on the surface of E. coli cells. Adhesion analysis of E. coli harbouring InaZN-EGFP-mgc2 to host cells showed that the MGC2-positive E. coli cells can effectively adhere to the surfaces of DF-1 cells. A surface display system using the InaZN as the anchoring motif and EGFP as the reporter was developed to identify putative adhesins of mycoplasma. Results indicated that adhesion by the cytadhesin-like protein MGC2 of mycoplasma can be reproduced using this surface display system. This is the first construction of surface display system which could be used to identify the adhesion proteins of mycoplasma. The method developed in this study can even be used to select and identify the adhesion proteins of other pathogens. © 2015 The Society for Applied Microbiology.
Ko Displacement Theory for Structural Shape Predictions
NASA Technical Reports Server (NTRS)
Ko, William L.
2010-01-01
The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.
G-Protein Coupled Receptors: Surface Display and Biosensor Technology
NASA Astrophysics Data System (ADS)
McMurchie, Edward; Leifert, Wayne
Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.
NASA Astrophysics Data System (ADS)
Lammers, M.
2016-12-01
Advancements in the capabilities of JavaScript frameworks and web browsing technology make online visualization of large geospatial datasets viable. Commonly this is done using static image overlays, pre-rendered animations, or cumbersome geoservers. These methods can limit interactivity and/or place a large burden on server-side post-processing and storage of data. Geospatial data, and satellite data specifically, benefit from being visualized both on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS, developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. It has entered the void left by the abandonment of the Google Earth Web API, and it serves as a capable and well-maintained platform upon which data can be displayed. This paper will describe the technology behind the two primary products developed as part of the NASA Precipitation Processing System STORM website: GPM Near Real Time Viewer (GPMNRTView) and STORM Virtual Globe (STORM VG). GPMNRTView reads small post-processed CZML files derived from various Level 1 through 3 near real-time products. For swath-based products, several brightness temperature channels or precipitation-related variables are available for animating in virtual real-time as the satellite observed them on and above the Earth's surface. With grid-based products, only precipitation rates are available, but the grid points are visualized in such a way that they can be interactively examined to explore raw values. STORM VG reads values directly off the HDF5 files, converting the information into JSON on the fly. All data points both on and above the surface can be examined here as well. Both the raw values and, if relevant, elevations are displayed. Surface and above-ground precipitation rates from select Level 2 and 3 products are shown. Examples from both products will be shown, including visuals from high impact events observed by GPM constellation satellites.
NASA Technical Reports Server (NTRS)
Lammers, Matthew
2016-01-01
Advancements in the capabilities of JavaScript frameworks and web browsing technology make online visualization of large geospatial datasets viable. Commonly this is done using static image overlays, prerendered animations, or cumbersome geoservers. These methods can limit interactivity andor place a large burden on server-side post-processing and storage of data. Geospatial data, and satellite data specifically, benefit from being visualized both on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS, developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. It has entered the void left by the abandonment of the Google Earth Web API, and it serves as a capable and well-maintained platform upon which data can be displayed. This paper will describe the technology behind the two primary products developed as part of the NASA Precipitation Processing System STORM website: GPM Near Real Time Viewer (GPMNRTView) and STORM Virtual Globe (STORM VG). GPMNRTView reads small post-processed CZML files derived from various Level 1 through 3 near real-time products. For swath-based products, several brightness temperature channels or precipitation-related variables are available for animating in virtual real-time as the satellite-observed them on and above the Earths surface. With grid-based products, only precipitation rates are available, but the grid points are visualized in such a way that they can be interactively examined to explore raw values. STORM VG reads values directly off the HDF5 files, converting the information into JSON on the fly. All data points both on and above the surface can be examined here as well. Both the raw values and, if relevant, elevations are displayed. Surface and above-ground precipitation rates from select Level 2 and 3 products are shown. Examples from both products will be shown, including visuals from high impact events observed by GPM constellation satellites.
Brief history of electronic stereoscopic displays
NASA Astrophysics Data System (ADS)
Lipton, Lenny
2012-02-01
A brief history of recent developments in electronic stereoscopic displays is given concentrating on products that have succeeded in the market place and hence have had a significant influence on future implementations. The concentration is on plano-stereoscopic (two-view) technology because it is now the dominant display modality in the marketplace. Stereoscopic displays were created for the motion picture industry a century ago, and this technology influenced the development of products for science and industry, which in turn influenced product development for entertainment.
Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.
Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki
2014-02-01
A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.
Surface models of the male urogenital organs built from the Visible Korean using popular software
Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok
2011-01-01
Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759
See-through 3D technology for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young
2017-06-01
Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.
FSC LCD technology for military and avionics applications
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Schmidt, John; Roush, Jerry
2009-05-01
Field sequential color (FSC) liquid crystal displays (LCD) using a high speed LCD mode and an R, G, B LED backlight, offers a significant potential for lower power consumption, higher resolution, higher brightness and lower cost compared to the conventional R, G, B color filter based LCD, and thus is of interest to various military and avionic display applications. While the DLP projection TVs, and Camcorder LCD view finder type displays using the FSC technology have been introduced in the consumer market, large area direct view LCD displays based on the FSC technology have not reached the commercial market yet. Further, large area FSC LCDs can present unique operational issues in avionic and military environments particularly for operation in a broad temperature range and with respect to its susceptibility for the color breakup image artifact. In this paper we will review the current status of the FSC LCD technology and then discuss the results of our efforts on the FSC LCD technology evaluation for the avionic applications.
Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.
He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J
2009-12-31
We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.
Visual Costs of the Inhomogeneity of Luminance and Contrast by Viewing LCD-TFT Screens Off-Axis.
Ziefle, Martina; Groeger, Thomas; Sommer, Dietmar
2003-01-01
In this study the anisotropic characteristics of TFT-LCD (Thin-Film-Transistor-Liquid Crystal Display) screens were examined. Anisotropy occurs as the distribution of luminance and contrast changes over the screen surface due to different viewing angles. On the basis of detailed photometric measurements the detection performance in a visual reaction task was measured in different viewing conditions. Viewing angle (0 degrees, frontal view; 30 degrees, off-axis; 50 degrees, off-axis) as well as ambient lighting (a dark or illuminated room) were varied. Reaction times and accuracy of detection performance were recorded. Results showed TFT's anisotropy to be a crucial factor deteriorating performance. With an increasing viewing angle performance decreased. It is concluded that TFT's anisotropy is a limiting factor for overall suitability and usefulness of this new display technology.
Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.
Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua
2015-01-01
The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.
NASA Astrophysics Data System (ADS)
Li, Y.; Zheng, Y.
2017-08-01
The colored wood statues in the CaoXi Temple represent the Sandashi(Manjushri, Samantabhadra , Avalokitesvar) in the Buddhism.These statues with great value were carved in Dali kingdom of the Song dynasty. Because of natural and man-made reasons, disease has become very seriously both in the painted layer on the surface and the structure inside. So it is very important to record the current situation, analyze the structure, craft and material, and detect the cause of disease. This paper takes the colored wood statues as the research object, and kinds of digital survey technology were applied in the process. The Research results will play an important role in the protection, explanation and display.
Virtual reality for automotive design evaluation
NASA Technical Reports Server (NTRS)
Dodd, George G.
1995-01-01
A general description of Virtual Reality technology and possible applications was given from publicly available material. A video tape was shown demonstrating the use of multiple large-screen stereoscopic displays, configured in a 10' x 10' x 10' room, to allow a person to evaluate and interact with a vehicle which exists only as mathematical data, and is made only of light. The correct viewpoint of the vehicle is maintained by tracking special glasses worn by the subject. Interior illumination was changed by moving a virtual light around by hand; interior colors are changed by pointing at a color on a color palette, then pointing at the desired surface to change. We concluded by discussing research needed to move this technology forward.
2008-01-17
NASA engineer Larry Hudson and Ikhana ground crew member James Smith work on a ground validation test with new fiber optic sensors that led to validation flights on the Ikhana aircraft. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.
Recent advances in flexible low power cholesteric LCDs
NASA Astrophysics Data System (ADS)
Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.
2006-05-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.
New approaches for solving old problems in neuronal protein trafficking.
Bourke, Ashley M; Bowen, Aaron B; Kennedy, Matthew J
2018-04-10
Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision. Copyright © 2018 Elsevier Inc. All rights reserved.
Flat panel display test and evaluation: procedures, standards, and facilities
NASA Astrophysics Data System (ADS)
Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.
1997-07-01
This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.
An Investigation of Interval Management Displays
NASA Technical Reports Server (NTRS)
Swieringa, Kurt A.; Wilson, Sara R.; Shay, Rick
2015-01-01
NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators.
NASA Technical Reports Server (NTRS)
2002-01-01
Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.
CLINICAL SURFACES - Activity-Based Computing for Distributed Multi-Display Environments in Hospitals
NASA Astrophysics Data System (ADS)
Bardram, Jakob E.; Bunde-Pedersen, Jonathan; Doryab, Afsaneh; Sørensen, Steffen
A multi-display environment (MDE) is made up of co-located and networked personal and public devices that form an integrated workspace enabling co-located group work. Traditionally, MDEs have, however, mainly been designed to support a single “smart room”, and have had little sense of the tasks and activities that the MDE is being used for. This paper presents a novel approach to support activity-based computing in distributed MDEs, where displays are physically distributed across a large building. CLINICAL SURFACES was designed for clinical work in hospitals, and enables context-sensitive retrieval and browsing of patient data on public displays. We present the design and implementation of CLINICAL SURFACES, and report from an evaluation of the system at a large hospital. The evaluation shows that using distributed public displays to support activity-based computing inside a hospital is very useful for clinical work, and that the apparent contradiction between maintaining privacy of medical data in a public display environment can be mitigated by the use of CLINICAL SURFACES.
Therapeutic Antibodies by Phage Display.
Shim, Hyunbo
2016-01-01
Antibody phage display is a major technological platform for the generation of fully human antibodies for therapeutic purposes. The in vitro binder selection by phage display allows researchers to have more extensive control over binding parameters and facilitates the isolation of clinical candidate antibodies with desired binding and/or functional profiles. Since the invention of antibody phage display in late 1980s, significant technological advancements in the design, construction, and selection of the antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. In this review, the background and details of antibody phage display technology, and representative antibody libraries with natural or synthetic sequence diversity and different construction strategies are described. The generation, optimization, functional and biophysical properties, and preclinical and clinical developments of some of the phage display-derived therapeutic antibodies approved for use in patients or in late-stage clinical trials are also discussed. With evolving novel disease targets and therapeutic strategies, antibody phage display is expected to continue to play a central role in the development of the next generation of therapeutic antibodies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Video-speed electronic paper based on electrowetting
NASA Astrophysics Data System (ADS)
Hayes, Robert A.; Feenstra, B. J.
2003-09-01
In recent years, a number of different technologies have been proposed for use in reflective displays. One of the most appealing applications of a reflective display is electronic paper, which combines the desirable viewing characteristics of conventional printed paper with the ability to manipulate the displayed information electronically. Electronic paper based on the electrophoretic motion of particles inside small capsules has been demonstrated and commercialized; but the response speed of such a system is rather slow, limited by the velocity of the particles. Recently, we have demonstrated that electrowetting is an attractive technology for the rapid manipulation of liquids on a micrometre scale. Here we show that electrowetting can also be used to form the basis of a reflective display that is significantly faster than electrophoretic displays, so that video content can be displayed. Our display principle utilizes the voltage-controlled movement of a coloured oil film adjacent to a white substrate. The reflectivity and contrast of our system approach those of paper. In addition, we demonstrate a colour concept, which is intrinsically four times brighter than reflective liquid-crystal displays and twice as bright as other emerging technologies. The principle of microfluidic motion at low voltages is applicable in a wide range of electro-optic devices.
Integrated Display System for Low Visibility Landing and Surface Operations
NASA Technical Reports Server (NTRS)
Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.
1998-01-01
This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.
Advanced electronic displays and their potential in future transport aircraft
NASA Technical Reports Server (NTRS)
Hatfield, J. J.
1981-01-01
It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.
EXHIBIT OF EMPACT ESTUARY MONITORING HANDBOOKS
Related EMPACT documents were displayed at the National Estuary Day Celebration held in Washington, DC, September 30-Octuber 4, 2002. The estuary monitoring technology transfer handbooks displayed were prepared based on information and monitoring technologies developed from selec...
Advanced Technology Display House. Volume 2: Energy system design concepts
NASA Technical Reports Server (NTRS)
Maund, D. H.
1981-01-01
The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.
Multifocal planes head-mounted displays.
Rolland, J P; Krueger, M W; Goon, A
2000-07-01
Stereoscopic head-mounted displays (HMD's) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD's. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD's. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 microm.
NASA Astrophysics Data System (ADS)
Fan, Hang; Li, Kunyang; Zhou, Yangui; Liang, Haowen; Wang, Jiahui; Zhou, Jianying
2016-09-01
Recent upsurge on virtual and augmented realities (VR and AR) has re-ignited the interest to the immerse display technology. The VR/AR technology based on stereoscopic display is believed in its early stage as glasses-free, or autostereoscopic display, will be ultimately adopted for the viewing convenience, visual comfort and for the multi-viewer purposes. On the other hand, autostereoscopic display has not yet received positive market response for the past years neither with stereoscopic displays using shutter or polarized glasses. We shall present the analysis on the real-world applications, rigid user demand, the drawbacks to the existing barrier- and lenticular lens-based LCD autostereoscopy. We shall emphasize the emerging autostereoscopic display, and notably on directional backlight LCD technology using a hybrid spatial- and temporal-control scenario. We report the numerical simulation of a display system using Monte-Carlo ray-tracing method with the human retina as the real image receiver. The system performance is optimized using newly developed figure of merit for system design. The reduced crosstalk in an autostereoscopic system, the enhanced display quality, including the high resolution received by the retina, the display homogeneity without Moiré- and defect-pattern, will be highlighted. Recent research progress including a novel scheme for diffraction-free backlight illumination, the expanded viewing zone for autostereoscopic display, and the novel Fresnel lens array to achieve a near perfect display in 2D/3D mode will be introduced. The experimental demonstration will be presented to the autostereoscopic display with the highest resolution, low crosstalk, Moiré- and defect- pattern free.
Recent patents on electrophoretic displays and materials.
Christophersen, Marc; Phlips, Bernard F
2010-11-01
Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies.
Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen
2012-01-01
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
Mazor, Yariv; Van Blarcom, Thomas; Carroll, Sean; Georgiou, George
2010-05-01
Phage display of antibody libraries is a powerful tool for antibody discovery and evolution. Recombinant antibodies have been displayed on phage particles as scFvs or Fabs, and more recently as bivalent F(ab')(2). We recently developed a technology (E-clonal) for screening of combinatorial IgG libraries using bacterial periplasmic display and selection by fluorescence-activated cell sorting (FACS) [Mazor Y et al. (2007) Nat Biotechnol 25, 563-565]. Although, as a single-cell analysis technique, FACS is very powerful, especially for the isolation of high-affinity binders, even with state of the art instrumentation the screening of libraries with diversity > 10(8) is technically challenging. We report here a system that takes advantage of display of full-length IgGs on filamentous phage particles as a prescreening step to reduce library size and enable subsequent rounds of FACS screening in Escherichia coli. For the establishment of an IgG phage display system, we utilized phagemid-encoded IgG with the fUSE5-ZZ phage as a helper phage. These phage particles display the Fc-binding ZZ protein on all copies of the phage p3 coat protein, and are exploited as both helper phages and anchoring surfaces for the soluble IgG. We demonstrate that tandem phage selection followed by FACS allows the selection of a highly diversified profile of binders from antibody libraries without undersampling, and at the same time capitalizes on the advantages of FACS for real-time monitoring and optimization of the screening process.
Immersive Visual Data Analysis For Geoscience Using Commodity VR Hardware
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.
2017-12-01
Immersive visualization using virtual reality (VR) display technology offers tremendous benefits for the visual analysis of complex three-dimensional data like those commonly obtained from geophysical and geological observations and models. Unlike "traditional" visualization, which has to project 3D data onto a 2D screen for display, VR can side-step this projection and display 3D data directly, in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection. As a result, researchers can apply their spatial reasoning skills to virtual data in the same way they can to real objects or environments. The UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://keckcaves.org) has been developing VR methods for data analysis since 2005, but the high cost of VR displays has been preventing large-scale deployment and adoption of KeckCAVES technology. The recent emergence of high-quality commodity VR, spearheaded by the Oculus Rift and HTC Vive, has fundamentally changed the field. With KeckCAVES' foundational VR operating system, Vrui, now running natively on the HTC Vive, all KeckCAVES visualization software, including 3D Visualizer, LiDAR Viewer, Crusta, Nanotech Construction Kit, and ProtoShop, are now available to small labs, single researchers, and even home users. LiDAR Viewer and Crusta have been used for rapid response to geologic events including earthquakes and landslides, to visualize the impacts of sealevel rise, to investigate reconstructed paleooceanographic masses, and for exploration of the surface of Mars. The Nanotech Construction Kit is being used to explore the phases of carbon in Earth's deep interior, while ProtoShop can be used to construct and investigate protein structures.
Engineering Novel and Improved Biocatalysts by Cell Surface Display
Smith, Mason R.; Khera, Eshita; Wen, Fei
2017-01-01
Biocatalysts, especially enzymes, have the ability to catalyze reactions with high product selectivity, utilize a broad range of substrates, and maintain activity at low temperature and pressure. Therefore, they represent a renewable, environmentally friendly alternative to conventional catalysts. Most current industrial-scale chemical production processes using biocatalysts employ soluble enzymes or whole cells expressing intracellular enzymes. Cell surface display systems differ by presenting heterologous enzymes extracellularly, overcoming some of the limitations associated with enzyme purification and substrate transport. Additionally, coupled with directed evolution, cell surface display is a powerful platform for engineering enzymes with enhanced properties. In this review, we will introduce the molecular and cellular principles of cell surface display and discuss how it has been applied to engineer enzymes with improved properties as well as to develop surface-engineered microbes as whole-cell biocatalysts. PMID:29056821
Advanced Technology Display House. Volume 1: Project Summary and Procedures
NASA Technical Reports Server (NTRS)
Maund, D. H.
1981-01-01
The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.
Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshitaka
2012-06-01
The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.
Plasmonic transparent conductors
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-09-01
Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - George D'Heilly and John Cassanto, scientists with Instrumentation Technology Associates, Inc., display for the media part of the apparatus recovered during the search for Columbia debris. It was part of the Commercial ITA Biomedical Experiments payload on mission STS-107 that included the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment and crystals grown for cancer research. The GOBBSS experiment was sponsored by the Planetary Society, with joint participation of an Israeli and a Palestinian student, and developed by the Israeli Aerospace Medical Institute and JSC Astrobiology Center.
A novel emissive projection display (EPD) on transparent phosphor screen
NASA Astrophysics Data System (ADS)
Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.
2017-03-01
A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.
Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan
2014-08-25
Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.
Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display
Gagic, Dragana; Ciric, Milica; Wen, Wesley X.; Ng, Filomena; Rakonjac, Jasna
2016-01-01
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113
Pilot stereotypes for navigation symbols on electronic displays
DOT National Transportation Integrated Search
2006-09-20
There is currently no common symbology standard for the : electronic display of navigation information. The wide : range of display technologies and the different functions : these displays support make it difficult to design symbols : that are easil...
Design of platform for removing screws from LCD display shields
NASA Astrophysics Data System (ADS)
Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong
2017-11-01
Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.
Super long viewing distance light homogeneous emitting three-dimensional display
NASA Astrophysics Data System (ADS)
Liao, Hongen
2015-04-01
Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.
Thin Crystal Film Polarizer for Display Application
NASA Astrophysics Data System (ADS)
Paukshto, Michael
2003-03-01
Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.
Postdoctoral Fellow | Center for Cancer Research
Dr. Mitchell Ho’s laboratory at the National Cancer Institute in Bethesda, Maryland, USA has an open postdoctoral position. We seek a highly motivated and creative individual to participate in a collaborative research project that involves the targeting of tumor-specific cell surface glypicans (e.g. GPC2, GPC3) using human T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the understanding of the role of glypicans in cancer signaling, in particular Wnt signaling, and the development of CAR T cell therapies for treating liver cancer, neuroblastoma and other cancers. The successful candidate would be involved in isolation of human antibodies and camel or shark single domain antibodies using phage display, yeast display and mammalian cell display technologies, and production of CAR T cells, and preclinical testing of the CAR T cells using mouse tumor models. A recent paper related to the background of this project has been published in PNAS (https://www.ncbi.nlm.nih.gov/pubmed/28739923). Detailed information about Dr. Ho's research and publications can be accessed at: https://ccr.cancer.gov/mitchell-ho
Xitong, Dang; Xiaorong, Zeng
2016-01-10
Exosomes are 30-120 nm membrane bound vesicles secreted naturally by almost all cells and exist in all body fluids. Accumulating evidence has shown that exosomes contain proteins, lipids, DNA, mRNA, miRNA, and lncRNA that can be transferred from producer cells to recipient cells, facilitating cell-cell communication. As the natural carrier of these signal molecules, exosomes possess many other properties such as stability, biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, which make them an attractive vehicle for therapeutic delivery. How exosomes target recipient cells in vivo remains largely unknown, however, exosomes are selectively enriched in some transmembrane proteins that can be genetically engineered to display ligands/homing peptides on their surface, which confers exosome targeting capability to cells bearing cognate receptors. With the discovery of many peptides homing to diseased tissues or organs through phage display and in vivo biopanning technologies, there is ample opportunity to explore the potential use of exosome for targeted gene therapy. Here, we briefly review exosome biogenesis, mechanisms of exosome-mediated cell–cell communication, and exosome isolation and purification methods, and specifically focus on the emerging exosome targeting technologies.
Navigation surgery using an augmented reality for pancreatectomy.
Okamoto, Tomoyoshi; Onda, Shinji; Yasuda, Jungo; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki
2015-01-01
The aim of this study was to evaluate the utility of navigation surgery using augmented reality technology (AR-based NS) for pancreatectomy. The 3D reconstructed images from CT were created by segmentation. The initial registration was performed by using the optical location sensor. The reconstructed images were superimposed onto the real organs in the monitor display. Of the 19 patients who had undergone hepatobiliary and pancreatic surgery using AR-based NS, the accuracy, visualization ability, and utility of our system were assessed in five cases with pancreatectomy. The position of each organ in the surface-rendering image corresponded almost to that of the actual organ. Reference to the display image allowed for safe dissection while preserving the adjacent vessels or organs. The locations of the lesions and resection line on the targeted organ were overlaid on the operating field. The initial mean registration error was improved to approximately 5 mm by our refinements. However, several problems such as registration accuracy, portability and cost still remain. AR-based NS contributed to accurate and effective surgical resection in pancreatectomy. The pancreas appears to be a suitable organ for further investigations. This technology is promising to improve surgical quality, training, and education. © 2015 S. Karger AG, Basel.
Marrow-Derived Antibody Library for Treatment of Neuroblastoma
2013-09-01
to capture the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this...project is to use NB patient-derived materials to create NB cell lines, xenograft models, NB specific phage display libraries and to identify and...the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this project is to
Nguyen, Hoang-Minh; Mathiesen, Geir; Stelzer, Elena Maria; Pham, Mai Lan; Kuczkowska, Katarzyna; Mackenzie, Alasdair; Agger, Jane W; Eijsink, Vincent G H; Yamabhai, Montarop; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha
2016-10-04
Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach, with the enzyme of interest being displayed on the cell surface of a food-grade organism, may also be applied in production processes relevant for food industry.
Bauer, Ben
2015-09-01
Scientific experimentation requires specification and control of independent variables with accurate measurement of dependent variables. In Vision Sciences (here broadly including experimental psychology, cognitive neuroscience, psychophysics, and clinical vision), proper specification and control of stimulus rendering (already a thorny issue) may become more problematic as several newer display technologies replace cathode ray tubes (CRTs) in the lab. The present paper alerts researchers to spatiotemporal differences in display technologies and how these might affect various types of experiments. Parallels are drawn to similar challenges and solutions that arose during the change from cabinet-style tachistoscopes to computer driven CRT tachistoscopes. Technical papers outlining various strengths and limitations of several classes of display devices are introduced as a resource for the reader wanting to select appropriate displays for different presentation requirements. These papers emphasise the need to measure rather than assume display characteristics because manufacturers' specifications and software reports/settings may not correspond with actual performance. This is consistent with the call by several Vision Science and Psychological Science bodies to increase replications and increase detail in Method sections. Finally, several recent tachistoscope-based experiments, which focused on the same question but were implemented with different technologies, are compared for illustrative purposes. (c) 2015 APA, all rights reserved).
The continuing quest for the 'Holy Braille' of tactile displays
NASA Astrophysics Data System (ADS)
Runyan, Noel H.; Blazie, Deane B.
2011-10-01
The Boston-based National Braille Press has established a Center for Braille Innovation (CBI), whose mission is to research and develop affordable braille literacy products. The primary focus has been to facilitate the development of dramatically lower cost electronic braille display devices, and the much-sought-after "Holy Braille" of a full-page electronic braille display. Developing affordable new braille technologies is crucial to improving the extremely low braille literacy rate (around 12%) of blind students. Our CBI team is working to aid developers of braille technology by focusing attention and resources on the development of the underlying braille actuator technologies. We are also developing braille-related information resources to aid braille display developers. The CBI braille requirements summary (available through the NBP website (http://www.nbp.org) is one of these resources. The braille specifications include braille dot dimensions, spacing, displacement, lifting force, and response time requirements. In addition, mentoring, helping to evaluate new braille display ideas, and openly sharing braille display technology are all part of the activities of the NBP braille innovation team. NBP has expanded the CBI project with domestic and international partners including the China Braille Press, World Braille Foundation, National Federation of the Blind, American Printing House for the Blind, American Foundation for the Blind, and many university and research partners.
NASA Astrophysics Data System (ADS)
Warren, Kevin Wilson
The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.
Hinc, Krzysztof; Isticato, Rachele; Dembek, Marcin; Karczewska, Joanna; Iwanicki, Adam; Peszyńska-Sularz, Grazyna; De Felice, Maurilio; Obuchowski, Michał; Ricca, Ezio
2010-01-18
The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 x 10(3) recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 x 10(3) recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.
Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms
Kierny, Michael R.; Cunningham, Thomas D.; Kay, Brian K.
2012-01-01
The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market. PMID:22833780
Zhang, Jie; Chen, Xiao-Wei; Tong, Tie-Zhu; Ye, Yu; Liao, Ming; Fan, Hui-Ying
2014-02-03
Avian infectious bronchitis virus (IBV) is associated with production inefficiencies in domestic fowl, and causes massive economic losses to the poultry industry worldwide. Progress has been made in designing novel and efficient candidate vaccines to control IBV infection. BacMam virus, a modified baculovirus mediating transgene expression under the control of a mammalian promoter, has emerged as a versatile and safe vector during vaccine development. In previous work, we generated the BacMam virus Ac-CMV-S1, which expressed the S1 glycoprotein of IBV-M41. We showed that Ac-CMV-S1 induced excellent cellular immunity, but did not confer adequate protection in chickens compared with the conventional inactivated vaccine. In the current study, we generated an improved BacMam virus, BV-Dual-S1. This virus displayed the S1 glycoprotein on the baculovirus envelope, and was capable of expressing it in mammalian cells. BV-Dual-S1 elicited stronger humoral and cell-mediated immune responses, and showed greater capacity for induction of cytotoxic T lymphocyte responses, compared with Ac-CMV-S1 in specific pathogen-free chickens. A significant difference was not observed for protection rates between chickens immunized with BV-Dual-S1 (83%) or inactivated vaccine (89%) following challenge with virulent IBV-M41. Our findings show that the protective efficacy of BV-Dual-S1 could be significantly enhanced by baculovirus display technology. BacMam virus-based surface display strategies could serve as effective tools in designing vaccines against IB and other infectious diseases. Copyright © 2013. Published by Elsevier Ltd.
Projection display industry market and technology trends
NASA Astrophysics Data System (ADS)
Castellano, Joseph A.; Mentley, David E.
1995-04-01
The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.
Tangible display systems: direct interfaces for computer-based studies of surface appearance
NASA Astrophysics Data System (ADS)
Darling, Benjamin A.; Ferwerda, James A.
2010-02-01
When evaluating the surface appearance of real objects, observers engage in complex behaviors involving active manipulation and dynamic viewpoint changes that allow them to observe the changing patterns of surface reflections. We are developing a class of tangible display systems to provide these natural modes of interaction in computer-based studies of material perception. A first-generation tangible display was created from an off-the-shelf laptop computer containing an accelerometer and webcam as standard components. Using these devices, custom software estimated the orientation of the display and the user's viewing position. This information was integrated with a 3D rendering module so that rotating the display or moving in front of the screen would produce realistic changes in the appearance of virtual objects. In this paper, we consider the design of a second-generation system to improve the fidelity of the virtual surfaces rendered to the screen. With a high-quality display screen and enhanced tracking and rendering capabilities, a secondgeneration system will be better able to support a range of appearance perception applications.
Consideration of technologies for head-down displays
NASA Astrophysics Data System (ADS)
Bartlett, Christopher T.
1998-09-01
The market for military avionics head down displays for which Active Matrix Liquid Crystal Displays (AMLCD) has been specified is both well established and substantial. Typical major programs such as F-22, V-22 and Joint Strike Fighter (JSF) amount to over 15,000 displays. Nevertheless there is an insecurity about the situation because of the dependency upon Japanese and Korean manufacturers and the vagaries of the commercial market. The U.S. has only 7% of the world's manufacturing capability in AMLCD and is seeking alternative technologies to regain a hold in this lucrative business. The U.S. military manufacturers of AMLCD are capable, but can never achieve the benefits of scale that Commercial Off The Shelf (COTS) equipment can offer. In addition to the commercial and political concerns, there are still performance issues related to AMLCD and there is a view that emissive displays in particular can offer advantages over AMLCD. However, it is beneficial to be able to tailor display sizes and there are doubts about the ability of current flat panel technologies to achieve custom, or indeed large area panels either economically, or reliably. It is in this arena that projection displays may be the optimum solution.
Wentink, M; Jakimowicz, J J; Vos, L M; Meijer, D W; Wieringa, P A
2002-08-01
Compared to open surgery, minimally invasive surgery (MIS) relies heavily on advanced technology, such as endoscopic viewing systems and innovative instruments. The aim of the study was to objectively compare three technologically advanced laparoscopic viewing systems with the standard viewing system currently used in most Dutch hospitals. We evaluated the following advanced laparoscopic viewing systems: a Thin Film Transistor (TFT) display, a stereo endoscope, and an image projection display. The standard viewing system was comprised of a monocular endoscope and a high-resolution monitor. Task completion time served as the measure of performance. Eight surgeons with laparoscopic experience participated in the experiment. The average task time was significantly greater (p <0.05) with the stereo viewing system than with the standard viewing system. The average task times with the TFT display and the image projection display did not differ significantly from the standard viewing system. Although the stereo viewing system promises improved depth perception and the TFT and image projection displays are supposed to improve hand-eye coordination, none of these systems provided better task performance than the standard viewing system in this pelvi-trainer experiment.
Virus-based surface patterning of biological molecules, probes, and inorganic materials.
Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn
2014-10-01
An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
'No power' (green) electrowetting display
NASA Astrophysics Data System (ADS)
Jentsch, Michael; Rawert, Juergen; Jerosch, Dieter; Blankenbach, Karlheinz
2011-05-01
Electrowetting displays were first reported in 1981, several approaches were examined. However, ADT's "Droplet- Driven-Displays" technology is the only bistable one which makes them very attractive for energy-saving systems. That means that the power supply can completely shut off after changing the content and it will keep its information for years. More features that make the ADT approach very unique are paper like white appearance (even in the powerless OFFstate) and the capability for backlighting (most of the other e-paper technologies like electrophoretics can not be backlighted). Further achievements are a white state reflectance of about 70% resulting in sunlight readability and a pixel size in the range from 0.3mm to 10mm. Summarizing, ADT's electrowetting technology is highly suitable for lowest power (means eco-friendly or "green") displays.
Inkjet-printed Polyvinyl Alcohol Multilayers.
Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J
2017-05-11
Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.
Yang, Xiaofeng; Wu, Wei; Wang, Guoan
2015-04-01
This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.
Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen
2013-06-01
To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).
Martínez-Arteaga, Rocio; Ruano-Gallego, David; Fraile, Sofía; Margolles, Yago; Teira, Xema; Gutierrez, Carlos; Bodelón, Gustavo; Fernández, Luis Ángel
2013-01-01
Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions. PMID:24086454
Information Presentation and Control in a Modern Air Traffic Control Tower Simulator
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton
1996-01-01
The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.
Review and analysis of avionic helmet-mounted displays
NASA Astrophysics Data System (ADS)
Li, Hua; Zhang, Xin; Shi, Guangwei; Qu, Hemeng; Wu, Yanxiong; Zhang, Jianping
2013-11-01
With the development of new concepts and principles over the past century, helmet-mounted displays (HMDs) have been widely applied. This paper presents a review of avionic HMDs and shows some areas of active and intensive research. This review is focused on the optical design aspects and is divided into three sections to explore new optical design methods, which include an off-axis design, design with freeform optical surface, and design with holographic optical waveguide technology. Building on the fundamentals of optical design and engineering, the principles section primarily expounds on the five optical system parameters, which include weight, field of view, modulation transfer function, exit pupil size, and eye relief. We summarized the previous design works using new components to achieve compact and lightweight HMDs. Moreover, the paper presents a partial summary of the more notable experimental, prototype, fielded, and future HMD fixed-wing and rotary-wing programs.
Awareness and Detection of Traffic and Obstacles Using Synthetic and Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.
2012-01-01
Research literature are reviewed and summarized to evaluate the awareness and detection of traffic and obstacles when using Synthetic Vision Systems (SVS) and Enhanced Vision Systems (EVS). The study identifies the critical issues influencing the time required, accuracy, and pilot workload associated with recognizing and reacting to potential collisions or conflicts with other aircraft, vehicles and obstructions during approach, landing, and surface operations. This work considers the effect of head-down display and head-up display implementations of SVS and EVS as well as the influence of single and dual pilot operations. The influences and strategies of adding traffic information and cockpit alerting with SVS and EVS were also included. Based on this review, a knowledge gap assessment was made with recommendations for ground and flight testing to fill these gaps and hence, promote the safe and effective implementation of SVS/EVS technologies for the Next Generation Air Transportation System
Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory
NASA Astrophysics Data System (ADS)
Dichter, W.; Doris, K.; Conkling, C.
1982-06-01
A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.
An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars
NASA Astrophysics Data System (ADS)
McGraw, Allison M.
2016-10-01
Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.
2007-12-17
Although the new fiber optic sensors on the Ikhana, which are located on fibers that are the diameter of a human hair, are not visible, the sealant used to cover them can be seen in this view from above the left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.
2008-05-01
Ikhana fiber optic wing shape sensor team: clockwise from left, Anthony "Nino" Piazza, Allen Parker, William Ko and Lance Richards. The sensors, located along a fiber the thickness of a human hair, aren't visible in the center of the Ikhana aircraft's left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.
Developing a Prototype ALHAT Human System Interface for Landing
NASA Technical Reports Server (NTRS)
Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin
2011-01-01
The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the effect of terrain/lighting on the human pilot, and how they use windows and displays during landing activities. The Apollo missions were limited to about 28 possible launch days a year due to lighting and orbital constraints. In order to take advantage of more landing opportunities and venture to more challenging landing locations, future landers will need to utilize sensors besides human eyes for scanning the surface. The ALHAT HSI system must effectively convey ALHAT produced information to the operator, so that landings can occur during less "optimal" conditions (lighting, surface terrain, slopes, etc) than was possible during Apollo missions. By proving this capability, ALHAT will simultaneously provide more flexible access to the moon, and greater safety margins for future landers. This paper will specifically focus on the development of prototype displays (the Trajectory Profile Display (TPD), Landing Point Designation (LPD), and Crew Camera View (CCV) ), implementation of realistic planetary terrain, human modeling, and future HSI plans.
The scope of phage display for membrane proteins.
Vithayathil, Rosemarie; Hooy, Richard M; Cocco, Melanie J; Weiss, Gregory A
2011-12-09
Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7(+) helper phage. The modified phage coat of KO7(+) can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7(+) phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Efficiency enhancement of liquid crystal projection displays using light recycle technology
NASA Technical Reports Server (NTRS)
Wang, Y.
2002-01-01
A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.
Testing and Evaluating the Effectiveness of Advanced Technologies for Work Zones in Nevada
DOT National Transportation Integrated Search
2008-08-30
The objective of this study was to evaluate two advanced technologies for improving safety in work zones: 1) speed monitoring display and 2) automatic work zone information system. In the evaluation of the speed monitoring display (also called a spee...
Emissive flat panel displays: A challenge to the AMLCD
NASA Astrophysics Data System (ADS)
Walko, R. J.
According to some sources, flat panel displays (FPD's) for computers will represent a 20-40 billion dollar industry by the end of the decade and could leverage up to 100-200 billion dollars in computer sales. Control of the flat panel display industry could be a significant factor in the global economy if FPD's manage to tap into the enormous audio/visual consumer market. Japan presently leads the world in active matrix liquid crystal display (AMLCD) manufacturing, the current leading FPD technology. The AMLCD is basically a light shutter which does not emit light on its own, but modulates the intensity of a separate backlight. However, other technologies, based on light emitting phosphors, could eventually challenge the AMLCD's lead position. These light-emissive technologies do not have the size, temperature and viewing angle limitations of AMLCD's. In addition, they could also be less expensive to manufacture, and require a smaller capital outlay for a manufacturing plant. An overview of these alternative technologies is presented.
NASA Technical Reports Server (NTRS)
Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John
1994-01-01
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Operando plasmon-enhanced Raman spectroscopy in silicon anodes for Li-ion battery
NASA Astrophysics Data System (ADS)
Miroshnikov, Yana; Zitoun, David
2017-11-01
Silicon, an attractive candidate for high-energy lithium-ion batteries (LIBs), displays an alloying mechanism with lithium and presents several unique characteristics which make it an interesting scientific topic and also a technological challenge. In situ local probe measurements have been recently developed to understand the lithiation process and propose an effective remedy to the failure mechanisms. One of the most specific techniques, which is able to follow the phase changes in poorly crystallized electrode materials, makes use of Raman spectroscopy within the battery, i.e., in operando mode. Such an approach has been successful but is still limited by the rather signal-to-noise ratio of the spectroscopy. Herein, the operando Raman signal from the silicon anodes is enhanced by plasmonic nanoparticles following the known surface-enhanced Raman spectroscopy (SERS). Coinage metals (Ag and Au) display a surface plasmon resonance in the visible and allow the SERS effect to take place. We have found that the as-prepared materials reach high specific capacities over 1000 mAh/g with stability over more than 1000 cycles at 1C rate and can be suitable to perform as anodes in LIB. Moreover, the incorporation of coinage metals enables SERS to take place specifically on the surface of silicon. Consequently, by using a specially designed Raman cell, it is possible to follow the processes in a silicon-coinage metal-based battery trough operando SERS measurements.
Bio-recognition and functional lipidomics by glycosphingolipid transfer technology
TAKI, Takao
2013-01-01
Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610
Multimission helicopter cockpit displays
NASA Astrophysics Data System (ADS)
Terry, William S.; Terry, Jody K.; Lovelace, Nancy D.
1996-05-01
A new operator display subsystem is being incorporated as part of the next generation United States Navy (USN) helicopter avionics system to be integrated into the multi-mission helicopter (MMH) that replaces both the SH-60B and the SH-60F in 2001. This subsystem exploits state-of-the-art technology for the display hardware, the display driver hardware, information presentation methodologies, and software architecture. Both of the existing SH-60 helicopter display systems are based on monochrome CRT technology; a key feature of the MMH cockpit is the integration of color AMLCD multifunction displays. The MMH program is one of the first military programs to use modified commercial AMLCD elements in a tactical aircraft. This paper presents the general configuration of the MMH cockpit and multifunction display subsystem and discusses the approach taken for presenting helicopter flight information to the pilots as well as presentation of mission sensor data for use by the copilot.
Display challenges resulting from the use of wide field of view imaging devices
NASA Astrophysics Data System (ADS)
Petty, Gregory J.; Fulton, Jack; Nicholson, Gail; Seals, Ean
2012-06-01
As focal plane array technologies advance and imagers increase in resolution, display technology must outpace the imaging improvements in order to adequately represent the complete data collection. Typical display devices tend to have an aspect ratio similar to 4:3 or 16:9, however a breed of Wide Field of View (WFOV) imaging devices exist that skew from the norm with aspect ratios as high as 5:1. This particular quality, when coupled with a high spatial resolution, presents a unique challenge for display devices. Standard display devices must choose between resizing the image data to fit the display and displaying the image data in native resolution and truncating potentially important information. The problem compounds when considering the applications; WFOV high-situationalawareness imagers are sought for space-limited military vehicles. Tradeoffs between these issues are assessed to the image quality of the WFOV sensor.
Review of defense display research programs
NASA Astrophysics Data System (ADS)
Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan
2001-09-01
Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.
Display technologies for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang
2018-02-01
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Vibratory tactile display for textures
NASA Technical Reports Server (NTRS)
Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi
1994-01-01
We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.
2014-01-01
Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.
Martins, Ivone M; Reis, Rui L; Azevedo, Helena S
2016-11-18
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Making public displays interactive everywhere.
Boring, Sebastian; Baur, Dominikus
2013-01-01
As the number of large public displays increases, the need for interaction techniques to control them is emerging. One promising way to provide such interaction is through personal mobile devices. However, although much research has covered this topic, it hasn't yet brought those technologies fully into the public that is, by allowing for interactions in a variety of public spaces. A proposed tracking technology has led to several prototype applications that employ mobile devices to interact with large public displays. In turn, these prototypes have led to an overarching interaction concept that allows for public deployment regardless of the space's characteristics (for example, layout and technologies).
Projection display technology for avionics applications
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.; Tompkins, Richard D.
2000-08-01
Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.
DMD: a digital light processing application to projection displays
NASA Astrophysics Data System (ADS)
Feather, Gary A.
1989-01-01
Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.
Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo
2018-05-10
Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.
DOT National Transportation Integrated Search
2005-09-30
There is currently no common symbology standard for the electronic display of navigation information. The wide range of display technology and the different functions these displays support makes it difficult to design symbols that are easily recogni...
NASA Technical Reports Server (NTRS)
Mciver, D.; Hatfield, J. J.
1978-01-01
Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.
Camilleri, Matt J; Malige, Ajith; Fujimoto, Jeffrey; Rempel, David M
2013-01-01
Direct touch displays can improve the human-computer experience and productivity; however, the higher hand locations may increase shoulder fatigue. Palm rejection (PR) technology may reduce shoulder loads by allowing the palms to rest on the display and increase productivity by registering the touched content and fingertips through the palms rather than shoulders. The effects of PR were evaluated by having participants perform touch tasks while posture and reaction force on the display were measured. Enabling PR, during which the subjects could place the palms on the display (but were not required to), resulted in increased wrist extension, force applied to the display and productivity, and less discomfort, but had no effect on the self-selected positioning of the display. Participants did not deliberately place their palms on the display; therefore, there was no reduction in shoulder load and the increased productivity was not due to improved hand registration. The increased productivity may have been due to reduced interruptions from palm contacts or reduced motor control demands.
Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Volz, Daniel; Baumann, Thomas
2016-09-01
Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.
Aircraft control position indicator
NASA Technical Reports Server (NTRS)
Dennis, Dale V. (Inventor)
1987-01-01
An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.
Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays
NASA Astrophysics Data System (ADS)
O'Connor, John C.; Kraemer, William A.
2000-08-01
The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
A Liquid Array Platform For the Multiplexed Analysis of Synthetic Molecule-Protein Interactions
Doran, Todd M.; Kodadek, Thomas
2014-01-01
Synthetic molecule microarrays, consisting of many different compounds spotted onto a planar surface such as modified glass or cellulose, have proven to be useful tools for the multiplexed analysis of small molecule- and peptide-protein interactions. However, these arrays are technically difficult to manufacture and use with high reproducibility and require specialized equipment. Here we report a more convenient alternative comprised of color-encoded beads that display a small molecule protein ligand on the surface. Quantitative, multiplexed assay of protein binding to up to 24 different ligands can be achieved using a common flow cytometer for the readout. This technology should be useful for evaluating hits from library screening efforts, the determination of structure activity relationships and for certain types of serological analyses. PMID:24245981
77 FR 49708 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... done in accordance with Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51... 30, 2012. (ii) Figure 24, Steel Part Surface Inspection (Impedance Plane Display), Subject 51-00-00...
Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin-Xu; School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583; Mellon, Michael
Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene frommore » Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.« less
Phage display: concept, innovations, applications and future.
Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K
2010-01-01
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field. Copyright © 2010 Elsevier Inc. All rights reserved.
Silicon thin-film transistor backplanes on flexible substrates
NASA Astrophysics Data System (ADS)
Kattamis, Alexis Z.
Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.
NASA Astrophysics Data System (ADS)
Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.
2002-02-01
The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.
Groves, Maria AT; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J
2014-01-01
In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics. PMID:24256948
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien
2017-08-01
Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.
The True Story and Advantages of RNA Phage Capsids as Nanotools.
Pumpens, Paul; Renhofa, Regina; Dishlers, Andris; Kozlovska, Tatjana; Ose, Velta; Pushko, Peter; Tars, Kaspars; Grens, Elmars; Bachmann, Martin F
2016-01-01
RNA phages are often used as prototypes for modern recombinant virus-like particle (VLP) technologies. Icosahedral RNA phage VLPs can be formed from coat proteins (CPs) and are efficiently produced in bacteria and yeast. Both genetic fusion and chemical coupling have been successfully used for the production of numerous chimeras based on RNA phage VLPs. In this review, we describe advances in RNA phage VLP technology along with the history of the Leviviridae family, including its taxonomical organization, genomic structure, and important role in the development of molecular biology. Comparative 3D structures of different RNA phage VLPs are used to explain the level of VLP tolerance to foreign elements displayed on VLP surfaces. We also summarize data that demonstrate the ability of CPs to tolerate different organic (peptides, oligonucleotides, and carbohydrates) and inorganic (metal ions) compounds either chemically coupled or noncovalently added to the outer and/or inner surfaces of VLPs. Finally, we present lists of nanotechnological RNA phage VLP applications, such as experimental vaccines constructed by genetic fusion and chemical coupling methodologies, nanocontainers for targeted drug delivery, and bioimaging tools. © 2016 S. Karger AG, Basel.
Multipurpose panel, phase 1, study report. [display utilizing multiplexing and digital techniques
NASA Technical Reports Server (NTRS)
Parkin, W.
1975-01-01
The feasibility of a multipurpose panel which provides a programmable electronic display for changeable panel nomenclature, multiplexes similar indicator display signals to the signal display, and demultiplexes command signals is examined. Topics discussed include: electronic display technology, miniaturized electronic and memory devices, and data management systems which employ digital address and multiplexing.
Computers and Composition: An Overview.
ERIC Educational Resources Information Center
Appleby, Bruce C.
The tools of writing have changed as technology has become more advanced. In fact, the contributions of the microcomputer are already beginning to make print and paper technology appear primitive. The book is at a disadvantage since it stores and displays the information, whereas the microchip stores while the computer displays. Because of this…
Buried object remote detection technology for law enforcement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Grande, N.K.; Clark, G.A.; Durbin, P.F.
1991-03-01
We have developed a precise airborne temperature-sensing technology to detect buried objects for use by law enforcement. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. Our patented methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. Our method creates color-coded images based on surface temperature variations of 0.2 {degrees}C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1{degrees}C or 2{degrees}C; this maskmore » hinders interpretation of apparent (blackbody) temperatures. Once removed, were are able to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectra, spatial, thermal, temporal, emissivity and diffusivity signatures. We have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less 60 m deep. Our technology could be adapted for drug interdiction and pollution control. 16 refs., 14 figs.« less
Monitoring of Surface Subsidence of the Mining Area Based on Sbas
NASA Astrophysics Data System (ADS)
Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.
2018-05-01
This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.
Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon
2016-01-01
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
77 FR 31762 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
..., Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy Current, of the Boeing 707, 720... Subject 51-00-00 Figure 24, Steel Part Surface Inspection (Impedance Plane Display), of Part 6, Eddy...
NASA Technical Reports Server (NTRS)
Dicristofaro, D. C. (Principal Investigator)
1980-01-01
A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.
NASA Astrophysics Data System (ADS)
Mu, Song; Zhou, Huaxin; Shi, Liang; Liu, Jianzhong; Cai, Jingshun; Wang, Feng
2017-10-01
Mostly urban underground sewage is the acidic corrosion environment with a high concentration of aggressive ions and microbe, which resulted in performance deterioration and service-life decrease of sewage concrete pipe. In order to effectively protect durability of the concrete pipe, the present paper briefly analysed the main degradation mechanism of concrete pipe attacked by urban underground sewage, and proposed that using penetrating and strengthening surface sealer based on inorganic chemistry. In addition, using index of compressive strength, weight loss and appearance level to investigate the influence of the sealer on corrosion resistance of mortar samples after different dry-wet cycles. Besides, comparative research on effect of the sealer, aluminate cement and admixture of corrosion resistance was also addressed. At last, the SEM technology was used to reveal the improvement mechanism of different technologies of corrosion resistance. The results indicated that the sealer and aluminate cement can significantly improve corrosion resistance of mortar. Besides, the improvement effect can be described as the descending order: the penetrating and strengthening surface sealer > aluminate cement > admixture of corrosion resistance. The mortar sample treated with the sealer displayed the condensed and sound microstructure which proved that the sealer can improve the corrosion resistance to urban underground sewage.
Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.
Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim
2014-10-01
Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.
MEMS tactile display: from fabrication to characterization
NASA Astrophysics Data System (ADS)
Miki, Norihisa; Kosemura, Yumi; Watanabe, Junpei; Ishikawa, Hiroaki
2014-03-01
We report fabrication and characterization of MEMS-based tactile display that can display users various tactile information, such as Braille codes and surface textures. The display consists of 9 micro-actuators that are equipped with hydraulic displacement amplification mechanism (HDAM) to achieve large enough displacement to stimulate the human tactile receptors. HDAM encapsulates incompressible liquids. We developed a liquid encapsulation process, which we termed as Bonding-in-Liquid Technique, where bonding with a UV-curable resin in glycerin is conducted in the liquid, which prevented interfusion of air bubbles and deformation of the membrane during the bonding. HDAM successfully amplified the displacement generated by piezoelectric actuators by a factor of 6. The display could virtually produce "rough" and "smooth" surfaces, by controlling the vibration frequency, displacement, and the actuation periods of an actuator until the adjacent actuator was driven. We introduced a sample comparison method to characterize the surfaces, which involves human tactile sensation. First, we prepared samples whose mechanical properties are known. We displayed a surface texture to the user by controlling the parameters and then, the user selects a sample that has the most similar surface texture. By doing so, we can correlate the parameters with the mechanical properties of the sample as well as find the sets of the parameters that can provide similar tactile information to many users. The preliminary results with respect to roughness and hardness is presented.
Phage display as a promising approach for vaccine development.
Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar
2016-09-29
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
NASA Technical Reports Server (NTRS)
1990-01-01
A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.
Spatial Data Management System (SDMS)
NASA Technical Reports Server (NTRS)
Hutchison, Mark W.
1994-01-01
The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.
NASA Technical Reports Server (NTRS)
Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.
1992-01-01
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
New-type planar field emission display with superaligned carbon nanotube yarn emitter.
Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2012-05-09
With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.
Huang, Johnny X.; Bishop-Hurley, Sharon L.
2012-01-01
The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969
Huang, Johnny X; Bishop-Hurley, Sharon L; Cooper, Matthew A
2012-09-01
The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.
Infrared Imagery of Shuttle (IRIS). Task 1, summary report
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
The feasibility of remote, high-resolution infrared imagery of the Shuttle Orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer was demonstrated. Using available technology, such images can be taken from an existing aircraft/telescope system (the C141 AIRO) with minimum modification or addition of systems. Images with a spatial resolution of 1 m or better and a temperature resolution of 2.5% between temperatures of 800 and 1900 K can be obtained. Data reconstruction techniques can provide a geometrically and radiometrically corrected array on addressable magnetic tape ready for display by NASA.
Virus-based nanoparticles as platform technologies for modern vaccines
Lee, Karin L.; Twyman, Richard M.; Fiering, Steven
2017-01-01
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic through multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. PMID:26782096
Surface modification for enhanced silanation of zirconia ceramics.
Piascik, J R; Swift, E J; Thompson, J Y; Grego, S; Stoner, B R
2009-09-01
The overall goal of this research was to develop a practical method to chemically modify the surface of high strength dental ceramics (i.e. zirconia) to facilitate viable, robust adhesive bonding using commercially available silanes and resin cements. Investigation focused on a novel approach to surface functionalize zirconia with a Si(x)O(y) "seed" layer that would promote chemical bonding with traditional silanes. ProCAD and ZirCAD blocks were bonded to a dimensionally similar composite block using standard techniques designed for silica-containing materials (silane and resin cement). ZirCAD blocks were treated with SiCl4 by vapor deposition under two different conditions prior to bonding. Microtensile bars were prepared and subjected to tensile forces at a crosshead speed of 1 mm/min scanning electron microscopy was used to analyze fracture surfaces and determine failure mode; either composite cohesive failure (partial or complete cohesive failure within composite) or adhesive failure (partial or complete adhesive failure). Peak stress values were analyzed using single-factor ANOVA (p<0.05). Microtensile testing results revealed that zirconia with a surface treatment of 2.6 nm Si(x)O(y) thick "seed" layer was similar in strength to the porcelain group (control). Analysis of failure modes indicated the above groups displayed higher percentages of in-composite failures. Other groups tested had lower strength values and displayed adhesive failure characteristics. Mechanical data support that utilizing a gas-phase chloro-silane pretreatment to deposit ultra-thin silica-like seed layers can improve adhesion to zirconia using traditional silanation and bonding techniques. This technology could have clinical impact on how high strength dental materials are used today.
A compact eyetracked optical see-through head-mounted display
NASA Astrophysics Data System (ADS)
Hua, Hong; Gao, Chunyu
2012-03-01
An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical HMD does, while additionally tracking the gaze direction of the user. There is ample evidence that a fully-integrated ETHMD system offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. For instance eyetracking capability in HMDs adds a very valuable tool and objective metric for scientists to quantitatively assess user interaction with 3D environments and investigate the effectiveness of various 3D visualization technologies for various specific tasks including training, education, and augmented cognition tasks. In this paper, we present an innovative optical approach to the design of an optical see-through ET-HMD system based on freeform optical technology and an innovative optical scheme that uniquely combines the display optics with the eye imaging optics. A preliminary design of the described ET-HMD system will be presented.
Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M A; Bertram, M; Porumbescu, S
2001-10-03
Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitablemore » approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.« less
Active Camouflage for Infantry Headwear Applications
2007-02-01
incorporates a rewriteable display medium. Military, academic, and commercial groups are aiming at developing OLEDs for full- color flexible displays...as shown in Figure 7. Figure 7: Organic LED Prototype shown on a Flexible surface (Kincade, 2004). OLEDs are self-luminous and do not require...brighter, more stable color displays. The OLED manufacturing process is much more amenable to retaining optimum performance on a flexible surface
Method and System for Producing Full Motion Media to Display on a Spherical Surface
NASA Technical Reports Server (NTRS)
Starobin, Michael A. (Inventor)
2015-01-01
A method and system for producing full motion media for display on a spherical surface is described. The method may include selecting a subject of full motion media for display on a spherical surface. The method may then include capturing the selected subject as full motion media (e.g., full motion video) in a rectilinear domain. The method may then include processing the full motion media in the rectilinear domain for display on a spherical surface, such as by orienting the full motion media, adding rotation to the full motion media, processing edges of the full motion media, and/or distorting the full motion media in the rectilinear domain for instance. After processing the full motion media, the method may additionally include providing the processed full motion media to a spherical projection system, such as a Science on a Sphere system.
The virtual environment display system
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1991-01-01
Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.
Exploratory visualization of astronomical data on ultra-high-resolution wall displays
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé
2016-07-01
Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.
NASA Astrophysics Data System (ADS)
de Angelis, F.; Pujia, A.; Falcone, C.; Iaccino, E.; Palmieri, C.; Liberale, C.; Mecarini, F.; Candeloro, P.; Luberto, L.; de Laurentiis, A.; Das, G.; Scala, G.; di Fabrizio, E.
2010-10-01
Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for murine B lymphoma A20 cell line. The peptide used in combination with the nanoporous nanoparticles allows an efficient in vivo targeting, a sustained release and a sensible therapeutic effect.Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for murine B lymphoma A20 cell line. The peptide used in combination with the nanoporous nanoparticles allows an efficient in vivo targeting, a sustained release and a sensible therapeutic effect. Electronic supplementary information (ESI) available: Nanoparticles fabrication; payload evaluation; dissolution and release profiles; multivalent loading; targeting specifity on A20 Cells; cell cycle analysis; in vitro cytotoxicity assay; in vivo cytotoxicity assay. See DOI: 10.1039/c0nr00161a
DOT National Transportation Integrated Search
2007-10-05
Many electronic displays of aeronautical charting information currently use different symbols for common display elements, creating the risk of confusion and misinterpretation. The SAE International Aerospace Behavior and Technology (G-10) Aeronautic...
NASA Technical Reports Server (NTRS)
Montoya, R. J.; England, J. N.; Hatfield, J. J.; Rajala, S. A.
1981-01-01
The hardware configuration, software organization, and applications software for the NASA IKONAS color graphics display system are described. The systems were created at the Langley Research Center Display Device Laboratory to develop, evaluate, and demonstrate advanced generic concepts, technology, and systems integration techniques for electronic crew station systems of future civil aircraft. A minicomputer with 64K core memory acts as a host for a raster scan graphics display generator. The architectures of the hardware system and the graphics display system are provided. The applications software features a FORTRAN-based model of an aircraft, a display system, and the utility program for real-time communications. The model accepts inputs from a two-dimensional joystick and outputs a set of aircraft states. Ongoing and planned work for image segmentation/generation, specialized graphics procedures, and higher level language user interface are discussed.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
NASA Astrophysics Data System (ADS)
Holter, Borre; Kamfjord, Thor G.; Fossum, Richard; Fagerberg, Ragnar
2000-08-01
The Norwegian based company PolyDisplayR ASA, in collaboration with the Norwegian Army Material Command and SINTEF, has refined, developed and shown with color and black/white technology demonstrators an electrically addressed Smectic A reflective LCD technology featuring: (1) Good contrast, all-round viewing angle and readability under all light conditions (no wash-out in direct sunlight). (2) Infinite memory -- image remains without power -- very low power consumption, no or very low radiation ('silent display') and narrow band updating. (3) Clear, sharp and flicker-free images. (4) Large number of gray tones and colors possible. (5) Simple construction and production -- reduced cost, higher yield, more robust and environmentally friendly. (6) Possibility for lighter, more robust and flexible displays based on plastic substrates. The results and future implementation possibilities for cockpit and soldier-system displays are discussed.
Global industry status report and roadmap for high performance displays
NASA Astrophysics Data System (ADS)
Bardsley, J. Norman; Pinnel, M. Robert
2003-09-01
A summary is provided of a comprehensive industry status report and roadmap available from www.usdc.org. Continued improvements in LCD technology are being driven by home entertainment applications, leading to better color and video response. Competing technologies, such as PDP and OLED and electronic paper must either exploit inherent advantages for such applications or focus on other market niches that are not being addressed well by mainline LCD technology. Flexible displays provide an opportunity for innovative technologies and manufacturing methods, but appear to bring no killer applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media... concerning the securities of China Wind Energy, Inc. because it has not filed any periodic reports since the...
ERIC Educational Resources Information Center
Austin, Katherine A.
2009-01-01
In the wake of the information explosion and rapidly progressing technology [Mayer, R. E. (2001). "Multimedia learning". Cambridge: University Press] formulated a theory that focused on human cognition, rather than technology capacity and features. By measuring the effect of cognitive individual differences and display design manipulations on…
Integrating Traditional Learning and Games on Large Displays: An Experimental Study
ERIC Educational Resources Information Center
Ardito, Carmelo; Lanzilotti, Rosa; Costabile, Maria F.; Desolda, Giuseppe
2013-01-01
Current information and communication technology (ICT) has the potential to bring further changes to education. New learning techniques must be identified to take advantage of recent technological tools, such as smartphones, multimodal interfaces, multi-touch displays, etc. Game-based techniques that capitalize on ICT have proven to be very…
Udani, Ankeet D; Harrison, T Kyle; Howard, Steven K; Kim, T Edward; Brock-Utne, John G; Gaba, David M; Mariano, Edward R
2012-08-01
A head-mounted display provides continuous real-time imaging within the practitioner's visual field. We evaluated the feasibility of using head-mounted display technology to improve ergonomics in ultrasound-guided regional anesthesia in a simulated environment. Two anesthesiologists performed an equal number of ultrasound-guided popliteal-sciatic nerve blocks using the head-mounted display on a porcine hindquarter, and an independent observer assessed each practitioner's ergonomics (eg, head turning, arching, eye movements, and needle manipulation) and the overall block quality based on the injectate spread around the target nerve for each procedure. Both practitioners performed their procedures without directly viewing the ultrasound monitor, and neither practitioner showed poor ergonomic behavior. Head-mounted display technology may offer potential advantages during ultrasound-guided regional anesthesia.
Policies toward advanced display in the Clinton administration
NASA Astrophysics Data System (ADS)
Hart, Jeffrey A.
1994-04-01
The Clinton administration is using its policy toward advanced displays as a test case for making industry-specific policies. They have established a number of criteria for advanced displays that they hope to apply to other industries in the future. For example, they want to support the development of generic technologies through ARPA and NIST, while minimizing the government's role in key business decisions. They want the industry (by which they mean the tool makers, the component assemblers, and the systems firms) to agree internally before they go ahead with their promotional policies. Given the past history of the advanced display industry, especially its disunity in regard to the enforcement of the successful antidumping petition of the Advanced Display Manufacturers Association and to efforts to create the U.S. Display Consortium, these criteria will be hard to meet. Nevertheless, there now appears to be much greater consensus among the three groups than in the past on the need to build indigenous technological capabilities in advanced displays.
Pitfalls to avoid when using phage display for snake toxins.
Laustsen, Andreas Hougaard; Lauridsen, Line Præst; Lomonte, Bruno; Andersen, Mikael Rørdam; Lohse, Brian
2017-02-01
Antivenoms against bites and stings from snakes, spiders, and scorpions are associated with immunological side effects and high cost of production, since these therapies are still derived from the serum of hyper-immunized production animals. Biotechnological innovations within envenoming therapies are thus warranted, and phage display technology may be a promising avenue for bringing antivenoms into the modern era of biologics. Although phage display technology represents a robust and high-throughput approach for the discovery of antibody-based antitoxins, several pitfalls may present themselves when animal toxins are used as targets for phage display selection. Here, we report selected critical challenges from our own phage display experiments associated with biotinylation of antigens, clone picking, and the presence of amber codons within antibody fragment structures in some phage display libraries. These challenges may be detrimental to the outcome of phage display experiments, and we aim to help other researchers avoiding these pitfalls by presenting their solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays.
Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia
2015-01-01
A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising.
Distributed rendering for multiview parallax displays
NASA Astrophysics Data System (ADS)
Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.
2006-02-01
3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.
Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays
Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia
2015-01-01
A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising. PMID:25950018
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.
Performance specification methodology: introduction and application to displays
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.
1998-09-01
Acquisition reform is based on the notion that DoD must rely on the commercial marketplace insofar as possible rather than solely looking inward to a military marketplace to meet its needs. This reform forces a fundamental change in the way DoD conducts business, including a heavy reliance on private sector models of change. The key to more reliance on the commercial marketplace is the performance specifications (PS). This paper introduces some PS concepts and a PS classification principal to help bring some structure to the analysis of risk (cost, schedule, capability) in weapons system development and the management of opportunities for affordable ownership (maintain/increase capability via technology insertion, reduce cost) in this new paradigm. The DoD shift toward commercial components is nowhere better exemplified than in displays. Displays are the quintessential dual-use technology and are used herein to exemplify these PS concepts and principal. The advent of flat panel displays as a successful technology is setting off an epochal shift in cockpits and other military applications. Displays are installed in every DoD weapon system, and are, thus, representative of a range of technologies where issues and concerns throughout industry and government have been raised regarding the increased DoD reliance on the commercial marketplace. Performance specifications require metrics: the overall metrics of 'information-thrust' with units of Mb/s and 'specific info- thrust' with units of Mb/s/kg are introduced to analyze value of a display to the warfighter and affordability to the taxpayer.
Internet Protocol Display Sharing Solution for Mission Control Center Video System
NASA Technical Reports Server (NTRS)
Brown, Michael A.
2009-01-01
With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole process, while maintaining the integrity of the latest technological displayed image devices. This study will provide insights to the many possibilities that can be filtered down to a harmoniously responsive product that can be used in today's MCC environment.
Technology Prospecting on Enzymes: Application, Marketing and Engineering
Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning
2012-01-01
Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658
Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun
2015-01-01
We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.
2010-01-01
Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase), and were displayed with efficiencies approaching 104 complexes/cell. Conclusions We report the successful display of cellulosome-inspired recombinant complexes on the surface of Lactococcus lactis. Significant differences in display efficiency among constructs were observed and attributed to their structural characteristics including protein conformation and solubility, scaffold size, and the inclusion and exclusion of non-cohesin modules. The surface-display of functional scaffold proteins described here represents a key step in the development of recombinant microorganisms capable of carrying out a variety of metabolic processes including the direct conversion of cellulosic substrates into fuels and chemicals. PMID:20840763
Technical trends of large-size photomasks for flat panel displays
NASA Astrophysics Data System (ADS)
Yoshida, Koichiro
2017-06-01
Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".
Hui, Chang-Ye; Guo, Yan; Yang, Xue-Qin; Zhang, Wen; Huang, Xian-Qing
2018-05-01
To improve the Pb 2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb 2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb 2+ -sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb 2+ biosorption than that found in PbrR-displayed cells. Specific Pb 2+ binding via PbBD was the same as Pb 2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn 2+ and Cd 2+ . Since surface-engineered E. coli cells with PbBD increased the Pb 2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki
2016-06-01
Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.
A variable-collimation display system
NASA Astrophysics Data System (ADS)
Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito
2014-03-01
Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.
The Pluto system: Initial results from its exploration by New Horizons
NASA Astrophysics Data System (ADS)
Stern, S. A.; Bagenal, F.; Ennico, K.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Olkin, C. B.; Spencer, J. R.; Weaver, H. A.; Young, L. A.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Hinson, D. P.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lisse, C. M.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Strobel, D. F.; Stryk, T.; Summers, M. E.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.; Zirnstein, E.
2015-10-01
The Pluto system was recently explored by NASA’s New Horizons spacecraft, making closest approach on 14 July 2015. Pluto’s surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto’s atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto’s diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto’s large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
Buried object remote detection technology for law enforcement
NASA Astrophysics Data System (ADS)
del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.
1991-08-01
A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential to detect underground epicenters of smuggling and pollution.
Laser Optometric Assessment Of Visual Display Viewability
NASA Astrophysics Data System (ADS)
Murch, Gerald M.
1983-08-01
Through the technique of laser optometry, measurements of a display user's visual accommodation and binocular convergence were used to assess the visual impact of display color, technology, contrast, and work time. The studies reported here indicate the potential of visual-function measurements as an objective means of improving the design of visual displays.
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
NASA Astrophysics Data System (ADS)
Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei
2017-07-01
The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.
Edwards, W. Barry
2013-01-01
The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 µM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. PMID:23935860
Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying
2016-01-01
To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37% and 109%, respectively, but decreased by 26% and 43%, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris, and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039
An update on the clinical use of drug-coated balloons in percutaneous coronary interventions.
Cheng, Yanping; Leon, Martin B; Granada, Juan F
2016-06-01
Drug-coated balloons (DCB) promise to deliver anti-proliferative drugs and prevent restenosis leaving nothing behind. Although, randomized clinical trials have demonstrated their efficacy for the treatment of in-stent restenosis, clinical evidence supporting their use in other coronary applications is still lacking. This review summarizes the development status of clinically available DCB technologies and provides an update on the current data for their coronary use. Current generation DCB prevent restenosis by delivering paclitaxel particles on the surface of the vessel wall. Although clinically available technologies share a common mechanism of action, important differences in pharmacokinetic behavior and safety profiles do exist. Future technological improvements include the development of coatings displaying: high transfer efficiency; low particle embolization potential; and alternative drug formulations. Optimized balloon-based delivery systems and drug encapsulation technologies also promise to improve the technical limitations of current generation DCB. Although proving clinical superiority against DES may prove to be difficult in mainstream applications (i.e., de novo), new generation DCB technologies have the potential to achieve a strong position in the interventional field in clinical settings in which the efficacy of DES use is not proven or justified (i.e., bifurcations).
Autostereoscopic display technology for mobile 3DTV applications
NASA Astrophysics Data System (ADS)
Harrold, Jonathan; Woodgate, Graham J.
2007-02-01
Mobile TV is now a commercial reality, and an opportunity exists for the first mass market 3DTV products based on cell phone platforms with switchable 2D/3D autostereoscopic displays. Compared to conventional cell phones, TV phones need to operate for extended periods of time with the display running at full brightness, so the efficiency of the 3D optical system is key. The desire for increased viewing freedom to provide greater viewing comfort can be met by increasing the number of views presented. A four view lenticular display will have a brightness five times greater than the equivalent parallax barrier display. Therefore, lenticular displays are very strong candidates for cell phone 3DTV. Selection of Polarisation Activated Microlens TM architectures for LCD, OLED and reflective display applications is described. The technology delivers significant advantages especially for high pixel density panels and optimises device ruggedness while maintaining display brightness. A significant manufacturing breakthrough is described, enabling switchable microlenses to be fabricated using a simple coating process, which is also readily scalable to large TV panels. The 3D image performance of candidate 3DTV panels will also be compared using autostereoscopic display optical output simulations.
Next generation phage display by use of pVII and pIX as display scaffolds.
Løset, Geir Åge; Sandlie, Inger
2012-09-01
Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform. Copyright © 2012 Elsevier Inc. All rights reserved.
A review of head-worn display research at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J.; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent
2015-05-01
NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms.
High-immersion three-dimensional display of the numerical computer model
NASA Astrophysics Data System (ADS)
Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu
2013-08-01
High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.
Research on tactical information display technology for interactive virtual cockpit
NASA Astrophysics Data System (ADS)
Sun, Zhongyun; Tian, Tao; Su, Feng
2018-04-01
Based on a fact that traditional tactical information display technology suffers from disadvantages of a large number of data to be transferred and low plotting efficiency in an interactive virtual cockpit, a GID protocol-based simulation has been designed. This method dissolves complex tactical information screens into basic plotting units. The indication of plotting units is controlled via the plotting commands, which solves the incompatibility between the tactical information display in traditional simulation and the desktop-based virtual simulation training system. Having been used in desktop systems for helicopters, fighters, and transporters, this method proves to be scientific and reasonable in design and simple and efficient in usage, which exerts a significant value in establishing aviation equipment technology support training products.
USDA-ARS?s Scientific Manuscript database
Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...
New developments in flexible cholesteric liquid crystal displays
NASA Astrophysics Data System (ADS)
Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William
2007-02-01
Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.
Parush, A; Mastoras, G; Bhandari, A; Momtahan, K; Day, K; Weitzman, B; Sohmer, B; Cwinn, A; Hamstra, S J; Calder, L
2017-12-01
Effective teamwork in ED resuscitations, including information sharing and situational awareness, could be degraded. Technological cognitive aids can facilitate effective teamwork. This study focused on the design of an ED situation display and pilot test its influence on teamwork and situational awareness during simulated resuscitation scenarios. The display design consisted of a central area showing the critical dynamic parameters of the interventions with an events time-line below it. Static information was placed at the sides of the display. We pilot tested whether the situation display could lead to higher scores on the Clinical Teamwork Scale (CTS), improved scores on a context-specific Situational Awareness Global Assessment Technique (SAGAT) tool, and team communication patterns that reflect teamwork and situational awareness. Resuscitation teamwork, as measured by the CTS, was overall better with the presence of the situation display as compared with no situation display. Team members discussed interventions more with the situation display compared with not having the situation display. Situational awareness was better with the situation display only in the trauma scenario. The situation display could be more effective for certain ED team members and in certain cases. Overall, this pilot study implies that a situation display could facilitate better teamwork and team communication in the resuscitation event. Copyright © 2017 Elsevier Inc. All rights reserved.
Ultra-realistic imaging: a new beginning for display holography
NASA Astrophysics Data System (ADS)
Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David
2014-02-01
Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.
A noninvasive technique for real-time detection of bruises in apple surface based on machine vision
NASA Astrophysics Data System (ADS)
Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira
2013-05-01
Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.
NASA Technical Reports Server (NTRS)
Shelton, Kevin J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Jones, Deise R.; Allamandola, Angela S.; Bailey, Randall E.
2009-01-01
By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a consortium of industry, academia and government agencies have proposed a revolutionary new concept for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the concept of "net-centric" operations whereby each aircraft and air services provider shares information to allow real-time adaptability to ever-changing factors such as weather, traffic, flight trajectories, and security. Data-link is likely to be the primary source of communication in NextGen. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen.
SVGA and XGA active matrix microdisplays for head-mounted applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.
2000-03-01
The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.
Szczupak, Alon; Aizik, Dror; Moraïs, Sarah; Vazana, Yael; Barak, Yoav; Bayer, Edward A.; Alfonta, Lital
2017-01-01
The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells. PMID:28644390
Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf
2012-01-01
Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422
Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf
2010-10-01
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.
Research on Collaborative Technology in Distributed Virtual Reality System
NASA Astrophysics Data System (ADS)
Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi
2018-01-01
Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.
Aharon, S; Robb, R A
1997-01-01
Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.
Encarnação, L Miguel; Bimber, Oliver
2002-01-01
Collaborative virtual environments for diagnosis and treatment planning are increasingly gaining importance in our global society. Virtual and Augmented Reality approaches promised to provide valuable means for the involved interactive data analysis, but the underlying technologies still create a cumbersome work environment that is inadequate for clinical employment. This paper addresses two of the shortcomings of such technology: Intuitive interaction with multi-dimensional data in immersive and semi-immersive environments as well as stereoscopic multi-user displays combining the advantages of Virtual and Augmented Reality technology.
Fringe field switching AMLCD technology in military and consumer applications
NASA Astrophysics Data System (ADS)
Niemczyk, James
2006-05-01
American Panel Corporation (APC) designs and delivers customized AMLCD products for aircraft cockpits and rugged ground vehicles. APC specifies AMLCD's to be designed and manufactured, based on an exclusive relationship, with both LG.Philips LCD, in South Korea and BOE Hydis, in South Korea. This paper addresses the Fringe Field Switching (FFS) technology developed by BOE Hydis and APC's customization of this technology into both high end avionics display products as well as consumer display products. FFS technology optimizes all optical and electrical performance qualities into a single product. APC offers the high temperature FFS products for all applications.
Advanced helmet tracking technology developments for naval aviation
NASA Astrophysics Data System (ADS)
Brindle, James H.
1996-06-01
There is a critical need across the Services to improve the effectiveness of aircrew within the crewstation by capitalizing on the natural psycho-motor skills of the pilot through the use of a variety of helmet-mounted visual display and control techniques. This has resulted in considerable interest and significant ongoing research and development efforts on the part of the Navy, as well as the Army and the Air Force, in the technology building blocks associated with this area, such as advanced head position sensing or head tracking technologies, helmet- mounted display optics and electronics, and advanced night vision or image intensification technologies.
Raster graphic helmet-mounted display study
NASA Technical Reports Server (NTRS)
Beamon, William S.; Moran, Susanna I.
1990-01-01
A design of a helmet mounted display system is presented, including a design specification and development plan for the selected design approach. The requirements for the helmet mounted display system and a survey of applicable technologies are presented. Three helmet display concepts are then described which utilize lasers, liquid crystal display's (LCD's), and subminiature cathode ray tubes (CRT's), respectively. The laser approach is further developed in a design specification and a development plan.
The Pluto system: Initial results from its exploration by New Horizons.
Stern, S A; Bagenal, F; Ennico, K; Gladstone, G R; Grundy, W M; McKinnon, W B; Moore, J M; Olkin, C B; Spencer, J R; Weaver, H A; Young, L A; Andert, T; Andrews, J; Banks, M; Bauer, B; Bauman, J; Barnouin, O S; Bedini, P; Beisser, K; Beyer, R A; Bhaskaran, S; Binzel, R P; Birath, E; Bird, M; Bogan, D J; Bowman, A; Bray, V J; Brozovic, M; Bryan, C; Buckley, M R; Buie, M W; Buratti, B J; Bushman, S S; Calloway, A; Carcich, B; Cheng, A F; Conard, S; Conrad, C A; Cook, J C; Cruikshank, D P; Custodio, O S; Dalle Ore, C M; Deboy, C; Dischner, Z J B; Dumont, P; Earle, A M; Elliott, H A; Ercol, J; Ernst, C M; Finley, T; Flanigan, S H; Fountain, G; Freeze, M J; Greathouse, T; Green, J L; Guo, Y; Hahn, M; Hamilton, D P; Hamilton, S A; Hanley, J; Harch, A; Hart, H M; Hersman, C B; Hill, A; Hill, M E; Hinson, D P; Holdridge, M E; Horanyi, M; Howard, A D; Howett, C J A; Jackman, C; Jacobson, R A; Jennings, D E; Kammer, J A; Kang, H K; Kaufmann, D E; Kollmann, P; Krimigis, S M; Kusnierkiewicz, D; Lauer, T R; Lee, J E; Lindstrom, K L; Linscott, I R; Lisse, C M; Lunsford, A W; Mallder, V A; Martin, N; McComas, D J; McNutt, R L; Mehoke, D; Mehoke, T; Melin, E D; Mutchler, M; Nelson, D; Nimmo, F; Nunez, J I; Ocampo, A; Owen, W M; Paetzold, M; Page, B; Parker, A H; Parker, J W; Pelletier, F; Peterson, J; Pinkine, N; Piquette, M; Porter, S B; Protopapa, S; Redfern, J; Reitsema, H J; Reuter, D C; Roberts, J H; Robbins, S J; Rogers, G; Rose, D; Runyon, K; Retherford, K D; Ryschkewitsch, M G; Schenk, P; Schindhelm, E; Sepan, B; Showalter, M R; Singer, K N; Soluri, M; Stanbridge, D; Steffl, A J; Strobel, D F; Stryk, T; Summers, M E; Szalay, J R; Tapley, M; Taylor, A; Taylor, H; Throop, H B; Tsang, C C C; Tyler, G L; Umurhan, O M; Verbiscer, A J; Versteeg, M H; Vincent, M; Webbert, R; Weidner, S; Weigle, G E; White, O L; Whittenburg, K; Williams, B G; Williams, K; Williams, S; Woods, W W; Zangari, A M; Zirnstein, E
2015-10-16
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. Copyright © 2015, American Association for the Advancement of Science.
PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)
NASA Astrophysics Data System (ADS)
Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil
2013-06-01
The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, John R.; Torian, Udana; McCraw, Dustin
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanismmore » of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.« less
Gallagher, John R; Torian, Udana; McCraw, Dustin M; Harris, Audray K
2017-02-01
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.
2012-01-01
Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. The plains of Tharsis and Elysium, Mars, display many analogous features
Military application of flat panel displays in the Vetronics Technology Testbed prototype vehicle
NASA Astrophysics Data System (ADS)
Downs, Greg; Roller, Gordon; Brendle, Bruce E., Jr.; Tierney, Terrance
2000-08-01
The ground combat vehicle crew of tomorrow must be able to perform their mission more effectively and efficiently if they are to maintain dominance over ever more lethal enemy forces. Increasing performance, however, becomes even more challenging when the soldier is subject to reduced crew sizes, a never- ending requirement to adapt to ever-evolving technologies and the demand to assimilate an overwhelming array of battlefield data. This, combined with the requirement to fight with equal effectiveness at any time of the day or night in all types of weather conditions, makes it clear that this crew of tomorrow will need timely, innovative solutions to overcome this multitude of barriers if they are to achieve their objectives. To this end, the U.S. Army is pursuing advanced crew stations with human-computer interfaces that will allow the soldier to take full advantage of emerging technologies and make efficient use of the battlefield information available to him in a program entitled 'Vetronics Technology Testbed.' Two critical components of the testbed are a compliment of panoramic indirect vision displays to permit drive-by-wire and multi-function displays for managing lethality, mobility, survivability, situational awareness and command and control of the vehicle. These displays are being developed and built by Computing Devices Canada, Ltd. This paper addresses the objectives of the testbed program and the technical requirements and design of the displays.
NASA Astrophysics Data System (ADS)
Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo
2018-01-01
Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.
Yin, Kun; Lv, Min; Wang, Qiaoning; Wu, Yixuan; Liao, Chunyang; Zhang, Weiwei; Chen, Lingxin
2016-10-15
Mercury is a toxic heavy metal and presents significant threats to organisms and natural ecosystems. Recently, the mercury remediation as well as its detection by environmental-friendly biotechnology has received increasing attention. In this study, carboxylesterase E2 from mercury-resistant strain Pseudomonas aeruginosa PA1 has been successfully displayed on the outer membrane of Escherichia coli Top10 bacteria to simultaneously adsorb and detect mercury ion (Hg(2+)). The transmission electron microscopy analysis shows that Hg(2+) can be absorbed by carboxylesterase E2 and accumulated on the outer membrane of surface-displayed E. coli bacteria. The adsorption of Hg(2+) followed a physicochemical, equilibrated and saturatable mechanism, which well fits the traditional Langmuir adsorption model. The surface-displayed system can be regenerated through regulating pH values. As its activity can be inhibited by Hg(2+), carboxylesterase E2 has been used to detect the concentration of Hg(2+) in water samples. The developed surface display system will be of great potential in the simultaneous bioremediation and biodetection of environmental mercury pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liang, Xing-xiang; Wang, Bei-bei; Sun, Yu-fei; Lin, Ying; Han, Shuang-yan; Zheng, Sui-ping; Cui, Tang-bing
2013-03-01
A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 10(4) molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.
Automatic detection method for mura defects on display film surface using modified Weber's law
NASA Astrophysics Data System (ADS)
Kim, Myung-Muk; Lee, Seung-Ho
2014-07-01
We propose a method that automatically detects mura defects on display film surfaces using a modified version of Weber's law. The proposed method detects mura defects regardless of their properties and shapes by identifying regions perceived by human vision as mura using the brightness of pixel and image distribution ratio of mura in an image histogram. The proposed detection method comprises five stages. In the first stage, the display film surface image is acquired and a gray-level shift performed. In the second and third stages, the image histogram is acquired and analyzed, respectively. In the fourth stage, the mura range is acquired. This is followed by postprocessing in the fifth stage. Evaluations of the proposed method conducted using 200 display film mura image samples indicate a maximum detection rate of ˜95.5%. Further, the results of application of the Semu index for luminance mura in flat panel display (FPD) image quality inspection indicate that the proposed method is more reliable than a popular conventional method.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.
1979-01-01
Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.
Zhang, Congdang; Wang, Yi; Ma, Shuzhi; Li, Leike; Chen, Liyun; Yan, Huimin; Peng, Tao
2016-06-01
Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection.
Performance specifications: the nearly impossible versus the merely difficult
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.
2000-08-01
Affordability is the objective of acquisition reform. The institution of 'performance' specifications in lieu of 'design' specifications is a key strategy. Design of a cockpit display, for example, is left to the prime contractor based on a performance requirement stated by the government. The prime delegates to the integrator. The integrator develops the display and bill of materials provided by vendors. There is no feedback loop from the vendors to the ultimate customer, the government. As a result of this situation a communication gap exists: the government, primes, and integrators have concluded that they should pay commodity prices for custom displays. One step in the closing of this gap is the establishment of cross- cutting common reference performance specifications for aerospace and defense displays. The performance specification for cockpit displays is nearly impossible to achieve -- the last ounce of technology and more is required. Commodity markets, such as consumer notebook computers, are based on but a fraction of currently available technology -- companies 'bank' technology and roll it out across several 18-month product generations. Ruggedized consumer displays can be used in aerospace and defense applications other than the cockpit, such as mission crew stations. The performance specification for non-cockpit aerospace and defense applications is merely difficult. Acquisition reform has been defined by the Secretary of Defense to mean DoD should leverage the commercial market to the maximal extent possible. For the achievement of this end, an entirely different approach is wanted for cockpit displays versus large platform mission displays. That is, the nearly impossible requires a different design and business approach from the merely difficult.
Benedetto, Simone; Drai-Zerbib, Véronique; Pedrotti, Marco; Tissier, Geoffrey; Baccino, Thierry
2013-01-01
The mass digitization of books is changing the way information is created, disseminated and displayed. Electronic book readers (e-readers) generally refer to two main display technologies: the electronic ink (E-ink) and the liquid crystal display (LCD). Both technologies have advantages and disadvantages, but the question whether one or the other triggers less visual fatigue is still open. The aim of the present research was to study the effects of the display technology on visual fatigue. To this end, participants performed a longitudinal study in which two last generation e-readers (LCD, E-ink) and paper book were tested in three different prolonged reading sessions separated by - on average - ten days. Results from both objective (Blinks per second) and subjective (Visual Fatigue Scale) measures suggested that reading on the LCD (Kindle Fire HD) triggers higher visual fatigue with respect to both the E-ink (Kindle Paperwhite) and the paper book. The absence of differences between E-ink and paper suggests that, concerning visual fatigue, the E-ink is indeed very similar to the paper. PMID:24386252
Three-dimensional virtual acoustic displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.
1991-01-01
The development of an alternative medium for displaying information in complex human-machine interfaces is described. The 3-D virtual acoustic display is a means for accurately transferring information to a human operator using the auditory modality; it combines directional and semantic characteristics to form naturalistic representations of dynamic objects and events in remotely sensed or simulated environments. Although the technology can stand alone, it is envisioned as a component of a larger multisensory environment and will no doubt find its greatest utility in that context. The general philosophy in the design of the display has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and later by technological capabilities or constraints. In expanding on this view, current and potential uses are addressed of virtual acoustic displays, such displays are characterized, and recent approaches to their implementation and application are reviewed, the research project at NASA-Ames is described in detail, and finally some critical research issues for the future are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebok, A.; Nystad, E.
This paper describes a study investigating questions of learning effectiveness in different VR technology types. Four VR display technology types were compared in terms of their ability to support procedural learning. The VR systems included two desktop displays (mono-scopic and stereoscopic view), a large screen stereoscopic display, and a mono-scopic head-mounted display. Twenty-four participants completed procedural training scenarios on these different display types. Training effectiveness was assessed in terms of objective task performance. Following the training session, participants performed the procedure they had just learned using the same VR display type they used for training. Time to complete the proceduremore » and errors were recorded. Retention and transfer of training were evaluated in a talk-through session 24 hours after the training. In addition, subjective questionnaire data were gathered to investigate perceived workload, Sense of Presence, simulator sickness, perceived usability, and ease of navigation. While no difference was found for the short-term learning, the study results indicate that retention and transfer of training were better supported by the large screen stereoscopic condition. (authors)« less
Chin, Chai Fung; Choong, Yee Siew; Lim, Theam Soon
2018-01-01
Antibody phage display has been widely established as the method of choice to generate monoclonal antibodies with various efficacies post hybridoma technology. This technique is a popular method which takes precedence over ease of methodology, time- and cost-savings with comparable outcomes to conventional methods. Phage display technology manipulates the genome of M13 bacteriophage to display large diverse collection of antibodies that is capable of binding to various targets (nucleic acids, peptides, proteins, and carbohydrates). This subsequently leads to the discovery of target-related antibody binders. There have been several different approaches adapted for antibody phage display over the years. This chapter focuses on the semi-automated phage display antibody biopanning method utilizing the MSIA™ streptavidin D.A.R.T's ® system. The system employs the use of electronic multichannel pipettes with predefined programs to carry out the panning process. The method should also be adaptable to larger liquid handling instrumentations for higher throughput.
Head Worn Display System for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Cupero, Frank; Valimont, Brian; Wise, John; Best. Carl; DeMers, Bob
2009-01-01
Head-Worn Displays or so-called, near-to-eye displays have potentially significant advantages in terms of cost, overcoming cockpit space constraints, and for the display of spatially-integrated information. However, many technical issues need to be overcome before these technologies can be successfully introduced into commercial aircraft cockpits. The results of three activities are reported. First, the near-to-eye display design, technological, and human factors issues are described and a literature review is presented. Second, the results of a fixed-base piloted simulation, investigating the impact of near to eye displays on both operational and visual performance is reported. Straight-in approaches were flown in simulated visual and instrument conditions while using either a biocular or a monocular display placed on either the dominant or non-dominant eye. The pilot's flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested. The data generally supports a monocular design with minimal impact due to eye dominance. Finally, a method for head tracker system latency measurement is developed and used to compare two different devices.
Pilot/Vehicle display development from simulation to flight
NASA Technical Reports Server (NTRS)
Dare, Alan R.; Burley, James R., II
1992-01-01
The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.
A novel shape-changing haptic table-top display
NASA Astrophysics Data System (ADS)
Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi
2018-01-01
A shape-changing table-top display with haptic feedback allows its users to perceive 3D visual and texture displays interactively. Since few existing devices are developed as accurate displays with regulatory haptic feedback, a novel attentive and immersive shape changing mechanical interface (SCMI) consisting of image processing unit and transformation unit was proposed in this paper. In order to support a precise 3D table-top display with an offset of less than 2 mm, a custommade mechanism was developed to form precise surface and regulate the feedback force. The proposed image processing unit was capable of extracting texture data from 2D picture for rendering shape-changing surface and realizing 3D modeling. The preliminary evaluation result proved the feasibility of the proposed system.
Klingvall Ek, Rebecca; Hong, Jaan; Thor, Andreas; Bäckström, Mikael; Rännar, Lars-Erik
This study aimed to evaluate how as-built electron beam melting (EBM) surface properties affect the onset of blood coagulation. The properties of EBM-manufactured implant surfaces for placement have, until now, remained largely unexplored in literature. Implants with conventional designs and custom-made implants have been manufactured using EBM technology and later placed into the human body. Many of the conventional implants used today, such as dental implants, display modified surfaces to optimize bone ingrowth, whereas custom-made implants, by and large, have machined surfaces. However, titanium in itself demonstrates good material properties for the purpose of bone ingrowth. Specimens manufactured using EBM were selected according to their surface roughness and process parameters. EBM-produced specimens, conventional machined titanium surfaces, as well as PVC surfaces for control were evaluated using the slide chamber model. A significant increase in activation was found, in all factors evaluated, between the machined samples and EBM-manufactured samples. The results show that EBM-manufactured implants with as-built surfaces augment the thrombogenic properties. EBM that uses Ti6Al4V powder appears to be a good manufacturing solution for load-bearing implants with bone anchorage. The as-built surfaces can be used "as is" for direct bone contact, although any surface treatment available for conventional implants can be performed on EBM-manufactured implants with a conventional design.
DOT National Transportation Integrated Search
1995-11-01
A study was conducted to test the effect on airport surface situational awareness of GPS derived position information : depicted on a prototypical electronic taxi chart display. The effect of position error and position uncertainty : symbology were a...
Self-Assembled InAs Nanowires as Optical Reflectors
Floris, Francesco; Fornasari, Lucia; Marini, Andrea; Roddaro, Stefano; Beltram, Fabio; Cecchini, Marco; Sorba, Lucia; Rossella, Francesco
2017-01-01
Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed. PMID:29160860
NASA Astrophysics Data System (ADS)
Yasuda, Hideki; Matsuno, Ryo; Koito, Naoki; Hosoda, Hidemasa; Tani, Takeharu; Naya, Masayuki
2017-12-01
Suppression of visible-light reflection from material surfaces is an important technology for many applications such as flat-panel displays, camera lenses, and solar panels. In this study, we developed an anti-reflective coating design based on a silver nanodisc metasurface. The effective refractive index of a 10-nm-thick monolayer of silver nanodiscs was less than 1.0, which enabled strong suppression of reflection from the underlying substrate. The nanodisc structure was easy to fabricate using a conventional roll-to-roll wet-coating method. The anti-reflective structure was fabricated over a large area.
FoilSim: Basic Aerodynamics Software Created
NASA Technical Reports Server (NTRS)
Peterson, Ruth A.
1999-01-01
FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.
Field emitter displays for future avionics applications
NASA Astrophysics Data System (ADS)
Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.
1995-06-01
Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.
NASA Astrophysics Data System (ADS)
Bailey, David C.
1994-06-01
The F-22 is the first exclusively glass cockpit where all instrumentation has been replaced by displays. The F-22 Engineering and Manufacturing Development Program is implementing the display technology proven during the Advanced Tactical Fighter Demonstration and Validation program. This paper will describe how the F-22 goals have been met and some of the tradeoffs that resulted in the current display design.