Sample records for surface dose reduction

  1. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.

    PubMed

    Yoon, Jihyung; Xie, Yibo; Zhang, Rui

    2018-03-01

    The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  3. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  4. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.

    PubMed

    Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-03-21

    To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.

  5. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding.

    PubMed

    Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D

    2011-08-01

    The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.

  6. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters

    PubMed Central

    Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-01-01

    Objective: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Materials and Methods: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. Results: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Conclusions: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification. PMID:28423624

  7. SU-F-T-424: Mitigation of Increased Surface Dose When Treating Through A Carbon Fiber Couch Top

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E; Misgina, F

    Purpose: To study the effect of the Varian carbon fiber couch top on surface dose for patients being treated using single PA beams in the supine position and to identify simple methods for surface dose reduction. Methods: Measurements of surface dose were obtained in Solid Water phantoms using both a parallel plate ionization chamber (PTW Advanced Markus) and EBT2 Radiochromic films for both 6 and 10MV photons. All measurements were referenced to a depth considered a typical for PA Spine fields. Techniques used to reduce the surface dose included introducing an air standoff using Styrofoam sheets to suspend the phantommore » surface above the couch top and by adding a thin high Z scattering foil on the table surface. Surface doses were evaluated for typical field sizes, standoff heights, and various scattering materials. Comparisons were made to the surface dose obtainable when treating through a Varian Mylar covered tennis racket style couch top. Results: Dependence on typical spine field sizes was relatively minor. Dependence on air gap was much more significant. Surface doses decreased exponentially with increases in air standoff distance. Surface doses were reduced by approximately 50% for an air gap of 10cm and 40% for a 15cm air gap. Surface doses were reduced by an additional 15% by the addition of a 1mm Tin scattering foil. Conclusion: Using simple techniques, it is possible to reduce the surface dose when treating single PA fields through the Varian carbon fiber couch top. Surface doses can be reduced to levels observed when treating though transparent Mylar tops by adding about 15 cm of air gap. Further reductions are possible by adding thin scattering foils, such as Tin or Lead, on the couch surface. This is a low cost approach to reduce surface dose when using the Varian carbon fiber couch top.« less

  8. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations weremore » sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.« less

  9. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2017-11-01

    One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.

  10. SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Kenneth, R; Higgins, S

    Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry formore » CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.« less

  11. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  12. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment;HDR; Uterine cervix cancer; Vaginal balloon packing; Contrast; Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.

    2011-07-15

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less

  13. A study on the dependence of exposure dose reduction and image evaluation on the distance from the dental periapical X-ray machine

    NASA Astrophysics Data System (ADS)

    Joo, Kyu-Ji; Shin, Jae-Woo; Dong, Kyung-Rae; Lim, Chang-Seon; Chung, Woon-Kwan; Kim, Young-Jae

    2013-11-01

    Reducing the exposure dose from a periapical X-ray machine is an important aim in dental radiography. Although the radiation exposure dose is generally low, any radiation exposure is harmful to the human body. Therefore, this study developed a method that reduces the exposure dose significantly compared to that encountered in a normal procedure, but still produces an image with a similar resolution. The correlation between the image resolution and the exposure dose of the proposed method was examined with increasing distance between the dosimeter and the X-ray tube. The results were compared with those obtained from the existing radiography method. When periapical radiography was performed once according to the recommendations of the International Commission on Radiological Protection (ICRP), the measured skin surface dose was low at 7 mGy or below. In contrast, the skin surface dose measured using the proposed method was only 1.57 mGy, showing a five-fold reduction. These results suggest that further decreases in dose might be achieved using the proposed method.

  14. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  15. A Measurement and Analysis of Buildup Region Dose for Open Field Photon Beams (Cobalt-60 through 24 MV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Edwin C.

    2015-01-15

    The central axis depth dose in the build-up region (surface to d{sub max}) of single open field photon beams (cobalt-60 through 24 MV) has been measured utilizing parallel plate and extrapolation chamber methodology. These data were used to derive, for a prescription dose of 100 cGy, values of surface dose, the maximum value of dose along the central axis (D{sub max}) and the depth (nearest the surface) at which 90% of the prescription dose occurs (d{sub 90}). For both single and parallel opposed pair (POP) open field configurations, data are presented at field sizes of 5 × 5, 15 ×more » 15 and 25 × 25 cm{sup 2} for prescription depths of 10, 15 and 20 cm (midplane for POP). For the treatment machines, field sizes, and prescription depths studied, it is possible to conclude that: for single open field irradiation, surface dose values (as a percentage of the prescription dose) can be either low (<10%) or comparable to the prescription dose itself; for POP open fields, surface dose values are relatively independent of photon energy and midplane depth, and range between 30% and 70% of prescription dose, being principally dependent on field size; the depth of the initial 90 cGy point for a prescription dose of 100 cGy, d{sub 90}, was larger for POP fields. For either single or POP open field treatments, d{sub 90} was always less than 22 mm, while for 6 MV or less, values of d{sub 90} were less than 4 mm; D{sub max} values can be very large (e.g., above 300 cGy) for certain treatment situations and are reduced significantly for POP treatments; for open field POP treatments, the percent reduction in D{sub max} with each increment in beam energy above 10 MV is reduced over that seen at 10 MV or less and, possibly, this further reduction may be clinically insignificant; for open field POP treatments, changes in surface dose, d{sub 90} and D{sub max} with beam energy above 10 MV do not suggest, with regard to these specific build-up curve parameters, any obvious advantage for treatment with beam energies greater than 10 MV for the specific machines and situations studied.« less

  16. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  17. Evaluation of Millstone-2 steam generator chemical decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, D.T.; Blok, J.

    The steam generator channel heads at Millstone-2 were decontaminated prior to carrying out extensive maintenance work in 1983. Isotopic gamma ray measurements were made of the inner channel head surfaces before and after the decontamination to evaluate the effectiveness of the process. The Combustion Engineering/Kraftwerk Union chemical decontamination, by itself, provided a decontamination factor ranging from 2.7 to 6.6 for the various steam generator surfaces. The corresponding average dose rate reduction factor, based on gross-gamma radiation surveys, was approximately 1.5 to 2.5. Following the chemical treatment, high pressure water flushing reduced the radiation levels still further, to an average overallmore » dose reduction factor of 5.3 to 7.2.« less

  18. CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator

    PubMed Central

    Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.

    2008-01-01

    PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699

  19. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  20. SU-F-T-671: Effects of Collimator Material On Proton Minibeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E; Sandison, G; Cao, N

    2016-06-15

    Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less

  1. A Monte Carlo study on quantifying the amount of dose reduction by shielding the superficial organs of an Iranian 11-year-old boy

    PubMed Central

    Akhlaghi, Parisa; Hoseinian-Azghadi, Elie; Miri-Hakimabad, Hashem; Rafat-Motavalli, Laleh

    2016-01-01

    A method for minimizing organ dose during computed tomography examinations is the use of shielding to protect superficial organs. There are some scientific reports that usage of shielding technique reduces the surface dose to patients with no appreciable loss in diagnostic quality. Therefore, in this Monte Carlo study based on the phantom of a 11-year-old Iranian boy, the effect of using an optimized shield on dose reduction to body organs was quantified. Based on the impact of shield on image quality, lead shields with thicknesses of 0.2 and 0.4 mm were considered for organs exposed directly and indirectly in the scan range, respectively. The results showed that there is 50%–62% reduction in amounts of dose for organs located fully or partly in the scan range at different tube voltages and modeling the true location of all organs in human anatomy, especially the ones located at the border of the scan, range affects the results up to 49%. PMID:28144117

  2. MO-F-CAMPUS-I-04: Patient Eye-Lens Dose Reduction in Routine Brain CT Examinations Using Organ-Based Tube Current Modulation and In-Plane Bismuth Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan

    Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less

  3. Quantification of Acute Vocal Fold Epithelial Surface Damage with Increasing Time and Magnitude Doses of Vibration Exposure

    PubMed Central

    Kojima, Tsuyoshi; Van Deusen, Mark; Jerome, W. Gray; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Novaleski, Carolyn K.; Rousseau, Bernard

    2014-01-01

    Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes) and magnitude-doses (control, modal intensity phonation, or raised intensity phonation) of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure. PMID:24626217

  4. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C; Chan, S; Lee, F

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done withmore » FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.« less

  5. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  6. SU-F-T-621: Impact of Vacuum and Treatment Couch On Surface Dose in Stereotactic Body Radiation Therapy With and Without a Flattening Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, HT; Lu, SH; Kuo, SH

    2016-06-15

    Purpose: When treating lung cancer patients with stereotactic body radiation therapy (SBRT), better immobilization is needed for accurate delivery of high-dose radiation. However, using a treatment couch (TrueBeamTM) and vacuum bag (BlueBAGTM) may increase the surface dose and skin toxicity. This study investigated the influence of couch and vacuum bag on the surface dose. Methods: The relative surface dose (D{sub 0}/DMAX) was measured in an ion-chamber (Markus-type PTW, 0.05cm{sup 3}) with a solid water phantom and SSD to 100 cm. A comprehensive comparison of different parameter settings, including the different energies (6MV-FFF, 10MV-FF, and 10MV-FFF), field sizes (3 X 3more » cm{sup 2}, 5 × 5 cm{sup 2}, 8 × x cm{sup 2} , 10 × 10 cm{sup 2}, and 15 × 15 cm{sup 2}), thickness of the vacuum bag (5mm, 15mm, 30mm, 39mm and 55mm), and couch (with and without), was performed. Results: The FFF increases the surface dose as compared to FF mode. In a similar setting with field of 10 × 10 cm{sup 2}, FFF mode increases the surface dose from 26.0% to 32.8% for 6 MV, and 17.4% to 21.5% for 10 MV. When the beam passes through the couch, the surface dose increases to 3.6, 4.6, 2.9, and 3.7 times for 6 MV-FF, 10 MV-FF, 6 MV-FFF, and 10 MV-FFF, respectively. At the same energy, the surface dose increases to 3.93, 4.11, 4.23, 4.16 and 4.24 times at 5 mm, 15 mm, 30 mm, 39 mm and 55 mm thickness of the vacuum, respectively. Conclusion: Using a couch and vacuum significantly increases the surface dose. For SBRT with a superficial target close to the couch and immobilization vacuum, reduction of vacuum thickness and careful attention to skin dose in planning would be helpful in avoiding severe skin toxicity.« less

  7. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    PubMed

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. SU-E-T-352: Effects of Skull Attenuation and Missing Backscatter On Brain Dose in HDR Treatment of the Head with Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cifter, F; Dhou, S; Lewis, J

    2015-06-15

    Purpose: To calculate the effect of lack of backscatter from air and attenuation of bone on dose distributions in brachytherapy surface treatment of head. Existing treatment planning systems based on TG43 do not account for heterogeneities, and thus may overestimate the dose to the brain. While brachytherapy generally has rapid dose falloff, the dose to the deeper tissues (in this case, the brain) can become significant when treating large curved surfaces. Methods: Applicator geometries representing a range of clinical cases were simulated in MCNP5. An Ir-192 source was modeled using the energy spectrum presented by TG-43. The head phantom wasmore » modeled as a 7.5-cm radius water sphere, with a 7 -mm thick skull embedded 5-mm beneath the surface. Dose values were calculated at 20 points inside the head, in which 10 of them were on the central axis and the other 10 on the axis connecting the central of the phantom with the second to last source from the applicator edge. Results: Central and peripheral dose distributions for a range of applicator and head sizes are presented. The distance along the central axis at which the dose falls to 80% of the prescribed dose (D80) was 7 mm for a representative small applicator and 9 mm for a large applicator. Corresponding D50 and D30 for the same small applicator were 17 mm and 32 mm respectively. D50 and D30 for the larger applicator were 32 mm and 60 mm respectively. These results reflect the slower falloff expected for larger applicators on a curved surface. Conclusion: Our results can provide guidance for clinicians to calculate the dose reduction effect due to bone attenuation and the lack of backscatter from air to estimate the brain dose for the HDR treatments of surface lesions.« less

  9. SU-E-T-13: Comparison of Dose Rates with and without Gold Backing of USC #9 Radioactive Eye Plaque Using MCNP5.

    PubMed

    Aryal, P; Molloy, J

    2012-06-01

    To show the effect of gold backing on dose rates for the USC #9 radioactive eye plaque. An I125 source (IsoAid model IAI-125A) and gold backing was modeled using MCNP5 Monte Carlo code. A single iodine seed was simulated with and without gold backing. Dose rates were calculated in two orthogonal planes. Dose calculation points were structured in two orthogonal planes that bisect the center of the source. A 2×2 cm matrix of spherical points of radius 0.2 mm was created in a water phantom of 10 cm radius. 0.2 billion particle histories were tracked. Dose differences with and without the gold backing were analyzed using Matlab. The gold backing produced a 3% increase in the dose rate near the source surface (<1mm) relative to that without the backing. This was presumably caused by fluorescent photons from the gold. At distances between 1 and 2 cm, the gold backing reduced the dose rate by up to 12%, which we attribute to a lack of scatter resulting from the attenuation from the gold. Dose differences were most pronounced in the radial direction near the source center but off axis. The dose decreased by 25%, 65% and 81% at 1, 2, and 3 mm off axis at a distance of 1 mm from the source surface. These effects were less pronounced in the perpendicular dimension near the source tip, where maximum dose decreases of 2% were noted. I 125 sources embedded directly into gold troughs display dose differences of 2 - 90%, relative to doses without the gold backing. This is relevant for certain types of plaques used in treatment of ocular melanoma. Large dose reductions can be observed and may have implications for scleral dose reduction. © 2012 American Association of Physicists in Medicine.

  10. Evaluation of entrance surface air kerma in pediatric chest radiography

    NASA Astrophysics Data System (ADS)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J. L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-11-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior-posterior (AP) and posterior-anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0-1 y, 1-5 y, 5-10 y, and 10-15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels.

  11. SU-F-T-654: Pacemaker Dose Estimate Using Optically Stimulated Luminescent Dosimeter for Left Breast Intraoperative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Goenka, A; Sharma, A

    Purpose: To assess and report the in vivo dose for a patient with a pacemaker being treated in left breast intraoperative radiation therapy (IORT). The ZEISS Intrabeam 50 kVp X-ray beam with a spherical applicator was used. Methods: The optically stimulated luminescent dosimeters (OSLDs) (Landauer nanoDots) were employed and calibrated under the conditions of the Intrabeam 50 kVp X-rays. The nanoDots were placed on the patient at approximately 15 cm away from the lumpectomy cavity both under and above a shield of lead equivalence 0.25 mm (RayShield X-Drape D-110) covering the pacemaker area during IORT with a 5 cm sphericalmore » applicator. Results: The skin surface dose near the pacemaker during the IORT with a prescription of 20 Gy was measured as 4.0±0.8 cGy. The dose behind the shield was 0.06±0.01 Gy, demonstrating more than 98% dose reduction. The in vivo skin surface doses during a typical breast IORT at a 4.5 cm spherical applicator surface were further measured at 5, 10, 15, and 20 cm away to be 159±11 cGy, 15±1 cGy, 6.6±0.5 cGy, and 1.8±0.1 cGy, respectively. A power law fit to the dose versus the distance z from the applicator surface yields the dose fall off at the skin surface following z^-2.5, which can be used to estimate skin doses in future cases. The comparison to an extrapolation of depth dose in water reveals an underestimate of far field dose using the manufactory provided data. Conclusion: The study suggests the appropriateness of OSLD as an in vivo skin dosimeter in IORT using the Intrabeam system in a wide dose range. The pacemaker dose measured during the left breast IORT was within a safe limit.« less

  12. Geometric Image Biomarker Changes of the Parotid Gland Are Associated With Late Xerostomia.

    PubMed

    van Dijk, Lisanne V; Brouwer, Charlotte L; van der Laan, Hans Paul; Burgerhof, Johannes G M; Langendijk, Johannes A; Steenbakkers, Roel J H M; Sijtsema, Nanna M

    2017-12-01

    To identify a surrogate marker for late xerostomia 12 months after radiation therapy (Xer 12m ), according to information obtained shortly after treatment. Differences in parotid gland (PG) were quantified in image biomarkers (ΔIBMs) before and 6 weeks after radiation therapy in 107 patients. By performing stepwise forward selection, ΔIBMs that were associated with Xer 12m were selected. Subsequently other variables, such as PG dose and acute xerostomia scores, were added to improve the prediction performance. All models were internally validated. Prediction of Xer 12m based on PG surface reduction (ΔPG-surface) was good (area under the receiver operating characteristic curve, 0.82). Parotid gland dose was related to ΔPG-surface (P<.001, R 2  = 0.27). The addition of acute xerostomia scores to the ΔPG-surface improved the prediction of Xer 12m significantly, and vice versa. The final model including ΔPG-surface and acute xerostomia had outstanding performance in predicting Xer 12m early after radiation therapy (area under the receiver operating characteristic curve, 0.90). Parotid gland surface reduction was associated with late xerostomia. The early posttreatment model with ΔPG-surface and acute xerostomia scores can be considered as a surrogate marker for late xerostomia. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.

    PubMed

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-08-01

    The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.

  14. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Orita, Tadashi; Torii, Tatsuo

    2016-12-01

    Aerial radiological survey using an unmanned aerial vehicle (UAV) was applied to measurement surface contamination around the Fukushima Daiichi nuclear power station (FDNPS). An unmanned helicopter monitoring system (UHMS) was developed to survey the environmental effect of radioactive cesium scattered as a result of the FDNPS accident. The UHMS was used to monitor the area surrounding the FDNPS six times from 2012 to 2015. Quantitative changes in the radioactivity distribution trend were revealed from the results of these monitoring runs. With this information, we found that the actual reduction of dose rate was faster than the one calculated with radiocesium physical half-life. It is indicated that the attenuation effect of radiation by radiocesium penetration in soil is dominant as for reason of reduction of dose rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource™: a prospective study in 60 patients

    PubMed Central

    Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.

    2008-01-01

    Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641

  16. Radiation dose reduction to the breast in thoracic CT: Comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Duan Xinhui; Christner, Jodie A.

    2011-11-15

    Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4)more » scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.« less

  17. [Applying dose banding to the production of antineoplastic drugs: a narrative review of the literature].

    PubMed

    Pérez Huertas, Pablo; Cueto Sola, Margarita; Escobar Cava, Paloma; Borrell García, Carmela; Albert Marí, Asunción; López Briz, Eduardo; Poveda Andrés, José Luis

    2015-07-01

    The dosage of antineoplastic drugs has historically been based on individualized prescription and preparation according to body surface area or patient´s weight. Lack of resources and increased assistance workload in the areas where chemotherapy is made, are leading to the development of new systems to optimize the processing without reducing safety. One of the strategies that has been proposed is the elaboration by dose banding. This new approach standardizes the antineoplastic agents doses by making ranges or bands accepting a percentage of maximum variation. It aims to reduce processing time with the consequent reduction in waiting time for patients; to reduce errors in the manufacturing process and to promote the rational drug use. In conclusion, dose banding is a suitable method for optimizing the development of anticancer drugs, obtaining reductions in oncologic patients waiting time but without actually causing a favorable impact on direct or indirect costs. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. [Impact of exposure dose reduction of radiation treatment planning CT using low tube voltage technique].

    PubMed

    Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji

    2015-04-01

    The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.

  19. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modeling the Prodromal Effects and Performance Reduction of Astronauts from Exposure to Large Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Hu, S.; Kim, M. Y.; McClellan, G. E.; Nikjoo, H.; Cucinotta, F. A.

    2007-01-01

    In space exploration outside the Earth's geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possibility of failure of the mission. Acute risks are especially of concern during spacewalks on the lunar surface because of the rapid onset of SPE's and science goals that involve long distances to crew habitats. Thus assessing the potential of early radiation effect under such adverse conditions is of prime importance. Here we present a biologic based mathematical model which describes the dose and time-dependent early human responses to ionizing radiation. We examine the possible early effects on crew behind various shielding materials from exposure to some historical large SPEs on the lunar and Mars surfaces. The doses and dose rates were calculated using the BRYNTRN code (Kim, M.Y, Hu, X, and Cucinotta, F.A, Effect of Shielding Materials from SPEs on the Lunar and Mars Surface, AIAA Space 2005, paper number AIAA-2005-6653, Long Beach, CA, August 30-September 1, 2005) and the hazard of the early radiation effects and performance reduction were calculated using the RIPD code (Anno, G.H, McClellan, G.E., Dore, M.A, Protracted Radiation-Induced Performance Decrement, Volume 1 Model Development,1996, Defense Nuclear Agency: Alexandria VA). Based on model assumptions we show that exposure to these historical SPEs do cause early effects to crew members and impair their performance if effective shielding and medical countermeasure tactics are not provided. The calculations show multiple occurrence of large SPEs in a short period of time significantly increase the severity of early illness, however early death from failure of the hematopoietic system is very unlikely because of the dose-rate and dose heterogeneity of SPEs. Results from these types of calculations will be a guide in design of protection systems and medical response strategy for astronauts in case of exposure to high dose irradiation during future space missions.

  1. An assessment of radiation doses at an educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the nuclear accident.

    PubMed

    Tsuji, Masayoshi; Kanda, Hideyuki; Kakamu, Takeyasu; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Mori, Yayoi; Okochi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2012-03-01

    On 11 March 2011, the Great East Japan Earthquake occurred. Due to this earthquake and subsequent tsunami, malfunctions occurred at the Fukushima Daiichi nuclear power plant. Radioactive material even reached the investigated educational institution despite being 57.8 km away from the power station. With the goal of ensuring the safety of our students, we decided to carry out a risk assessment of the premises of this educational institution by measuring radiation doses at certain locations, making it possible to calculate estimated radiation accumulation. Systematic sampling was carried out at measurement points spaced at regular intervals for a total of 24 indoor and outdoor areas, with 137 measurements at heights of 1 cm and 100 cm above the ground surface. Radiation survey meters were used to measure environmental radiation doses. Radiation dose rates and count rates were higher outdoors than indoors, and higher 1 cm above the ground surface than at 100 cm. Radiation doses 1 cm above the ground surface were higher on grass and moss than on asphalt and soil. The estimated radiation exposure for a student spending an average of 11 h on site at this educational institution was 9.80 μSv. Environmental radiation doses at our educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the accident were lower than the national regulation dose for schools (3.8 μSv/h) at most points. Differences in radiation doses depending on outdoor surface properties are important to note for risk reduction.

  2. Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.

    2014-01-01

    The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.

  3. Clinical assessment of the jaw-tracking function in IMRT for a brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a maximum dose difference of 0.4% was observed between the planning methods in the case of over 2 cm distance, and the maximum dose of 0.6% was obtained for within the 2 cm distance. For the case intersecting with the OAR, the maximum dose difference of 2.3% was achieved. According to these results, the differences in the mean doses and the maximum doses to the OARs ware larger when the OARs and the planning target volume (PTV) were closer. In addition, small differences in the surface dose measurements were observed. In the case of the inside field, the differences were under 2% of the prescription dose while the difference was under 0.1% in the case of the outside field. Therefore, treatment plans with the jaw-tracking function consistently affected the dose reduction for a brain tumor, and the clinical possibility could be verified as the surface dose was not increased.

  4. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces.

    PubMed

    Kundu, Devapriya; Gill, Alexander; Lui, Chenyuan; Goswami, Namita; Holley, Richard

    2014-01-01

    This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤4.5 and ≤3.9 log CFU/g. Log reductions of ≤4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli. © 2013.

  5. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds

    NASA Astrophysics Data System (ADS)

    Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard

    2017-01-01

    Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.

  6. Clinical consequences of chemotherapy dose reduction in obese patients with stage III colon cancer: A retrospective analysis from the PETACC 3 study.

    PubMed

    Stocker, Gertraud; Hacker, Ulrich T; Fiteni, Frédéric; John Mahachie, Jestinah; Roth, Arnaud D; Van Cutsem, Eric; Peeters, Marc; Lordick, Florian; Mauer, Murielle

    2018-06-12

    Dose reduction in obese cancer patients has been replaced by fully weight-based dosing recommendations. No data, however, are available on the effects of dose reduction in obese stage III colon cancer patients undergoing adjuvant chemotherapy. Survival outcomes and toxicity data of obese (body mass index [BMI] ≥30 kg/m 2 ), stage III colon cancer patients treated within the phase III PETACC 3 trial comparing leucovorin, 5-FU (LV5FU2) with LV5FU2 plus irinotecan were analysed retrospectively according to chemotherapy dosing at first infusion (i.e. fully weight-based dosed - versus dose-reduced group). Multivariate analyses on relapse free survival (RFS) and overall survival (OS) were conducted to adjust for baseline prognostic factors using Cox regression model. 13.4% (280 of 2094 patients) had a BMI ≥ 30 kg/m 2 , and 5.3% had both a BMI ≥ 30 kg/m 2 and a body surface area (BSA) ≥2 m 2 . Dose reductions occurred in 16.1% of patients with a BMI ≥ 30 kg/m 2 and 32.4% with BMI ≥ 30 kg/m 2 and BSA ≥ 2 m 2 , respectively. In patients with BMI ≥ 30 kg/m 2 , multivariate analysis demonstrated a trend towards better RFS in the fully dosed compared to the dose-reduced group (Hazard ratio (HR): 0.69, 95% CI: 0.43-1.09; p = 0.11); however, there was no statistically significant difference in OS. In patients with BMI ≥ 30 kg/m 2 and BSA ≥ 2 m 2 , multivariate analysis demonstrated better RFS in fully dosed compared with dose-reduced patients (HR: 0.48, 95% CI: 0.27-0.85; p = 0.01) and a strong trend towards better OS (HR: 0.53, 95% CI: 0.28-1.01; p = 0.052). This group comprised predominantly of men. Data support the recommendation of using fully dosed chemotherapy for the adjuvant treatment in obese patients with colon cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  8. SU-F-P-61: Does It Matter Not to Use Optimization Points at the Apex for Vaginal Cylinder HDR Brachytherapy Planning?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y

    2016-06-15

    Purpose: To test the impact of the use of apex optimization points for new vaginal cylinder (VC) applicators. Methods: New “ClickFit” single channel VC applicators (Varian) that have a different top thicknesses but the same diameters as the old VC applicators (2.3 cm diameter, 2.6 cm, 3.0 cm, and 3.5 cm) were compared using phantom studies. Old VC applicator plans without apex optimization points were also compared to the plans with the optimization points. The apex doses were monitored at 5 mm depth doses (8 points) where a prescription dose (Rx) of 6Gy was prescribed. VC surface doses (8 points)more » were also analyzed. Results: The new VC applicator plans without apex optimization points presented significantly lower 5mm depth doses than Rx (on average −31 ± 7%, p <0.00001) due to their thicker VC tops (3.4 ± 1.1 mm thicker with the range of 1.2 to 4.4 mm) than the old VC applicators. Old VC applicator plans also showed a statistically significant reduction (p <0.00001) due to Ir-192 source anisotropic effect at the apex region but the % reduction over Rx was only −7 ± 9%. However, by adding apex optimization points to the new VC applicator plans, the plans improved 5 mm depth doses (−7 ± 9% over Rx) that were not statistically different from old VC plans (p = 0.923), along with apex VC surface doses (−22 ± 10% over old VC versus −46 ± 7% without using apex optimization points). Conclusion: The use of apex optimization points are important in order to avoid significant additional cold doses (−24 ± 2%) at the prescription depth (5 mm) of apex, especially for the new VC applicators that have thicker tops.« less

  9. Ultraviolet-C efficacy against a norovirus surrogate and hepatitis A virus on a stainless steel surface.

    PubMed

    Park, Shin Young; Kim, An-Na; Lee, Ki-Hoon; Ha, Sang-Do

    2015-10-15

    In this study, the effects of 10-300 mWs/cm(2) of ultraviolet radiation (UV-C) at 260 nm were investigated for the inactivation of two foodborne viruses: murine norovirus-1 (MNV-1; a human norovirus [NoV] surrogate) and hepatitis A virus (HAV). We used an experimentally contaminated stainless steel surface, a common food-contact surface, to examine the effects of low doses of UV-C radiation on MNV-1 and HAV titers. The modified Gompertz equation was used to generate non-linear survival curves and calculate dR-values as the UV-C dose of 90% reduction for MNV-1 (R(2)=0.95, RMSE=0.038) and HAV (R(2)=0.97, RMSE=0.016). Total MNV-1 and HAV titers significantly decreased (p<0.05) with higher doses of UV-C. MNV-1 and HAV were reduced to 0.0-4.4 and 0.0-2.6 log10PFU/ml, respectively, on the stainless steel surfaces by low-dose UV-C treatment. The dR-value, 33.3 mWs/cm(2) for MNV-1 was significantly (p<0.05) lower than 55.4 mWs/cm(2) of HAV. Therefore, the present study shows that HAV is more resistant to UV-C radiation than MNV-1. These data suggest that low doses of UV-C light on food contact surfaces could be effective to inactivate human NoV and HAV in restaurant, institutional, and industrial kitchens and facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 02: Dosimetric effects of gold nanoparticle surface coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, Brandon; Kirkby, Charles

    2016-08-15

    Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less

  11. Six steps to a successful dose-reduction strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, M.

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3)more » prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.« less

  12. Reducing radiation dose to selected organs by selecting the tube start angle in MDCT helical scans: A Monte Carlo based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Di; Zankl, Maria; DeMarco, John J.

    Purpose: Previous work has demonstrated that there are significant dose variations with a sinusoidal pattern on the peripheral of a CTDI 32 cm phantom or on the surface of an anthropomorphic phantom when helical CT scanning is performed, resulting in the creation of ''hot'' spots or ''cold'' spots. The purpose of this work was to perform preliminary investigations into the feasibility of exploiting these variations to reduce dose to selected radiosensitive organs solely by varying the tube start angle in CT scans. Methods: Radiation dose to several radiosensitive organs (including breasts, thyroid, uterus, gonads, and eye lenses) resulting from MDCTmore » scans were estimated using Monte Carlo simulation methods on voxelized patient models, including GSF's Baby, Child, and Irene. Dose to fetus was also estimated using four pregnant female models based on CT images of the pregnant patients. Whole-body scans were simulated using 120 kVp, 300 mAs, both 28.8 and 40 mm nominal collimations, and pitch values of 1.5, 1.0, and 0.75 under a wide range of start angles (0 deg. - 340 deg. in 20 deg. increments). The relationship between tube start angle and organ dose was examined for each organ, and the potential dose reduction was calculated. Results: Some organs exhibit a strong dose variation, depending on the tube start angle. For small peripheral organs (e.g., the eye lenses of the Baby phantom at pitch 1.5 with 40 mm collimation), the minimum dose can be 41% lower than the maximum dose, depending on the tube start angle. In general, larger dose reductions occur for smaller peripheral organs in smaller patients when wider collimation is used. Pitch 1.5 and pitch 0.75 have different mechanisms of dose reduction. For pitch 1.5 scans, the dose is usually lowest when the tube start angle is such that the x-ray tube is posterior to the patient when it passes the longitudinal location of the organ. For pitch 0.75 scans, the dose is lowest when the tube start angle is such that the x-ray tube is anterior to the patient when it passes the longitudinal location of the organ. Conclusions: Helical MDCT scanning at pitch 1.5 and pitch 0.75 results in ''cold spots'' and ''hot spots'' that are created both at surface and in-depth locations within patients. For organs that have a relatively small longitudinal extent, dose can vary considerably with different start angles. While current MDCT systems do not provide the user with the ability to control the tube start angle, these results indicate that in these specific situations (pitch 1.5 or pitch 0.75, small organs and especially small patients), there could be significant dose savings to organs if that functionality would be provided.« less

  13. Adaptive statistical iterative reconstruction and bismuth shielding for evaluation of dose reduction to the eye and image quality during head CT

    NASA Astrophysics Data System (ADS)

    Kim, Myeong Seong; Choi, Jiwon; Kim, Sun Young; Kweon, Dae Cheol

    2014-03-01

    There is a concern regarding the adverse effects of increasing radiation doses due to repeated computed tomography (CT) scans, especially in radiosensitive organs and portions thereof, such as the lenses of the eyes. Bismuth shielding with an adaptive statistical iterative reconstruction (ASIR) algorithm was recently introduced in our clinic as a method to reduce the absorbed radiation dose. This technique was applied to the lens of the eye during CT scans. The purpose of this study was to evaluate the reduction in the absorbed radiation dose and to determine the noise level when using bismuth shielding and the ASIR algorithm with the GE DC 750 HD 64-channel CT scanner for CT of the head of a humanoid phantom. With the use of bismuth shielding, the noise level was higher in the beam-hardening artifact areas than in the revealed artifact areas. However, with the use of ASIR, the noise level was lower than that with the use of bismuth alone; it was also lower in the artifact areas. The reduction in the radiation dose with the use of bismuth was greatest at the surface of the phantom to a limited depth. In conclusion, it is possible to reduce the radiation level and slightly decrease the bismuth-induced noise level by using a combination of ASIR as an algorithm process and bismuth as an in-plane hardware-type shielding method.

  14. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    PubMed

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    PubMed Central

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  16. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  17. Strain Evolution of Annealed Hydrogen-Implanted (0001) Sapphire

    NASA Astrophysics Data System (ADS)

    Wong, Christine Megan

    Exfoliation is a technique used to remove a thin, uniform layer of material from the bulk that involves the annealing of hydrogen ion-implanted materials in order to initiate defect nucleation and growth leading to guided crack propagation. This study presents an investigation into the annealing process required to initiate blistering (an essential precursor to exfoliation) in (0001) sapphire implanted at room temperature with hydrogen ions. Triple axis x-ray diffraction was used to characterize the evolution of the implanted layer for single crystal (0001) sapphire substrates implanted at room temperature at 360 keV with either a 5x1016 cm -2 or 8x1016 cm-2 dose of hydrogen ions. A simulation of the ion distribution in TRIM estimated that the projected range and thickness of the implanted layer for both doses was approximately 2.2 mum. Following implantation, the implanted sapphire was annealed using a two-step annealing procedure. The first step was performed at a lower temperature, ideally to nucleate and coarsen defects. Temperatures investigated ranged from 550 - 650 °C. The second step was performed at a higher temperature (800 °C) to induce further defect coarsening and surface blistering. After all annealing steps, triple axis o/2theta and o scans were taken to observe any changes in the diffraction profile - namely, any reduction in the amplitude and shift in the location of the fringes associated with strain in the crystal - which would correlate with defect growth and nucleation. It was found that significant strain fringe reduction first occurred after annealing at 650 °C for 8 hours for both doses; however, it was not clear whether or not this strain reduction was due primarily to hydrogen diffusion or to recovery of other defects induced during the ion implantation. The o/2theta curves were then fit using Bede RADS in order to quantify the strain within the crystal and confirm the reduction of the strained layer within the crystal. Finally, Nomarski optical images of the sample surfaces were taken after each step to observe any visual changes or blistering that might have occurred. These optical images showed that the strain reduction observed using XRD did not correlate to blistering, as no blisters were observed in any of the optical images. Experimental results showed that at temperatures below 650 °C, no significant strain reduction occurs in hydrogen ion implanted (0001) sapphire. It has also been determined that for (0001) sapphire implanted at room temperature, it was not possible to produce surface blistering after a two-step annealing process at 650 °C and 800 °C, although significant strain reduction did occur, and ? scans showed peak broadening with subsequent annealing, indicating increasing mosaicity and potential defect nucleation. This was in contrast to previous findings that asserted that for sapphire annealed at 650 °C, surface blistering was observable. As previous findings were based on sapphire implanted at elevated temperatures, this may imply that the sapphire substrate reaches a higher temperature than expected during such implantation processes, which may account for the capability for surface blistering at a lower temperature. Conversely, for room temperature ion implantation, temperatures greater than 800 °C may be necessary to first nucleate hydrogen platelet defects and then produce surface blistering.

  18. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  19. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  20. SU-E-T-777: Use of Tennis Racket and Air Gap Between the Body and Carbon Fiber Couch for Skin Sparing in Radiation Therapy of Prone Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lief, E

    2015-06-15

    Purpose: To reduce the skin dose from the carbon fiber couch scatter in radiation treatment of breast cancer in the prone position. If this issue is not addressed, the prone breast touching the solid carbon fiber couch can absorb significant dose to the skin and cause the skin reaction. Methods: 1. Use of “tennis racket” instead of the solid couch. To check this hypothesis, we measured the dose at the depth of 5 mm in solid water phantom placed on the couch, using a Farmer chamber. A plan for a patient with 6MV beams, gantry angles of 113 and 286more » degrees Varian scale was used. It was found that treatment with “tennis racket” instead of the solid carbon fiber couch reduces the surface dose by 5–7%, depending on the beam direction. 2. Use of the air gap between the couch and the body was analyzed using radiochromic film on the surface of the solid water phantom 10 cm thick. Initially the phantom was placed on the couch with the film sandwiched in between. Two fields at the angles of 135 and 315 degrees were used. The measurements were repeated for the air gap of 2 and 5 cm and 6 and 15 MV beams. Results: It was found that a 2-cm gap decreased the surface dose by 3% for a 6 MV beam and by 5.5% for a 15 MV beam. A 5-cm gap reduced the dose by 9% for 6 MV and 13.5% for 15 MV. Conclusion: Use of both methods (combined if possible) can significantly reduce the surface dose in radiation therapy of the prone breast and possible skin reaction. We plan to explore dependence of the dose reduction upon the angle of incidence.« less

  1. An overview of zinc addition for BWR dose rate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, W.J.

    1995-03-01

    This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less

  2. Earlier therapeutic effects associated with high dose (2.0 mg) Ranibizumab for treatment of vascularized pigment epithelial detachments in age-related macular degeneration

    PubMed Central

    Chan, C K; Abraham, P; Sarraf, D; Nuthi, A S D; Lin, S G; McCannel, C A

    2015-01-01

    Summary statement Intravitreal high dose (2 mg) ranibizumab may lead to quicker resolution of choroidal neovascularization (CNV) and associated retinal pigment epithelial detachment in eyes with exudative age-related macular degeneration, although it may possibly correlate with RPE tears in certain cases. Purpose This prospective study compared the outcomes of 0.5 vs 2.0 mg intravitreal ranibizumab injections (RI) for treating vascularized pigment epithelial detachment (vPED) due to age-related macular degeneration. Methods Patients with vPED were randomized to receive 2.0 vs 0.5 mg RI monthly for 12 months or for 4 months and then repeated on a pro-re nata basis. Optical coherence tomography, fundus photography, and fluorescein and indocyanine-green angiography were obtained at baseline and subsequent specific intervals. Outcome measures were best-corrected standardized visual acuities, central 1-mm thickness, surface area (SA), greatest linear diameter (GLD), heights (PED and CNV), and amount of subretinal fluid (SRF) and cystoid macular edema (CME). Results Both groups yielded reductions of the central 1-mm thickness, PED and CNV SA and PED height and GLD, SRF, and CME. Vision improvement and reduction in SRF and PED height occurred earlier for eyes receiving the 2.0 mg dose. Cataract progression was similar but RPE tears developed more often with the 2.0 mg dose. Conclusions There were similar visual and anatomical outcomes at the end of the study; however, the higher dose yielded more rapid reductions and more complete resolution of the PED, although there was possible increased tendency for an RPE tear with the higher dose. PMID:25277305

  3. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    PubMed Central

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  4. 10 CFR 71.51 - Additional requirements for Type B packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...

  5. 10 CFR 71.51 - Additional requirements for Type B packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...

  6. 10 CFR 71.51 - Additional requirements for Type B packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...

  7. 10 CFR 71.51 - Additional requirements for Type B packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...

  8. 10 CFR 71.51 - Additional requirements for Type B packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...

  9. Radiation levels and image quality in patients undergoing chest X-ray examinations

    NASA Astrophysics Data System (ADS)

    de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto

    2017-11-01

    Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.

  10. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  11. An evaluation of in-plane shields during thoracic CT.

    PubMed

    Foley, S J; McEntee, M F; Rainford, L A

    2013-08-01

    The object of this study was to compare organ dose and image quality effects of using bismuth and barium vinyl in-plane shields with standard and low tube current thoracic CT protocols. A RANDO phantom was scanned using a 64-slice CT scanner and three different thoracic protocols. Thermoluminescent dosemeters were positioned in six locations to record surface and absorbed breast and lung doses. Image quality was assessed quantitatively using region of interest measurements. Scanning was repeated using bismuth and barium vinyl in-plane shields to cover the breasts and the results were compared with standard and reduced dose protocols. Dose reductions were most evident in the breast, skin and anterior lung when shielding was used, with mean reductions of 34, 33 and 10 % for bismuth and 23, 18 and 11 % for barium, respectively. Bismuth was associated with significant increases in both noise and CT attenuation values for all the three protocols, especially anteriorly and centrally. Barium shielding had a reduced impact on image quality. Reducing the overall tube current reduced doses in all the locations by 20-27 % with similar increases in noise as shielding, without impacting on attenuation values. Reducing the overall tube current best optimises dose with minimal image quality impact. In-plane shields increase noise and attenuation values, while reducing anterior organ doses primarily. Shielding remains a useful optimisation tool in CT and barium is an effective alternative to bismuth especially when image quality is of concern.

  12. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  13. Efficacy of sacubitril/valsartan vs. enalapril at lower than target doses in heart failure with reduced ejection fraction: the PARADIGM-HF trial.

    PubMed

    Vardeny, Orly; Claggett, Brian; Packer, Milton; Zile, Michael R; Rouleau, Jean; Swedberg, Karl; Teerlink, John R; Desai, Akshay S; Lefkowitz, Martin; Shi, Victor; McMurray, John J V; Solomon, Scott D

    2016-10-01

    In this analysis, we utilized data from PARADIGM-HF to test the hypothesis that participants who exhibited any dose reduction during the trial would have similar benefits from lower doses of sacubitril/valsartan relative to lower doses of enalapril. In a post-hoc analysis from PARADIGM-HF, we characterized patients by whether they received the maximal dose (200 mg sacubitril/valsartan or 10 mg enalapril twice daily) throughout the trial or had any dose reduction to lower doses (100/50/0 mg sacubitril/valsartan or 5/2.5/0 mg enalapril twice daily). The treatment effect for the primary outcome was estimated, stratified by dose level using time-updated Cox regression models. In the two treatment arms, participants with a dose reduction (43% of those randomized to enalapril and 42% of those randomized to sacubitril/valsartan) had similar baseline characteristics and similar baseline predictors of the need for dose reduction. In a time-updated analysis, any dose reduction was associated with a higher subsequent risk of the primary event [hazard ratio (HR) 2.5, 95% confidence interval (CI) 2.2-2.7]. However, the treatment benefit of sacubitril/valsartan over enalapril following a dose reduction was similar (HR 0.80, 95% CI 0.70-0.93, P < 0.001) to that observed in patients who had not experienced any dose reduction (HR 0.79, 95% CI 0.71-0.88, P < 0.001). In PARADIGM-HF, study medication dose reduction identified patients at higher risk of a major cardiovascular event. The magnitude of benefit for patients on lower doses of sacubitril/valsartan relative to those on lower doses of enalapril was similar to that of patients who remained on target doses of both drugs. © 2016 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

  14. Assessing the efficacy of Duddingtonia flagrans chlamydospores per gram of faeces to control Haemonchus contortus larvae.

    PubMed

    Ojeda-Robertos, Nadia Florencia; Torres-Acosta, Juan Felipe de Jesus; Aguilar-Caballero, Armando Jacinto; Ayala-Burgos, Armín; Cob-Galera, Ligia Amira; Sandoval-Castro, Carlos Alfredo; Barrientos-Medina, Roberto Carlos; de Gives, Pedro Mendoza

    2008-12-20

    The aims were (a) to quantify the number of Duddingtonia flagrans chlamydospores per gram of faeces (CPG) recovered from sheep administered with different oral doses and, (b) to describe the relationship between CPG and eggs per gram of faeces (EPG) on the efficacy to reduce Haemonchus contortus infective larvae. Three doses of chlamydospores per kg BW were orally administered during seven days: (T1) non treated control group, (T2) 1 x 10(6), (T3) 2.5 x 10(6) and (T4) 5 x 10(6). Three lambs, infected with H. contortus, were used per group. Faeces were obtained from the rectum of each lamb during the fungal administration period (days 0-6) and for six days after that period. Four coproculture replicates were made from each animal in days 2, 4, 6, 8 and 10. A higher chlamydospore dose produced higher CPG in faeces (p < 0.05), but a clear dose dependent effect was not found either in the larvae reduction or in the CPG:EPG ratio. When ratios were re-analyzed, independently of the treatment groups of origin, a better efficacy was obtained with a ratio from 5 to 10 CPG:EPG and a higher ratio (> 10 per egg) showed a lower reduction efficacy (p < 0.05). The binomial analysis showed that for each unit of increment in CPG:EPG ratio there was a reduction of larvae number until a point (between 5 and 10 CPG:EPG) where no further reduction was detected. The surface response test indicated that the number of larvae was reduced by CPG until possible saturation. The highest CPG:EPG ratios did not necessarily improve efficacy of D. flagrans.

  15. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  16. TH-AB-209-03: Overcoming Resolution Limitations of Diffuse Optical Signals in X-Ray Induced Luminescence (XIL) Imaging Via Selective Plane Illumination and 2D Deconvolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, B; Smith, C; La Riviere, P

    2016-06-15

    Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less

  17. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia

    PubMed Central

    Hawwa, Ahmed F; Collier, Paul S; Millership, Jeff S; McCarthy, Anthony; Dempsey, Sid; Cairns, Carole; McElnay, James C

    2008-01-01

    WHAT IS ALREADY KNOWN ABOUT THIS SUBJECTThe cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself.Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDSThe first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed.The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates.The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype. PMID:18823306

  18. Evaluation of the stepwise collimation method for the reduction of the patient dose in full spine radiography

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Lee, Sunyoung; Yang, Injeong; Yoon, Myeonggeun

    2014-05-01

    The purpose of this study is to evaluate the dose reduction when using the stepwise collimation method for scoliosis patients undergoing full spine radiography. A Monte Carlo simulation was carried out to acquire dose vs. volume data for organs at risk (OAR) in the human body. While the effective doses in full spine radiography were reduced by 8, 15, 27 and 44% by using four different sizes of the collimation, the doses to the skin were reduced by 31, 44, 55 and 66%, indicating that the reduction of the dose to the skin is higher than that to organs inside the body. Although the reduction rates were low for the gonad, being 9, 14, 18 and 23%, there was more than a 30% reduction in the dose to the heart, suggesting that the dose reduction depends significantly on the location of the OARs in the human body. The reduction rate of the secondary cancer risk based on the excess absolute risk (EAR) varied from 0.6 to 3.4 per 10,000 persons, depending on the size of the collimation. Our results suggest that the stepwise collimation method in full spine radiography can effectively reduce the patient dose and the radiation-induced secondary cancer risk.

  19. Low-dose gamma irradiation following hot water immersion of papaya (Carica papaya linn.) fruits provides additional control of postharvest fungal infection to extend shelf life

    NASA Astrophysics Data System (ADS)

    Rashid, M. H. A.; Grout, B. W. W.; Continella, A.; Mahmud, T. M. M.

    2015-05-01

    Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability. The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels.

  20. Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.

    PubMed

    Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku

    2017-01-01

    The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.

  1. Onsite wastewater nitrogen reduction with expanded media and elemental sulfur biofiltration.

    PubMed

    Smith, D P

    2012-01-01

    A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.

  2. Effect of reduced agalsidase Beta dosage in fabry patients: the Australian experience.

    PubMed

    Ghali, Joanna; Nicholls, Kathy; Denaro, Charles; Sillence, David; Chapman, Ian; Goldblatt, Jack; Thomas, Mark; Fletcher, Janice

    2012-01-01

    In Australia, enzyme replacement therapy (ERT) for Fabry Disease (FD), both Agalsidase alfa (Replagal, Shire HGT) and beta (Fabrazyme, Genzyme), is funded and monitored through a specific government program. Agalsidase beta supply has been rationed by Genzyme since 2009 due to manufacturing issues. Consequently, the Australian Fabry Disease Advisory Committee has treated patients on Agalsidase beta at 50% of their usual dose from mid-2009, with a further reduction to 30% for some patients from late 2009. To determine the clinical effect of Agalsidase beta dose reduction in the Australian FD patient cohort. A questionnaire assessing FD symptoms was administered to 40 patients on long-term ERT. Clinical data from The Fabry Registry for patients receiving Agalsidase alfa or beta, for at least 2 years prior to the time of enforced Agalsidase beta dose reduction, were reviewed. Disease burden and quality of life (QOL) were graded using the Disease Severity Scoring System, Mainz Severity Score Index, Brief Pain Inventory and Short Form 36 Health Survey at 2 years before dose reduction, at the time of dose reduction and at the most recent clinical review following dose reduction. Disease severity and QOL scores did not change between the ERT groups. Males on Agalsidase beta reported lower energy levels after dose reduction, while no change was reported by females on either product or by males on a stable dose of Agalsidase alfa. This study suggests that energy levels in male patients worsen after dose reduction of Agalsidase beta.

  3. Efficacy of radiation safety glasses in interventional radiology.

    PubMed

    van Rooijen, Bart D; de Haan, Michiel W; Das, Marco; Arnoldussen, Carsten W K P; de Graaf, R; van Zwam, Wim H; Backes, Walter H; Jeukens, Cécile R L P N

    2014-10-01

    This study was designed to evaluate the reduction of the eye lens dose when wearing protective eyewear in interventional radiology and to identify conditions that optimize the efficacy of radiation safety glasses. The dose reduction provided by different models of radiation safety glasses was measured on an anthropomorphic phantom head. The influence of the orientation of the phantom head on the dose reduction was studied in detail. The dose reduction in interventional radiological practice was assessed by dose measurements on radiologists wearing either leaded or no glasses or using a ceiling suspended screen. The different models of radiation safety glasses provided a dose reduction in the range of a factor of 7.9-10.0 for frontal exposure of the phantom. The dose reduction was strongly reduced when the head is turned to the side relative to the irradiated volume. The eye closest to the tube was better protected due to side shielding and eyewear curvature. In clinical practice, the mean dose reduction was a factor of 2.1. Using a ceiling suspended lead glass shield resulted in a mean dose reduction of a factor of 5.7. The efficacy of radiation protection glasses depends on the orientation of the operator's head relative to the irradiated volume. Glasses can offer good protection to the eye under clinically relevant conditions. However, the performance in clinical practice in our study was lower than expected. This is likely related to nonoptimized room geometry and training of the staff as well as measurement methodology.

  4. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, themore » N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.« less

  5. SU-E-T-373: Evaluation and Reduction of Contralateral Skin /subcutaneous Dose for Tangential Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Carroll, S; Whitaker, M

    2015-06-15

    Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less

  6. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    PubMed

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.

  7. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial

    PubMed Central

    Tarcha, Eric J.; Probst, Peter; Peckham, David; Muñoz-Elías, Ernesto J.; Kruger, James G.; Iadonato, Shawn P.

    2017-01-01

    Background Dalazatide is a specific inhibitor of the Kv1.3 potassium channel. The expression and function of Kv1.3 channels are required for the function of chronically activated memory T cells, which have been shown to be key mediators of autoimmune diseases, including psoriasis. Objective The primary objective was to evaluate the safety of repeat doses of dalazatide in adult patients with mild-to-moderate plaque psoriasis. Secondary objectives were to evaluate clinical proof of concept and the effects of dalazatide on mediators of inflammation in the blood and on chronically activated memory T cell populations. Methods Patients (n = 24) were randomized 5:5:2 to receive dalazatide at 30 mcg/dose, 60 mcg/dose, or placebo twice weekly by subcutaneous injection (9 doses total). Safety was assessed on the basis of physical and neurological examination and laboratory testing. Clinical assessments included body-surface area affected, Psoriasis Area and Severity Index (PASI), and investigator and patient questionnaires. Results The most common adverse events were temporary mild (Grade 1) hypoesthesia (n = 20; 75% placebo, 85% dalazatide) and paresthesia (n = 15; 25% placebo, 70% dalazatide) involving the hands, feet, or perioral area. Nine of 10 patients in the 60 mcg/dose group had a reduction in their PASI score between baseline and Day 32, and the mean reduction in PASI score was significant in this group (P < 0.01). Dalazatide treatment reduced the plasma levels of multiple inflammation markers and reduced the expression of T cell activation markers on peripheral blood memory T cells. Limitations The study was small and drug treatment was for a short duration (4 weeks). Conclusion This study indicates that dalazatide is generally well tolerated and can improve psoriatic skin lesions by modulating T cell surface and activation marker expression and inhibiting mediators of inflammation in the blood. Larger studies of longer duration are warranted. PMID:28723914

  8. The mechanisms of delayed onset type adverse reactions to oseltamivir

    PubMed Central

    Hama, Rokuro

    2016-01-01

    Abstract Oseltamivir is recommended for the treatment and prophylaxis of influenza in persons at higher risk for influenza complications such as individuals with diabetes, neuropsychiatric illnesses, and respiratory, cardiac, renal, hepatic or haematological diseases. However, a recent Cochrane review reported that reduction of antibody production, renal disorders, hyperglycaemia, psychiatric disorders, and QT prolongation may be related to oseltamivir use. The underlying mechanisms are reviewed. There is decisive evidence that administration of a clinically compatible dose of oseltamivir in mice challenged by a respiratory syncytial virus (RSV) that lacks a neuraminidase gene showed symptom-relieving effects and inhibition of viral clearance. These effects were accompanied by decreased level of T cell surface sialoglycosphingolipid (ganglioside) GM1 that is regulated by the endogenous neuraminidase in response to viral challenge. Clinical and non-clinical evidence supports the view that the usual dose of oseltamivir suppresses pro-inflammatory cytokines such as interferon-gamma, interleukin-6, and tumour necrosis factor-alpha almost completely with partial suppression of viral shedding in human influenza virus infection experiment. Animal toxicity tests support the clinical evidence with regard to renal and cardiac disorders (bradycardia and QT prolongation) and do not disprove the metabolic effect. Reduction of antibody production and cytokine induction and renal, metabolic, cardiac, and prolonged psychiatric disorders after oseltamivir use may be related to inhibition of the host’s endogenous neuraminidase. While the usual clinical dose of zanamivir may not have this effect, a higher dose or prolonged administration of zanamivir and other neuraminidase inhibitors may induce similar delayed reactions, including reduction of the antibody and/or cytokine production. PMID:27251370

  9. Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.

    PubMed

    Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A

    2017-05-01

    This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).

  10. Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT.

    PubMed

    Chatterson, Leslie C; Leswick, David A; Fladeland, Derek A; Hunt, Megan M; Webster, Stephen; Lim, Hyun

    2014-07-01

    Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P<0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P<0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P=0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P=0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal organ dose during CTPA. Shields continue to be an effective means of fetal dose reduction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. SU-F-J-16: Planar KV Imaging Dose Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershkevitsh, E; Zolotuhhin, D

    Purpose: IGRT has become an indispensable tool in modern radiotherapy with kV imaging used in many departments due to superior image quality and lower dose when compared to MV imaging. Many departments use manufacturer supplied protocols for imaging which are not always optimised between image quality and radiation dose (ALARA). Methods: Whole body phantom PBU-50 (Kyoto Kagaku ltd., Japan) for imaging in radiology has been imaged on Varian iX accelerator (Varian Medical Systems, USA) with OBI 1.5 system. Manufacturer’s default protocols were adapted by modifying kV and mAs values when imaging different anatomical regions of the phantom (head, thorax, abdomen,more » pelvis, extremities). Images with different settings were independently reviewed by two persons and their suitability for IGRT set-up correction protocols were evaluated. The suitable images with the lowest mAs were then selected. The entrance surface dose (ESD) for manufacturer’s default protocols and modified protocols were measured with RTI Black Piranha (RTI Group, Sweden) and compared. Image quality was also measured with kVQC phantom (Standard Imaging, USA) for different protocols. The modified protocols have been applied for clinical work. Results: For most cases optimized protocols reduced the ESD on average by a factor of 3(range 0.9–8.5). Further reduction in ESD has been observed by applying bow-tie filter designed for CBCT. The largest reduction in dose (12.2 times) was observed for Thorax lateral protocol. The dose was slightly increased (by 10%) for large pelvis AP protocol. Conclusion: Manufacturer’s default IGRT protocols could be optimised to reduce the ESD to the patient without losing the necessary image quality for patient set-up correction. For patient set-up with planar kV imaging the bony anatomy is mostly used and optimization should focus on this aspect. Therefore, the current approach with anthropomorphic phantom is more advantageous in optimization over standard kV quality control phantoms and SNR metrics.« less

  12. A radiobiological model of metastatic burden reduction for molecular radiotherapy: application to patients with bone metastases

    NASA Astrophysics Data System (ADS)

    Denis-Bacelar, Ana M.; Chittenden, Sarah J.; Murray, Iain; Divoli, Antigoni; McCready, V. Ralph; Dearnaley, David P.; O'Sullivan, Joe M.; Johnson, Bernadette; Flux, Glenn D.

    2017-04-01

    Skeletal tumour burden is a biomarker of prognosis and survival in cancer patients. This study proposes a novel method based on the linear quadratic model to predict the reduction in metastatic tumour burden as a function of the absorbed doses delivered from molecular radiotherapy treatments. The range of absorbed doses necessary to eradicate all the bone lesions and to reduce the metastatic burden was investigated in a cohort of 22 patients with bone metastases from castration-resistant prostate cancer. A metastatic burden reduction curve was generated for each patient, which predicts the reduction in metastatic burden as a function of the patient mean absorbed dose, defined as the mean of all the lesion absorbed doses in any given patient. In the patient cohort studied, the median of the patient mean absorbed dose predicted to reduce the metastatic burden by 50% was 89 Gy (interquartile range: 83-105 Gy), whilst a median of 183 Gy (interquartile range: 107-247 Gy) was found necessary to eradicate all metastases in a given patient. The absorbed dose required to eradicate all the lesions was strongly correlated with the variability of the absorbed doses delivered to multiple lesions in a given patient (r  =  0.98, P  <  0.0001). The metastatic burden reduction curves showed a potential large reduction in metastatic burden for a small increase in absorbed dose in 91% of patients. The results indicate the range of absorbed doses required to potentially obtain a significant survival benefit. The metastatic burden reduction method provides a simple tool that could be used in routine clinical practice for patient selection and to indicate the required administered activity to achieve a predicted patient mean absorbed dose and reduction in metastatic tumour burden.

  13. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    PubMed

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  14. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction

    PubMed Central

    Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-01-01

    Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322

  15. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction.

    PubMed

    Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-05-01

    Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.

  16. Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

    PubMed Central

    Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M

    2017-01-01

    Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572

  17. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    PubMed

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S; Shulkin, B

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed withmore » the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co-localization of hybrid CT anatomy and PET radioisotope uptake.« less

  19. Dose and risk in diagnostic radiology: How big How little Lecture Number 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, E.W.

    1992-01-01

    This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancermore » after diagnostic dose of I-131.« less

  20. Disease activity guided dose reduction and withdrawal of adalimumab or etanercept compared with usual care in rheumatoid arthritis: open label, randomised controlled, non-inferiority trial.

    PubMed

    van Herwaarden, Noortje; van der Maas, Aatke; Minten, Michiel J M; van den Hoogen, Frank H J; Kievit, Wietske; van Vollenhoven, Ronald F; Bijlsma, Johannes W J; van den Bemt, Bart J F; den Broeder, Alfons A

    2015-04-09

    To evaluate whether a disease activity guided strategy of dose reduction of two tumour necrosis factor (TNF) inhibitors, adalimumab or etanercept, is non-inferior in maintaining disease control in patients with rheumatoid arthritis compared with usual care. Randomised controlled, open label, non-inferiority strategy trial. Two rheumatology outpatient clinics in the Netherlands, from December 2011 to May 2014. 180 patients with rheumatoid arthritis and low disease activity using adalimumab or etanercept; 121 allocated to the dose reduction strategy, 59 to usual care. Disease activity guided dose reduction (advice to stepwise increase the injection interval every three months, until flare of disease activity or discontinuation) or usual care (no dose reduction advice). Flare was defined as increase in DAS28-CRP (a composite score measuring disease activity) greater than 1.2, or increase greater than 0.6 and current score of at least 3.2. In the case of flare, TNF inhibitor use was restarted or escalated. Difference in proportions of patients with major flare (DAS28-CRP based flare longer than three months) between the two groups at 18 months, compared against a non-inferiority margin of 20%. Secondary outcomes included TNF inhibitor use at study end, functioning, quality of life, radiographic progression, and adverse events. Dose reduction of adalimumab or etanercept was non-inferior to usual care (proportion of patients with major flare at 18 months, 12% v 10%; difference 2%, 95% confidence interval -12% to 12%). In the dose reduction group, TNF inhibitor use could successfully be stopped in 20% (95% confidence interval 13% to 28%), the injection interval successfully increased in 43% (34% to 53%), but no dose reduction was possible in 37% (28% to 46%). Functional status, quality of life, relevant radiographic progression, and adverse events did not differ between the groups, although short lived flares (73% v 27%) and minimal radiographic progression (32% v 15%) were more frequent in dose reduction than usual care. A disease activity guided, dose reduction strategy of adalimumab or etanercept to treat rheumatoid arthritis is non-inferior to usual care with regard to major flaring, while resulting in the successful dose reduction or stopping in two thirds of patients.Trial registration Dutch trial register (www.trialregister.nl), NTR 3216. © van Herwaarden et al 2015.

  1. A dose ranging study of ibuprofen suspension as an antipyretic.

    PubMed Central

    Marriott, S C; Stephenson, T J; Hull, D; Pownall, R; Smith, C M; Butler, A

    1991-01-01

    A double blind trial was conducted to determine the dose of ibuprofen suspension, which is effective in reducing the body temperature. The principal measure of efficacy was a reduction in axillary temperature of 1 degree C or more three hours after dosing. A second objective of the trial was to compare the incidence and severity of side effects and the palatability of a range of ibuprofen doses. Ninety three children were included in the analysis. All four doses of ibuprofen studied (0.625 mg/kg-5 mg/kg) were associated with temperature reduction and only the lowest dose failed to satisfy the principal measure of efficacy. The influence of dose on the magnitude of the body temperature reduction was significant and the 5 mg/kg dose achieved the largest mean reduction in body temperature (2 degrees C). The tolerability and palatability of all doses studied were excellent. These findings suggest that ibuprofen is a good alternative to paracetamol as an antipyretic. PMID:1929509

  2. Impact on dose and image quality of a software-based scatter correction in mammography.

    PubMed

    Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén

    2018-06-01

    Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.

  3. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Chung, J

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less

  4. Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: application of the response surface methodology.

    PubMed

    Formentini-Schmitt, Dalila Maria; Fagundes-Klen, Márcia Regina; Veit, Márcia Teresinha; Palácio, Soraya Moreno; Trigueros, Daniela Estelita Goes; Bergamasco, Rosangela; Mateus, Gustavo Affonso Pisano

    2018-03-02

    In this work, the coagulation/flocculation/sedimentation treatment of dairy wastewater samples was investigated through serial factorial designs utilizing the saline extract obtained from Moringa oleifera (Moringa) as a coagulant. The sedimentation time (ST), pH, Moringa coagulant (MC) dose and concentration of CaCl 2 have been evaluated through the response surface methodology in order to obtain the ideal turbidity removal (TR) conditions. The empirical quadratic model, in conjunction with the desirability function, demonstrated that it is possible to obtain TRs of 98.35% using a coagulant dose, concentration of CaCl 2 and pH of 280 mg L -1 , 0.8 mol L -1 and 9, respectively. The saline extract from Moringa presented its best efficiency at an alkaline pH, which influenced the reduction of the ST to a value of 25 min. It was verified that the increase in the solubility of the proteins in the Moringa stimulated the reduction of the coagulant content in the reaction medium, and it is related to the use of calcium chloride as an extracting agent of these proteins. The MC proved to be an excellent alternative for the dairy wastewater treatment, compared to the traditional coagulants.

  5. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less

  6. Radiation dose management in thoracic CT: an international survey.

    PubMed

    Molinari, Francesco; Tack, Denis M; Boiselle, Philip; Ngo, Long; Mueller-Mang, Christina; Litmanovich, Diana; Bankier, Alexander A

    2013-01-01

    We aimed to examine current practice patterns of international thoracic radiologists regarding radiation dose management in adult thoracic computed tomography (CT) examinations. An electronic questionnaire was sent to 800 members of five thoracic radiology societies in North America, Europe, Asia, and Latin America addressing radiation dose training and education, standard kVp and mAs settings for thoracic CT, dose reduction practices, clinical scenarios, and demographics. Of the 800 radiologists, 146 responded to our survey. Nearly half (66/146, 45% [95% confidence interval, 37%-53%]) had no formal training in dose reduction, with "self-study of the literature" being the most common form of training (54/146, 37% [29%-45%]). One hundred and seventeen (80% [74%-87%]) had automatic exposure control, and 76 (65% [56%-74%]) used it in all patients. Notably, most respondents (89% [84%-94%]) used a 120 to 125 kVp standard setting, whereas none used 140 kVp. The most common average dose-length-product (DLP) value was 150 to 249 mGy.cm (75/146, 51% [43%-59%]), and 59% (51%-67%) delivered less than 250 mGy.cm in a 70 kg patient. There was a tendency towards higher DLP values with multidetector-row CT. Age, gender, and pregnancy were associated more with dose reduction than weight and clinical indication. Efforts for reducing patient radiation dose are highly prevalent among thoracic radiologists. Areas for improvement include reduction of default tube current settings, reduction of anatomical scan coverage, greater use of automatic exposure control, and eventually, reduction of current reference dose values. Our study emphasizes the need for international guidelines to foster greater conformity in dose reduction by thoracic radiologists.

  7. TH-EF-BRB-03: Significant Cord and Esophagus Dose Reduction by 4π Non-Coplanar Spine Stereotactic Body Radiation Therapy and Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Tran, A; Nguyen, D

    Purpose: To demonstrate significant organ-at-risk (OAR) sparing achievable with 4π non-coplanar radiotherapy on spine SBRT and SRS patients. Methods: Twenty-five stereotactic spine cases previously treated with VMAT (n = 23) or IMRT (n = 2) were included in this study. A computer-aided-design model of a Linac with a 3D-scanned human surface was utilized to determine the feasible beam space throughout the 4π steradian and beam specific source-to-target-distances (STD) required for collision avoidance. 4π radiotherapy plans integrating beam orientation and fluence map optimization were then created using a column-generation algorithm. Twenty optimal beams were selected for each case. To evaluate themore » tradeoff between dosimetric benefit and treatment complexity, 4π plans including only isocentrically deliverable beams were also created. Beam angles of all standard and isocentric 4π plans were imported into Eclipse to recalculate the dose using the same calculation engine as the clinical plans for unbiased comparison. OAR and PTV dose statistics for the clinical, standard-4π, and isocentric-4π plans were compared. Results: Comparing standard-4π to clinical plans, particularly significant average percent reduction in the [mean, maximum] dose of the cord and esophagus of [41%, 21.7%], and [38.7%, 36.4%] was observed, along with global decrease in all other OAR dose statistics. The average cord volume receiving more than 50% prescription dose was substantially decreased by 76%. In addition, improved PTV coverage was demonstrated with a maximum dose reduction of 0.93% and 1.66% increase in homogeneity index (D95/D5). All isocentric-4π plans achieved dosimetric performance equivalent to that of the standard-4π plans with higher delivery complexity. Conclusion: 4π radiotherapy significantly improves stereotactic spine treatment dosimetry. With the substantial OAR dose sparing, PTV dose escalation is considerably safer. Isocentric-4π is sufficient to achieve the dosimetric gain. The successful implementation of 4π using an FDA approved planning system paves the way for a prospective clinical trial. Varian Medical Systems, NIH R43CA183390 and R01CA188300, NSF graduate research fellowship DGE-1144087.« less

  8. Effects of oversized solutes on radiation-induced segregation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Hackett, M. J.; Busby, J. T.; Miller, M. K.; Was, G. S.

    2009-06-01

    Zirconium or hafnium additions to austenitic stainless steels caused a reduction in grain boundary Cr depletion after proton irradiations for up to 3 dpa at 400 °C and 1 dpa at 500 °C. The predictions of a radiation-induced segregation (RIS) model were also consistent with experiments in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. However, the experiments showed that the effectiveness of the solute additions disappeared above 3 dpa at 400 °C and above 1 dpa at 500 °C. The loss of solute effectiveness with increasing dose is attributed to a reduction in the amount of oversized solute from the matrix due to growth of carbide precipitates. Atom probe tomography measurements indicated a reduction in amount of oversized solute in solution as a function of irradiation dose. The observations were supported by diffusion analysis suggesting that significant solute diffusion by the vacancy flux to precipitate surfaces occurs on the time scales of proton irradiations. With a decrease in available solute in solution, improved agreement between the predictions of the RIS model and measurements were consistent with the solute-vacancy trapping process, as the mechanism for enhanced recombination and suppression of RIS.

  9. Drastic reduction of adsorption of CO and H2 on (111)-type Pd layers

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Soria, F.

    1983-01-01

    Clean surfaces of (111)-type Pd layers, grown from the vapor phase on Mo(110) at room temperature, were used to study the adsorption of CO and H2 by temperature-programmed desorption, Auger electron spectroscopy, and low-energy electron diffraction. Mild annealing of the as-grown layers during a single desorption cycle (to about 600 K) drastically reduces the adsorption for both adsorbates. Low-dose argon-ion bombardment introduces surface imperfections which restore a high adsorption probability. The results are interpreted in terms of particular (111)-type surface structures that persist tp layer thicknesses of about four monolayers; the results raise questions with respect to the surface structure of supported thin epitaxial islands and particles of Pd and possibly also with respect to conventional methods of preparing bulk surfaces of Pd for adsorption studies.

  10. Low muscle mass is associated with chemotherapy-induced haematological toxicity in advanced non-small cell lung cancer.

    PubMed

    Sjøblom, Bjørg; Grønberg, Bjørn H; Benth, Jūratė Šaltytė; Baracos, Vickie E; Fløtten, Øystein; Hjermstad, Marianne J; Aass, Nina; Jordhøy, Marit

    2015-10-01

    Recent research suggests a significant relationship between lean body mass (LBM) and toxicity from chemotherapeutic agents. We investigated if higher drug doses per kg LBM were associated with increased toxicity in stage IIIB/IV non-small cell lung cancer (NSCLC) patients receiving a first-line chemotherapy regimen dosed according to body surface area (BSA). Data from patients randomised to receive intravenous gemcitabine 1000 mg/m(2) plus orally vinorelbine 60 mg/m(2) days 1 and 8 in a phase III trial comparing two chemotherapy regimens were analysed. LBM was estimated from assessment of the cross-sectional muscle area at the third lumbar level (L3) on computed tomography images obtained before chemotherapy commenced. Common terminology criteria for adverse events (CTCAE) grade 3-4 haematological toxicity and dose reduction and/or stop of treatment after the first course of chemotherapy were defined as primary and secondary toxicity outcomes. The study sample included 153 patients, mean age was 66 years, 55% were men, 87% had disease stage IV and 75% had performance status (PS) 0-1. Gemcitabine doses per kg LBM varied from 23.2 to 53.1 mg/kg LBM, and vinorelbine doses from 1.5 to 3.3 mg/kg LBM. Higher doses of gemcitabine per kg LBM were significantly associated with grade 3-4 haematological toxicity in bivariate (OR=1.12, 95% CI 1.03-1.23, p=0.008) and multivariate analyses (OR=1.15, 95% CI 1.01-1.29, p=0.018), as were also higher doses of vinorelbine per kg LBM. No significant association was found between drug doses per kg LBM and dose reduction and/or stop of treatment. The study showed that dose estimates according to BSA lead to a substantial variation in drug dose per kg LBM, and higher doses per kg LBM are a significant predictor for chemotherapy-induced haematological toxicity. The results indicate that taking LBM into account may lead to a better dose individualisation of chemotherapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    PubMed

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  12. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer.

    PubMed

    Mohamed, Sandy; Lindegaard, Jacob Christian; de Leeuw, Astrid A C; Jürgenliemk-Schulz, Ina; Kirchheiner, Kathrin; Kirisits, Christian; Pötter, Richard; Tanderup, Kari

    2016-09-01

    Vaginal stenosis is a major problem following radiotherapy in cervical cancer. We investigated a new dose planning strategy for vaginal dose de-escalation (VDD). Fifty consecutive locally advanced cervical cancer patients without lower or middle vaginal involvement at diagnosis from 3 institutions were analysed. External beam radiotherapy was combined with MRI-guided brachytherapy. VDD was obtained by decreasing dwell times in ovoid/ring and increasing dwell times in tandem/needles. The aim was to maintain the target dose (D90 of HR-CTV⩾85Gy EQD2) while reducing the dose to the surface of the vagina to <140% of the physical fractional brachytherapy dose corresponding to a total EQD2 of 85Gy. The mean vaginal loading (ovoid/ring) was reduced from 51% to 33% of the total loading with VDD, which significantly reduced the dose to the vaginal dose points (p<0.001) without compromising the target dose. The dose to the ICRU recto-vaginal point was reduced by a mean of 4±4Gy EQD2 (p<0.001), while doses to bladder and rectum (D 2cm 3 ) were reduced by 2±2Gy and 3±2Gy, respectively (p<0.001). VDD significantly reduces dose to the upper vagina which is expected to result in reduction of vaginal stenosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  14. Patients with Fabry Disease after Enzyme Replacement Therapy Dose Reduction Versus Treatment Switch

    PubMed Central

    Krämer, Johannes; Duning, Thomas; Lenders, Malte; Canaan-Kühl, Sima; Krebs, Alice; González, Hans Guerrero; Sommer, Claudia; Üçeyler, Nurcan; Niemann, Markus; Störk, Stefan; Schelleckes, Michael; Reiermann, Stefanie; Stypmann, Jörg; Brand, Stefan-Martin; Wanner, Christoph; Brand, Eva

    2014-01-01

    Because of the shortage of agalsidase-beta in 2009, many patients with Fabry disease were treated with lower doses or were switched to agalsidase-alfa. This observational study assessed end-organ damage and clinical symptoms during dose reduction or switch to agalsidase-alfa. A total of 105 adult patients with Fabry disease who had received agalsidase-beta (1.0 mg/kg body weight) for ≥1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=38), receive a reduced dose of 0.3–0.5 mg/kg (dose-reduction group, n=29), or switch to 0.2 mg/kg agalsidase-alfa (switch group) and were followed prospectively for 1 year. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD); changes in cardiac, renal, and neurologic function; and Fabry-related symptoms (neuropathic pain, hypohidrosis, diarrhea, and disease severity scores). Organ function and Fabry-related symptoms remained stable in the regular-dose group. In contrast, estimated GFR decreased by about 3 ml/min per 1.73 m2 (P=0.01) in the dose-reduction group, and the median albumin-to-creatinine ratio increased from 114 (0–606) mg/g to 216 (0–2062) mg/g (P=0.03) in the switch group. Furthermore, mean Mainz Severity Score Index scores and frequencies of pain attacks, chronic pain, gastrointestinal pain, and diarrhea increased significantly in the dose-reduction and switch groups. In conclusion, patients receiving regular agalsidase-beta dose had a stable disease course, but dose reduction led to worsening of renal function and symptoms. Switching to agalsidase-alfa is safe, but microalbuminuria may progress and Fabry-related symptoms may deteriorate. PMID:24556354

  15. Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch.

    PubMed

    Weidemann, Frank; Krämer, Johannes; Duning, Thomas; Lenders, Malte; Canaan-Kühl, Sima; Krebs, Alice; Guerrero González, Hans; Sommer, Claudia; Üçeyler, Nurcan; Niemann, Markus; Störk, Stefan; Schelleckes, Michael; Reiermann, Stefanie; Stypmann, Jörg; Brand, Stefan-Martin; Wanner, Christoph; Brand, Eva

    2014-04-01

    Because of the shortage of agalsidase-beta in 2009, many patients with Fabry disease were treated with lower doses or were switched to agalsidase-alfa. This observational study assessed end-organ damage and clinical symptoms during dose reduction or switch to agalsidase-alfa. A total of 105 adult patients with Fabry disease who had received agalsidase-beta (1.0 mg/kg body weight) for ≥1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=38), receive a reduced dose of 0.3-0.5 mg/kg (dose-reduction group, n=29), or switch to 0.2 mg/kg agalsidase-alfa (switch group) and were followed prospectively for 1 year. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD); changes in cardiac, renal, and neurologic function; and Fabry-related symptoms (neuropathic pain, hypohidrosis, diarrhea, and disease severity scores). Organ function and Fabry-related symptoms remained stable in the regular-dose group. In contrast, estimated GFR decreased by about 3 ml/min per 1.73 m(2) (P=0.01) in the dose-reduction group, and the median albumin-to-creatinine ratio increased from 114 (0-606) mg/g to 216 (0-2062) mg/g (P=0.03) in the switch group. Furthermore, mean Mainz Severity Score Index scores and frequencies of pain attacks, chronic pain, gastrointestinal pain, and diarrhea increased significantly in the dose-reduction and switch groups. In conclusion, patients receiving regular agalsidase-beta dose had a stable disease course, but dose reduction led to worsening of renal function and symptoms. Switching to agalsidase-alfa is safe, but microalbuminuria may progress and Fabry-related symptoms may deteriorate.

  16. Relationship between radiation dose reduction and image quality change in photostimulable phosphor luminescence X-ray imaging systems.

    PubMed

    Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I

    2010-05-01

    The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.

  17. Systematic Evaluation of the Efficacy of Chlorine Dioxide in Decontamination of Building Interior Surfaces Contaminated with Anthrax Spores▿

    PubMed Central

    Rastogi, Vipin K.; Ryan, Shawn P.; Wallace, Lalena; Smith, Lisa S.; Shah, Saumil S.; Martin, G. Blair

    2010-01-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested. PMID:20305025

  18. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores.

    PubMed

    Rastogi, Vipin K; Ryan, Shawn P; Wallace, Lalena; Smith, Lisa S; Shah, Saumil S; Martin, G Blair

    2010-05-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested.

  19. Real-time colour pictorial radiation monitoring during coronary angiography: effect on patient peak skin and total dose during coronary angiography.

    PubMed

    Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C

    2016-10-10

    The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.

  20. Comparison of filgrastim and pegfilgrastim to prevent neutropenia and maintain dose intensity of adjuvant chemotherapy in patients with breast cancer.

    PubMed

    Kourlaba, Georgia; Dimopoulos, Meletios A; Pectasides, Dimitrios; Skarlos, Dimosthenis V; Gogas, Helen; Pentheroudakis, George; Koutras, Angelos; Fountzilas, George; Maniadakis, Nikos

    2015-07-01

    The aim of this study was to compare the effectiveness of prophylactic single fixed dose of pegfilgrastim and daily administration of filgrastim on febrile neutropenia (FN), severe neutropenia, treatment delay, and dose reduction in patients with breast cancer receiving dose-dense adjuvant chemotherapy. A retrospective cohort study with 1058 breast cancer patients matched by age and chemotherapy was conducted. The primary endpoints were FN, severe (grade 3, 4) neutropenia, dose reduction (>10 % reduction of the dose planned), and treatment delay (dose given more than 2 days later). Eighteen episodes of FN (3.4%) in the filgrastim group and 23 (4.3%) in the pegfilgrastim group (p = 0.500) were recorded. More than half of the total episodes (27/41) occurred during the first 4 cycles of treatment. Patients who received filgrastim were almost three times more likely to experience a severe neutropenia episode and were significantly more likely to experience a dose reduction (18.5%) compared to those who received pegfilgrastim (10.8%) (p < 0.001). The percentage of patients, who received their planned dose on time, was significantly lower in patients receiving filgrastim (58%) compared to those receiving pegfilgrastim (72.4%, p < 0.001). No significant difference was detected on FN rate between daily administration of filgrastim and single administration of pegfilgrastim. However, patients receiving pegfilgrastim had a significantly lower rate of severe neutropenia, as well as dose reduction and treatment delay, thus, achieving a higher dose density.

  1. Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi

    1995-03-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which wasmore » less than the initial target value.« less

  2. Effect of variations in the redox potential of Gleysol on barium mobility and absorption in rice plants.

    PubMed

    Magalhães, Marcio Osvaldo Lima; Sobrinho, Nelson Moura Brasil do Amaral; Zonta, Everaldo; de Carvalho, Michel Miranda; Tolón-Becerra, Alfredo

    2012-09-01

    Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg(-1) and 3000 mg kg(-1)-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of -250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d(-1) was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L(-1)) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V

    2015-02-01

    OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.

  4. Initial apixaban dosing in patients with atrial fibrillation.

    PubMed

    Buchholz, Alexander; Ueberham, Laura; Gorczynska, Kaja; Dinov, Borislav; Hilbert, Sebastian; Dagres, Nikolaos; Husser, Daniela; Hindricks, Gerhard; Bollmann, Andreas

    2018-05-01

    Apixaban is a non-vitamin K oral anticoagulant approved for prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (AF). Current labeling recommends dose reduction based on patient age, weight, and renal function. The aim of this study was to analyze adherence to current labeling instructions concerning initial apixaban dosing in clinical practice and identify factors associated with inappropriate dose reduction. Patients with AF initiated on apixaban in 2016 were identified in the Heart Center Leipzig database. Records were screened to identify patient characteristics, prescribed apixaban dose, renal function, and further dosing-relevant secondary diagnoses and co-medication. We identified 569 consecutive patients with AF initiated on apixaban. In 301 (52.9%) patients, apixaban was prescribed in standard dose (5 mg b.i.d.) and in 268 (47.1%) in a reduced dose (2.5 mg b.i.d.). Of 268 patients receiving a reduced dose, 163 (60.8%) did not meet labeling criteria for dose reduction. In univariate and multivariate regression analysis, age (OR: 0.736, 95% CI: 0.664-0.816, P < 0.0001), patient weight (OR: 1.120, 95% CI: 1.076-1.166, P < 0.0001), and serum creatinine level (OR: 0.910, 95% CI: 0.881-0.940, P < 0.0001) were independent predictors for apixaban underdosage. In clinical practice, apixaban dosing is frequently inconsistent with labeling. Factors associated with inappropriate dose reduction are age, patient weight, and serum creatinine level, the same factors used as criteria for dose adjustment. However, in underdosed patients, the 3 factors did not meet the criteria for dose reduction. © 2018 Wiley Periodicals, Inc.

  5. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  6. Commissioning a p-type silicon diode for use in clinical electron beams.

    PubMed

    Eveling, J N; Morgan, A M; Pitchford, W G

    1999-01-01

    Commissioning measurements were carried out on a p-type silicon diode detector for use in patient monitoring in high energy electron beams. Characteristics specific to the diode were examined. The variation in diode sensitivity with dose per pulse was found to be less than 1% over a range 0.069-0.237 mGy/pulse. The diode exhibited a sensitivity variation with accumulated dose of 10% per kGy and a sensitivity variation with surface temperature of 0.26%/degree C. The dependence of the diode response on the direction of the incident electron beam was investigated. Results were found to exceed the manufacturer's specifications. Output factors measured with the diode agree to within 1.5% of those measured with an NACP-02 air ionization chamber. The detector showed a variation in response with energy of 0.8% over the energy range 4-15 MeV. Prior to introducing the diode into clinical use, an assessment of beam perturbation directly behind the diode was made. The maximum reduction in local dose directly behind the diode at a depth of 1.0 cm below the surface was approximately 13% at 4 and 15 MeV.

  7. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  8. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus.

    PubMed

    Viszwapriya, Dharmaprakash; Prithika, Udayakumar; Deebika, Sundaresan; Balamurugan, Krishnaswamy; Pandian, Shunmugiah Karutha

    2016-10-01

    Biofilm formation of Group A Streptococcus (GAS) is recognized as an important virulent determinant. The present study reports the antibiofilm potential of seaweed (Gracilaria gracilis) surface associated Bacillus subtilis against GAS. Purification revealed 2,4-Di-tert-butyl-phenol (DTBP) as the active principle. DTBP exhibited a dose dependent antibiofilm activity against GAS (SF370 & six different clinical M serotypes). Microscopic analysis revealed changes in cell surface architecture and reduced thickness upon DTBP treatment. Results of extracellular polymeric substance quantification, microbial adhesion to hydrocarbon assay and fourier transform infrared spectroscopic analysis suggested that DTBP probably interferes with the initial adhesion stage of biofilm formation cascade. Reduction in hyaluronic acid synthesis goes in unison with blood survival assay wherein, increased susceptibility to phagocytosis was observed. In vivo studies using Caenorhabditis elegans manifested the reduction in adherence and virulence, which prompts further investigation of the potential of DTBP for the treatment of GAS infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Radiation protection of staff in 111In radionuclide therapy--is the lead apron shielding effective?

    PubMed

    Lyra, M; Charalambatou, P; Sotiropoulos, M; Diamantopoulos, S

    2011-09-01

    (111)In (Eγ = 171-245 keV, t1/2 = 2.83 d) is used for targeted therapies of endocrine tumours. An average activity of 6.3 GBq is injected into the liver by catheterisation of the hepatic artery. This procedure is time-consuming (4-5 min) and as a result, both the physicians and the technical staff involved are subjected to radiation exposure. In this research, the efficiency of the use of lead apron has been studied as far as the radiation protection of the working staff is concerned. A solution of (111)In in a cylindrical scattering phantom was used as a source. Close to the scattering phantom, an anthropomorphic male Alderson RANDO phantom was positioned. Thermoluminescent dosemeters were located in triplets on the front surface, in the exit and in various depths in the 26th slice of the RANDO phantom. The experiment was repeated by covering the RANDO phantom by a lead apron 0.25 mm Pb equivalent. The unshielded dose rates and the shielded photon dose rates were measured. Calculations of dose rates by Monte Carlo N-particle transport code were compared with this study's measurements. A significant reduction of 65 % on surface dose was observed when using lead apron. A decrease of 30 % in the mean absorbed dose among the different depths of the 26th slice of the RANDO phantom has also been noticed. An accurate correlation of the experimental results with Monte Carlo simulation has been achieved.

  10. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Correlates of individual differences in compensatory nicotine self-administration in rats following a decrease in nicotine unit dose

    PubMed Central

    Harris, Andrew C.; Pentel, Paul R.; LeSage, Mark G.

    2013-01-01

    Rationale The ability of tobacco harm reduction strategies to produce significant reductions in toxin exposure is limited by compensatory increases in smoking behavior. Characterizing factors contributing to the marked individual variability in compensation may be useful for understanding this phenomenon and assessing the feasibility of harm reduction interventions. Objective To use an animal model of human compensatory smoking that involves a decrease in unit dose supporting nicotine self-administration (NSA) to examine potential contributors to individual differences in compensation. Methods Rats were trained for NSA during daily 23 hr sessions at a unit dose of 0.06 mg/kg/inf until responding was stable. The unit dose was then reduced to 0.03 mg/kg/inf for at least 10 sessions. Following reacquisition of NSA at the training dose and extinction, single-dose nicotine pharmacokinetic parameters were determined. Results Decreases in nicotine intake following dose reduction were proportionally less than the decrease in unit dose, indicating partial compensation. Compensatory increases in infusion rates were observed across the course of the 23 hr sessions. The magnitude of compensation differed considerably between rats. Rats exhibiting the highest baseline infusion rates exhibited the lowest levels of compensation. Nicotine pharmacokinetic parameters were not significantly correlated with compensation. Infusion rates immediately returned to pre-reduction levels when baseline conditions were restored. Conclusions These findings provide initial insights into correlates of individual differences in compensation following a reduction in nicotine unit dose. The present assay may be useful for characterizing mechanisms and potential consequences of the marked individual differences in compensatory smoking observed in humans. PMID:19475400

  12. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short‐Acting β‐Agonist Formulations

    PubMed Central

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai

    2017-01-01

    Abstract Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3‐by‐1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration–recommended 3‐by‐1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3‐by‐1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90‐μg test dose and a 720‐μg reference dose (42% cost reduction). Combining a 180‐μg test dose and a 720‐μg reference dose produced an estimated 36% cost reduction. PMID:29281130

  13. Novel low-kVp beamlet system for choroidal melanoma

    PubMed Central

    Esquivel, Carlos; Fuller, Clifton D; Waggener, Robert G; Wong, Adrian; Meltz, Martin; Blough, Melissa; Eng, Tony Y; Thomas, Charles R

    2006-01-01

    Background Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Methods Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Results Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. Conclusion The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted. PMID:16965624

  14. Evaluation of various boluses in dose distribution for electron therapy of the chest wall with an inward defect

    PubMed Central

    Mahdavi, Hoda; Jabbari, Keyvan; Roayaei, Mahnaz

    2016-01-01

    Delivering radiotherapy to the postmastectomy chest wall can be achieved using matched electron fields. Surgical defects of the chest wall change the dose distribution of electrons. In this study, the improvement of dose homogeneity using simple, nonconformal techniques of thermoplastic bolus application on a defect is evaluated. The proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition. A modeled electron field of a patient with a postmastectomy inward surgical defect was planned. High energy electrons were delivered to the phantom in various settings, including no bolus, a bolus that filled the inward defect (PB0), a uniform thickness bolus of 5 mm (PB1), and two 5 mm boluses (PB2). A reduction of mean doses at the base of the defect was observed by any bolus application. PB0 increased the dose at central parts of the defect, reduced hot areas at the base of steep edges, and reduced dose to the lung and heart. Thermoplastic boluses that compensate a defect (PB0) increased the homogeneity of dose in a fixed depth from the surface; adversely, PB2 increased the dose heterogeneity. This study shows that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy. PMID:27051169

  15. Efforts to reduce exposure at Japanese PWRs: CVCS improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Ryosuke

    1995-03-01

    Many reports have been focused on the reduction of radiation sources and related occupational exposures. The radiation sources mainly consist of corrosion products. Radiation dose rate is determined by the amount of the activated corrosion products on the surface of the primary loop components of Pressurized Water Reactor (PWR) plants. Therefore, reducing the amount of the corrosion product will contribute to the reduction of occupational exposures. In order to reduce the corrosion products, Chemical and Volume Control System (CVCS) has been improved in Japanese PWRs as follows: (a) Cation Bed Demineralizer Flowrate Control; (b) Hydrogen Peroxide Injection System; (c) Purificationmore » Flowrate During Plant Shutdown; (d) Fine Mesh Filters Upstream of Mixed Bed Demineralizers.« less

  16. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study.

    PubMed

    Kim, Soo Hyun; Jung, Seung Eun; Oh, Sang Hoon; Park, Kyu Nam; Youn, Chun Song

    2011-11-03

    Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p < 0.001). The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not effectively decreased the number of CT examinations.

  17. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  18. Measuring radiation dose in computed tomography using elliptic phantom and free-in-air, and evaluating iterative metal artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Morgan, Ashraf

    The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated iMAR capability of recovering CT numbers and reducing noise. Also, the use of iMAR should allow using lower tube voltage instead of 140 KVp which is used frequently to image patients with shoulder implants. The evaluations of image quality and dose reduction were carried out using an arthroplasty phantom.

  19. Practical Advice on Calculating Confidence Intervals for Radioprotection Effects and Reducing Animal Numbers in Radiation Countermeasure Experiments

    PubMed Central

    Landes, Reid D.; Lensing, Shelly Y.; Kodell, Ralph L.; Hauer-Jensen, Martin

    2014-01-01

    The dose of a substance that causes death in P% of a population is called an LDP, where LD stands for lethal dose. In radiation research, a common LDP of interest is the radiation dose that kills 50% of the population by a specified time, i.e., lethal dose 50 or LD50. When comparing LD50 between two populations, relative potency is the parameter of interest. In radiation research, this is commonly known as the dose reduction factor (DRF). Unfortunately, statistical inference on dose reduction factor is seldom reported. We illustrate how to calculate confidence intervals for dose reduction factor, which may then be used for statistical inference. Further, most dose reduction factor experiments use hundreds, rather than tens of animals. Through better dosing strategies and the use of a recently available sample size formula, we also show how animal numbers may be reduced while maintaining high statistical power. The illustrations center on realistic examples comparing LD50 values between a radiation countermeasure group and a radiation-only control. We also provide easy-to-use spreadsheets for sample size calculations and confidence interval calculations, as well as SAS® and R code for the latter. PMID:24164553

  20. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Followill, D; Howell, R

    2015-06-15

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less

  1. TU-E-201-02: Eye Lens Dosimetry From CT Perfusion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the differences was analyzed. The average difference between the measured and the calculated dose with the lens applicator was 16.8 % ± 10.4 % with a micro MOSFET dosimeter and 16.6 % ± 10.9% with a standard MOSFET dosimeter. The average difference without the lens applicator was 35.9% ± 41.5% with micro MOSFET dosimeter and 42.9% ± 52.2% with standard MOSFET dosimeter. The maximum difference with micro MOSFET dosimeter was 46% with the applicator and 188.4% without the applicator. For the standard MOSFET dosimeter, the maximum difference was 44.4% with the applicator and 246.4% without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured dose during in-vivo measurement for the eye lens as compared to in-vivo measurement at the surface of the eyelid. Learning Objectives: To understand limitations of dose calculation with commercial treatment planning system for eye lens during radiotherapy To learn about current in-vivo dosimetry methods for eye lens in the clinic To understand limitations of in-vivo dosimetry for eye lens during radiotherapy Di Zhang is an employee of Toshiba America Medical Systems.« less

  2. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the differences was analyzed. The average difference between the measured and the calculated dose with the lens applicator was 16.8 % ± 10.4 % with a micro MOSFET dosimeter and 16.6 % ± 10.9% with a standard MOSFET dosimeter. The average difference without the lens applicator was 35.9% ± 41.5% with micro MOSFET dosimeter and 42.9% ± 52.2% with standard MOSFET dosimeter. The maximum difference with micro MOSFET dosimeter was 46% with the applicator and 188.4% without the applicator. For the standard MOSFET dosimeter, the maximum difference was 44.4% with the applicator and 246.4% without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured dose during in-vivo measurement for the eye lens as compared to in-vivo measurement at the surface of the eyelid. Learning Objectives: To understand limitations of dose calculation with commercial treatment planning system for eye lens during radiotherapy To learn about current in-vivo dosimetry methods for eye lens in the clinic To understand limitations of in-vivo dosimetry for eye lens during radiotherapy Di Zhang is an employee of Toshiba America Medical Systems.« less

  3. TU-E-201-00: Eye Lens Dosimetry for Patients and Staff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the differences was analyzed. The average difference between the measured and the calculated dose with the lens applicator was 16.8 % ± 10.4 % with a micro MOSFET dosimeter and 16.6 % ± 10.9% with a standard MOSFET dosimeter. The average difference without the lens applicator was 35.9% ± 41.5% with micro MOSFET dosimeter and 42.9% ± 52.2% with standard MOSFET dosimeter. The maximum difference with micro MOSFET dosimeter was 46% with the applicator and 188.4% without the applicator. For the standard MOSFET dosimeter, the maximum difference was 44.4% with the applicator and 246.4% without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured dose during in-vivo measurement for the eye lens as compared to in-vivo measurement at the surface of the eyelid. Learning Objectives: To understand limitations of dose calculation with commercial treatment planning system for eye lens during radiotherapy To learn about current in-vivo dosimetry methods for eye lens in the clinic To understand limitations of in-vivo dosimetry for eye lens during radiotherapy Di Zhang is an employee of Toshiba America Medical Systems.« less

  4. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable, actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the differences was analyzed. The average difference between the measured and the calculated dose with the lens applicator was 16.8 % ± 10.4 % with a micro MOSFET dosimeter and 16.6 % ± 10.9% with a standard MOSFET dosimeter. The average difference without the lens applicator was 35.9% ± 41.5% with micro MOSFET dosimeter and 42.9% ± 52.2% with standard MOSFET dosimeter. The maximum difference with micro MOSFET dosimeter was 46% with the applicator and 188.4% without the applicator. For the standard MOSFET dosimeter, the maximum difference was 44.4% with the applicator and 246.4% without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured dose during in-vivo measurement for the eye lens as compared to in-vivo measurement at the surface of the eyelid. Learning Objectives: To understand limitations of dose calculation with commercial treatment planning system for eye lens during radiotherapy To learn about current in-vivo dosimetry methods for eye lens in the clinic To understand limitations of in-vivo dosimetry for eye lens during radiotherapy Di Zhang is an employee of Toshiba America Medical Systems.« less

  5. No compelling evidence that sibutramine prolongs life in rodents despite providing a dose-dependent reduction in body weight

    PubMed Central

    Smith, Daniel L.; Robertson, Henry; Desmond, Renee; Nagy, Tim R.; Allison, David B.

    2010-01-01

    Objective The health and longevity effects of body weight reduction resulting from exercise and caloric restriction in rodents are well known, but less is known about whether similar effects occur with weight reduction from the use of a pharmaceutical agent such as sibutramine, a serotonin-norepinephrine reuptake inhibitor. Results & Conclusion Using data from a two-year toxicology study of sibutramine in CD rats and CD-1 mice, despite a dose-dependent reduction in food intake and body weight in rats compared to controls, and a body weight reduction in mice at the highest dose, there was no compelling evidence for reductions in mortality rate. PMID:21079617

  6. Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing

    NASA Astrophysics Data System (ADS)

    Liu, Junchi; Zarshenas, Amin; Qadir, Ammar; Wei, Zheng; Yang, Limin; Fajardo, Laurie; Suzuki, Kenji

    2018-03-01

    To reduce cumulative radiation exposure and lifetime risks for radiation-induced cancer from breast cancer screening, we developed a deep-learning-based supervised image-processing technique called neural network convolution (NNC) for radiation dose reduction in DBT. NNC employed patched-based neural network regression in a convolutional manner to convert lower-dose (LD) to higher-dose (HD) tomosynthesis images. We trained our NNC with quarter-dose (25% of the standard dose: 12 mAs at 32 kVp) raw projection images and corresponding "teaching" higher-dose (HD) images (200% of the standard dose: 99 mAs at 32 kVp) of a breast cadaver phantom acquired with a DBT system (Selenia Dimensions, Hologic, CA). Once trained, NNC no longer requires HD images. It converts new LD images to images that look like HD images; thus the term "virtual" HD (VHD) images. We reconstructed tomosynthesis slices on a research DBT system. To determine a dose reduction rate, we acquired 4 studies of another test phantom at 4 different radiation doses (1.35, 2.7, 4.04, and 5.39 mGy entrance dose). Structural SIMilarity (SSIM) index was used to evaluate the image quality. For testing, we collected half-dose (50% of the standard dose: 32+/-14 mAs at 33+/-5 kVp) and full-dose (standard dose: 68+/-23 mAs at 33+/-5 kvp) images of 10 clinical cases with the DBT system at University of Iowa Hospitals and Clinics. NNC converted half-dose DBT images of 10 clinical cases to VHD DBT images that were equivalent to full dose DBT images. Our cadaver phantom experiment demonstrated 79% dose reduction.

  7. Testosterone Dose Dependently Prevents Bone and Muscle Loss in Rodents after Spinal Cord Injury

    PubMed Central

    Conover, Christine F.; Beggs, Luke A.; Beck, Darren T.; Otzel, Dana M.; Balaez, Alexander; Combs, Sarah M.; Miller, Julie R.; Ye, Fan; Aguirre, J. Ignacio; Neuville, Kathleen G.; Williams, Alyssa A.; Conrad, Bryan P.; Gregory, Chris M.; Wronski, Thomas J.; Bose, Prodip K.; Borst, Stephen E.

    2014-01-01

    Abstract Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI. PMID:24378197

  8. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  9. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krmar, M.; Kuzmanović, A.; Nikolić, D.

    2013-08-15

    Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less

  11. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.

    PubMed

    Treiber, O; Wanninger, F; Führ, H; Panzer, W; Regulla, D; Winkler, G

    2003-02-21

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing. a dose reduction by 25% has no serious influence on the detection results. whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  12. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  13. Evaluation of an iterative model-based CT reconstruction algorithm by intra-patient comparison of standard and ultra-low-dose examinations.

    PubMed

    Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A

    2018-01-01

    Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.

  14. Analysis of esophageal-sparing treatment plans for patients with high-grade esophagitis.

    PubMed

    Niedzielski, Joshua; Bluett, Jaques B; Williamson, Ryan T; Liao, Zhongxing; Gomez, Daniel R; Court, Laurence E

    2013-07-08

    We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11-beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three-dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm(3), respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans' mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm(3), respectively, compared with the clinical plans. The normalized plans' mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints.

  15. Analysis of esophageal‐sparing treatment plans for patients with high‐grade esophagitis

    PubMed Central

    Bluett, Jaques B.; Williamson, Ryan T.; Liao, Zhongxing; Gomez, Daniel R.; Court, Laurence E.

    2013-01-01

    We retrospectively generated IMRT plans for 14 NSCLC patients who had experienced grade 2 or 3 esophagitis (CTCAE version 3.0). We generated 11‐beam and reduced esophagus dose plan types to compare changes in the volume and length of esophagus receiving doses of 50, 55, 60, 65, and 70 Gy. Changes in planning target volume (PTV) dose coverage were also compared. If necessary, plans were renormalized to restore 95% PTV coverage. The critical organ doses examined were mean lung dose, mean heart dose, and volume of spinal cord receiving 50 Gy. The effect of interfractional motion was determined by applying a three‐dimensional rigid shift to the dose grid. For the esophagus plan, the mean reduction in esophagus V50, V55, V60, V65, and V70 Gy was 2.8, 4.1, 5.9, 7.3, and 9.5 cm3, respectively, compared with the clinical plan. The mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 2.0, 3.0, 3.8, 4.0, and 4.6 cm, respectively. The mean heart and lung dose decreased 3.0 Gy and 2.4 Gy, respectively. The mean decreases in 90% and 95% PTV coverage were 1.7 Gy and 2.8 Gy, respectively. The normalized plans’ mean reduction of esophagus V50, V55, V60, V65, and V70 Gy were 1.6, 2.0, 2.9, 3.9, and 5.5 cm3, respectively, compared with the clinical plans. The normalized plans’ mean reductions in LE50, LE55, LE60, LE65, and LE70 Gy were 4.9, 5.2, 5.4, 4.9, and 4.8 cm, respectively. The mean reduction in maximum esophagus dose with simulated interfractional motion was 3.0 Gy and 1.4 Gy for the clinical plan type and the esophagus plan type, respectively. In many cases, the esophagus dose can be greatly reduced while maintaining critical structure dose constraints. PTV coverage can be restored by increasing beam output, while still obtaining a dose reduction to the esophagus and maintaining dose constraints. PACS number: 87.53 Tf PMID:23835390

  16. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    PubMed

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.

  17. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma.

    PubMed

    Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P

    1998-01-01

    We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed.

  18. Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad

    2016-06-15

    Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less

  19. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  20. Pediatric CT: implementation of ASIR for substantial radiation dose reduction while maintaining pre-ASIR image noise.

    PubMed

    Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A

    2014-01-01

    To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. © RSNA, 2013.

  1. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  2. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Al-Azhar University Cairo; Jin, L

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less

  3. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    PubMed

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  4. Development of an applicator for eye lens dosimetry during radiotherapy.

    PubMed

    Park, J M; Lee, J; Kim, H S; Ye, S-J; Kim, J-I

    2014-10-01

    To develop an applicator for in vivo measurements of lens dose during radiotherapy. A contact lens-shaped applicator made of acrylic was developed for in vivo measurements of lens dose. This lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistors (MOSFETs) dosemeters. CT images of an anthropomorphic phantom with and without the applicator were acquired. Ten volumetric modulated arc therapy plans each for the brain and the head and neck cancer were generated and delivered to an anthropomorphic phantom. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The average difference between the measured and the calculated doses with the applicator was 3.1 ± 1.8 cGy with a micro MOSFET and 2.8 ± 1.3 cGy with a standard MOSFET. The average difference without the lens applicator was 4.8 ± 5.2 cGy with the micro MOSFET and 5.7 ± 6.5 cGy with the standard MOSFET. The maximum difference with the micro MOSFET was 10.5 cGy with the applicator and 21.1 cGy without the applicator. For the standard MOSFET, it was 6.8 cGy with the applicator and 27.6 cGy without the applicator. The lens applicator allowed reduction of the differences between the calculated and the measured doses during in vivo measurement for the lens compared with in vivo measurement at the surface of the eyelid. By using an applicator for in vivo dosimetry of the eye lens, it was possible to reduce the measurement uncertainty.

  5. ANI/MAELU engineering inspection criteria 8.3 ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, L.

    1995-03-01

    The purpose of this criteria section is to provide guidelines for programs whose intent is to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA). The success that has been achieved by applying ALARA concepts at nuclear power plants is clearly illustrated by the major reductions in the annual cumulative dose to workers at many sites over the last few years. This success is the combined result of the general maturity of the nuclear industry, the intensive study of dose reduction practices by industry groups, and the successful sharing ofmore » experience and practices among plants. Source term reduction should be used as a primary ALARA mechanism. Methods which should be considered include: satellite and cobalt reduction, chemistry control, decontamination, submicron filters, zinc addition, hot spot reduction and permanent or temporary shielding.« less

  6. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short-Acting β-Agonist Formulations.

    PubMed

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai; Ahrens, Richard C

    2018-04-01

    Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3-by-1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration-recommended 3-by-1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3-by-1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90-μg test dose and a 720-μg reference dose (42% cost reduction). Combining a 180-μg test dose and a 720-μg reference dose produced an estimated 36% cost reduction. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  7. SU-C-BRF-01: Correlation of DIBH Breath Hold Amplitude with Dosimetric Sparing of Heart and Left Anterior Descending Artery in Left Breast Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeho; Reardon, Kelli; Sukovich, Kaitlyn

    Purpose: A 7.4% increase in major coronary events per 1 Gy increase in mean heart dose has been reported from the population-based analysis of radiation-induced cardiac toxicity following treatment of left sided breast cancer. Deep inhalation breath-hold (DIBH) is clinically utilized to reduce radiation dose to heart and left anterior descending artery (LAD). We investigated the correlation of dose sparing in heart and LAD with internal DIBH amplitude to develop a quantitative predictive model for expected dose to heart and LAD based on internal breath hold amplitude. Methods: A treatment planning study (Prescription Dose = 50 Gy) was performed onmore » 50 left breast cancer patients underwent DIBH whole breast radiotherapy. Two CT datasets, free breathing (FB) and DIBH, were utilized for treatment planning and for determination of the internal anatomy DIBH amplitude (difference between sternum position at FB and DIBH). The heart and LAD dose between FB and DIBH plans was compared and dose to the heart and LAD as a function of breath hold amplitude was determined. Results: Average DIBH amplitude using internal anatomy was 13.9±4.2 mm. The DIBH amplitude-mean dose reduction correlation is 20%/5mm (0.3 Gy/5mm) for the heart and 18%/5mm (1.1 Gy/5mm) for LAD. The correlation with max dose reduction is 12%/5mm (3.8 Gy/5mm) for the heart and 16%/5mm (3.2 Gy/5mm) for LAD. We found that average dose reductions to LAD from 6.0±6.5 Gy to 2.0±1.6 Gy with DIBH (4.0 Gy reduction: -67%, p < 0.001) and average dose reduction to the heart from 1.3±0.7 Gy to 0.7±0.2 Gy with DIBH (0.6 Gy reduction: -46%, p < 0.001). That suggests using DIBH may reduce the risk of the major coronary event for left sided breast cancer patients. Conclusion: The correlation between breath hold amplitude and dosimetric sparing suggests that dose sparing linearly increases with internal DIBH amplitude.« less

  8. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    PubMed

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.

  9. [The reduction of the radiation dosage by means of storage phosphor-film radiography compared to a conventional film-screen system with a grid cassette on a skull phantom].

    PubMed

    Heyne, J P; Merbold, H; Sehner, J; Neumann, R; Freesmeyer, M; Jonetz-Mentzel, L; Kaiser, W A

    1999-07-01

    How much can the radiation dose be reduced for skull radiography by using digital luminescence radiography (DLR) compared to a conventional screen film system with a grid cassette? A skull phantom (3M) was x-rayed in anterior-posterior orientation using both a conventional screen film system with grid cassette and DLR (ADC-70, Agfa). The tube current time product (mAs) was diminished gradually while keeping the voltage constant. The surface entrance dose was measured by a sensor of Dosimax (Wellhöfer). Five investigators evaluated the images by characteristic and critical features, spatial resolution and contrast. The surface entrance dose at 73 kV/22 mAs was 0.432 mGy in conventional screen film system and 0.435 mGy in DLR. The images could be evaluated very well down to an average dose of 71% (0.308 mGy; SD 0.050); sufficient images were obtained down to an average dose of 31% (0.136 mGy; SD 0.065). The resolution of the line pairs were reduced down to 2 levels depending on the investigator. Contrast was assessed as being very good to sufficient. The acceptance of the postprocessed images (MUSICA-software) was individually different and resulted in an improvement of the assessment of bone structures and contrast in higher dose ranges only. For the sufficient assessment of a possible fracture/of paranasal sinuses/of measurement of the skull the dose can be reduced to at least 56% (phi 31%; SD 14.9%)/40% (phi 27%; SD 9.3%)/18% (phi 14%; SD 4.4%). Digital radiography allows question-referred exposure parameters with clearly reduced dose, so e.g. for fracture exclusion 73 kV/12.5 mAs and to skull measurement 73 kV/4 mAs.

  10. Impact of dose reductions on efficacy outcome in heart transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil at 12 months post-transplantation.

    PubMed

    Segovia, Javier; Gerosa, Gino; Almenar, Luis; Livi, Ugolino; Viganò, Mario; Arizón, Jose Maria; Yonan, Nizar; Di Salvo, Thomas G; Renlund, Dale G; Kobashigawa, Jon A

    2008-01-01

    Mycophenolic acid (MPA) dose reduction is associated with increased risk of rejection and graft loss in renal transplantation. This analysis investigated the impact of MPA dose changes with enteric-coated mycophenolate sodium (EC-MPS) or mycophenolate mofetil (MMF) in de novo heart transplant recipients. In a 12-month, single-blind trial, 154 patients (EC-MPS, 78; MMF, 76) were randomized to either EC-MPS (1080 mg bid) or MMF (1500 mg bid) in combination with cyclosporine and steroids. The primary efficacy variable was the incidence of treatment failure, comprising a composite of biopsy-proven (BPAR) and treated acute rejection, graft loss or death. Significantly fewer patients receiving EC-MPS required > or =2 dose reductions than patients on MMF (26.9% vs. 42.1% of patients, p = 0.048). Accordingly, the average daily dose of EC-MPS as a percentage of the recommended dose was significantly higher than for MMF (88.4% vs. 79.0%, p = 0.016). Among patients requiring > or =1 dose reduction, the incidence of treated BPAR grade > or =3A was significantly lower with EC-MPS compared with MMF (23.4% vs. 44.0%, p = 0.032). These data suggest that EC-MPS-treated heart transplant patients are less likely to require multiple dose reductions than those on MMF which may be associated with a significantly lower risk of treated BPAR > or =3A.

  11. SU-F-J-48: Effect of Scan Length On Magnitude of Imaging Dose in KV CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, S; Naidu, S; Sutar, A

    Purpose: To study effect of scan length on magnitude of imaging dose deposition in Varian kV CBCT for head & neck and pelvis CBCT. Methods: To study effect of scan length we measured imaging dose at depth of 8 cm for head and neck Cone Beam Computed Tomography (CBCT) acquisition ( X ray beam energy is used 100kV and 200 degree of gantry rotation) and at 16 cm depth for pelvis CBCT acquisition ( X ray beam energy used is 125 kV and 360 degree of gantry rotation) in specially designed phantom. We used farmer chamber which was calibrated inmore » kV X ray range for measurements .Dose was measured with default field size, and reducing field size along y direction to 10 cm and 5 cm. Results: As the energy of the beam decreases the scattered radiation increases and this contributes significantly to the dose deposited in the patient. By reducing the scan length to 10 Cm from default 20.6 cm we found a dose reduction of 14% for head and neck CBCT protocol and a reduction of 26% for pelvis CBCT protocol. Similarly for a scan length of 5cm compared to default the dose reduction in head and neck CBCT protocol is 36% while in the pelvis CBCT protocol the dose reduction is 50%. Conclusion: By limiting the scan length we can control the scatter radiation generated and hence the dose to the patient. However the variation in dose reduction for same length used in two protocols is because of the scan geometry. The pelvis CBCT protocol uses a full rotation and head and neck CBCT protocol uses partial rotation.« less

  12. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  13. SU-F-I-46: Optimizing Dose Reduction in Adult Head CT Protocols While Maintaining Image Quality in Postmortem Head Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Carranza, C; Quails, N

    Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less

  14. On the Use of Optically Stimulated Luminescent Dosimeter for Surface Dose Measurement during Radiotherapy

    PubMed Central

    Yusof, Fasihah Hanum; Ung, Ngie Min; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Ath, Vannyat; Phua, Vincent Chee Ee; Heng, Siew Ping; Ng, Kwan Hoong

    2015-01-01

    This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments. PMID:26052690

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Y; Walston, S

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB andmore » DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.« less

  16. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection

    PubMed Central

    Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071

  17. Residual viral and bacterial contamination of surfaces after cleaning and disinfection.

    PubMed

    Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin

    2012-11-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.

  18. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  19. REDUCTION OF DOSES IN DIAGNOSTIC USES OF RADIOISOTOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.

    1960-03-01

    > A moderately low-level counting technique with anticoincidence gas- flow counter was developed for use in metabolic and diagnostic tracer studies with radioisotopes. Several important experiments and results were reported which have been carried out with reduced doses of tracer isotopes. A reduction of the tracer dose of ahout 1/30th of the present conventional doses was achieved which helps to minimize the chances of radiation hazards. (auth)

  20. Dose reduction of risperidone and olanzapine and estimated dopamine D₂ receptor occupancy in stable patients with schizophrenia: findings from an open-label, randomized, controlled study.

    PubMed

    Takeuchi, Hiroyoshi; Suzuki, Takefumi; Bies, Robert R; Remington, Gary; Watanabe, Koichiro; Mimura, Masaru; Uchida, Hiroyuki

    2014-11-01

    While acute-phase antipsychotic response has been attributed to 65%-80% dopamine D₂ receptor blockade, the degree of occupancy for relapse prevention in the maintenance treatment of schizophrenia remains unknown. In this secondary study of an open-label, 28-week, randomized, controlled trial conducted between April 2009 and August 2011, clinically stable patients with schizophrenia (DSM-IV) treated with risperidone or olanzapine were randomly assigned to the reduction group (dose reduced by 50%) or maintenance group (dose kept constant). Plasma antipsychotic concentrations at peak and trough before and after dose reduction were estimated with population pharmacokinetic techniques, using 2 collected plasma samples. Corresponding dopamine D₂ occupancy levels were then estimated using the model we developed. Relapse was defined as worsening in 4 Positive and Negative Syndrome Scale-Positive subscale items: delusion, conceptual disorganization, hallucinatory behavior, and suspiciousness. Plasma antipsychotic concentrations were available for 16 and 15 patients in the reduction and maintenance groups, respectively. Estimated dopamine D₂ occupancy (mean ± SD) decreased following dose reduction from 75.6% ± 4.9% to 66.8% ± 6.4% at peak and 72.3% ± 5.7% to 62.0% ± 6.8% at trough. In the reduction group, 10 patients (62.5%) did not demonstrate continuous D₂ receptor blockade above 65% (ie, < 65% at trough) after dose reduction; furthermore, 7 patients (43.8%) did not achieve a threshold of 65% occupancy even at peak. Nonetheless, only 1 patient met our relapse criteria after dose reduction during the 6 months of the study. The results suggest that the therapeutic threshold regarding dopamine D₂ occupancy may be lower for those who are stable in antipsychotic maintenance versus acute-phase treatment. Positron emission tomography studies are warranted to further test our preliminary findings. UMIN Clinical Trials Registry identifier: UMIN000001834. © Copyright 2014 Physicians Postgraduate Press, Inc.

  1. Influence of exposure and geometric parameters on absorbed doses associated with common neuro-interventional procedures.

    PubMed

    Safari, Mohammad Javad; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Thorpe, Nathan; Cutajar, Dean; Rosenfeld, Anatoly; Ng, Kwan Hoong

    2017-03-01

    The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures. We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors. DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region. Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  2. Magnitudes of biomarker reductions in response to controlled reductions in cigarettes smoked per day: a one-week clinical confinement study.

    PubMed

    Theophilus, Eugenia H; Coggins, Christopher R E; Chen, Peter; Schmidt, Eckhardt; Borgerding, Michael F

    2015-03-01

    Tobacco toxicant-related exposure reduction is an important tool in harm reduction. Cigarette per day reduction (CPDR) occurs as smokers migrate from smoking cigarettes to using alternative tobacco/nicotine products, or quit smoking. Few reports characterize the dose-response relationships between CPDR and effects on exposure biomarkers, especially at the low end of CPD exposure (e.g., 5 CPD). We present data on CPDR by characterizing magnitudes of biomarker reductions. We present data from a well-controlled, one-week clinical confinement study in healthy smokers who were switched from smoking 19-25 CPD to smoking 20, 10, 5 or 0 CPD. Biomarkers were measured in blood, plasma, urine, and breath, and included smoke-related toxicants, urine mutagenicity, smoked cigarette filter analyses (mouth level exposure), and vital signs. Many of the biomarkers (e.g., plasma nicotine) showed strong CPDR dose-response reductions, while others (e.g., plasma thiocyanate) showed weaker dose-response reductions. Factors that lead to lower biomarker reductions include non-CPD related contributors to the measured response (e.g., other exposure sources from environment, life style, occupation; inter-individual variability). This study confirms CPDR dose-responsive biomarkers and suggests that a one-week design is appropriate for characterizing exposure reductions when smokers switch from cigarettes to new tobacco products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less

  4. Efficacy of a radiation absorbing shield in reducing dose to the interventionalist during peripheral endovascular procedures: a single centre pilot study.

    PubMed

    Power, S; Mirza, M; Thakorlal, A; Ganai, B; Gavagan, L D; Given, M F; Lee, M J

    2015-06-01

    This prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures. A commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated. TLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142). Initial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator's body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.

  5. Dose reduction assessment in dynamic CT myocardial perfusion imaging in a porcine balloon-induced-ischemia model

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.

  6. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtainedmore » by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.« less

  7. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions. PMID:27277017

  8. Does initial dosing of levothyroxine in infants with congenital hypothyroidism lead to frequent dose adjustments secondary to iatrogenic hyperthyroidism on follow-up?

    PubMed

    Craven, Meghan; Frank, Graeme R

    2018-06-27

    Congenital hypothyroidism (CH) is the most common preventable cause of intellectual disability. The recommended starting dose of levothyroxine (LT4) is between 10 and 15 μg/kg, an extremely wide range. We hypothesized that a sizable proportion of newborns treated for CH at the higher end of the dosage range become biochemically hyperthyroid at a follow-up visit. This study is a retrospective chart review of infants with CH between 2002 and 2012. Of the 104 patients included in this analysis, the average age at diagnosis was 11 days and the average starting dose of LT4 was 12±2.5 μg/kg. At follow-up, 36.5% required a dose reduction because of iatrogenic hyperthyroxinemia, 51% required no dose adjustment and 12.5% required a dose increase due to an elevated thyroid stimulating hormone (TSH). The starting doses of LT4 for those requiring a dose reduction, those not requiring an adjustment and those requiring an increase in the dose were 13.2±2.4, 11.5±2.1 and 10.3±2.6 μg/kg/day, respectively (p≤0.0001). Of the 34% of infants treated with an initial dose of >12.5 μg/day, 57.1% required a dose reduction at follow-up, compared to 26.1% of those whose initial starting dose was ≤12.5 μg/kg/day (p=0.007). Following the guidelines for initiating therapy for CH, 36.5% of the infants required a dose reduction for iatrogenic hyperthyroxinemia. These infants received a higher dose of LT4 than the infants who either required no adjustment or required an increase in the dose. A narrower range for initial dosing in CH may be appropriate.

  9. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicitymore » questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.« less

  10. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    PubMed

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.

  11. Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle?

    PubMed

    Tschakovsky, Michael E; Sujirattanawimol, Kittiphong; Ruble, Stephen B; Valic, Zoran; Joyner, Michael J

    2002-06-01

    Sympathetic vasoconstriction of muscle vascular beds is important in the regulation of systemic blood pressure. However, vasoconstriction during exercise can also compromise blood flow support of muscle metabolism. This study tested the hypothesis that local factors in exercising muscle blunt vessel responsiveness to sympathetic vasoconstriction. We performed selective infusions of three doses of tyramine into the brachial artery (n = 8) to evoke endogenous release of noradrenaline (norepinephrine) at rest and during moderate and heavy rhythmic handgrip exercise. In separate experiments, tyramine was administered during two doses of adenosine infusion (n = 7) and two doses of sodium nitroprusside (SNP) infusion (n = 8). Vasoconstrictor effectiveness across conditions was assessed as the percentage reduction in forearm vascular conductance (FVC), calculated from invasive blood pressure and non-invasive Doppler ultrasound blood flow measurements at the brachial artery. Tyramine evoked a similar dose-dependent vasoconstriction at rest in all three groups, with the highest dose resulting in a 42-46 % reduction in FVC. This vasoconstriction was blunted with increasing exercise intensity (e.g. tyramine high dose percentage reduction in FVC; rest -43.4 +/- 3.7 %, moderate exercise -27.5 +/- 2.3 %, heavy exercise -16.7 +/- 3.6 %; P < 0.05). In contrast, tyramine infusion resulted in a greater percentage reduction in FVC during both doses of adenosine vs. rest (P < 0.05). Finally, percentage change in FVC was greater during low dose SNP infusion vs. rest (P < 0.05), but not different from rest at the high dose of SNP infusion (P = 0.507). A blunted percentage reduction in FVC during endogenous noradrenaline release in exercise but not vasodilator infusion indicates that sympathetic vasoconstriction is blunted in exercising muscle. This blunting appears to be exercise intensity-dependent.

  12. Pediatric cT: Implementation of ASIR for Substantial Radiation Dose Reduction While Maintaining Pre-ASIR Image Noise1

    PubMed Central

    Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.

    2015-01-01

    Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. PMID:23901128

  13. Ultralow Dose MSCT Imaging in Dental Implantology

    PubMed Central

    Widmann, Gerlig; Al-Ekrish, Asma'a A.

    2018-01-01

    Introduction: The Council Directive 2013/59 Euratom has a clear commitment for keeping medical radiation exposure as low as reasonably achievable and demands a regular review and use of diagnostic reference levels. Methods: In dental implantology, the range of effective doses for cone beam computed tomography (CBCT) shows a broad overlap with multislice computed tomography (MSCT). More recently, ultralow dose imaging with new generations of MSCT scanners may impart radiation doses equal to or lower than CBCT. Dose reductions in MSCT have been further facilitated by the introduction of iterative image reconstruction technology (IRT), which provides substantial noise reduction over the current standard of filtered backward projection (FBP). Aim: The aim of this article is to review the available literature on ultralow dose CT imaging and IRTs in dental implantology imaging and to summarize their influence on spatial and contrast resolution, image noise, tissue density measurements, and validity of linear measurements of the jaws. Conclusion: Application of ultralow dose MSCT with IRT technology in dental implantology offers the potential for very large dose reductions compared with standard dose imaging. Yet, evaluation of various diagnostic tasks related to dental implantology is still needed to confirm the results obtained with various IRTs and ultra-low doses so far. PMID:29492174

  14. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-11-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.

  15. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT

    PubMed Central

    Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.

    2011-01-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552

  16. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.

    PubMed

    Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T

    2012-02-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.

  17. X-ray surface dose measurements using TLD extrapolation.

    PubMed

    Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P

    1993-01-01

    Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.

  18. Dose response effect of cement dust on respiratory muscles competence in cement mill workers.

    PubMed

    Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad

    2006-12-01

    Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.

  19. Effectiveness of sheltering in buildings and vehicles for plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, R.J.

    1990-07-30

    The purpose of this paper is to collect and present current knowledge relevant to the protection offered by sheltering against exposure to plutonium particles released to the atmosphere during accidents. For those many contaminants for which effects are linear with the airborne concentration, it is convenient to define a Dose Reduction Factor (DRF). In the past, the DRF has been defined as the ratio of the radiological dose that may be incurred within the shelter to that in the outdoors. As such, it includes the dose through shine from plumes aloft and from material deposited on the surface. For thismore » paper, which is concerned only with the inhalation pathway, the DRF is the ratio of the time-integrated concentration inside the shelter to that outdoors. It is important to note that the range over which effects are linear with concentration may be limited for many contaminants. Examples are when concentrations produce effects that are irreversible, or when concentrations are below effects threshold levels. 71 refs., 4 figs., 8 tabs.« less

  20. Monte Carlo study and design of system for implementation of Rotational Total Skin Electron Irradiation technique

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.

    2018-05-01

    Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.

  1. SU-G-IeP3-05: Effects of Image Receptor Technology and Dose Reduction Software On Radiation Dose Estimates for Fluoroscopically-Guided Interventional (FGI) Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Z; Dave, J; Eschelman, D

    Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-areamore » product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based systems was not associated with dose reduction for the most frequently performed FGI procedures, substantial dose reduction was noted with relatively newer systems and dose reduction software.« less

  2. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.

  3. A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film

    PubMed Central

    Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka

    2012-01-01

    The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169

  4. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  5. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    NASA Astrophysics Data System (ADS)

    Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-02-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.

  6. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  7. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  8. Quantitative Analysis of the Effect of Iterative Reconstruction Using a Phantom: Determining the Appropriate Blending Percentage

    PubMed Central

    Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang

    2015-01-01

    Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772

  9. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis.

    PubMed

    Chuang, Yueh-Hsun; Cheng, Po-Wen; Chen, Szu-Chia; Ruan, Jia-Ling; Li, Pai-Chi

    2010-04-01

    Cavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis. First, we evaluated the relations between inertial cavitation and the reduction in the weight of a blood clot. Inertial cavitation was varied by changing the amplitude and duration of the transmitted acoustic wave as well as the concentration of microbubbles used to induce cavitation. Second, we studied the combined effects of streptokinase and inertial cavitation on thrombolysis. The results show that inertial cavitation increases the weight reduction of a blood clot by up to 33.9%. With linear regression fitting, the measured differential inertial cavitation dose and the weight reduction had a correlation coefficient of 0.66. Microscopically, enzymatic thrombolysis effects manifest as multiple large cavities within the clot that are uniformly distributed on the side exposed to ultrasound. This suggests that inertial cavitation plays an important role in producing cavities, while microjetting of the microbubbles induces pits on the clot surface. These observations preliminarily demonstrate the clinical potential of sonothrombolysis. The use of the differential inertial cavitation dose as an indicator of blood clot weight loss for controlled sonothrombolysis is also possible and will be further explored.

  10. SU-F-I-73: Surface Dose from KV Diagnostic Beams From An On-Board Imager On a Linac Machine Using Different Imaging Techniques and Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Hossain, S; Syzek, E

    Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relativemore » surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not affect image-quality and may be used as the default in the different imaging techniques.« less

  11. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: implications for nicotine regulation policy.

    PubMed

    Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G

    2013-12-01

    Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06mg/kg) under an FR 3 schedule during daily 23h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose-response relationships were very well described by the exponential demand function (r(2) values>0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Safety assessment of Hibiscus sabdariffa after maternal exposure on male reproductive parameters in rats.

    PubMed

    de Arruda, Aline; Cardoso, Claudia Andrea L; Vieira, Maria do Carmo; Arena, Arielle Cristina

    2016-01-01

    Hibiscus sabdariffa L. (Malvaceae) is a species widely used in folk medicine for the treatment of some disorders. This study evaluated the effects of H. sabdariffa (HS) on the development of the male reproductive tract in rats following in utero exposure. Pregnant rats received 250 or 500 mg/kg of HS extract or vehicle from gestational day 12 until day 21 of lactation. Both doses of HS increased the body weight of male offspring at weaning, without compromising the puberty onset parameters. At puberty, there was a significant increase in the vas deferens absolute weight and a significant reduction in the relative weight of kidney at higher dose. These animals also presented a significant reduction in the sperm number in the caput/corpus of epididymis after exposure to both doses and a reduction in the sperm number in the cauda epididymis for the lower dose. At adulthood, the highest dose significantly reduced the sperm production in relation to controls and both doses provoked a reduction in the relative sperm number in the epididymis without affecting the sperm morphology. These findings demonstrated that maternal exposure to H. sabdariffa can adversely influence the male reproductive system in rats.

  13. CT breast dose reduction with the use of breast positioning and organ-based tube current modulation.

    PubMed

    Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M; Kazerooni, Ella A; Samei, Ehsan

    2017-02-01

    This study aimed to investigate the breast dose reduction potential of a breast-positioning (BP) technique for thoracic CT examinations with organ-based tube current modulation (OTCM). This study included 13 female anthropomorphic computational phantoms (XCAT, age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were then morphed to emulate BP that constrained the majority of the breast tissue inside the 120° anterior tube current (mA) reduction zone. The OTCM mA value was modeled using a ray-tracing program, which reduced the mA to 20% in the anterior region with a corresponding increase to the posterior region. The organ doses were estimated by a validated Monte Carlo program for a typical clinical CT system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDI vol were used to compare three CT protocols: attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCM BP ). On average, compared to ATCM, OTCM reduced breast dose by 19.3 ± 4.5%, whereas OTCM BP reduced breast dose by 38.6 ± 8.1% (an additional 23.8 ± 9.4%). The dose saving of OTCM BP was more significant for larger breasts (on average 33, 38, and 44% reduction for 0.5, 1, and 2 kg breasts, respectively). Compared to ATCM, OTCM BP also reduced thymus and heart dose by 15.1 ± 7.4% and 15.9 ± 6.2% respectively. In thoracic CT examinations, OTCM with a breast-positioning technique can markedly reduce unnecessary exposure to radiosensitive organs in anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts. © 2016 American Association of Physicists in Medicine.

  14. SU-E-I-49: The Evaluation of Usability of Multileaf Collimator for Diagnostic Radiation in Cephalometric Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Kim, K; Jung, H

    Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280more » ∼780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from −3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 μGy, 337.0 μGy, 323.1μGy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3μGy), 12.4 %(42 μGy), 87.1%(281.4μGy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.« less

  15. Prospective Evaluation of Prior Image Constrained Compressed Sensing (PICCS) Algorithm in Abdominal CT: A comparison of reduced dose with standard dose imaging

    PubMed Central

    Lubner, Meghan G.; Pickhardt, Perry J.; Kim, David H.; Tang, Jie; Munoz del Rio, Alejandro; Chen, Guang-Hong

    2014-01-01

    Purpose To prospectively study CT dose reduction using the “prior image constrained compressed sensing” (PICCS) reconstruction technique. Methods Immediately following routine standard dose (SD) abdominal MDCT, 50 patients (mean age, 57.7 years; mean BMI, 28.8) underwent a second reduced-dose (RD) scan (targeted dose reduction, 70-90%). DLP, CTDIvol and SSDE were compared. Several reconstruction algorithms (FBP, ASIR, and PICCS) were applied to the RD series. SD images with FBP served as reference standard. Two blinded readers evaluated each series for subjective image quality and focal lesion detection. Results Mean DLP, CTDIvol, and SSDE for RD series was 140.3 mGy*cm (median 79.4), 3.7 mGy (median 1.8), and 4.2 mGy (median 2.3) compared with 493.7 mGy*cm (median 345.8), 12.9 mGy (median 7.9 mGy) and 14.6 mGy (median 10.1) for SD series, respectively. Mean effective patient diameter was 30.1 cm (median 30), which translates to a mean SSDE reduction of 72% (p<0.001). RD-PICCS image quality score was 2.8±0.5, improved over the RD-FBP (1.7±0.7) and RD-ASIR(1.9±0.8)(p<0.001), but lower than SD (3.5±0.5)(p<0.001). Readers detected 81% (184/228) of focal lesions on RD-PICCS series, versus 67% (153/228) and 65% (149/228) for RD-FBP and RD-ASIR, respectively. Mean image noise was significantly reduced on RD-PICCS series (13.9 HU) compared with RD-FBP (57.2) and RD-ASIR (44.1) (p<0.001). Conclusion PICCS allows for marked dose reduction at abdominal CT with improved image quality and diagnostic performance over reduced-dose FBP and ASIR. Further study is needed to determine indication-specific dose reduction levels that preserve acceptable diagnostic accuracy relative to higher-dose protocols. PMID:24943136

  16. A Comparative Evaluation of Normal Tissue Doses for Patients Receiving Radiation Therapy for Hodgkin Lymphoma on the Childhood Cancer Survivor Study and Recent Children's Oncology Group Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Rachel; Ng, Angela; Constine, Louis S.

    Purpose: Survivors of pediatric Hodgkin lymphoma (HL) are recognized to have an increased risk of delayed adverse health outcomes related to radiation therapy (RT). However, the necessary latency required to observe these late effects means that the estimated risks apply to outdated treatments. We sought to compare the normal tissue dose received by children treated for HL and enrolled in the Childhood Cancer Survivor Study (CCSS) (diagnosed 1970-1986) with that of patients treated in recent Children's Oncology Group (COG) trials (enrolled 2002-2012). Methods and Materials: RT planning data were obtained for 50 HL survivors randomly sampled from the CCSS cohortmore » and applied to computed tomography planning data sets to reconstruct the normal tissue dosimetry. For comparison, the normal tissue dosimetry data were obtained for all 191 patients with full computed tomography–based volumetric RT planning on COG protocols AHOD0031 and AHOD0831. Results: For early-stage patients, the mean female breast dose in the COG patients was on average 83.5% lower than that for CCSS patients, with an absolute reduction of 15.5 Gy. For advanced-stage patients, the mean breast dose was decreased on average by 70% (11.6 Gy average absolute dose reduction). The mean heart dose decreased on average by 22.9 Gy (68.6%) and 17.6 Gy (56.8%) for early- and advanced-stage patients, respectively. All dose comparisons for breast, heart, lung, and thyroid were significantly lower for patients in the COG trials than for the CCSS participants. Reductions in the prescribed dose were a major contributor to these dose reductions. Conclusions: These are the first data quantifying the significant reduction in the normal tissue dose using actual, rather than hypothetical, treatment plans for children with HL. These findings provide useful information when counseling families regarding the risks of contemporary RT.« less

  17. Dose reduction of risperidone and olanzapine can improve cognitive function and negative symptoms in stable schizophrenic patients: A single-blinded, 52-week, randomized controlled study.

    PubMed

    Zhou, Yanling; Li, Guannan; Li, Dan; Cui, Hongmei; Ning, Yuping

    2018-05-01

    The long-term effects of dose reduction of atypical antipsychotics on cognitive function and symptomatology in stable patients with schizophrenia remain unclear. We sought to determine the change in cognitive function and symptomatology after reducing risperidone or olanzapine dosage in stable schizophrenic patients. Seventy-five stabilized schizophrenic patients prescribed risperidone (≥4 mg/day) or olanzapine (≥10 mg/day) were randomly divided into a dose-reduction group ( n=37) and a maintenance group ( n=38). For the dose-reduction group, the dose of antipsychotics was reduced by 50%; for the maintenance group, the dose remained unchanged throughout the whole study. The Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery were measured at baseline, 12, 28, and 52 weeks. Linear mixed models were performed to compare the Positive and Negative Syndrome Scale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects and MATRICS Consensus Cognitive Battery scores between groups. The linear mixed model showed significant time by group interactions on the Positive and Negative Syndrome Scale negative symptoms, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, attention/vigilance, working memory and total score of MATRICS Consensus Cognitive Battery (all p<0.05). Post hoc analyses showed significant improvement in Positive and Negative Syndrome Scale negative subscale, Negative Symptom Assessment-16, Rating Scale for Extrapyramidal Side Effects, speed of processing, working memory and total score of MATRICS Consensus Cognitive Battery for the dose reduction group compared with those for the maintenance group (all p<0.05). This study indicated that a risperidone or olanzapine dose reduction of 50% may not lead to more severe symptomatology but can improve speed of processing, working memory and negative symptoms in patients with stabilized schizophrenia.

  18. Comparative reduction of Norwalk virus, poliovirus type 1, F+ RNA coliphage MS2 and Escherichia coli in miniature soil columns.

    PubMed

    Meschke, J S; Sobsey, M D

    2003-01-01

    Norwalk-like viruses (NLVs) are important agents of waterborne illness and have been linked to several groundwater-related outbreaks. The presence of human enteric viruses, in particular the presence of NLVs, is difficult to detect in the environment. Consequently, surrogate organisms are typically used as indicators of viruses from faecal contamination. Whether traditional bacterial indicators are reliable indicators for viral pathogens remains uncertain. Few studies have directly compared mobility and reduction of bacterial indicators (e.g. coliforms, Escherichia coli) and other surrogate indicators (coliphages) with pathogenic human viruses in soil systems. In this study the mobility and comparative reduction of the prototype NLV, Norwalk Virus (NV), was compared to poliovirus 1 (PV1), a bacterial indicator (E coli, EC) and a viral indicator (coliphage MS2) through miniature soil columns. Replicate, 10 cm deep, miniature columns were prepared using three soils representing a range of soil textures (sand, organic muck, and clay). Columns were initially conditioned, then incubated at 10-14 degrees C, dosed twice weekly for 8 weeks with one column pore volume of virus-seeded groundwater per dose, followed by 8 weeks of dosing with one column pore volume per dose of unseeded, simulated rainwater. Columns were allowed to drain after each dosing until an effluent volume equivalent to an applied dose was collected. Column effluents and doses were assayed for all viruses and EC. Rapid mobility with minimal reduction was observed for all organisms in the sand. Similar reductions were observed in organic muck for most organisms but NV showed a greater reduction. No organisms were shown to pass through the clay columns. Elution of viruses, in particular PV1, from the columns was gradual. After cessation of microbe dosing, E. coli was less detectable than viruses in column effluents and, therefore, unreliable as a virus indicator.

  19. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    PubMed

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  20. Effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion implantations on crystallinity and retained B dose in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Yoji; Shibahara, Kentaro; Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527

    2012-01-15

    The effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion (B{sub 36}H{sub y}{sup +}) implantations on Si crystallinity and the retained B dose in Si were investigated using B{sub 18}H{sub x} bombardment and compared with the effects of B{sup +} implantation. Crystallinity was estimated for the implantation dose using molecular dynamic simulations (MDSs) and was quantified using the optical thickness obtained from spectroscopic ellipsometry. The authors focused on the crystallinity at a low B dose and compared the amorphized zones predicted by MDS for B{sub 18}H{sub x}{sup +} implantation with those measured using transmission electron microscopy; themore » predicted and measured results were in reasonable agreement. The authors then used their understanding of B{sub 18}H{sub x} bombardment to discuss the process for the generation of larger amorphized zones and thicker amorphized layers, as observed in B{sub 36}H{sub y}{sup +} implantation. The retained B dose and the sputtering were examined with secondary ion mass spectroscopy, focusing on a comparison of the retained B and the sputtering of Si and SiO{sub 2} surfaces. The retained B dose was lower for B{sub 18}H{sub x}{sup +} and B{sub 36}H{sub y}{sup +} implantations, with and without surface SiO{sub 2}, than for B{sup +} implantation, although no sputtering was observed. The reduction of the retained B dose was more severe in the samples with SiO{sub 2}. The origin of the differences between Si and SiO{sub 2} surfaces was considered to be Si melting; this was predicted by the MDSs, and observed indirectly as flat B profiles in the Si region. To examine the effects of both crystallinity and retained B dose on the electrical characteristics, the sheet resistance (R{sub S}) was measured. The R{sub S} for B{sub 18}H{sub x}{sup +} implantation was lower than that for B{sup +} implantation at both B doses studied. Additionally, the B{sub 36}H{sub y}{sup +} implantation under conditions that produced a thicker amorphized layer led to lower R{sub S} than B{sub 18}H{sub x}{sup +} implantation. These results indicate that both the amorphized layer and the amorphized zone contribute to the activation of more B atoms.« less

  1. Intussusception reduction: Effect of air vs. liquid enema on radiation dose.

    PubMed

    Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Edgar, J Christopher; Anupindi, Sudha A; Zhu, Xiaowei

    2017-10-01

    Both air and radiopaque liquid contrast are used to reduce ileocolic intussusception under fluoroscopy. Some suggest air lowers radiation dose due to shorter procedure times. However, air enema likely lowers radiation dose regardless of fluoroscopy time due to less density over the automatic exposure control cells. We test the hypothesis that air enema reduction of ileocolic intussusception results in lower radiation dose than liquid contrast enema independent of fluoroscopy time. We describe a role for automatic exposure control in this dose difference. We retrospectively evaluated air and liquid intussusception reductions performed on a single digital fluoroscopic unit during a 26-month period. We compared patient age, weight, gender, exam time of day and year, performing radiologist(s), radiographic image acquisitions, grid and magnification use, fluoroscopy time and dose area product. We compared categorical and continuous variables statistically using chi-square and Mann-Whitney U tests, respectively. The mean dose area product was 2.7-fold lower for air enema, 1.3 ± 0.9 dGy·cm 2 , than for liquid, 3.5 ± 2.5 dGy·cm 2 (P<0.005). The mean fluoroscopy time was similar between techniques. The mean dose area product/min was 2.3-fold lower for air, 0.6 ± 0.2 dGy·cm 2 /min, than for liquid, 1.4 ± 0.5 dGy·cm 2 /min (P<0.001). No group differences were identified in other measured dose parameters. Fluoroscopic intussusception reduction using air enema uses less than half the radiation dose of liquid contrast enema. Dose savings are independent of fluoroscopy time and are likely due to automatic exposure control interaction.

  2. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.« less

  3. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.

  4. Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT

    PubMed Central

    Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A

    2015-01-01

    Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204

  5. Potential uncertainty reduction in model-averaged benchmark dose estimates informed by an additional dose study.

    PubMed

    Shao, Kan; Small, Mitchell J

    2011-10-01

    A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose-response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose-response models (logistic and quantal-linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5-10%. The results demonstrate that dose selection for studies that subsequently inform dose-response models can benefit from consideration of how these models will be fit, combined, and interpreted. © 2011 Society for Risk Analysis.

  6. Patients with Fabry Disease after Enzyme Replacement Therapy Dose Reduction and Switch-2-Year Follow-Up.

    PubMed

    Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank; Brand, Eva

    2016-03-01

    Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3-0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C-based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. Copyright © 2016 by the American Society of Nephrology.

  7. Patients with Fabry Disease after Enzyme Replacement Therapy Dose Reduction and Switch–2-Year Follow-Up

    PubMed Central

    Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank

    2016-01-01

    Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3–0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C–based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. PMID:26185201

  8. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology.

    PubMed

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N

    2017-01-01

    We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.

  9. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology

    PubMed Central

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C.; Morelli, John N.

    2017-01-01

    PURPOSE We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. METHODS Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed. RESULTS Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). CONCLUSION The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted. PMID:28287072

  10. SU-F-I-09: Improvement of Image Registration Using Total-Variation Based Noise Reduction Algorithms for Low-Dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S; Farr, J; Merchant, T

    Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less

  11. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    PubMed

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  12. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting

    PubMed Central

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764

  13. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  14. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    PubMed Central

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  15. SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D; Feygelman, V; Moros, E

    2016-06-15

    Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less

  16. Paediatric x-ray radiation dose reduction and image quality analysis.

    PubMed

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  17. Angular on-line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John

    2007-07-15

    The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary studymore » on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM in neonates and young children was found to be lower than that obtained for adults. Therefore, on-line TCM should work as an additional means to reduce dose and should not replace other conventional means of reducing dose, especially in neonates and young children.« less

  18. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9

    PubMed Central

    Fitzgerald, Kevin; White, Suellen; Borodovsky, Anna; Bettencourt, Brian R.; Strahs, Andrew; Clausen, Valerie; Wijngaard, Peter; Horton, Jay D.; Taubel, Jorg; Brooks, Ashley; Fernando, Chamikara; Kauffman, Robert S.; Kallend, David; Vaishnaw, Akshay; Simon, Amy

    2018-01-01

    BACKGROUND Inclisiran (ALN-PCSsc) is a long-acting RNA interference (RNAi) therapeutic agent that inhibits the synthesis of proprotein convertase subtilisin–kexin type 9 (PCSK9), a target for the lowering of low-density lipoprotein (LDL) cholesterol. METHODS In this phase 1 trial, we randomly assigned healthy volunteers with an LDL cholesterol level of at least 100 mg per deciliter in a 3:1 ratio to receive a subcutaneous injection of inclisiran or placebo in either a single-ascending-dose phase (at a dose of 25, 100, 300, 500, or 800 mg) or a multiple-dose phase (125 mg weekly for four doses, 250 mg every other week for two doses, or 300 or 500 mg monthly for two doses, with or without concurrent statin therapy); each dose cohort included four to eight participants. Safety, the side-effect profile, and pharmacodynamic measures (PCSK9 level, LDL cholesterol level, and exploratory lipid variables) were evaluated. RESULTS The most common adverse events were cough, musculoskeletal pain, nasopharyngitis, headache, back pain, and diarrhea. All the adverse events were mild or moderate in severity. There were no serious adverse events or discontinuations due to adverse events. There was one grade 3 elevation in the γ-glutamyltransferase level, which was considered by the investigator to be related to statin therapy. In the single-dose phase, inclisiran doses of 300 mg or more reduced the PCSK9 level (up to a least-squares mean reduction of 74.5% from baseline to day 84), and doses of 100 mg or more reduced the LDL cholesterol level (up to a least-squares mean reduction of 50.6% from baseline). Reductions in the levels of PCSK9 and LDL cholesterol were maintained at day 180 for doses of 300 mg or more. All multiple-dose regimens reduced the levels of PCSK9 (up to a least-squares mean reduction of 83.8% from baseline to day 84) and LDL cholesterol (up to a least-squares mean reduction of 59.7% from baseline to day 84). CONCLUSIONS In this phase 1 trial, no serious adverse events were observed with inclisiran. Doses of 300 mg or more (in single or multiple doses) significantly reduced levels of PCSK9 and LDL cholesterol for at least 6 months. (Funded by Alnylam Pharmaceuticals and the Medicines Company; ClinicalTrials.gov number, NCT02314442.) PMID:27959715

  19. Longitudinal study of radiation exposure in computed tomography with an in-house developed dose monitoring system

    NASA Astrophysics Data System (ADS)

    Renger, Bernhard; Rummeny, Ernst J.; Noël, Peter B.

    2013-03-01

    During the last decades, the reduction of radiation exposure especially in diagnostic computed tomography is one of the most explored topics. In the same time, it seems challenging to quantify the long-term clinical dose reduction with regard to new hardware as well as software solutions. To overcome this challenge, we developed a Dose Monitoring System (DMS), which collects information from PACS, RIS, MPPS and structured reports. The integration of all sources overcomes the weaknesses of single systems. To gather all possible information, we integrated an optical character recognition system to extract, for example, information from the CT-dose-report. All collected data are transferred to a database for further evaluation, e.g., for calculations of effective as well as organ doses. The DMS provides a single database for tracking all essential study and patient specific information across different modality as well as different vendors. As an initial study, we longitudinally investigated the dose reduction in CT examination when employing a noise-suppressing reconstruction algorithm. For this examination type a significant long-term reduction in radiation exposure is reported, when comparing to a CT-system with standard reconstruction. In summary our DMS tool not only enables us to track radiation exposure on daily bases but further enables to analyses the long term effect of new dose saving strategies. In the future the statistical analyses of all retrospective data, which are available in a modern imaging department, will provide a unique overview of advances in reduction of radiation exposure.

  20. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia.

    PubMed

    Akdim, Fatima; Tribble, Diane L; Flaim, JoAnn D; Yu, Rosie; Su, John; Geary, Richard S; Baker, Brenda F; Fuhr, Rainard; Wedel, Mark K; Kastelein, John J P

    2011-11-01

    Mipomersen, an apolipoprotein (apo) B synthesis inhibitor, has been shown to produce potent reductions in apoB and LDL-cholesterol levels in animal models as well as healthy human volunteers. A randomized, double-blind, placebo-controlled, dose-escalation study was designed to evaluate the efficacy and safety of mipomersen monotherapy with or without dose loading in subjects with mild-to-moderate hyperlipidaemia. Fifty subjects with LDL-cholesterol levels between 119 and 266 mg/dL were enrolled into five cohorts at a 4:1 randomization ratio of active to placebo. Two 13-week dose regimens were evaluated at doses ranging from 50 to 400 mg/week. Mipomersen produced dose-dependent reductions in all apoB containing lipoproteins. In the 200 and 300 mg/week dose cohorts, mean reductions from baseline in LDL cholesterol were -45 ± 10% (P= 0.000) and -61 ± 8% (P= 0.000), corresponding to a -46 ± 11% (P= 0.000) and -61 ± 7% (P= 0.000) decrease in apoB levels. Triglyceride levels were also lowered with median reductions up to 53% (P= 0.021). The most common adverse events were injection site reactions. Seven of 40 subjects (18%) showed consecutive transaminase elevations >3× upper limit of normal. Five of these subjects received 400 mg/week, four of whom had apoB levels below the limit of detection. As a consequence, the 400 mg/week cohort was discontinued. Mipomersen administered as monotherapy in subjects with mild-to-moderate hyperlipidaemia produced potent reductions in all apoB-containing lipoproteins. Higher doses were associated with hepatic transaminase increases.

  1. Equivalent square formula for determining the surface dose of rectangular field from 6 MV therapeutic photon beam.

    PubMed

    Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn

    2013-09-06

    The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.

  2. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment.

    PubMed

    Ren, Zhen; Pribiag, Horia; Jefferson, Sarah J; Shorey, Matthew; Fuchs, Thomas; Stellwagen, David; Luscher, Bernhard

    2016-09-15

    Major depressive disorder is increasingly recognized to involve functional deficits in both gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission. To elucidate the relationship between these phenotypes, we used GABAA receptor γ2 subunit heterozygous (γ2(+/-)) mice, which we previously characterized as a model animal with construct, face, and predictive validity for major depressive disorder. To assess possible consequences of GABAergic deficits on glutamatergic transmission, we quantitated the cell surface expression of N-methyl-D-aspartate (NMDA)-type and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors and the function of synapses in the hippocampus and medial prefrontal cortex of γ2(+/-) mice. We also analyzed the effects of an acute dose of the experimental antidepressant ketamine on all these parameters in γ2(+/-) versus wild-type mice. Modest defects in GABAergic synaptic transmission of γ2(+/-) mice resulted in a strikingly prominent homeostatic-like reduction in the cell surface expression of NMDA-type and AMPA-type glutamate receptors, along with prominent functional impairment of glutamatergic synapses in the hippocampus and medial prefrontal cortex. A single subanesthetic dose of ketamine normalized glutamate receptor expression and synaptic function of γ2(+/-) mice to wild-type levels for a prolonged period, along with antidepressant-like behavioral consequences selectively in γ2(+/-) mice. The GABAergic synapses of γ2(+/-) mice were potentiated by ketamine in parallel but only in the medial prefrontal cortex. Depressive-like brain states that are caused by GABAergic deficits involve a homeostatic-like reduction of glutamatergic transmission that is reversible by an acute, subanesthetic dose of ketamine, along with regionally selective potentiation of GABAergic synapses. The data merge the GABAergic and glutamatergic deficit hypotheses of major depressive disorder. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin.

    PubMed

    Al-Asmari, Fahad; Mereddy, Ram; Sultanbawa, Yasmina

    2017-08-01

    The global concerns regarding the emergence of fungicide-resistant strains and the impact of the excessive use of fungicidal practises on our health, food, and environment have increased, leading to a demand for alternative clean green technologies as treatments. Photosensitization is a treatment that utilises a photosensitiser, light and oxygen to cause cell damage to microorganisms. The effect of photosensitization mediated by curcumin on Aspergillus niger, Aspergillus flavus, Penicillium griseofulvum, Penicillium chrysogenum, Fusarium oxysporum, Candida albicans and Zygosaccharomyces bailii was investigated using three methods. The viability of spores/cells suspended in aqueous buffer using different concentrations of curcumin solution (100-1000μM) and light dose (0, 24, 48, 72 and 96J/cm 2 ) were determined. Spraying curcumin solution on inoculated surfaces of agar plates followed by irradiation and soaking spores/cells in curcumin solution prior to irradiation was also investigated. In aqueous mixtures, photosensitised spores/cells of F. oxysporum and C. albicans were inhibited at all light doses and curcumin concentrations, while inactivation of A. niger, A. flavus P. griseofulvum, P. chrysogenum and Z. bailii were highly significant (P<0.001) reduced by 99%, 88.9%, 78%, 99.7% and 99.2% respectively. On the surface of agar plates, spores/cells exposed to a light dose of 360J/cm 2 sprayed with curcumin at 800μM showed complete inhibition for A. niger, F. oxysporum, C. albicans and Z. bailii, while A. flavus P. griseofulvum, and P. chrysogenum reduced by 75%, 80.4% and 88.5% respectively. Soaking spores/cells with curcumin solution prior to irradiation did not have a significant effect on the percentage reduction. These observations suggest that a novel photosensitization mediated curcumin treatment is effective against fungal spores/cells and the variation of percentage reduction was dependent on curcumin concentration, light dosage and fungal species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Efficacy of a Radiation Absorbing Shield in Reducing Dose to the Interventionalist During Peripheral Endovascular Procedures: A Single Centre Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, S.; Mirza, M.; Thakorlal, A.

    PurposeThis prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures.Materials and MethodsA commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used tomore » measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated.ResultsTLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142).ConclusionInitial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator’s body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.« less

  5. Radiation dose reduction in a neonatal intensive care unit in computed radiography.

    PubMed

    Frayre, A S; Torres, P; Gaona, E; Rivera, T; Franco, J; Molina, N

    2012-12-01

    The purpose of this study was to evaluate the dose received by chest x-rays in neonatal care with thermoluminescent dosimetry and to determine the level of exposure where the quantum noise level does not affect the diagnostic image quality in order to reduce the dose to neonates. In pediatric radiology, especially the prematurely born children are highly sensitive to the radiation because of the highly mitotic state of their cells; in general, the sensitivity of a tissue to radiation is directly proportional to its rate of proliferation. The sample consisted of 208 neonatal chest x-rays of 12 neonates admitted and treated in a Neonatal Intensive Care Unit (NICU). All the neonates were preterm in the range of 28-34 weeks, with a mean of 30.8 weeks. Entrance Surface Doses (ESD) values for chest x-rays are higher than the DRL of 50 μGy proposed by the National Radiological Protection Board (NRPB). In order to reduce the dose to neonates, the optimum image quality was achieved by determining the level of ESD where level noise does not affect the diagnostic image quality. The optimum ESD was estimated for additional 20 chest x-rays increasing kVp and reducing mAs until quantum noise affects image quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effective DQE (eDQE) and dose to optimize radiographic technical parameters: a survey of pediatric chest X-ray examinations in Korea.

    PubMed

    Park, Hye-Suk; Kim, Ye-Seul; Park, Ok-Seob; Kim, Sang-Tae; Jeon, Chang-Woo; Kim, Hee-Joung

    2014-04-01

    The purpose of this study was to investigate the effect of various technical parameters for dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE). For tube voltages ranging from 40 to 90 kV in 10 kV increments at the focus-to-detector distance (FDD) of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at same effective dose. The eDQE was considerably higher without the use of the grid on equivalent effective dose. This indicates that the reduction of scatter radiation did not compensate for the loss of absorbed effective photons in the grid. The eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF) with lower focal spot blurring. However, most of the major hospitals in Korea employed a short FDD of 100 cm with the grid. The entrance surface air kerma values for the hospitals of this survey exceeded the Korean reference level of 100 μGy. The different reference levels might be appropriate for the same examination conducted on children of different ages. Also, it is necessary to refine the technical parameters to perform pediatric chest examinations.

  7. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    NASA Astrophysics Data System (ADS)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  8. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    PubMed Central

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  9. Cs-doped Mo as surface converter for H{sup −}/D{sup −} generation in negative ion sources: First steps and proof of principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiesko, L., E-mail: loic.schiesko@ipp.mpg.de; Hopf, C.; Höschen, T.

    2015-04-08

    In a proof-of-principle study, molybdenum samples were implanted with a very small dose of Cs in order to test the properties of the compound as a surface converter for negative hydrogen ion production. First results on the properties of Cs doped Mo compounds show a reduction of the work function and a stable H{sup −} yield up to four hours in low density hydrogen plasma. The implanted Cs atoms were stable in the Mo lattice over one year for samples stored in vacuum and not exposed to the plasma. The surface H{sup −} generation mechanisms were identified and a comparisonmore » of the negative ion yield with pure Mo showed that the Cs doped Mo sample’s yield was much larger.« less

  10. Chemical characterization of 4140 steel implanted by nitrogen ions

    NASA Astrophysics Data System (ADS)

    Niño, E. D. V.; Pinto, J. L.; Dugar-Zhabon, V.; Henao, J. A.

    2012-06-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 1017 ions/cm2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.

  11. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    PubMed

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  12. Effects of dose reduction on bone strength prediction using finite element analysis

    NASA Astrophysics Data System (ADS)

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas

    2016-12-01

    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.

  13. Comparative study on the efficiency of peracetic acid and chlorine dioxide at low doses in the disinfection of urban wastewaters.

    PubMed

    De Luca, Giovanna; Sacchetti, Rossella; Zanetti, Franca; Leoni, Erica

    2008-01-01

    A comparison was made between the efficiency of low doses of peracetic acid (PAA: 1.5 mg/l) and chlorine dioxide (ClO(2): 1.5 and 2.0 mg/l) in the disinfection of secondary effluents of a wastewater treatment plant. Peracetic acid was seen to be more active than chlorine dioxide and less influenced by the organic content of the waste. Both PAA and ClO(2) (2.0 mg/l) lead to a higher reduction in total and faecal coliforms and E. coli than in phages (somatic coliphages and F-specific RNA bacteriophages) and enterococci. Detection of faecal coliforms and E. coli should therefore be accompanied by a search for these more resistant microorganisms when assessing the conformity of wastewater for irrigation use, or for discharge into surface waters. Coliphages are also considered suitable indicators of the presence of enteric viruses. Although the application of low doses of both disinfectants offers advantages in terms of costs and produces not significant quantities of byproducts, it is not sufficient to obtain wastewater suitable for irrigation according to the Italian norms (E. coli < 10/100 ml in 80 % of samples and <100/100 ml in the remaining samples). Around 65 % of the samples, however, presented concentrations of E. coli lower than the limit of 5,000/100 ml established by Italian norms for discharge into surface waters.

  14. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency.

    PubMed

    Chandasana, Hardik; Prasad, Yarra Durga; Chhonker, Yashpal S; Chaitanya, Telaprolu K; Mishra, Nripendra N; Mitra, Kalyan; Shukla, Praveen K; Bhatta, Rabi S

    2014-12-30

    Natamycin is the only approved medication for the treatment of mycotic keratitis. Current dosage regimen include one drop of natamycin suspension (5% w/v) instilled in the conjunctival sac at hourly or two hourly intervals for several days which has poor patient compliance. The purpose of the present study was to design a corneal targeted nanoformulation in order to reduce dose and dosing frequency of natamycin and evaluate its pharmacokinetic/pharmacodynamic indices in comparison with clinical marketed preparation. The nanoparticles prepared by nanoprecipitation method were in nanometer size range with high entrapment efficiency and positive surface charge. In-vitro release studies indicated prolonged release of natamycin up to 8h. In-vitro antifungal activity was comparable with marketed preparation. The performance of nanoformulations was evaluated in rabbit eyes. The concentration of natamycin in tear fluid was determined by using LC-MS/MS. The pharmacokinetic parameters such as area under the curve, t½ and mean residence time were significantly higher and clearance was significantly lower for nanoformulations with that of marketed preparation. The optimized dosing schedule to maintain natamycin concentration above tenfold of MIC90 was one instillation in every 5h. Moreover, 1/5th dose reduction of nanoformulation was also effective. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    PubMed

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  16. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  17. Localized conductive patterning via focused electron beam reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-01

    We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, A; Chow, J

    Purpose: This study investigated the surface dose variation in preclinical irradiation using small animal, when monoenergetic photon beams with energy range from 50 keV to 1.25 MeV were used. Methods: Inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom based on the same CT image set were used. The homogeneous and bone-tissue homogeneous phantom were created with the relative electron density of all and only bone voxels of the mouse overridden to one, respectively. Monte Carlo simulation based on the EGSnrc-based code was used to calculate the surface dose, when the phantoms were irradiated by a 360° photon arc with energies rangingmore » from 50 keV to 1.25 MeV. The mean surface doses of the three phantoms were calculated. In addition, the surface doses from partial arcs, 45°–315°, 125°–225°, 45°–125° and 225°–315° covering the anterior, posterior, right lateral and left lateral region of the mouse were determined using different photon beam energies. Results: When the prescribed dose at the isocenter of the mouse was 2 Gy, the maximum mean surface doses, found at the 50-keV photon beams, were 0.358 Gy, 0.363 Gy and 0.350 Gy for the inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom, respectively. The mean surface dose of the mouse was found decreasing with an increase of the photon beam energy. For surface dose in different orientations, the lateral regions of the mouse were receiving lower dose than the anterior and posterior regions. This may be due to the increase of beam attenuation along the horizontal (left-right) axis than the vertical (anterior-posterior) in the mouse. Conclusion: It is concluded that consideration of phantom inhomogeneity in the dose calculation resulted in a lower mean surface dose of the mouse. The mean surface dose also decreased with an increase of photon beam energy in the kilovoltage range.« less

  19. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  20. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  1. Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters.

    PubMed

    Kalra, Mannudeep K; Maher, Michael M; Blake, Michael A; Lucey, Brian C; Karau, Kelly; Toth, Thomas L; Avinash, Gopal; Halpern, Elkan F; Saini, Sanjay

    2004-09-01

    To assess the effect of noise reduction filters on detection and characterization of lesions on low-radiation-dose abdominal computed tomographic (CT) images. Low-dose CT images of abdominal lesions in 19 consecutive patients (11 women, eight men; age range, 32-78 years) were obtained at reduced tube currents (120-144 mAs). These baseline low-dose CT images were postprocessed with six noise reduction filters; the resulting postprocessed images were then randomly assorted with baseline images. Three radiologists performed independent evaluation of randomized images for presence, number, margins, attenuation, conspicuity, calcification, and enhancement of lesions, as well as image noise. Side-by-side comparison of baseline images with postprocessed images was performed by using a five-point scale for assessing lesion conspicuity and margins, image noise, beam hardening, and diagnostic acceptability. Quantitative noise and contrast-to-noise ratio were obtained for all liver lesions. Statistical analysis was performed by using the Wilcoxon signed rank test, Student t test, and kappa test of agreement. Significant reduction of noise was observed in images postprocessed with filter F compared with the noise in baseline nonfiltered images (P =.004). Although the number of lesions seen on baseline images and that seen on postprocessed images were identical, lesions were less conspicuous on postprocessed images than on baseline images. A decrease in quantitative image noise and contrast-to-noise ratio for liver lesions was noted with all noise reduction filters. There was good interobserver agreement (kappa = 0.7). Although the use of currently available noise reduction filters improves image noise and ameliorates beam-hardening artifacts at low-dose CT, such filters are limited by a compromise in lesion conspicuity and appearance in comparison with lesion conspicuity and appearance on baseline low-dose CT images. Copyright RSNA, 2004

  2. Tumor control probability reduction in gated radiotherapy of non-small cell lung cancers: a feasibility study.

    PubMed

    Siochi, R Alfredo; Kim, Yusung; Bhatia, Sudershan

    2014-10-16

    We studied the feasibility of evaluating tumor control probability (TCP) reductions for tumor motion beyond planned gated radiotherapy margins. Tumor motion was determined from cone-beam CT projections acquired for patient setup, intrafraction respiratory traces, and 4D CTs for five non-small cell lung cancer (NSCLC) patients treated with gated radiotherapy. Tumors were subdivided into 1 mm sections whose positions and doses were determined for each beam-on time point. (The dose calculation model was verified with motion phantom measurements.) The calculated dose distributions were used to generate the treatment TCPs for each patient. The plan TCPs were calculated from the treatment planning dose distributions. The treatment TCPs were compared to the plan TCPs for various models and parameters. Calculated doses matched phantom measurements within 0.3% for up to 3 cm of motion. TCP reductions for excess motion greater than 5mm ranged from 1.7% to 11.9%, depending on model parameters, and were as high as 48.6% for model parameters that simulated an individual patient. Repeating the worst case motion for all fractions increased TCP reductions by a factor of 2 to 3, while hypofractionation decreased these reductions by as much as a factor of 3. Treatment motion exceeding gating margins by more than 5 mm can lead to considerable TCP reductions. Appropriate margins for excess motion are recommended, unless applying daily tumor motion verification and adjusting thegating window.

  3. Development of an applicator for eye lens dosimetry during radiotherapy

    PubMed Central

    Park, J M; Lee, J; Ye, S-J

    2014-01-01

    Objective: To develop an applicator for in vivo measurements of lens dose during radiotherapy. Methods: A contact lens-shaped applicator made of acrylic was developed for in vivo measurements of lens dose. This lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistors (MOSFETs) dosemeters. CT images of an anthropomorphic phantom with and without the applicator were acquired. Ten volumetric modulated arc therapy plans each for the brain and the head and neck cancer were generated and delivered to an anthropomorphic phantom. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. Results: The average difference between the measured and the calculated doses with the applicator was 3.1 ± 1.8 cGy with a micro MOSFET and 2.8 ± 1.3 cGy with a standard MOSFET. The average difference without the lens applicator was 4.8 ± 5.2 cGy with the micro MOSFET and 5.7 ± 6.5 cGy with the standard MOSFET. The maximum difference with the micro MOSFET was 10.5 cGy with the applicator and 21.1 cGy without the applicator. For the standard MOSFET, it was 6.8 cGy with the applicator and 27.6 cGy without the applicator. Conclusion: The lens applicator allowed reduction of the differences between the calculated and the measured doses during in vivo measurement for the lens compared with in vivo measurement at the surface of the eyelid. Advances in knowledge: By using an applicator for in vivo dosimetry of the eye lens, it was possible to reduce the measurement uncertainty. PMID:25111733

  4. Using the benchmark dose (BMD) methodology to determine an appropriate reduction of certain ingredients in food products.

    PubMed

    Bi, Jian

    2010-01-01

    As the desire to promote health increases, reductions of certain ingredients, for example, sodium, sugar, and fat in food products, are widely requested. However, the reduction is not risk free in sensory and marketing aspects. Over reduction may change the taste and influence the flavor of a product and lead to a decrease in consumer's overall liking or purchase intent for the product. This article uses the benchmark dose (BMD) methodology to determine an appropriate reduction. Calculations of BMD and one-sided lower confidence limit of BMD are illustrated. The article also discusses how to calculate BMD and BMDL for over dispersed binary data in replicated testing based on a corrected beta-binomial model. USEPA Benchmark Dose Software (BMDS) were used and S-Plus programs were developed. The method discussed in the article is originally used to determine an appropriate reduction of certain ingredients, for example, sodium, sugar, and fat in food products, considering both health reason and sensory or marketing risk.

  5. Radiation dose reduction in computed tomography: techniques and future perspective

    PubMed Central

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2011-01-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169

  6. Dose gradient curve: A new tool for evaluating dose gradient.

    PubMed

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  7. Low radiation dose in computed tomography: the role of iodine

    PubMed Central

    Aschoff, Andrik J; Catalano, Carlo; Krix, Martin; Albrecht, Thomas

    2017-01-01

    Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration. PMID:28471242

  8. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels.

    PubMed

    Younger, Jarred; Noor, Noorulain; McCue, Rebecca; Mackey, Sean

    2013-02-01

    To determine whether low dosages (4.5 mg/day) of naltrexone reduce fibromyalgia severity as compared with the nonspecific effects of placebo. In this replication and extension study of a previous clinical trial, we tested the impact of low-dose naltrexone on daily self-reported pain. Secondary outcomes included general satisfaction with life, positive mood, sleep quality, and fatigue. Thirty-one women with fibromyalgia participated in the randomized, double-blind, placebo-controlled, counterbalanced, crossover study. During the active drug phase, participants received 4.5 mg of oral naltrexone daily. An intensive longitudinal design was used to measure daily levels of pain. When contrasting the condition end points, we observed a significantly greater reduction of baseline pain in those taking low-dose naltrexone than in those taking placebo (28.8% reduction versus 18.0% reduction; P = 0.016). Low-dose naltrexone was also associated with improved general satisfaction with life (P = 0.045) and with improved mood (P = 0.039), but not improved fatigue or sleep. Thirty-two percent of participants met the criteria for response (defined as a significant reduction in pain plus a significant reduction in either fatigue or sleep problems) during low-dose naltrexone therapy, as contrasted with an 11% response rate during placebo therapy (P = 0.05). Low-dose naltrexone was rated equally tolerable as placebo, and no serious side effects were reported. The preliminary evidence continues to show that low-dose naltrexone has a specific and clinically beneficial impact on fibromyalgia pain. The medication is widely available, inexpensive, safe, and well-tolerated. Parallel-group randomized controlled trials are needed to fully determine the efficacy of the medication. Copyright © 2013 by the American College of Rheumatology.

  9. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: Implications for nicotine regulation policy

    PubMed Central

    Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G.

    2013-01-01

    Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06 mg/kg) under an FR 3 schedule during daily 23 h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025 mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose–response relationships were very well described by the exponential demand function (r2 values > 0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males. PMID:24201048

  10. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.

    PubMed

    Yao, Weikun; Qu, Qiangyong; von Gunten, Urs; Chen, Chao; Yu, Gang; Wang, Yujue

    2017-01-01

    In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O 3 ) stock solutions and semi-batch tests with continuous O 2 /O 3 gas sparging (simulating real ozone contactors) were conducted to investigate O 3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O 3 /mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O 3 /mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H 2 O 2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H 2 O 2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O 3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Long-term ingestion of Hibiscus sabdariffa calyx extract enhances myocardial capillarization in the spontaneously hypertensive rat.

    PubMed

    Inuwa, Ibrahim; Ali, Badreldin H; Al-Lawati, Intisar; Beegam, Sumaya; Ziada, Amal; Blunden, Gerald

    2012-05-01

    The effects of Hibiscus sabdariffa (HS) in lowering blood pressure in human and animal hypertension have been documented. This study investigated the effect of the water extract of the dried calyx of HS and Hibiscus anthocyanins (HAs) on left ventricular myocardial capillary length and surface area in spontaneously hypertensive rats (SHRs). Twelve-week-old male SHRs were divided into eight groups (six rats in each group). Three groups were given three doses; 10%, 15% and 20% of the water extract of HS in lieu of drinking water for 10 consecutive weeks (HS10, HS15 and HS20) with one group kept as control (C). Another three groups were given three doses of the HAs orally at doses of 50, 100 and 200 mg/kg for five consecutive days with one group kept as a control (C). Systolic (SBP) and diastolic (DBP) blood pressures, as well as heart rate (HR), were measured weekly. After the experimental protocols, the left ventricles (LV) of all rats were obtained. Capillary surface area density and length density were determined by unbiased sterological methods on 3 μm LV tissue samples from perfusion-fixed hearts. HS ingestion significantly reduced SBP, DBP and LV mass in a dose-dependent fashion but did not affect the HR. HS significantly increased surface area and length density of myocardial capillaries by 59%, 65% and 86%, and length density by 57%, 77% and 57%, respectively. Myocyte nuclear volume was significantly decreased in HS-treated rats. There was a decrease (although insignificant) in SBP and DBP with HA ingestion compared with controls. These changes suggest that the observed beneficial effect of HS on high BP in SHRs could be mediated through a reduction in the diffusion distance between capillaries and myocytes, as well as new vessel formation. It is proposed that these effects might be beneficial in restoring myocyte normal nutritional status compromised by the hypertrophic state of hypertension.

  12. Film growth arising from the deposition of Au onto an i-Al Pd Mn quasicrystal: a medium energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Noakes, T. C. Q.; Bailey, P.; Draxler, M.; McConville, C. F.; Ross, A. R.; Lograsso, T. A.; Leung, L.; Smerdon, J. A.; McGrath, R.

    2006-06-01

    The room temperature deposition of 7 ML of Au onto the fivefold symmetric surface of icosahedral Al-Pd-Mn leads to the formation of a several monolayers thick Au-Al alloy film. An AlAu film with 1:1 stoichiometry is formed, which shows no evidence of ordered structure, being either amorphous or polycrystalline. Annealing to 325 °C causes more Al to diffuse into the film, producing Al2Au but still with no indication of structure. Experiments using 0.5 ML of pre-deposited In demonstrated a surfactant effect as the In 'floated' on the surface during growth and produced a reduction in film roughness. However, contrary to previous findings the film was still either amorphous or polycrystalline, with no evidence of quasi-crystalline or aperiodic structure. Experiments were also conducted using smaller doses of Au to look for the formation of an epitaxial layer and, if formed, determine the registry with the substrate. However, no change in the Pd blocking curves for the surface could be seen, suggesting that the Au does not adsorb in well defined sites. This result is not surprising when considering that even for these low doses Al is drawn into the film, changing the composition and probably the structure of the topmost layers of the substrate, so that the potential adsorption sites on the clean surface may no longer exist.

  13. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique.

    PubMed

    Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat

    2015-11-01

    This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.

  14. Significant Radiation Dose Reduction in the Hybrid Operating Room Using a Novel X-ray Imaging Technology.

    PubMed

    van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J

    2015-10-01

    To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p < .01]); and in median DAP it was 57% (ALX = 224.4 Gycm(2) and CIQ = 95.8 Gycm(2) [p < .01]). Patient radiation dose reduction in the AIOD group, in median AK, was 76% (ALX = 1,011.0 mGy; CIQ = 248.0 mGy [p < .01]); and in median DAP it was 73% (ALX = 138.1 Gycm(2); CIQ = 38.0 Gycm(2) [p < .01]). Staff dose reduction in the EVAR group was 16% (ALX = 70.1 μSv; CIQ = 59.2 μSv [p = .43]) and in the AIOD group it was 69% (ALX = 96.2 μSv; CIQ = 30.1 μSv [p < .01]). There was no statistically significant difference between patient demographics, procedure time, fluoroscopy time, and iodinated contrast medium use in the two treatment groups before and after installation. A novel X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and staff radiation dose without affecting procedure length, fluoroscopy time, or use of contrast. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. CT dose reduction using Automatic Exposure Control and iterative reconstruction: A chest paediatric phantoms study.

    PubMed

    Greffier, Joël; Pereira, Fabricio; Macri, Francesco; Beregi, Jean-Paul; Larbi, Ahmed

    2016-04-01

    To evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR). Three anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom. The use of AEC produced a significant dose reduction (p<0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p<0.01) and reduced SNR and CNR (p<0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency. In chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality

    PubMed Central

    Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-01-01

    Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169

  17. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality.

    PubMed

    Østerås, Bjørn Helge; Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-08-01

    Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor's water phantom. There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between -3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and -7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality.

  18. Influence of different treatment techniques on radiation dose to the LAD coronary artery

    PubMed Central

    Nieder, Carsten; Schill, Sabine; Kneschaurek, Peter; Molls, Michael

    2007-01-01

    Background The purpose of this proof-of-principle study was to test the ability of an intensity-modulated radiotherapy (IMRT) technique to reduce the radiation dose to the heart plus the left ventricle and a coronary artery. Radiation-induced heart disease might be a serious complication in long-term cancer survivors. Methods Planning CT scans from 6 female patients were available. They were part of a previous study of mediastinal IMRT for target volumes used in lymphoma treatment that included 8 patients and represent all cases where the left anterior descending coronary artery (LAD) could be contoured. We compared 6 MV AP/PA opposed fields to a 3D conformal 4-field technique and an optimised 7-field step-and-shoot IMRT technique and evaluated DVH's for several structures. The planning system was BrainSCAN 5.21 (BrainLAB, Heimstetten, Germany). Results IMRT maintained target volume coverage but resulted in better dose reduction to the heart, left ventricle and LAD than the other techniques. Selective dose reduction could be accomplished, although not to the degree initially attempted. The median LAD dose was approximately 50% lower with IMRT. In 5 out of 6 patients, IMRT was the best technique with regard to heart sparing. Conclusion IMRT techniques are able to reduce the radiation dose to the heart. In addition to dose reduction to whole heart, individualised dose distributions can be created, which spare, e.g., one ventricle plus one of the coronary arteries. Certain patients with well-defined vessel pathology might profit from an approach of general heart sparing with further selective dose reduction, accounting for the individual aspects of pre-existing damage. PMID:17547777

  19. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    PubMed

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  20. Radioactive 133-Xenon gas-filled balloon to prevent restenosis: dosimetry, efficacy, and safety considerations.

    PubMed

    Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G

    2002-08-06

    Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.

  1. Dose comparison between conventional and quasi-monochromatic systems for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Baldelli, P.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.

    2004-09-01

    Several techniques have been introduced in the last year to reduce the dose to the patient by minimizing the risk of tumour induced by radiation. In this work the radiological potential of dose reduction in quasi-monochromatic spectra produced via mosaic crystal Bragg diffraction has been evaluated, and a comparison with conventional spectra has been performed for four standard examinations: head, chest, abdomen and lumbar sacral spine. We have simulated quasi-monochromatic x-rays with the Shadow code, and conventional spectra with the Spectrum Processor. By means of the PCXMC software, we have simulated four examinations according to parameters established by the European Guidelines, and calculated absorbed dose for principal organs and the effective dose. Simulations of quasi-monochromatic laminar beams have been performed without anti-scatter grid, because of their inherent scatter geometry, and compared with simulations with conventional beams with anti-scatter grids. Results have shown that the dose reduction due to the introduction of quasi-monochromatic x-rays depends on different parameters related to the quality of the beam, the organ composition and the anti-scatter grid. With parameters chosen in this study a significant dose reduction can be achieved for two out of four kinds of examination.

  2. Evidence of dose saving in routine CT practice using iterative reconstruction derived from a national diagnostic reference level survey.

    PubMed

    Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A

    2015-09-01

    To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.

  3. The Impact of Azilsartan Medoxomil Treatment (Capsule Formulation) at Doses Ranging From 10 to 80 mg: Significant, Rapid Reductions in Clinic Diastolic and Systolic Blood Pressure.

    PubMed

    Perez, Alfonso; Cao, Charlie

    2017-03-01

    In this phase 2, multicenter, parallel-group, double-blind, dose-ranging study, hypertensive adults (n=449) were randomized to receive one of five doses of a capsule formulation of azilsartan medoxomil (AZL-M; 5, 10, 20, 40, 80 mg), olmesartan medoxomil (OLM) 20 mg, or placebo once daily. The primary endpoint was change in trough clinic diastolic blood pressure (DBP) at week 8. AZL-M provided rapid statistically and clinically significant reductions in DBP and systolic blood pressure (SBP) vs placebo at all doses except 5 mg. Placebo-subtracted changes were greatest with the 40 mg dose (DBP, -5.7 mm Hg; SBP, -12.3 mm Hg). Clinic changes with AZL-M (all doses) were statistically indistinguishable vs OLM, although there were greater reductions with AZL-M 40 mg using 24-hour ambulatory blood pressure. Adverse event frequency was similar in the AZL-M and placebo groups. Based on these and other findings, subsequent trials investigated the commercial AZL-M tablet in the dose range of 20 to 80 mg/d. ©2016 Wiley Periodicals, Inc.

  4. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  5. Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Grzetic, Shelby Mariah

    Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.

  6. SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less

  7. Proton therapy to the subdiaphragmatic region in the management of patients with Hodgkin lymphoma.

    PubMed

    Sachsman, Suzanne; Hoppe, Bradford S; Mendenhall, Nancy P; Holtzman, Adam; Li, Zuofeng; Slayton, William; Joyce, Mike; Sandler, Eric; Flampouri, Stella

    2015-07-01

    Twelve consecutive patients with classical Hodgkin lymphoma (HL) involving diaphragmatic or subdiaphragmatic regions were treated on an institutional review board-approved outcomes tracking protocol. All patients underwent treatment with proton therapy following chemotherapy and had comparative three-dimensional conformal photon radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) plans to evaluate differences in dose to organs at risk (OARs). Among the cohort, stomach doses with 3DCRT, IMRT and proton therapy were 21 Gy (median), 14 Gy and 6 Gy, respectively. Median dose reductions with proton therapy compared with 3DCRT and IMRT were 13 Gy (p = 0.0022) and 8 Gy (p = 0.0022) for the stomach. Additionally, there was significant dose reduction using proton therapy for the liver, pancreas, bowel, left kidney and right kidney. Proton therapy reduces the dose to the stomach, liver, pancreas, small bowel and kidneys compared with 3DCRT or IMRT in patients with HL requiring abdominal radiotherapy. These dose reductions are expected to translate into lower risks of secondary cancers and other late toxicities in survivors of HL.

  8. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  9. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, A; Schoenfeld, A; Poppinga, D

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurementsmore » were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.« less

  10. SU-F-T-415: Differences in Lung Sparing in Deep Inspiration Breath-Hold and Free Breathing Breast Plans Calculated in Pinnacle and Monaco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, D; Stathakis, S

    Purpose: Deep inspiration breath-hold (DIBH) is used for left-sided breast radiotherapy to spare the heart and lung. The magnitude of sparing has been shown to be significant. Monte Carlo, furthermore, has the potential to calculate most accurately the dose in the heterogeneous lung medium at the interface with the lung wall. The lung dose was investigated in Monaco to determine the level of sparing relative to that calculated in Pinnacle{sup 3}. Methods: Five patients undergoing DIBH radiotherapy on an Elekta Versa HD linear accelerator in conjunction with the Catalyst C-RAD surface imaging system were planned using Phillips Pinnacle{sup 3}. Freemore » breathing plans were also created to clinically assure a benefit. Both plans were re-calculated in Monaco to determine if there were any significant differences. The mean heart dose, mean left lung, and mean total lung dose were compared in addition to the V20 for left and both lungs. Dose was calculated as dose to medium as well as dose to water with a statistical precision of 0.7%. Results: Mean lung dose was significantly different (p < 0.003) between the two calculations for both DIBH (11.6% higher in Monaco) and free breathing (14.2% higher in Monaco). V20 was also higher in Monaco (p < 0.05) for DIBH (5.7% higher) and free breathing (4.9% higher). The mean heart dose was not significantly different between the dose calculations for either DIBH or free breathing. Results were no more than 0.1% different when calculated as dose to water. Conclusion: The use of Monte Carlo can provide insight on the lung dose for both free breathing and DIBH techniques for whole breast irradiation. While the sparing (dose reductions with DIBH as compared to free breathing) is equivalent for either planning system, the lung doses themselves are higher when calculated with Monaco.« less

  11. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J; Grassberger, C; Paganetti, H

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less

  12. Behavioral and Psychological Predictors of Chemotherapy Adherence in Patients with Advanced Non-Small-Cell Lung Cancer

    PubMed Central

    Greer, Joseph A.; Pirl, William F.; Park, Elyse R.; Lynch, Thomas J.; Temel, Jennifer S.

    2013-01-01

    Objective Dose delays and reductions in chemotherapy due to hematologic toxicities are common among patients with advanced non-small-cell lung cancer (NSCLC). However, limited data exist on behavioral or psychological predictors of chemotherapy adherence. The goal of this study was to explore the frequency and clinical predictors of infusion dose delays and reductions in this patient population. Methods Fifty patients newly diagnosed with advanced NSCLC of high performance status (ECOG PS=0-1) completed baseline assessments on quality of life (FACT-L) and mood (HADS) within eight weeks of diagnosis. Participants were followed prospectively for six months. Chemotherapy dosing data came from medical chart review. Results All patients received chemotherapy during the course of the study, beginning with either a platinum-based doublet (74%), an oral epidermal growth factor receptor-tyrosine kinase inhibitor (14%), or a parenteral single agent (12%). Forty percent (N=20) of patients had either a dose delay (38%) and/or reduction (16%) in their scheduled infusions. Fisher’s exact tests showed that patients who experienced neutropenia, smoked at the time of diagnosis, or reported heightened baseline anxiety were significantly more likely to experience dose delays or reductions. There were no associations between chemotherapy adherence and patient demographics, performance status, or quality of life. Conclusion In this sample, over one-third of patients with advanced NSCLC experienced either a dose delay or reduction in prescribed chemotherapy regimens. Behavioral and psychological factors, such as tobacco use and anxiety symptoms, appear to play an important role in chemotherapy adherence, though further study is required to confirm these findings. PMID:19027443

  13. Dose gradient curve: A new tool for evaluating dose gradient

    PubMed Central

    Choi, Young Eun

    2018-01-01

    Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471

  14. Approaches to reducing photon dose calculation errors near metal implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jessie Y.; Followill, David S.; Howell, Reb

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less

  15. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Al-Ajlony, A.; Tripathi, J. K.; Hassanein, A.

    2015-11-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C.

  16. Long-Term Residual Efficacy of Spinetoram on Concrete and Steel Surfaces for the Management of Three Stored Product Beetle Species.

    PubMed

    Vassilakos, Thomas N; Athanassiou, Christos G

    2015-08-01

    In this study, the residual efficacy of spinetoram on concrete and galvanized steel surfaces was evaluated under fixed laboratory conditions against the rice weevil, Sitophilus oryzae (L.), the confused flour beetle, Tribolium confusum Jacquelin du Val, and the sawtoothed grain beetle, Oryzaephilus surinamensis (L.). Spinetoram was applied at the dose rates of 0.025 and 0.1 mg (active ingredient)/cm(2), on steel surfaces that were stored in continuous darkness and on concrete surfaces that were stored either in continuous darkness or in 12:12 (L:D) photoperiod. The experimental period for the residual effect of spinetoram was 6 mo. Bioassays were conducted for all types of surfaces and storage conditions at monthly intervals starting from the initial application period (seven bioassays in total). For each bioassay, mortality of the exposed adult beetles was measured after 3 and 7 d of exposure. Among the tested species, T. confusum was the least susceptible, regardless of the surface type, storage conditions, and dose rate. Regarding the bioassays conducted in the surfaces stored in darkness, spinetoram proved very persistent and no reduction in the efficacy was noted throughout the experimental period. Moreover, there were no differences in spinetoram efficacy between the two types of surfaces. Conversely, in light [12:12 (L:D)] conditions spinetoram efficacy was notably reduced after the first month, but remained stable for the rest of the period. The results of this study indicate that spinetoram was persistent with long residual efficacy against major stored grain beetle species on the most common types of surfaces in continuous darkness, while the presence of light reduced its efficacy. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin.

    PubMed

    Uchakina, Olga N; Ban, Hao; Hostetler, Bryan J; McKallip, Robert J

    2016-11-01

    In the current study we examined the ability of 4-methylumbelliferone (4-MU), which can inhibit hyaluronic acid synthesis, to sensitize K562 chronic myelogenous leukemia (CML) cells to doxorubicin therapy. Exposure of K562 cells to doxorubicin led to increased hyaluronic acid synthase (HAS) gene expression and increased levels of cell surface hyaluronic acid. Furthermore, exposure of K562 cells to exogenous HA caused resistance to doxorubicin-induced cell death. The combination of low dose 4-MU and doxorubicin led to increased apoptosis when compared to higher doses of any agent alone. Additionally, treatment with 4-MU led to a significant reduction in doxorubicin-induced increase in HA cell surface expression. Mechanistically, 4-MU treatment led to an increase in p38 activation and PARP cleavage. The role of p38 in 4-MU/doxorubicin-treated K562 cells was confirmed when p38 inhibitors led to protection from 4-MU/doxorubicin-induced apoptosis. Together, results from this study suggest that treatment with 4-MU increases the sensitivity of CML to chemotherapeutics by decreasing their HA-mediated resistance to apoptosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki

    2017-01-01

    Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h -1 ) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation in air dose rates even within one house, depending on the height of the area and its closeness to the outside boundary. Measurements of outdoor dose rates required consideration of local variations depending on the environment surrounding each house. The representative value was obtained from detailed distributions of air dose rates around the house, as measured by a man-borne survey. Therefore, it is imperative to recognize that dose reduction factors fluctuate in response to various factors such as the size and shape of a house, construction materials acting as a shield and as sources, position (including height) within a room, floor number, total number of floors, and surrounding environment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases.

    PubMed

    Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F

    2016-05-01

    To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Ultralow-dose computed tomography imaging for surgery of midfacial and orbital fractures using ASIR and MBIR.

    PubMed

    Widmann, G; Dalla Torre, D; Hoermann, R; Schullian, P; Gassner, E M; Bale, R; Puelacher, W

    2015-04-01

    The influence of dose reductions on diagnostic quality using a series of high-resolution ultralow-dose computed tomography (CT) scans for computer-assisted planning and surgery including the most recent iterative reconstruction algorithms was evaluated and compared with the fracture detectability of a standard cranial emergency protocol. A human cadaver head including the mandible was artificially prepared with midfacial and orbital fractures and scanned using a 64-multislice CT scanner. The CT dose index volume (CTDIvol) and effective doses were calculated using application software. Noise was evaluated as the standard deviation in Hounsfield units within an identical region of interest in the posterior fossa. Diagnostic quality was assessed by consensus reading of a craniomaxillofacial surgeon and radiologist. Compared with the emergency protocol at CTDIvol 35.3 mGy and effective dose 3.6 mSv, low-dose protocols down to CTDIvol 1.0 mGy and 0.1 mSv (97% dose reduction) may be sufficient for the diagnosis of dislocated craniofacial fractures. Non-dislocated fractures may be detected at CTDIvol 2.6 mGy and 0.3 mSv (93% dose reduction). Adaptive statistical iterative reconstruction (ASIR) 50 and 100 reduced average noise by 30% and 56%, and model-based iterative reconstruction (MBIR) by 93%. However, the detection rate of fractures could not be improved due to smoothing effects. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies

    PubMed Central

    Bukhari, Tullu; Takken, Willem; Githeko, Andrew K.; Koenraadt, Constantianus J. M.

    2011-01-01

    Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. Methodology/Principal Findings A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. Conclusions/Significance We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems. PMID:21738774

  2. Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge

    2017-09-01

    Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.

  3. The Characterization and Treatment of Aggressive Breast Cancer

    DTIC Science & Technology

    2005-05-01

    of a cycle for over 7 days, the carboplatin dose will be decreased by 25% for subsequent cycles. For a second episode of febrile neutropenia , G-CSF...should be given with the next cycle. For an episode of febrile neutropenia despite dose reduction and G-CSF, protocol treatment should be discontinued... neutropenia despite a dose reduction in the previous course. G-CSF may also be used as clinically indicated for neutropenic infection. 4.2.4 The use of

  4. Pediatric CT and radiation: our responsibility

    NASA Astrophysics Data System (ADS)

    Frush, Donald P.

    2009-02-01

    In order to discuss the cost-benefit ratio of CT examinations in children, one must be familiar with the reasons why CT can provide a high collective or individual dose. The reasons include increasing CT use as well as lack of attention to dose reduction strategies. While those have been substantial efforts for dose reduction, additional work is necessary to prevent unnecessary radiation exposure. This responsibility is shared between science and medicine, industry, regulatory agencies, and patients as well.

  5. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis.

    PubMed

    Muniesa, A; Escobar-Dodero, J; Silva, N; Henríquez, P; Bustos, P; Perez, A M; Mardones, F O

    2018-03-08

    This short communication investigated in vitro differences between commercial disinfectants types (n = 36), doses of application, and time of action in the elimination of Piscirickettsia salmonis, the most important bacterium affecting farmed salmon in Chile. Seven different treatments were examined, including active and inactive chlorine dioxides, glutaraldehyde, hypochlorite disinfectants and detergents, peracetic acid, peroxides and other miscellaneous methods A 3 replicate set of each of the sample groups was stored at 20 °C and 95% relative humidity and retested after 1, 5 and 30 min with varying doses (low, recommended and high doses). Multiple comparison tests were performed for the mean log CFU/ml among different disinfectant types, dose (ppm) and time of exposure (minutes) on the reduction of P. salmonis. Overall, disinfection using peracetic acid, peroxides, and both active and inactive chlorine dioxides caused significantly higher reduction of >7.5 log CFU/ml in samples, compared to other tested sanitizers. The lowest reduction was obtained after disinfection with hypochlorite detergents. As expected, as doses and time of action increase, there was a significant reduction of the overall counts of P. salmonis. However, at lowest doses, only use of paracetic acids resulted in zero counts. Implementation of effective protocols, making use of adequate disinfectants, may enhance biosecurity, and ultimately, mitigate the impact of P. salmonis in farmed salmon. Copyright © 2018. Published by Elsevier B.V.

  6. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  7. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  8. Dose-distance metric that predicts late rectal bleeding in patients receiving radical prostate external-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali

    2012-12-01

    The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.

  9. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasso, A.F., E-mail: sasso.alan@epa.gov; Schlosser, P.M., E-mail: schlosser.paul@epa.gov

    Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastricmore » juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses. - Highlights: • We outline a new in vivo model for hexavalent chromium reduction in the stomach. • We examine in vivo reduction for mice, rats, and humans under varying conditions. • Species differences in toxicokinetics may explain susceptibility. • We show that a simplified stomach reduction model is adequate for extrapolation. • Internal dose uncertainties still exist.« less

  10. Surface dose measurement for helical tomotherapy.

    PubMed

    Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav

    2011-06-01

    To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.

  11. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635

  12. TH-AB-BRA-10: The Physics of Interface Effects for Radiation Treatments in a MRI-Linac: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, S; Sarfehnia, A; Kim, A

    Purpose: To investigate and explain the interface effects for clinically relevant materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Geant4.10.1 both with (B-On) and without (B-Off) a magnetic field for an Elekta MRI-Linac. A slab of thickness 8 cm, representing inhomogeneity, was placed at a depth of 4 cm in a 20×20×20 cm water phantom. Backscattered electron fluence was calculated through a 20×20 cm plane aligned with the surface of the inhomogeneity. Inhomogeneities investigated were lung, bone, aluminum, titanium, stainless steel, and dental filling. A photon beam with fieldmore » size of 2×2 cm at the isocenter and SAD of 143.5 cm was generated from a point source with energy distribution sampled from a histogram representing the true Elekta MRI-Linac photon spectrum. Results: In the B-On case, if the heterogeneity is a low Z{sub eff} material, such as lung, the backscattered electron fluence is increased considerably, i.e. by 54 %, and the corresponding dose is expected to be higher near the interface compared to the B-Off case. On the contrary, if the heterogeneity is a high Z{sub eff} material then the backscattered electron fluence is reduced in the B-On electron fluence is reduced in the B-On case. This reduction leads to a lower dose deposition at the interface compared to the B-Off case. Conclusion: The reduction in dose at the interface, in the B-On case, is directly related to the reduction in backscattered electron fluence. The reduction in backscattered electron fluence occurs due to two different reasons. First, the electron energy spectrum hitting the interface is changed for the B-On case which changes the electron scattering probability. Second, some electrons that are looping under the influence of the magnetic field are captured by the higher density side of the interface and no longer contribute to the backscattered electron stream. Funding support for this study was provided by ElektaTM.« less

  13. Determining a threshold sub-acute dose leading to minimal physiological alterations following prolonged exposure to the nerve agent VX in rats.

    PubMed

    Bloch-Shilderman, E; Rabinovitz, I; Egoz, I; Yacov, G; Allon, N; Nili, U

    2018-02-01

    VX, a potent inhibitor of cholinesterase (ChE), is considered as one of the most toxic, persistent and least volatile nerve agents. VX is absorbed in various environmental surfaces and is gradually released long after its initial dispersal. Its toxicity is mainly caused by disrupting central and peripheral cholinergic nervous system activity, leading to potential long-term detrimental effects on health. The primary objective of the present study was to assess the threshold VX dose leading to minimal physiological alterations following prolonged VX exposure. Characterization of such a threshold is crucial for dealing with unresolved operative dilemmas such as when it is safe enough to resettle a population that has been evacuated from a VX-contaminated area. Rats, continuously exposed to various doses of VX (0.225-45 µg/kg/day) for 4 weeks via implanted mini-osmotic pumps, showed a dose-dependent and continuous decrease in ChE activity in whole blood, brain and muscles, ranging between 20 and 100%. Exposure to 13.5 µg/kg/day led to a stable low ChE activity level (~ 20%), accompanied by transient and negligible electrocorticogram spectral power transformations, especially in the theta and alpha brain wave frequencies, and a significant decrease in total brain M2 receptor density. These changes were neither accompanied by observable signs of intoxication nor by changes in motor function, circadian rhythm or TSPO level (a reliable marker of brain damage). Following exposure to lower doses of 2.25 and 0.225 µg/kg/day, the only change measured was a reduction in ChE activity of 60 and 20%, respectively. Based on these results, we delineate ChE inhibition as the physiological measure most susceptible to alterations following prolonged VX exposure, and determine for the first time the threshold sub-acute VX dose for minimal physiological effects (up to 20% reduction in ChE activity) in the rat as 0.225 µg/kg/day.

  14. RADIATION PROTECTION CABIN FOR CATHETER-DIRECTED LIVER INTERVENTIONS: OPERATOR DOSE ASSESSMENT.

    PubMed

    Maleux, Geert; Bergans, Niki; Bosmans, Hilde; Bogaerts, Ria

    2016-09-01

    The number and complexity of interventional radiological procedures and in particular catheter-directed liver interventions have increased substantially. The current study investigates the reduction of personal doses when using a dedicated radiation protection cabin (RPC) for these procedures. Operator and assistant doses were assessed for 3 series of 20 chemoinfusion/chemoembolisation interventions, including an equal number of procedures with and without RPC. Whole body doses, finger doses and doses at the level of knees and eyes were evaluated with different types of TLD-100 Harshaw dosemeters. Dosemeters were also attached on the three walls of the RPC. The operator doses were significantly reduced by the RPC, but also without RPC, the doses appear to be limited as a result of thorough optimisation with existing radiation protection tools. The added value of the RPC should thus be determined by the outcome of balancing dose reduction and other aspects such as ergonomic benefits. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. High Atomic Number Contrast Media Offer Potential for Radiation Dose Reduction in Contrast-Enhanced Computed Tomography.

    PubMed

    Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A

    2016-04-01

    Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.

  16. SU-G-IeP2-10: Lens Dose Reduction by Patient Position Modification During Neck CT Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, E; Lee, C; Butman, J

    Purpose: Irradiation of the lens during a neck CT may increase a patient’s risk of developing cataracts later in life. Radiologists and technologists at the National Institutes of Health Clinical Center (NIHCC) have developed new CT imaging protocols that include a reduction in scan range and modifying neck positioning using a head tilt. This study will evaluate the efficacy of this protocol in the reduction of lens dose. Methods: We retrieved CT images of five male patients who had two sets of CT images: before and after the implementation of the new protocol. The lens doses before the new protocolmore » were calculated using an in-house CT dose calculator, National Cancer Institute dosimetry system for CT (NCICT), where computational human phantoms with no head tilt are included. We also calculated the lens dose for the patient CT conducted after the new protocol by using an adult male computational phantom with the neck position deformed to match the angle of the head tilt. We also calculated the doses to other radiosensitive organs including the globes of the eye, brain, pituitary gland and salivary glands before and after head tilt. Results: Our dose calculations demonstrated that modifying neck position reduced dose to the lens by 89% on average (range: 86–96%). Globe, brain, pituitary and salivary gland doses also decreased by an average of 65% (51–95%), 38% (−8–66%), 34% (−43–84%) and 14% (13–14%), respectively. The new protocol resulted in a nearly ten-fold decrease in lens dose. Conclusion: The use of a head tilt and scan range reduction is an easy and effective method to reduce radiation exposure to the lens and other radiosensitive organs, while still allowing for the inclusion of critical neck structures in the CT image. We are expanding our study to a total of 10 males and 10 females.« less

  17. Optimisation of radiation dose and image quality in mobile neonatal chest radiography.

    PubMed

    Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C

    2018-05-01

    To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  18. Effects of Low-Dose Mindfulness-Based Stress Reduction (MBSR-ld) on Working Adults

    ERIC Educational Resources Information Center

    Klatt, Maryanna D.; Buckworth, Janet; Malarkey, William B.

    2009-01-01

    Mindfulness-based stress reduction (MBSR) has produced behavioral, psychological, and physiological benefits, but these programs typically require a substantial time commitment from the participants. This study assessed the effects of a shortened (low-dose [ld]) work-site MBSR intervention (MBSR-ld) on indicators of stress in healthy working…

  19. Radiation dose reduction using a neck detection algorithm for single spiral brain and cervical spine CT acquisition in the trauma setting.

    PubMed

    Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin

    2013-12-01

    Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.

  20. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  1. Electrically-inactive phosphorus re-distribution during low temperature annealing

    NASA Astrophysics Data System (ADS)

    Peral, Ana; Youssef, Amanda; Dastgheib-Shirazi, Amir; Akey, Austin; Peters, Ian Marius; Hahn, Giso; Buonassisi, Tonio; del Cañizo, Carlos

    2018-04-01

    An increased total dose of phosphorus (P dose) in the first 40 nm of a phosphorus diffused emitter has been measured after Low Temperature Annealing (LTA) at 700 °C using the Glow Discharge Optical Emission Spectrometry technique. This evidence has been observed in three versions of the same emitter containing different amounts of initial phosphorus. A stepwise chemical etching of a diffused phosphorus emitter has been carried out to prepare the three types of samples. The total P dose in the first 40 nm increases during annealing by 1.4 × 1015 cm-2 for the sample with the highly doped emitter, by 0.8 × 1015 cm-2 in the middle-doped emitter, and by 0.5 × 1015 cm-2 in the lowest-doped emitter. The presence of surface dislocations in the first few nanometers of the phosphorus emitter might play a role as preferential sites of local phosphorus gettering in phosphorus re-distribution, because the phosphorus gettering to the first 40 nm is lower when this region is etched stepwise. This total increase in phosphorus takes place even though the calculated electrically active phosphorus concentration shows a reduction, and the measured sheet resistance shows an increase after annealing at a low temperature. The reduced electrically active P dose is around 0.6 × 1015 cm-2 for all the emitters. This can be explained with phosphorus-atoms diffusing towards the surface during annealing, occupying electrically inactive configurations. An atomic-scale visual local analysis is carried out with needle-shaped samples of tens of nm in diameter containing a region of the highly doped emitter before and after LTA using Atom Probe Tomography, showing phosphorus precipitates of 10 nm and less before annealing and an increased density of larger precipitates after annealing (25 nm and less).

  2. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia.

    PubMed

    Hawwa, Ahmed F; Collier, Paul S; Millership, Jeff S; McCarthy, Anthony; Dempsey, Sid; Cairns, Carole; McElnay, James C

    2008-12-01

    To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m(-2) day(-1)). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype.

  3. Vitamin E provides protection for bone in mature hindlimb unloaded male rats

    NASA Technical Reports Server (NTRS)

    Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.

    2005-01-01

    The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.

  4. Dose equivalent on the Moon contributed from cosmic rays and their secondary particles

    NASA Astrophysics Data System (ADS)

    Hayatsu, K.; Hareyama, Makoto; Hasebe, N.; Kobayashi, S.; Yamashita, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and in the future lunar bases. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays and solar energetic particles directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, those generate many secondary particles such as gamma rays, neutrons and other charged particles by interaction with soils under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study the ambient dose equivalent in the ICRU sphere at the surface and various depths of the Moon is estimated based on the latest galactic cosmic ray spectrum and its generating secondary particles calculated by the Geant4 code. On the surface the most dominant contribution for the dose are not protons and heliums, but heavy components of galactic cosmic rays such as iron, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 50 - 100 g/cm2 of lunar soil depth, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give a large dose. On the surface, the dose originated from GCR is quite sensitive for solar cycle activity, while that from secondary neutrons is not so sensitive. Inversely, under the surface, the dose from neutron is much sensitive for solar activity related to the flux of galactic cosmic rays. This difference should be considered to shield cosmic radiation for human activity on the Moon.

  5. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less

  6. Effectiveness of urban shelter-in-place—II: Residential districts

    NASA Astrophysics Data System (ADS)

    Chan, Wanyu R.; Nazaroff, William W.; Price, Phillip N.; Gadgil, Ashok J.

    In the event of a short-term, large-scale toxic chemical release to the atmosphere, shelter-in-place (SIP) may be used as an emergency response to protect public health. We modeled hypothetical releases using realistic, empirical parameters to explore how key factors influence SIP effectiveness for single-family dwellings in a residential district. Four classes of factors were evaluated in this case study: (a) time scales associated with release duration, SIP implementation delay, and SIP termination; (b) building air-exchange rates, including air infiltration and ventilation; (c) the degree of sorption of toxic chemicals to indoor surfaces; and (d) the shape of the dose-response relationship for acute adverse health effects. Houses with lower air leakage are more effective shelters, and thus variability in the air leakage of dwellings is associated with varying degrees of SIP protection in a community. Sorption on indoor surfaces improves SIP effectiveness by lowering the peak indoor concentrations and reducing the amount of contamination in the indoor air. Nonlinear dose-response relationships imply substantial reduction in adverse health effects from lowering the peak exposure concentration. However, if the scenario is unfavorable for indefinite sheltering (e.g. sheltering in leaky houses for protection against a nonsorbing chemical with a linear dose-response), the community must implement SIP without delay and exit from shelter when it first becomes safe to do so. Otherwise, the community can be subjected to even greater risk than if they did not take shelter indoors.

  7. Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon

    NASA Astrophysics Data System (ADS)

    Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.

  8. Evaluation of dose reduction versus standard dosing for maintenance of remission in patients with spondyloarthritis and clinical remission with anti-TNF (REDES-TNF): study protocol for a randomized controlled trial.

    PubMed

    Pontes, Caridad; Gratacós, Jordi; Torres, Ferran; Avendaño, Cristina; Sanz, Jesús; Vallano, Antoni; Juanola, Xavier; de Miguel, Eugenio; Sanmartí, Raimon; Calvo, Gonzalo

    2015-08-20

    Dose reduction schedules of tumor necrosis factor antagonists (anti-TNF) as maintenance therapy in patients with spondyloarthritis are used empirically in clinical practice, despite the lack of clinical trials providing evidence for this practice. To address this issue the Spanish Society of Rheumatology (SER) and Spanish Society of Clinical Pharmacology (SEFC) designed a 3-year multicenter, randomized, open-label, controlled clinical trial (2 years for inclusion and 1 year of follow-up). The study is expected to include 190 patients with axial spondyloarthritis on stable maintenance treatment (≥4 months) with any anti-TNF agent at doses recommended in the summary of product characteristics. Patients will be randomized to either a dose reduction arm or maintenance of the dosing regimen as per the official labelling recommendations. Randomization will be stratified according to the anti-TNF agent received before study inclusion. Patient follow-up, visit schedule, and examinations will be maintained as per normal clinical practice recommendations according to SER guidelines. The study aims to test the hypothesis of noninferiority of the dose reduction strategy compared with standard treatment. The first patients were recruited in July 2012, and study completion is scheduled for the end of April 2015. The REDES-TNF study is a pragmatic clinical trial that aims to provide evidence to support a medical decision now made empirically. The study results may help inform clinical decisions relevant to both patients and healthcare decision makers. EudraCT 2011-005871-18 (21 December 2011).

  9. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    PubMed Central

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  10. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.

    Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less

  11. Perchlorate as an emerging contaminant in soil, water and food.

    PubMed

    Kumarathilaka, Prasanna; Oze, Christopher; Indraratne, S P; Vithanage, Meththika

    2016-05-01

    Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Prevalence of prescription opioid use disorder among chronic opioid therapy patients after health plan opioid dose and risk reduction initiatives.

    PubMed

    Von Korff, Michael; Walker, Rod L; Saunders, Kathleen; Shortreed, Susan M; Thakral, Manu; Parchman, Michael; Hansen, Ryan N; Ludman, Evette; Sherman, Karen J; Dublin, Sascha

    2017-08-01

    No studies have assessed the comparative effectiveness of guideline-recommended interventions to reduce risk of prescription opioid use disorder among chronic opioid therapy (COT) patients. We compared the prevalence of prescription opioid use disorder among COT patients from intervention clinics that had implemented opioid dose and risk reduction initiatives for more than 4 years relative to control clinics that had not. After a healthcare system in Washington State implemented interventions to reduce opioid dose and risks, we surveyed 1588 adult primary care COT patients to compare the prevalence of prescription opioid use disorder among COT patients from the intervention and control clinics. Intervention clinics managed COT patients at lower COT doses and with more consistent use of risk reduction practices. Control clinics cared for similar COT patients but prescribed higher opioid doses and used COT risk reduction practices inconsistently. Prescription opioid use disorder was assessed with the Psychiatric Research Interview for Substance and Mental Disorders. The prevalence of prescription opioid use disorder was 21.5% (95% CI=18.9% to 24.4%) among COT patients in the intervention clinics and 23.9% (95% CI=20.5% to 27.6%) among COT patients in the control clinics. The adjusted relative risk of prescription opioid use disorder was 1.08 (95% CI=0.89, 1.32) among the control clinic patients relative to the intervention clinic patients. Long-term implementation of opioid dose and risk reduction initiatives was not associated with lower rates of prescription opioid use disorder among prevalent COT patients. Extreme caution should be exercised by clinicians considering COT for patients with chronic non-cancer pain until benefits of this treatment and attendant risks are clarified. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [The determination of the discrepancy between the mathematically ascertained and experimentally provable efficiency of UV facilities for water disinfection].

    PubMed

    Leuker, G; Hingst, V

    1992-10-01

    Using three UV-plants of different technical designs for water disinfection, we studied the conformity between experimental germ reduction using standard test organisms and calculated UV-doses under various water flow conditions. Taking into consideration the style of construction of the UV-plants, the irradiation area and the layer thickness were used as constant parameters for dose calculations. This was also employed for the irradiation intensity, since the experiments were performed for a relatively short period compared of the life span of the UV-irradiators. Both exposure time and water transmission were employed as variable parameters in the dose calculations and experimental procedures respectively. The calculated UV-dose and experimentally obtained germ reduction values were comparatively the same for two of the three UV-plants studied. However, no correlation was observed between the reduction of E. coli and the corresponding calculated UV-dose values. Therefore, the calculated UV-dose values for any given UV-plant should be considered to be relative and by no means absolute values. We are of the opinion that within a certain range of water flow rate and transmission, antimicrobial effectiveness of different UV-plants should be demonstrated independent of dose values, technical and other construction characteristics. The applicability of the UV-plants studied is discussed.

  14. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    PubMed

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.

  15. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: Inmore » order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.« less

  16. Effective method of measuring the radioactivity of [ 131I]‐capsule prior to radioiodine therapy with significant reduction of the radiation exposure to the medical staff

    PubMed Central

    Lützen, Ulf; Zhao, Yi; Marx, Marlies; Imme, Thea; Assam, Isong; Siebert, Frank‐Andre; Culman, Juraj

    2016-01-01

    Radiation Protection in Radiology, Nuclear Medicine and Radio Oncology is of the utmost importance. Radioiodine therapy is a frequently used and effective method for the treatment of thyroid disease. Prior to each therapy the radioactivity of the [ 131I]‐capsule must be determined to prevent misadministration. This leads to a significant radiation exposure to the staff. We describe an alternative method, allowing a considerable reduction of the radiation exposure. Two [ 131I]‐capsules (A01=2818.5; A02=73.55.0 MBq) were measured multiple times in their own delivery lead containers — that is to say, [ 131I]‐capsules remain inside the containers during the measurements (shielded measurement) using a dose calibrator and a well‐type and a thyroid uptake probe. The results of the shielded measurements were correlated linearly with the [ 131I]‐capsules radioactivity to create calibration curves for the used devices. Additional radioactivity measurements of 50 [ 131I]‐capsules of different radioactivities were done to validate the shielded measuring method. The personal skin dose rate (HP(0.07)) was determined using calibrated thermo luminescent dosimeters. The determination coefficients for the calibration curves were R2>0.9980 for all devices. The relative uncertainty of the shielded measurement was <6.8%. At a distance of 10 cm from the unshielded capsule the HP(0.07) was 46.18 μSv/(GBq⋅s), and on the surface of the lead container containing the [ 131I]‐capsule the HP(0.07) was 2.99 and 0.27 μSv/(GBq⋅s) for the two used container sizes. The calculated reduction of the effective dose by using the shielded measuring method was, depending on the used container size, 74.0% and 97.4%, compared to the measurement of the unshielded [ 131I]‐capsule using a dose calibrator. The measured reduction of the effective radiation dose in the practice was 56.6% and 94.9 for size I and size II containers. The shielded [ 131I]‐capsule measurement reduces the radiation exposure to the staff significantly and offers the same accuracy of the unshielded measurement in the same amount of time. In order to maintain the consistency of the measuring method, monthly tests have to be done by measuring a [ 131I]‐capsule with known radioactivity. PACS number(s): 93.85.Np, 92.20.Td, 87.50.yk, 87.53.Bn PMID:27455475

  17. Results from the Xylitol for Adult Caries Trial (X-ACT)

    PubMed Central

    Bader, James D.; Vollmer, William M.; Shugars, Daniel A.; Gilbert, Gregg H.; Amaechi, Bennett T.; Brown, John P.; Laws, Reesa L.; Funkhouser, Kimberly A.; Makhija, Sonia K.; Ritter, André V.; Leo, Michael C.

    2013-01-01

    Background Although caries is prevalent in adults, few preventive therapies have been tested in adult populations. This randomized clinical trial evaluated the effectiveness of xylitol lozenges in preventing caries in elevated caries-risk adults. Methods X-ACT was a three-site placebo-controlled randomized trial. Participants (n=691) ages 21–80 consumed five 1.0 g xylitol or placebo lozenges daily for 33 months. Clinical examinations occurred at baseline, 12, 24 and 33 months. Results Xylitol lozenges reduced the caries increment 11%. This reduction, which represented less than one-third of a surface per year, was not statistically significant. There was no indication of a dose-response effect. Conclusions Daily use of xylitol lozenges did not result in a statistically or clinically significant reduction in 33-month caries increment among elevated caries-risk adults. Clinical Implications These results suggest that xylitol used as a supplement in adults does not significantly reduce their caries experience. PMID:23283923

  18. A new radiotherapy surface dose detector:the MOSFET.

    PubMed

    Butson, M J; Rozenfeld, A; Mathur, J N; Carolan, M; Wong, T P; Metcalfe, P E

    1996-05-01

    Radiotherapy x-ray and electron beam surface doses are accurately measurable by use of a MOS-FET detector system. The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is approximately 200-microns in diameter and consists of a 0.5-microns Al electrode on top of a 1-microns SiO2 and 300-microns Si substrate. Results for % surface dose were within +/- 2% compared to the Attix chamber and within +/- 3% of TLD extrapolation results for normally incident beams. Detectors were compared using different energies, field size, and beam modifying devices such as block trays and wedges. Percentage surface dose for 10 x 10-cm and 40 x 40-cm field size for 6-MV x rays at 100-cm SSD using the MOSFET were 16% and 42% of maximum, respectively. Factors such as its small size, immediate retrieval of results, high accuracy attainable from low applied doses, and as the MOSFET records its dose history make it a suitable in vivo dosimeter where surface and skin doses need to be determined. This can be achieved within part of the first fraction of dose (i.e., only 10 cGy is required.)

  19. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration.

    PubMed

    Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y

    2018-06-01

    Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.

  20. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  1. Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of slightly polluted source water.

    PubMed

    Chen, Wei; Gao, Xiaohong; Xu, Hang; Wang, Kang; Chen, Taoyuan

    2017-08-01

    Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency.

  2. Gamma irradiation induced method in preparation of Gd2O2S:Eu3+ phosphors: the effect of dose towards luminescent properties

    NASA Astrophysics Data System (ADS)

    Rahim, S.; Hasim, M. H.; Ayob, M. T. M.; Rahman, I. A.; Radiman, S.

    2018-01-01

    A novel gamma irradiation induced synthesis method of Gd2O2S:Eu3+ phosphors was investigated in the presence of cetyltrimethylammonium bromide (CTAB). The effect of irradiation doses (50-150kGy) on structural and morphology analysis as well as luminescence properties were characterized by X-ray diffraction (XRD), field emission scanning microscopy (FESEM) and photoluminescence spectrometer (PL). The results show that gamma radiation is potentially induced formation of Gd2O2S:Eu3+ phosphors from radiation reduction and/or precipitation of insoluble compounds as the hexagonal phase structure was formed without any impurities as proven in XRD pattern. The morphologies were observed that the obtained Gd2O2S:Eu3+ phosphors possess sphere structure with smooth surface at 100 kGy irradiated dose. PL spectroscopy reveals that the strongest red emission peaks is located at 626 nm under 325 nm light excitation, which corresponds to 5D0→7F2 transition of Eu3+ ions. An optimized dose for excellent luminescent was observed at 100 kGy. The results suggested that the Gd2O2S:Eu3+ phosphors may have a beneficial approach in field of imaging device or media.

  3. Does Iterative Reconstruction Lower CT Radiation Dose: Evaluation of 15,000 Examinations

    PubMed Central

    Noël, Peter B.; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A.; Rummeny, Ernst J.; Dobritz, Martin

    2013-01-01

    Purpose Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Method and Materials Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. Results IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). Conclusion The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving. PMID:24303035

  4. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    PubMed

    Noël, Peter B; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A; Rummeny, Ernst J; Dobritz, Martin

    2013-01-01

    Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited number of patients but also in the clinical routine, IRs provide long-term dose saving.

  5. Space radiation dose estimates on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.

    1990-01-01

    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.

  6. Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dial, Christian; Weiss, Elisabeth; Hugo, Geoffrey D., E-mail: gdhugo@vcu.edu

    Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. Methods: A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a “no-adapt” scenario that simulatesmore » delivery of an initial plan throughout treatment, (2) a “midadapt” scenario that implements a single replan for fraction 18, (3) a “weekly adapt” scenario that simulates weekly adaptations, and (4) a “full-adapt” scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Results: Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20{sub lung}) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66{sub heart}), and dose received by 33% of the heart (D33{sub heart}), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 cGy, respectively. Average incremental reductions in MLD for the midadapt, weekly adapt, and full-adapt treatments were 38, 18, and 8 cGy, respectively. Incremental reductions in MED for the same treatments were 57, 37, and 23 cGy. Reductions in MLD and MED for the full-adapt treatment were correlated with the absolute decrease in the planning target volume (r = 0.34 and r = 0.26). Conclusions: Adaptive radiation therapy for lung cancer yields clinically relevant reductions in normal tissue doses for frequencies of adaptation ranging from a single replan up to daily replanning. Increased frequencies of adaptation result in additional benefit while magnitude of benefit decreases.« less

  7. Dose-response comparisons of five lung surfactant factor (LSF) preparations in an animal model of adult respiratory distress syndrome (ARDS).

    PubMed Central

    Häfner, D.; Beume, R.; Kilian, U.; Krasznai, G.; Lachmann, B.

    1995-01-01

    1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7582456

  8. Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Lang, Stephanie; Hrbacek, Jan; Leong, Aidan; Klöck, Stephan

    2012-05-01

    Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min-1 (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min-1. For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min-1. All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.

  9. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    NASA Astrophysics Data System (ADS)

    Ward, L. P.; Purushotham, K. P.; Manory, R. R.

    2016-02-01

    Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 1016 ions cm-2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti2N phase was observed with Cr implantation.

  10. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  11. Implementation of a Community-Based Secondhand Smoke Reduction Intervention for Caregivers of Urban Children with Asthma: Process Evaluation, Successes and Challenges

    ERIC Educational Resources Information Center

    Blaakman, Susan; Tremblay, Paul J.; Halterman, Jill S.; Fagnano, Maria; Borrelli, Belinda

    2013-01-01

    Many children, including those with asthma, remain exposed to secondhand smoke. This manuscript evaluates the process of implementing a secondhand smoke reduction counseling intervention using motivational interviewing (MI) for caregivers of urban children with asthma, including reach, dose delivered, dose received and fidelity. Challenges,…

  12. The Efficacy of Single-Dose versus Double-Dose Praziquantel Treatments on Schistosoma mansoni Infections: Its Implication on Undernutrition and Anaemia among Primary Schoolchildren in Two On-Shore Communities, Northwestern Tanzania

    PubMed Central

    Buza, Joram; Mpolya, Emmanuel A.; Angelo, Teckla; Kinung'hi, Safari M.

    2017-01-01

    Administering more than one treatment may increase Praziquantel cure and egg reduction rates, thereby hastening achievement of schistosomiasis transmission control. A total of 431 S. mansoni-infected schoolchildren were randomized to receive either a single or repeated 40 mg/kg Praziquantel dose. Heights, weights, and haemoglobin levels were determined using a stadiometer, weighing scale, and HemoCue, respectively. At 8 weeks, cure rate was higher on repeated dose (93.10%) compared to single dose (68.68%) (p < 0.001). The egg reduction rate was higher on repeated dose (97.54%) compared to single dose (87.27%) (p = 0.0062). Geometric mean egg intensity was lower among those on repeated dose (1.30 epg) compared to single dose (3.18 epg) (p = 0.036) but not at 5 (p > 0.05) and 8 (p > 0.05) months with no difference in reinfection rate. No difference in the prevalence of stunting was observed between the two treatment regimens (p > 0.05) at 8 months, but there was an increase in the prevalence of wasting among those on repeated dose (p < 0.001). There was an increase in the mean haemoglobin levels at 8 months with no difference between the two arms (p > 0.05). To achieve reduction of transmission intensity and disease control in highly endemic areas, repeated treatments alone may not be sufficient. This trial was registered with PACTR201601001416338. PMID:29094048

  13. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    PubMed

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  14. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology

    PubMed Central

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody

    2015-01-01

    Purpose Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Material and methods Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: 125I fixed spacing, 125I variable spacing, 103Pd fixed spacing, and 103Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. Results All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with 103Pd, and 0.007 and 0.029 with 125I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with 103Pd, and 0.012 and 0.037 with 125I plans. Conclusions The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy. PMID:26622227

  15. Sub-dissociative-dose intranasal ketamine for moderate to severe pain in adult emergency department patients.

    PubMed

    Yeaman, Fiona; Meek, Robert; Egerton-Warburton, Diana; Rosengarten, Pamela; Graudins, Andis

    2014-06-01

    There are currently no studies assessing effectiveness of sub-dissociative intranasal (IN) ketamine as the initial analgesic for adult patients in the ED. The study aims to examine the effectiveness of sub-dissociative IN ketamine as a primary analgesic agent for adult patients in the ED. This is a prospective, observational study of adult ED patients presenting with severe pain (≥6 on 11-point scale at triage). IN ketamine dose was 0.7 mg/kg, with secondary dose of 0.5 mg/kg at 15 min if pain did not improve. After 6 months, initial dose was increased to 1.0 mg/kg with the same optional secondary dose. The primary outcomes are change in VAS rating at 30 min; percentage of patients reporting clinically significant reduction in VAS (≥20 mm) at 30 min; dose resulting in clinically significant pain reduction. Of the 72 patients available for analysis, median age was 34.5 years and 64% were men. Median initial VAS rating was 76 mm (interquartile range [IQR]: 65-82). Median total dose of IN ketamine for all patients was 0.98 mg/kg (IQR: 0.75-1.15, range: 0.59-1.57). Median reduction in VAS rating at 30 min was 24 mm (IQR: 2-45). Forty (56%, 95% CI: 44.0-66.7) reported VAS reduction ≥20 mm, these patients having had a total median ketamine dose of 0.94 mg/kg (IQR: 0.72-1.04). IN ketamine, at a dose of about 1 mg/kg, was an effective analgesic agent in 56% of study patients. The place of IN ketamine in analgesic guidelines for adults requires further investigation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  16. A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus.

    PubMed

    Ikeda, S; Takano, Y; Cynshi, O; Tanaka, R; Christ, A D; Boerlin, V; Beyer, U; Beck, A; Ciorciaro, C; Meyer, M; Kadowaki, T

    2015-10-01

    To assess the efficacy, safety and tolerability of different doses of tofogliflozin, a novel, highly selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes mellitus (T2DM). In a 12-week, multicentre, multinational, randomized, double-blind, parallel-group, placebo-controlled, dose-finding study, patients with inadequate glycaemic control from diet and exercise alone, or from diet and exercise plus a stable dose of metformin, were randomized to one of five doses of tofogliflozin (2.5, 5, 10, 20, or 40 mg) or placebo. The primary efficacy endpoint was absolute change at week 12 from baseline in glycated haemoglobin (HbA1c), minus the change in the placebo group. Statistically significant dose-dependent reductions in HbA1c were shown in all treated groups except the 2.5-mg dose group, with a maximum reduction of 0.56% (placebo-subtracted) at the 40-mg dose, along with increased urinary glucose excretion. Metformin treatment had no substantial influence on tofogliflozin efficacy. Dose-dependent reductions in fasting plasma glucose and body weight were observed, and glucose intolerance was improved, with a trend towards blood pressure reduction. Slight increases were observed for mean ketone bodies with no abnormal change in ketone body ratio. No deaths or treatment-related serious adverse events were reported. The incidence of adverse events was similar in the placebo (37.9%) to that in the tofogliflozin group (35.9-46.3%). Withdrawal because of adverse events was rare (≤2 patients per treatment group), with similar rates of withdrawal in the placebo and tofogliflozin groups. A once-daily dose of tofogliflozin for 12 weeks was an effective, safe and well-tolerated treatment for T2DM. © 2015 John Wiley & Sons Ltd.

  17. Reduced dose to urethra and rectum with the use of variable needle spacing in prostate brachytherapy: a potential role for robotic technology.

    PubMed

    Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody; Song, Daniel Y

    2015-08-01

    Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: (125)I fixed spacing, (125)I variable spacing, (103)Pd fixed spacing, and (103)Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with (103)Pd, and 0.007 and 0.029 with (125)I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with (103)Pd, and 0.012 and 0.037 with (125)I plans. The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy.

  18. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40.

  19. Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation.

    PubMed

    Yeung, Rosanna; Conroy, Leigh; Long, Karen; Walrath, Daphne; Li, Haocheng; Smith, Wendy; Hudson, Alana; Phan, Tien

    2015-09-22

    Deep inspiration breath hold (DIBH) reduces heart and left anterior descending artery (LAD) dose during left-sided breast radiation therapy (RT); however there is limited information about which patients derive the most benefit from DIBH. The primary objective of this study was to determine which patients benefit the most from DIBH by comparing percent reduction in mean cardiac dose conferred by DIBH for patients treated with whole breast RT ± boost (WBRT) versus those receiving breast/chest wall plus regional nodal irradiation, including internal mammary chain (IMC) nodes (B/CWRT + RNI) using a modified wide tangent technique. A secondary objective was to determine if DIBH was required to meet a proposed heart dose constraint of Dmean < 4 Gy in these two cohorts. Twenty consecutive patients underwent CT simulation both free breathing (FB) and DIBH. Patients were grouped into two cohorts: WBRT (n = 11) and B/CWRT + RNI (n = 9). 3D-conformal plans were developed and FB was compared to DIBH for each cohort using Wilcoxon signed-rank tests for continuous variables and McNemar's test for discrete variables. The percent relative reduction conferred by DIBH in mean heart and LAD dose, as well as lung V20 were compared between the two cohorts using Wilcox rank-sum testing. The significance level was set at 0.05 with Bonferroni correction for multiple testing. All patients had comparable target coverage on DIBH and FB. DIBH statistically significantly reduced mean heart and LAD dose for both cohorts. Percent reduction in mean heart and LAD dose with DIBH was significantly larger in the B/CWRT + RNI cohort compared to WBRT group (relative reduction in mean heart and LAD dose: 55.9 % and 72.1 % versus 29.2 % and 43.5 %, p < 0.02). All patients in the WBRT group and five patients (56 %) in the B/CWBRT + RNI group met heart Dmean <4 Gy with FB. All patients met this constraint with DIBH. All patients receiving WBRT met Dmean Heart < 4 Gy on FB, while only slightly over half of patients receiving B/CWRT + RNI were able to meet this constraint in FB. DIBH allowed a greater reduction in mean heart and LAD dose in patients receiving B/CWRT + RNI, including IMC nodes than patients receiving WBRT. These findings suggest greatest benefit from DIBH treatment for patients receiving regional nodal irradiation.

  20. Evaluation of the radiation dose in the thyroid gland using different protective collars in panoramic imaging.

    PubMed

    Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi

    2018-04-25

    The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.

  1. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y; Kadoya, N; Kabus, S

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less

  2. First results on plasma-surface interactions in the tokamak de varennes

    NASA Astrophysics Data System (ADS)

    Terreault, B.; Boucher, C.; Paynter, R. W.; Ross, G. G.; ThÉriault, D.; Abel, G.; Boivin, R.; Bolton, R. A.; Castracane, J.; Chevalier, G.; Couture, P.; Décoste, R.; Demers, Y.; Dimoff, K.; Glaude, V.; Gregory, B. C.; Haddad, E.; Janicki, C.; Kalnavarns, J.; Lachambre, J. L.; Mai, H. H.; Neufeld, C. R.; Pacher, H. D.; Pacher, G. W.; Richard, N.; Saint-Jacques, R. G.; Saint-Onge, M.; Simm, C.; Stansfield, B. L.; Veilleux, G.; Whyte, D.; Zuzak, W.

    1989-04-01

    Results of plasma-surface interaction studies made during the early phases of operation of the Tokamak de Varennes are summarized. It was found that the desorption of molecules from the internal walls by UV radiation can be used to reduce the base pressure. Auger depth profiling of stainless steel (SS) samples exposed to hydrogen discharge cleaning has been performed. Glow discharges at about 0.1 mbar etch the surface carbon and oxide at a rate of 0.5 nm/h. RF-glow discharges at 10 -3 mbar result in a rapid reduction of the oxide and its replacement by a carbide layer (the graphite limiters being the source of the carbon). Long-term wall samples of SS and Si have been profiled by Auger and nuclear analysis. The SS sample has a similar composition to that exposed to the RF-glow conditioning. The Si sample is covered by a 3 nm deposit of metals, C and O, and contains 10 16 H/cm 2 within 30 nm of the surface; this dose and width are consistent with the history of the sample.

  3. Standard Pentostatin Dose Reductions in Renal Insufficiency are not Adequate: Selected Patients with Steroid-Refractory Acute Graft-versus-Host Disease

    PubMed Central

    Poi, Ming J.; Hofmeister, Craig C.; Johnston, Jeffrey S.; Edwards, Ryan B.; Jansak, Buffy S.; Lucas, David M.; Farag, Sherif S.; Dalton, James T.; Devine, Steven M.; Grever, Michael R.; Phelps, Mitch A.

    2013-01-01

    Background and Objective Pentostatin is an irreversible inhibitor of adenosine deaminase and has been used to prevent graft-versus-host disease (GVHD) and to treat both acute and chronic GVHD. Dose reduction equations for patients with renal insufficiency are based on few patients with limited pharmacokinetic and clinical results. This phase II study (NCT00201786) was conducted to assess pentostatin efficacy and infectious complications seen from our previous phase I study in steroid-refractory acute GVHD (aGVHD). Patients and Methods Hospitalized patients with steroid-refractory aGVHD were given pentostatin 1.5 mg/m2/day intravenously on days 1–3 of each 14 day cycle. Prior to each dose, dose modifications were based on Cockcroft-Gault estimated creatinine clearance (eCrCL) with 30–50 ml/min/1.73m2 leading to a 50% dose reduction and eCrCL< 30 ml/min/1.73m2 leading to study removal. Plasma pentostatin area under the concentration-time curve (AUC) and incidence of infectious complications were evaluated. Results Two of the eight patients treated demonstrated excessive pentostatin exposure as determined by measurement of AUC. One of these patients had renal impairment while the other patient demonstrated borderline renal function. Despite dose reduction to 0.75 mg/m2, AUCs were significantly increased compared to the other patients in this study. Seven of eight patients treated with pentostatin had cytomegalovirus (CMV) viremia after pentostatin treatment; however none developed proven CMV disease. Conclusion A 50% dose reduction in patients with eCrCL 30–50 ml/min/1.73m2 seems reasonable. However, the eCrCL should be interpreted with extreme cautions in patients who are critically ill and/or with poor performance status. Renal function assessment based on the Cockcroft-Gault method could be significantly overestimated thus risking pentostatin over-dosing. These results imply a need to closely monitor pentostatin exposure in patients with renal insufficiency. PMID:23588536

  4. TU-G-BRA-01: Assessing Radiation-Induced Reductions in Regional Lung Perfusion Following Stereotactic Radiotherapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGurk, R; Green, R; Lawrence, M

    2015-06-15

    Purpose: The dose-dependent nature of radiation therapy (RT)-induced lung injury following hypo-fractionated stereotactic RT is unclear. We herein report preliminary results of a prospective study assessing the magnitude of RT-induced reductions in regional lung perfusion following hypo-fractionated stereotactic RT. Methods: Four patients undergoing hypo-fractionated stereotactic lung RT (SBRT: 12 Gy x 4 fractions or 10 Gy x 5 fractions) had a pre-treatment SPECT (single-photon emission computed tomography) perfusion scan providing a 3D map of regional lung perfusion. Scans were repeated 3–6 months post-treatment. Pre- and post SPECT scans were registered to the planning CT scan (and hence the 3D dosemore » data). Changes in regional perfusion (counts per cc on the pre-post scans) were computed in regions of the lung exposed to different doses of radiation (in 5 Gy intervals), thus defining a dose-response function. SPECT scans were internally normalized to the regions receiving <5 Gy. Results: At 3 months post-RT, the changes in perfusion are highly variable. At 6 months, there is a consistent dose-dependent reduction in regional perfusion. The average percent decline in regional perfusion was 10% at 15–20 Gy, 20% at 20–25 Gy, and 30% at 25–30 Gy representing a relatively linear dose response with an approximate 2% reduction per Gray for doses in excess of 10 Gy. There was a subtle increase in perfusion in the lung receiving <10 Gy. Conclusion: Hypo-fractionated stereotactic RT appears to cause a dose-dependent reduction in regional lung perfusion. There appears to be a threshold effect with no apparent perfusion loss at doses <10 Gy, though this might be in part due to the normalization technique used. Additional data is needed from a larger number of patients to better assess this issue. This sort of data can be used to assist optimizing RT treatment plans that minimize the risk of lung injury. Partly supported by the NIH (CA69579) and the Lance Armstrong Foundation.« less

  5. Benefit-cost estimation for alternative drinking water maximum contaminant levels

    NASA Astrophysics Data System (ADS)

    Gurian, Patrick L.; Small, Mitchell J.; Lockwood, John R.; Schervish, Mark J.

    2001-08-01

    A simulation model for estimating compliance behavior and resulting costs at U.S. Community Water Suppliers is developed and applied to the evaluation of a more stringent maximum contaminant level (MCL) for arsenic. Probability distributions of source water arsenic concentrations are simulated using a statistical model conditioned on system location (state) and source water type (surface water or groundwater). This model is fit to two recent national surveys of source waters, then applied with the model explanatory variables for the population of U.S. Community Water Suppliers. Existing treatment types and arsenic removal efficiencies are also simulated. Utilities with finished water arsenic concentrations above the proposed MCL are assumed to select the least cost option compatible with their existing treatment from among 21 available compliance strategies and processes for meeting the standard. Estimated costs and arsenic exposure reductions at individual suppliers are aggregated to estimate the national compliance cost, arsenic exposure reduction, and resulting bladder cancer risk reduction. Uncertainties in the estimates are characterized based on uncertainties in the occurrence model parameters, existing treatment types, treatment removal efficiencies, costs, and the bladder cancer dose-response function for arsenic.

  6. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison.

    PubMed

    Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung

    2012-09-01

    To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P<0.001), DLP (from 307.42 to 134.51 mGy×cm, P<0.001), and effective dose (from 4.12 to 1.84 mSv, P<0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghila, A; Fallone, B; Rathee, S

    2015-06-15

    Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materialsmore » were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)« less

  8. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2018-03-01

    A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.

  9. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    PubMed

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism.

  12. Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    PubMed Central

    Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  13. ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  14. Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.

    PubMed

    Parikh, A K; Shah, C C

    2016-06-01

    The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.

  15. In vivo dosimetry using Gafchromic films during pelvic intraoperative electron radiation therapy (IOERT)

    PubMed Central

    Costa, Filipa; Gomes, Dora; Magalhães, Helena; Arrais, Rosário; Moreira, Graciete; Cruz, Maria Fátima; Silva, José Pedro; Santos, Lúcio; Sousa, Olga

    2016-01-01

    Objective: To characterize in vivo dose distributions during pelvic intraoperative electron radiation therapy (IOERT) for rectal cancer and to assess the alterations introduced by irregular irradiation surfaces in the presence of bevelled applicators. Methods: In vivo measurements were performed with Gafchromic films during 32 IOERT procedures. 1 film per procedure was used for the first 20 procedures. The methodology was then optimized for the remaining 12 procedures by using a set of 3 films. Both the average dose and two-dimensional dose distributions for each film were determined. Phantom measurements were performed for comparison. Results: For flat and concave surfaces, the doses measured in vivo agree with expected values. For concave surfaces with step-like irregularities, measured doses tend to be higher than expected doses. Results obtained with three films per procedure show a large variability along the irradiated surface, with important differences from expected profiles. These results are consistent with the presence of surface hotspots, such as those observed in phantoms in the presence of step-like irregularities, as well as fluid build-up. Conclusion: Clinical dose distributions in the IOERT of rectal cancer are often different from the references used for prescription. Further studies are necessary to assess the impact of these differences on treatment outcomes. In vivo measurements are important, but need to be accompanied by accurate imaging of positioning and irradiated surfaces. Advances in knowledge: These results confirm that surface irregularities occur frequently in rectal cancer IOERT and have a measurable effect on the dose distribution. PMID:27188847

  16. Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?

    PubMed

    Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian

    2016-09-01

    The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  18. [SUBSTANTIATION OF DOSE LIMITS FOR A NEW NORMATIVE DOCUMENT ON RADIATION SAFETY OF LONG-DURATION SPACE MISSIONS AT ORBIT ALTITUDES OF UP TO 500 KM].

    PubMed

    Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A

    2016-01-01

    Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.

  19. Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms

    PubMed Central

    Nagy, Eszter; Apfaltrer, Georg; Riccabona, Michael; Singer, Georg; Stücklschweiger, Georg; Guss, Helmuth; Sorantin, Erich

    2017-01-01

    Objectives To evaluate and compare surface doses of a cone beam computed tomography (CBCT) and a multidetector computed tomography (MDCT) device in pediatric ankle and wrist phantoms. Methods Thermoluminescent dosimeters (TLD) were used to measure and compare surface doses between CBCT and MDCT in a left ankle and a right wrist pediatric phantom. In both modalities adapted pediatric dose protocols were utilized to achieve realistic imaging conditions. All measurements were repeated three times to prove test-retest reliability. Additionally, objective and subjective image quality parameters were assessed. Results Average surface doses were 3.8 ±2.1 mGy for the ankle, and 2.2 ±1.3 mGy for the wrist in CBCT. The corresponding surface doses in optimized MDCT were 4.5 ±1.3 mGy for the ankle, and 3.4 ±0.7 mGy for the wrist. Overall, mean surface dose was significantly lower in CBCT (3.0 ±1.9 mGy vs. 3.9 ±1.2 mGy, p<0.001). Subjectively rated general image quality was not significantly different between the study protocols (p = 0.421), whereas objectively measured image quality parameters were in favor of CBCT (p<0.001). Conclusions Adapted extremity CBCT imaging protocols have the potential to fall below optimized pediatric ankle and wrist MDCT doses at comparable image qualities. These possible dose savings warrant further development and research in pediatric extremity CBCT applications. PMID:28570626

  20. Effects of gamma radiation on hard dental tissues of albino rats using scanning electron microscope - Part 1

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; Ameen, Reham; El-Haddad, Khaled; Maghraby, Ahmed; El-Zainy, Medhat

    2011-12-01

    In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.

  1. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y; Scott, A; Allahverdian, J

    2014-06-15

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80,more » 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT.« less

  2. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  3. The integration of constructed wetlands into a treatment system for airport runoff.

    PubMed

    Revitt, D M; Worral, P; Brewer, D

    2001-01-01

    A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.

  4. Association between edoxaban dose, concentration, anti-Factor Xa activity, and outcomes: an analysis of data from the randomised, double-blind ENGAGE AF-TIMI 48 trial.

    PubMed

    Ruff, Christian T; Giugliano, Robert P; Braunwald, Eugene; Morrow, David A; Murphy, Sabina A; Kuder, Julia F; Deenadayalu, Naveen; Jarolim, Petr; Betcher, Joshua; Shi, Minggao; Brown, Karen; Patel, Indravadan; Mercuri, Michele; Antman, Elliott M

    2015-06-06

    New oral anticoagulants for stroke prevention in atrial fibrillation were developed to be given in fixed doses without the need for the routine monitoring that has hindered usage and acceptance of vitamin K antagonists. A concern has emerged, however, that measurement of drug concentration or anticoagulant activity might be needed to prevent excess drug concentrations, which significantly increase bleeding risk. In the ENGAGE AF-TIMI 48 trial, higher-dose and lower-dose edoxaban were compared with warfarin in patients with atrial fibrillation. Each regimen incorporated a 50% dose reduction in patients with clinical features known to increase edoxaban drug exposure. We aim to assess whether adjustment of edoxaban dose in this trial prevented excess drug concentration and the risk of bleeding events. We analysed data from the randomised, double-blind ENGAGE AF-TIMI 48 trial. We correlated edoxaban dose, plasma concentration, and anti-Factor Xa (FXa) activity and compared efficacy and safety outcomes with warfarin stratified by dose reduction status. Patients with atrial fibrillation and at moderate to high risk of stroke were randomly assigned in a 1:1:1 ratio to receive warfarin, dose adjusted to an international normalised ratio of 2·0-3·0, higher-dose edoxaban (60 mg once daily), or lower-dose edoxaban (30 mg once daily). Randomisation was done with use of a central, 24 h, interactive, computerised response system. International normalised ratio was measured using an encrypted point-of-care device. To maintain masking, sham international normalised ratio values were generated for patients assigned to edoxaban. Edoxaban (or placebo-edoxaban in warfarin group) doses were halved at randomisation or during the trial if patients had creatinine clearance 30-50 mL/min, bodyweight 60 kg or less, or concomitant medication with potent P-glycoprotein interaction. Efficacy outcomes included the primary endpoint of all-cause stroke or systemic embolism, ischaemic stroke, and all-cause mortality. Safety outcomes included the primary safety endpoint of major bleeding, fatal bleeding, intracranial haemorrhage, and gastrointestinal bleeding. This trial is registered with ClinicalTrials.gov, number NCT00781391. Between Nov 19, 2008 and Nov 22, 2010, 21 105 patients were recruited. Patients who met clinical criteria for dose reduction at randomisation (n=5356) had higher rates of stroke, bleeding, and death compared with those who did not have a dose reduction (n=15 749). Edoxaban dose ranged from 15 mg to 60 mg, resulting in a two-fold to three fold gradient of mean trough drug exposure (16·0-48·5 ng/mL in 6780 patients with data available) and mean trough anti-FXa activity (0·35-0·85 IU/mL in 2865 patients). Dose reduction decreased mean exposure by 29% (from 48·5 ng/mL [SD 45·8] to 34·6 ng/mL [30·9]) and 35% (from 24·5 ng/mL [22·7] to 16·0 ng/mL [14·5]) and mean anti-FXa activity by 25% (from 0·85 IU/mL [0·76] to 0·64 IU/mL [0·54]) and 20% (from 0·44 IU/mL [0·37] to 0·35 IU/mL [0·28]) in the higher-dose and lower-dose regimens, respectively. Despite the lower anti-FXa activity, dose reduction preserved the efficacy of edoxaban compared with warfarin (stroke or systemic embolic event: higher dose pinteraction=0·85, lower dose pinteraction=0·99) and provided even greater safety (major bleeding: higher dose pinteraction 0·02, lower dose pinteraction=0·002). These findings validate the strategy that tailoring of the dose of edoxaban on the basis of clinical factors alone achieves the dual goal of preventing excess drug concentrations and helps to optimise an individual patient's risk of ischaemic and bleeding events and show that the therapeutic window for edoxaban is narrower for major bleeding than thromboembolism. Daiichi-Sankyo Pharma Development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  6. Pharmacokinetics and Bioavailability of Inhaled Esketamine in Healthy Volunteers.

    PubMed

    Jonkman, Kelly; Duma, Andreas; Olofsen, Erik; Henthorn, Thomas; van Velzen, Monique; Mooren, René; Siebers, Liesbeth; van den Beukel, Jojanneke; Aarts, Leon; Niesters, Marieke; Dahan, Albert

    2017-10-01

    Esketamine is traditionally administered via intravenous or intramuscular routes. In this study we developed a pharmacokinetic model of inhalation of nebulized esketamine with special emphasis on pulmonary absorption and bioavailability. Three increasing doses of inhaled esketamine (dose escalation from 25 to 100 mg) were applied followed by a single intravenous dose (20 mg) in 19 healthy volunteers using a nebulizer system and arterial concentrations of esketamine and esnorketamine were obtained. A multicompartmental pharmacokinetic model was developed using population nonlinear mixed-effects analyses. The pharmacokinetic model consisted of three esketamine, two esnorketamine disposition and three metabolism compartments. The inhalation data were best described by adding two absorption pathways, an immediate and a slower pathway, with rate constant 0.05 ± 0.01 min (median ± SE of the estimate). The amount of esketamine inhaled was reduced due to dose-independent and dose-dependent reduced bioavailability. The former was 70% ± 5%, and the latter was described by a sigmoid EMAX model characterized by the plasma concentration at which absorption was impaired by 50% (406 ± 46 ng/ml). Over the concentration range tested, up to 50% of inhaled esketamine is lost due to the reduced dose-independent and dose-dependent bioavailability. We successfully modeled the inhalation of nebulized esketamine in healthy volunteers. Nebulized esketamine is inhaled with a substantial reduction in bioavailability. Although the reduction in dose-independent bioavailability is best explained by retention of drug and particle exhalation, the reduction in dose-dependent bioavailability is probably due to sedation-related loss of drug into the air.

  7. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less

  8. Outcome and toxicity associated with a dose-intensified, maintenance-free CHOP-based chemotherapy protocol in canine lymphoma: 130 cases.

    PubMed

    Sorenmo, Karin; Overley, B; Krick, E; Ferrara, T; LaBlanc, A; Shofer, F

    2010-09-01

    A dose-intensified/dose-dense chemotherapy protocol for canine lymphoma was designed and implemented at the Veterinary Hospital of the University of Pennsylvania. In this study, we describe the clinical characteristics, prognostic factors, efficacy and toxicity in 130 dogs treated with this protocol. The majority of the dogs had advanced stage disease (63.1% stage V) and sub-stage b (58.5%). The median time to progression (TTP) and lymphoma-specific survival were 219 and 323 days, respectively. These results are similar to previous less dose-intense protocols. Sub-stage was a significant negative prognostic factor for survival. The incidence of toxicity was high; 53.9 and 45% of the dogs needed dose reductions and treatment delays, respectively. Dogs that required dose reductions and treatment delays had significantly longer TTP and lymphoma-specific survival times. These results suggest that dose density is important, but likely relative, and needs to be adjusted according to the individual patient's toxicity for optimal outcome.

  9. Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.

    PubMed

    Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J

    2016-02-01

    To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.

    PubMed

    Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L

    2012-06-01

    To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.

  11. Stacked competitive networks for noise reduction in low-dose CT

    PubMed Central

    Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi

    2017-01-01

    Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360

  12. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus.

    PubMed

    Dellanno, Christine; Vega, Quinn; Boesenberg, Diane

    2009-10-01

    The 2003 outbreak of severe acute respiratory syndrome (SARS) infected over 8000 people and killed 774. Transmission of SARS occurred through direct and indirect contact and large droplet nuclei. The World Health Organization recommended the use of household disinfectants, which have not been previously tested against SARS coronavirus (SARS-CoV), to disinfect potentially contaminated environmental surfaces. There is a need for a surrogate test system given the limited availability of the SARS-CoV for testing and biosafety requirements necessary to safely handle it. In this study, the antiviral activity of standard household products was assayed against murine hepatitis virus (MHV), as a potential surrogate for SARS-CoV. A surface test method, which involves drying an amount of virus on a surface and then applying the product for a specific contact time, was used to determine the virucidal activity. The virus titers and log reductions were determined by the Reed and Muench tissue culture infective dose (TCID)50 end point method. When tested as directed, common household disinfectants or antiseptics, containing either 0.050% of triclosan, 0.12% of PCMX, 0.21% of sodium hypochlorite, 0.23% of pine oil, or 0.10% of a quaternary compound with 79% of ethanol, demonstrated a 3-log reduction or better against MHV without any virus recovered in a 30-second contact time. Common household disinfectants and antiseptics were effective at inactivating MHV, a possible surrogate for SARS-CoV, from surfaces when used as directed. In an outbreak caused by novel agents, it is important to know the effectiveness of disinfectants and antiseptics to prevent or reduce the possibility of human-to-human transmission via surfaces.

  13. The anthelmintic effect of aqueous methanol extract of Combretum molle (R. Br. x. G. Don) (Combretaceae) in lambs experimentally infected with Haemonchus contortus.

    PubMed

    Simon, M K; Ajanusi, O J; Abubakar, M S; Idris, A L; Suleiman, M M

    2012-06-08

    The aqueous methanol extract from the stem-bark of Combretum molle was evaluated for anthelmintic activity in lambs infected with Haemonchus contortus using faecal egg count (FEC) reduction assay. The extract showed a dose-dependent reduction in FEC in infected animals. At doses of 500, 1000 and 2000 mg kg(-1), the extract caused FEC reduction of 63%, 69.25% and 96.23%, respectively. Similarly, the standard anthelmintic (albendazole) at a dose of 200 mg kg(-1) produced FEC reduction of 99.24%. FEC reduction produced by the extract at doses of 500 and 1000 mg kg(-1) is below the minimum standard of 90% FEC recommended by the World Association for the Advancement of Veterinary Parasitology (WAAVP). However, there was no significant (P>0.05) difference between the means of groups treated with 1000 mg kg(-1) and 2000 mg kg(-1) compared to that of albendazole. In this study, C. molle has shown a promising anthelmintic activity against experimental haemonchosis. Nonetheless, further studies to evaluate its detailed toxicity are required for the plant extract to be developed into a useful anthelmintic drug. There is also the need to evaluate other parts of the plant (root, leaves, fruits, etc.) for the same effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effectiveness of the implementation of a simple radiation reduction protocol in the catheterization laboratory.

    PubMed

    Jurado-Román, Alfonso; Sánchez-Pérez, Ignacio; Lozano Ruíz-Poveda, Fernando; López-Lluva, María T; Pinilla-Echeverri, Natalia; Moreno Arciniegas, Andrea; Agudo-Quilez, Pilar; Gil Agudo, Antonio

    2016-01-01

    A reduction in radiation doses at the catheterization laboratory, maintaining the quality of procedures is essential. Our objective was to analyze the results of a simple radiation reduction protocol at a high-volume interventional cardiology unit. We analyzed 1160 consecutive procedures: 580 performed before the implementation of the protocol and 580 after it. The protocol consisted in: the reduction of the number of ventriculographies and aortographies, the optimization of the collimation and the geometry of the X ray tube-patient-receptor, the use of low dose-rate fluoroscopy and the reduction of the number of cine sequences using the software "last fluoroscopy hold". There were no significant differences in clinical baseline features or in the procedural characteristics with the exception of a higher percentage of radial approach (30.7% vs 69.6%; p<0.001) and of percutaneous coronary interventions of chronic total occlusions after the implementation of the protocol (2.1% vs 6.7%; p=0,001). Angiographic success was similar during both periods (98.3% vs 99.2%; p=0.2). There were no significant differences between both periods regarding the overall duration of the procedures (26.9 vs 29.6min; p=0.14), or the fluoroscopy time (13.3 vs 13.2min; p=0.8). We observed a reduction in the percentage of procedures with ventriculography (80.9% vs 7.1%; p<0.0001) or aortography (15.4% vs 4.4%; p<0.0001), the cine runs (21.8 vs 6.9; p<0.0001) and the dose-area product (165 vs 71 Gyxcm(2); p<0.0001). With the implementation of a simple radiation reduction protocol, a 57% reduction of dose-area product was observed without a reduction in the quality or the complexity of procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    PubMed

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  16. Utilizing placebo mechanisms for dose reduction in pharmacotherapy.

    PubMed

    Doering, Bettina K; Rief, Winfried

    2012-03-01

    The knowledge and systematic application of the placebo effect remains limited, although its importance to the treatment of various medical conditions has increasingly been recognized. A possible application of the placebo effect to pharmacotherapy is seen in conditioning processes that aim at a placebo-controlled dose reduction of drugs while maintaining the efficacy of the medical treatment. The pairing of a placebo and a pharmacological agent may achieve satisfactory treatment outcomes in combination with a lower dose of medication. This procedure includes classic and instrumental conditioning processes that involve both conscious and non-conscious information processing. Although recent studies have gathered preliminary evidence for the efficacy of placebo-controlled dose reduction (e.g. in psoriasis and attention deficit hyperactivity disorder [ADHD]), they have also illustrated the difficulties that are inherent to this approach. We critically review previous approaches and discuss designs for clinical trials that seem appropriate to the investigation of conditioned placebo effects in pharmacotherapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  18. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach.

    PubMed

    Sasso, A F; Schlosser, P M

    2015-09-15

    Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastric juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses. Published by Elsevier Inc.

  19. Efficacy of alternate day versus daily dosing of rosuvastatin

    PubMed Central

    Dulay, Daisy; LaHaye, Stephen A; Lahey, Karen A; Day, Andrew G

    2009-01-01

    BACKGROUND: Compared with other statins, rosuvastatin has a relatively long half-life, which may allow for the administration of this medication on an alternate day basis. OBJECTIVE: To compare the efficacy of administering rosuvastatin on a daily basis versus on an alternate day basis for the treatment of dyslipidemia. METHODS: In the present crossover study, 45 patients with documented hypercholesterolemia requiring pharmacotherapy were administered either 20 mg of rosuvastatin on alternate days or 10 mg of rosuvastatin daily for six weeks. After a four-week washout period, patients were then switched to the other regimen for another six weeks. The primary end point was the percentage reduction of low-density lipoprotein cholesterol (LDL-C). RESULTS: LDL-C decreased by 48.5% versus 40.9% with daily and alternate day dosing, respectively. This represented an additional absolute reduction of LDL-C of 7.6% (95% CI 1.8% to 13.4%, P=0.012) with the daily dosing regimen. Both dosing regimens provided similar improvements in high-density lipoprotein cholesterol and triglycerides. CONCLUSIONS: Compared with alternate day dosing, daily dosing of rosuvastatin provides a statistically significant advantage in LDL-C reduction. However, the alternate day regimen may be a viable option for those patients in whom cost is a limitation to compliance. PMID:19214297

  20. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    PubMed

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Dissociation between the effects of P1, P4-diadenosine tetraphosphate (Ap4A) on renal haemodynamics and tubular function in anaesthetized rats.

    PubMed

    Jankowski, M; Angielski, S; Szczepańska-Konkel, M

    2008-03-01

    Previous studies from our laboratory have reported a marked reduction in glomerular filtration rate (GFR) and sodium reabsorption in renal proximal tubule during intravenous infusion of P(1),P(4)-diadenosine tetraphosphate (Ap(4)A) at dose of 1.0 micromol/kg + 10 nmol/kg/min (i.v., injection followed by infusion) in anaesthetized Wistar rats. In the present study, the changes of GFR and urine sodium excretion were investigated in response to systemic infusion of Ap(4)A at different doses. Ap(4)A at dose of 0.1 micromol/kg + 1.0 nmol/kg/min did not change GFR and sodium urinary excretion whereas 2-fold higher dose produced significant (3.4-fold) increase in sodium excretion without changes in GFR. Significant but transient reduction in GFR by approximately 21% was observed during infusion of Ap(4)A at dose of 0.5 micromol/kg + 5.0 nmol/kg/min. Higher doses of Ap(4)A (1.0 micromol/kg + 10 nmol/kg/min and 2.0 micromol/kg + 20 nmol/kg/min) reduction in GFR and marked natriuresis. Our results suggest that tubular sodium transport systems are more sensitive to Ap(4)A than systems involved in GFR regulation.

  2. A new shielding calculation method for X-ray computed tomography regarding scattered radiation.

    PubMed

    Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto

    2017-06-01

    The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.

  3. Hyperhidrosis in association with efavirenz.

    PubMed

    Fuertes, Aurelio; Martín, Aurelio Fuertes; Cabrera, Salvador; Figueroa, Salvador Cabrera; Valverde, Maria de la Paz; Merino, María de la Paz Valverde; Domínguez-Gil, Alfonso; Hurléé, Alfonso Domínguez-Gil

    2009-03-01

    Hyperhidrosis may be an adverse drug event (ADE) induced by the effect on any of the components of human thermoregulation. Some of our efavirenz (EFV)-treated patients have reported excessive nocturnal sweating that resolved after dose reduction. A representative clinical case of a male patient being treated with a night-time 600-mg dose of EFV who reported severe nocturnal sweating is reported here. His EFV plasma concentrations were always above normal and he was homozygous for a deficient function-allele of CYP2D6; for this reason, his EFV dose was reduced to 400mg=d. Simultaneous with this reduction, the patient described a progressive decrease in nocturnal sweating until its complete disappearance 15-20 days after this new drug dosage. The mechanism explaining sweating could be similar to the one suggested for hyperhidrosis related to serotonin uptake inhibitors, because this hyperhidrosis is episodic, nocturnal, and dose dependent. Hyperhidrosis could correspond to a dose-dependent ADE induced by EFV, therefore, a reduction of EFV from 600 to 400mg/d seems to control it. EFV crosses the hematoencephalic barrier and reaches a mean concentration in the cerebroespinal fluid equivalent to 0.69% of the plasma concentration. The ability of EFV to accessing the central nervous system (CNS) could explain an effect on thermoregulation. Hyperhydrosis is not easily discovered through a routine anamnesis because it is not noted on the EFV package insert, so its incidence may be higher than expected. Additionally, hyperhidrosis may be an indicator of elevated EFV plasma concentrations and hence may be controlled through a reduction of dose.

  4. Does dose matter in reducing gestational weight gain in exercise interventions? A systematic review of literature.

    PubMed

    McDonald, Samantha M; Liu, Jihong; Wilcox, Sara; Lau, Erica Y; Archer, Edward

    2016-04-01

    The purpose of this review was to examine the relationship between exercise dose and reductions in weight gain during pregnancy in exercise interventions. Systematic literature review. Four electronic research databases (PubMed, Web of Science, CINAHL, and Academic Search Premiere) were used to identify exercise interventions conducted with pregnant women. Eligible articles must have satisfied the following criteria: inclusion of a control condition, exercise as a major intervention component, weight gain measured and reported for each experimental condition, description of exercise dose (frequency, intensity and duration), and utilized an adequate number of control conditions to assess independent effects of exercise on weight gain. The literature search identified 4837 articles. Of these, 174 abstracts were screened and 21 intervention studies (18 exercise-only, 3 exercise/diet) were eligible for review. Only 38% of the interventions achieved statistically significant reductions in gestational weight gain. Successful interventions possessed higher adherence and lower attrition rates and were predominantly conducted among normal weight populations. No clear patterns or consistencies of exercise dose and reductions in weight gain were evident. An exercise dose associated with reductions in weight gain was unquantifiable among these interventions. Adherence and retention rates were strong contributors to the success of exercise interventions on gestational weight gain. It is strongly suggested that future researchers investigate methods to increase adherence and compliance, especially among overweight and obese women, and utilize objective measurement tools to accurately evaluate exercise dose performed by the participants and the impact on body composition and weight gain. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  6. SU-E-CAMPUS-I-04: Automatic Skin-Dose Mapping for An Angiographic System with a Region-Of-Interest, High-Resolution Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Rana, V; Setlur Nagesh, S

    2014-06-15

    Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. Themore » DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less

  7. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts.

    PubMed

    Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K

    2009-03-01

    Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.

  8. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article.

    PubMed

    Boockvar, John A; Tsiouris, Apostolos J; Hofstetter, Christoph P; Kovanlikaya, Ilhami; Fralin, Sherese; Kesavabhotla, Kartik; Seedial, Stephen M; Pannullo, Susan C; Schwartz, Theodore H; Stieg, Philip; Zimmerman, Robert D; Knopman, Jared; Scheff, Ronald J; Christos, Paul; Vallabhajosula, Shankar; Riina, Howard A

    2011-03-01

    The authors assessed the safety and maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of bevacizumab after osmotic disruption of the blood-brain barrier (BBB) with mannitol in patients with recurrent malignant glioma. A total of 30 patients with recurrent malignant glioma were included in the current study. The authors report no dose-limiting toxicity from a single dose of SIACI of bevacizumab up to 15 mg/kg after osmotic BBB disruption with mannitol. Two groups of patients were studied; those without prior bevacizumab exposure (naïve patients; Group I) and those who had received previous intravenous bevacizumab (exposed patients; Group II). Radiographic changes demonstrated on MR imaging were assessed at 1 month postprocedure. In Group I patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 34.7%, a median reduction in the volume of tumor enhancement of 46.9%, a median MR perfusion (MRP) reduction of 32.14%, and a T2-weighted/FLAIR signal decrease in 9 (47.4%) of 19 patients. In Group II patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 15.2%, a median volume reduction of 8.3%, a median MRP reduction of 25.5%, and a T2-weighted FLAIR decrease in 0 (0%) of 11 patients. The authors conclude that SIACI of mannitol followed by bevacizumab (up to 15 mg/kg) for recurrent malignant glioma is safe and well tolerated. Magnetic resonance imaging shows that SIACI treatment with bevacizumab can lead to reduction in tumor area, volume, perfusion, and T2-weighted/FLAIR signal.

  9. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    NASA Astrophysics Data System (ADS)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is related to the shape of isodoses as well as dose coverage. The findings indicate spatial constraints on doses to certain sections of the rectum may be important for reducing toxicities and optimising dose.

  10. Varicella prevention in Costa Rica: impact of a one-dose schedule universal vaccination.

    PubMed

    Avila-Aguero, María L; Ulloa-Gutierrez, Rolando; Camacho-Badilla, Kattia; Soriano-Fallas, Alejandra; Arroba-Tijerino, Roberto; Morice-Trejos, Ana

    2017-03-01

    To describe the impact following a 1-dose Varicella vaccination schedule introduced in Costa Rica in September 2007. Areas covered: This is a retrospective review using epidemiologic surveillance national databases of varicella cases and hospitalizations, period 2000-2015. We analyzed age-related varicella incidence cases and hospitalization trends before and after the vaccine introduction. Expert commentary: Varicella vaccine coverage among children 16 months age increased from 76% in 2008 to 95% in 2015. During this period Costa Rica reached a 73.8% reduction of Varicella reported cases and 85.9% reduction of hospitalizations in the general population. Among children under 5 years of age, that reduction was 79.1% and 87%, respectively. Varicella complications in hospitalized patients decreased 98%, from n = 53 in 2008 to n = 1 in 2014. After 8-years post implementation of a 1-dose schedule of universal varicella vaccination, a dramatic overall disease reduction in incidence, hospitalizations and complicated cases has been observed in all age groups.

  11. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    NASA Astrophysics Data System (ADS)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements in field emission characteristics are correlated with the growth of surface structures, specifically agglomers which are responsible for electric field convergence. Electrical by four probe method has been correlated with maximum current density and decreasing trend is observed with increasing ion doses.

  12. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    NASA Astrophysics Data System (ADS)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-06-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance.

  13. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohlbrenner, R; Kolli, KP; Taylor, A

    2014-06-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treatmore » HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav Kolli and Robert G. Gould for time devoted to the study. Data acquisition and analysis was performed by the authors independent of the funding source.« less

  14. Investigation into the effects of surface stripping ZnO nanosheets.

    PubMed

    Barnett, Chris J; Jackson, Georgina; Jones, Daniel R; Lewis, Aled R; Welsby, Kathryn; Evans, Jon E; McGettrick, James D; Watson, Trystan; Maffeis, Thierry G G; Dunstan, Peter R; Barron, Andrew R; Cobley, Richard J

    2018-04-20

    ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.

  15. Investigation into the effects of surface stripping ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Barnett, Chris J.; Jackson, Georgina; Jones, Daniel R.; Lewis, Aled R.; Welsby, Kathryn; Evans, Jon E.; McGettrick, James D.; Watson, Trystan; Maffeis, Thierry G. G.; Dunstan, Peter R.; Barron, Andrew R.; Cobley, Richard J.

    2018-04-01

    ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.

  16. Radiation exposure for manned Mars surface missions

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.

    1990-01-01

    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.

  17. [Fluoroscopy dose reduction of computed tomography guided chest interventional radiology using real-time iterative reconstruction].

    PubMed

    Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro

    2014-11-01

    The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.

  18. Urethra sparing - potential of combined Nickel-Titanium stent and intensity modulated radiation therapy in prostate cancer.

    PubMed

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-05-01

    To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Roberts, Kenneth B.

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes,more » liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.« less

  20. Safety and dose modification for patients receiving niraparib.

    PubMed

    Berek, J S; Matulonis, U A; Peen, U; Ghatage, P; Mahner, S; Redondo, A; Lesoin, A; Colombo, N; Vergote, I; Rosengarten, O; Ledermann, J; Pineda, M; Ellard, S; Sehouli, J; Gonzalez-Martin, A; Berton-Rigaud, D; Madry, R; Reinthaller, A; Hazard, S; Guo, W; Mirza, M R

    2018-05-14

    Niraparib is a poly(ADP-ribose) polymerase (PARP) inhibitor approved in the United States and Europe for maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy. In the pivotal ENGOT-OV16/NOVA trial, the dose reduction rate due to TEAE was 68.9%, and the discontinuation rate due to TEAE was 14.7%, including 3.3% due to thrombocytopenia. A retrospective analysis was performed to identify clinical parameters that predict dose reductions. All analyses were performed on the safety population, comprising all patients who received at least one dose of study drug. Patients were analyzed according to the study drug consumed (ie, as treated). A predictive modeling method (decision trees) was used to identify important variables for predicting the likelihood of developing grade ≥3 thrombocytopenia within 30 days after the first dose of niraparib and determine cutoff points for chosen variables. Following dose modification, 200 mg was the most commonly administered dose in the ENGOT-OV16/NOVA trial. Baseline platelet count and baseline body weight were identified as risk factors for increased incidence of grade ≥3 thrombocytopenia. Patients with a baseline body weight <77 kg or a baseline platelet count <150,000/μL in effect received an average daily dose approximating 200 mg (median = 207 mg) due to dose interruption and reduction. Progression-free survival in patients who were dose reduced to either 200 mg or 100 mg was consistent with that of patients who remained at the 300 mg starting dose. The analysis presented suggests that patients with baseline body weight of < 77 kg or baseline platelets of < 150,000/μL may benefit from a starting dose of 200 mg per day. (ClinicalTrials.gov ID: NCT01847274).

  1. Experimental verification of Advanced Collapsed-cone Engine for use with a multichannel vaginal cylinder applicator.

    PubMed

    Cawston-Grant, Brie; Morrison, Hali; Menon, Geetha; Sloboda, Ron S

    2017-05-01

    Model-based dose calculation algorithms have recently been incorporated into brachytherapy treatment planning systems, and their introduction requires critical evaluation before clinical implementation. Here, we present an experimental evaluation of Oncentra ® Brachy Advanced Collapsed-cone Engine (ACE) for a multichannel vaginal cylinder (MCVC) applicator using radiochromic film. A uniform dose of 500 cGy was specified to the surface of the MCVC using the TG-43 dose formalism under two conditions: (a) with only the central channel loaded or (b) only the peripheral channels loaded. Film measurements were made at the applicator surface and compared to the doses calculated using TG-43, standard accuracy ACE (sACE), and high accuracy ACE (hACE). When the central channel of the applicator was used, the film measurements showed a dose increase of (11 ± 8)% (k = 2) above the two outer grooves on the applicator surface. This increase in dose was confirmed with the hACE calculations, but was not confirmed with the sACE calculations at the applicator surface. When the peripheral channels were used, a periodic azimuthal variation in measured dose was observed around the applicator. The sACE and hACE calculations confirmed this variation and agreed within 1% of each other at the applicator surface. Additionally for the film measurements with the central channel used, a baseline dose variation of (10 ± 4)% (k = 2) of the mean dose was observed azimuthally around the applicator surface, which can be explained by offset source positioning in the central channel. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Variability of surface and center position radiation dose in MDCT: Monte Carlo simulations using CTDI and anthropomorphic phantoms

    PubMed Central

    Zhang, Di; Savandi, Ali S.; Demarco, John J.; Cagnon, Chris H.; Angel, Erin; Turner, Adam C.; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-01-01

    The larger coverage afforded by wider z-axis beams in multidetector CT (MDCT) creates larger cone angles and greater beam divergence, which results in substantial surface dose variation for helical and contiguous axial scans. This study evaluates the variation of absorbed radiation dose in both cylindrical and anthropomorphic phantoms when performing helical or contiguous axial scans. The approach used here was to perform Monte Carlo simulations of a 64 slice MDCT. Simulations were performed with different radiation profiles (simulated beam widths) for a given collimation setting (nominal beam width) and for different pitch values and tube start angles. The magnitude of variation at the surface was evaluated under four different conditions: (a) a homogeneous CTDI phantom with different combinations of pitch and simulated beam widths, (b) a heterogeneous anthropomorphic phantom with one measured beam collimation and various pitch values, (c) a homogeneous CTDI phantom with fixed beam collimation and pitch, but with different tube start angles, and (d) pitch values that should minimize variations of surface dose—evaluated for both homogeneous and heterogeneous phantoms. For the CTDI phantom simulations, peripheral dose patterns showed variation with percent ripple as high as 65% when pitch is 1.5 and simulated beam width is equal to the nominal collimation. For the anterior surface dose on an anthropomorphic phantom, the percent ripple was as high as 40% when the pitch is 1.5 and simulated beam width is equal to the measured beam width. Low pitch values were shown to cause beam overlaps which created new peaks. Different x-ray tube start angles create shifts of the peripheral dose profiles. The start angle simulations showed that for a given table position, the surface dose could vary dramatically with minimum values that were 40% of the peak when all conditions are held constant except for the start angle. The last group of simulations showed that an “ideal” pitch value can be determined which reduces surface dose variations, but this pitch value must take into account the measured beam width. These results reveal the complexity of estimating surface dose and demonstrate a range of dose variability at surface positions for both homogeneous cylindrical and heterogeneous anthropomorphic phantoms. These findings have potential implications for small-sized dosimeter measurements in phantoms, such as with TLDs or small Farmer chambers. PMID:19378763

  3. Preemptive warfarin dose reduction after initiation of sulfamethoxazole-trimethoprim or metronidazole.

    PubMed

    Powers, Anna; Loesch, Erin B; Weiland, Anthony; Fioravanti, Nicole; Lucius, David

    2017-07-01

    To evaluate the utility of a preemptive warfarin dose reduction at the time of initiation of either sulfamethoxazole-trimethoprim or metronidazole, a retrospective chart review of patients who received an outpatient prescription for warfarin and either sulfamethoxazole-trimethoprim and/or metronidazole from July 1, 2011 to July 1, 2015 was conducted. Clinical outcomes compared Veterans who had a warfarin dose reduction and those who did not within 120 h (5 days) of antibiotic initiation. The primary outcome compared the pre-and post-antibiotic International Normalized Ratio (INR) of patients in the intervention group (warfarin dose reduction) with those in the control group (no intervention). Secondary outcomes assessed incidence of thromboembolic and major bleeding events within 30 days of antibiotic completion. Fifty patients were assessed. Forty-nine patients had at least one follow-up appointment; 126 follow-up visits were evaluated. There was a statistically significant difference for the change in therapeutic INR at the first follow-up appointment (p = 0.029) for those patients in the control group. On average, the patients in the intervention group required fewer follow-up visits (p = 0.019). There were no statistically significant differences for the overall rate of therapeutic INR values between groups, as well as no instances of a thromboembolic or major bleeding events during the follow-up period. Clinically significant differences were observed for patients who received a preemptive warfarin dose reduction upon initiation of sulfamethoxazole-trimethoprim or metronidazole. Patients in the intervention group required fewer follow-up appointments and were more likely maintain a therapeutic INR within the 30 days following the antibiotic course. Results of this study will be presented the at Pharmacy and Therapeutics committee in an effort to seek approval for policy development to initiate a local preemptive warfarin dose adjustment as a standard of practice.

  4. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    PubMed

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  5. Pulsed electromagnetic fields dosing impacts postoperative pain in breast reduction patients.

    PubMed

    Taylor, Erin M; Hardy, Krista L; Alonso, Amanda; Pilla, Arthur A; Rohde, Christine H

    2015-01-01

    Pulsed electromagnetic fields (PEMF) reduce postoperative pain and narcotic requirements in breast augmentation, reduction, and reconstruction patients. PEMF enhances both calmodulin-dependent nitric oxide and/or cyclic guanosine monophosphate signaling and phosphodiesterase activity, which blocks cyclic guanosine monophosphate. The clinical effect of these competing responses on PEMF dosing is not known. Two prospective, nonrandomized, active cohorts of breast reduction patients, with 15 min PEMF per 2 h; "Q2 (active)", and 5 min PEMF per 20 min; "5/20 (active)", dosing regimens were added to a previously reported double-blind clinical study wherein 20 min PEMF per 4 h, "Q4 (active)", dosing significantly accelerated postoperative pain reduction compared with Q4 shams. Postoperative visual analog scale pain scores and narcotic use were compared with results from the previous study. Visual analog scale scores at 24 h were 43% and 35% of pain at 1 h in the Q4 (active) and Q2 (active) cohorts, respectively (P < 0.01). Pain at 24 h in the 5/20 (active) cohort was 87% of pain at 1 h, compared with 74% in the Q4 (sham) cohort (P = 0.451). Concomitantly, narcotic usage in the 5/20 (active) and Q4 (sham) cohorts was not different (P = 0.478), and 2-fold higher than the Q4 (active) and Q2 (active) cohorts (P < 0.02). This prospective study shows Q4/Q2, but not 5/20 PEMF dosing, accelerated postoperative pain reduction compared with historical shams. The 5/20 (active) regimen increases NO 4-fold faster than the Q4 (active) regimen, possibly accelerating phosphodiesterase inhibition of cyclic guanosine monophosphate sufficiently to block the PEMF effect. This study helps define the dosing limits of clinically useful PEMF signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High-dose intravenous levetiracetam for acute seizure exacerbation in children with intractable epilepsy.

    PubMed

    Depositario-Cabacar, Dewi T; Peters, Jurriaan M; Pong, Amanda W; Roth, Julie; Rotenberg, Alexander; Riviello, James J; Takeoka, Masanori

    2010-07-01

    We review our experience with high-dose intravenous levetiracetam (IV-LEV) for acute seizure exacerbations in nine children with medically intractable epilepsy. All children had acute repetitive seizures-while on chronic antiepileptic drugs-that either led to hospitalization (eight) or occurred during hospitalization (one), and received doses of IV-LEV of 150 mg/kg/day or greater, with a mean dose of 228 +/- 48 mg/kg/day. Eight of nine children had resolution of the acute repetitive seizures. Seizure frequency was reduced to less than baseline in seven children (seizure-free in two, >/=80% reduction in four, and 50% reduction in one). Except for one child with increased seizures, IV-LEV was well tolerated in all children without complications.

  7. Comparing Pain and Depressive Symptoms of Chronic Opioid Therapy Patients Receiving Dose Reduction and Risk Mitigation Initiatives With Usual Care.

    PubMed

    Thakral, Manu; Walker, Rod L; Saunders, Kathleen; Shortreed, Susan M; Parchman, Michael; Hansen, Ryan N; Ludman, Evette; Sherman, Karen J; Dublin, Sascha; Von Korff, Michael

    2018-01-01

    Dose reduction and risk mitigation initiatives have been recommended to reduce opioid-related risks among patients receiving chronic opioid therapy (COT), but questions remain over whether these initiatives worsen pain control and quality of life. In 2014 to 2015, we interviewed 1,588 adult COT patients within a health care system in Washington State and compared those who received dose reduction and risk mitigation initiatives in primary care clinics (intervention) with patients in comparable health care settings without initiatives (control). The primary outcomes were pain assessed using the pain, enjoyment, and general activity (PEG) scale, a 3-item scale to assess global pain intensity and interference, with secondary measures including depression (Patient Health Questionnaire-8 scale). Generalized estimating equations for linear regression models were used to estimate differences in mean scores between intervention and control sites. Estimated differences, adjusted for patient characteristics and weighted for nonresponse, between patients at intervention and control clinics were not clinically significant for the PEG (-.03, 95% confidence interval = -.25 to .19) or Patient Health Questionnaire-8 (-.64, 95% confidence interval = -1.19 to -.08). We found no evidence that COT patients in clinics with dose reduction and risk mitigation initiatives had clinically meaningful differences in pain intensity, interference with activities and enjoyment of life, or depressive symptoms compared with control health care settings. This article evaluates the effect of dose reduction and risk mitigation initiatives, such as those recently recommended by the Centers for Disease Control and Prevention, to reduce risks associated with COT on global pain and interference, depressive symptoms, and perceived pain relief and bothersomeness of side effects. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Impact of Dose Reductions, Delays Between Chemotherapy Cycles, and/or Shorter Courses of Adjuvant Chemotherapy in Stage II and III Colorectal Cancer Patients: a Single-Center Retrospective Study.

    PubMed

    Sgouros, Joseph; Aravantinos, Gerasimos; Kouvatseas, George; Rapti, Anna; Stamoulis, George; Bisvikis, Anastasios; Res, Helen; Samantas, Epameinondas

    2015-12-01

    Most stage II or III colorectal cancer patients are receiving nowadays a 4 to 6-month course of adjuvant chemotherapy. However, delays between cycles, reductions in the doses of chemotherapy drugs, or even permanent omissions of chemotherapy cycles might take place due to side effects or patient's preference. We examined the impact of these treatment modifications on recurrence-free survival (RFS) and overall survival (OS). We retrospectively collected data from colorectal cancer patients who had received adjuvant chemotherapy in our Department. Patients were categorized in five groups based on whether they had or not delays between chemotherapy cycles, dose reductions, and permanent omissions of chemotherapy cycles. Three-year RFS and OS of the five different groups were compared using the log-rank test and the Sidak approach. Five hundred and eight patients received treatment. Twenty seven percent of the patients had the full course of chemotherapy; the others had delays, dose reductions, or early termination of the treatment. No statistically significant differences were observed in 3-year RFS and OS between the five groups. A trend for worse RFS was noticed with early termination of treatment. A similar trend was also noticed for OS but only for stage II patients. In colorectal cancer patients, receiving adjuvant chemotherapy, delays between chemotherapy cycles, dose reductions of chemotherapy drugs, or even early termination of the treatment course do not seem to have a negative impact in 3-year RFS and OS; however, due to the trend of worse RFS in patients receiving shorter courses of chemotherapy, further studies are needed.

  9. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denison, K; Smith, S

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, whichmore » optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that is designed to reduce exposure to the patient through the Cardiac Step and Shoot scan mode. This mode can substitute the much higher dose retrospective scan modes for certain types of cardiac imaging. The beam filtration and beam shaper portion will discuss the variety of filtration and beam shaping configurations available on Philips scanners. This topic includes the x-ray beam characteristics, tube filtration as well as dose compensator characteristics. The Eclipse collimator, ClearRay collimator and the NanoPanel detector portion will discuss additional technologies specific to wide coverage CT that address some of the unique challenges encountered and techniques employed to optimize image quality and optimize dose utilization. The Eclipse collimator reduces extraneous exposure by actively blocking the radiation tails at either end of helical scans that do not contribute to the image generation. The ClearRay collimator and the NanoPanel detector optimize the quality of the signal that reaches the detectors by addressing the increased scattered radiation present in wide coverage and the NanoPanel detector adds superior electronic noise characteristics valuable when imaging at a low dose level. The second part of the talk will present “Advanced Reconstruction Technologies” currently available on Philips CT Scanners. The talk will cover filtered back projection (FBP), iDose4 and Iterative Model Reconstruction (IMR). Each reconstruction method will include a discussion of the algorithm as well as similarities and differences between the algorithms. Examples illustrating the merits of each algorithm will be presented, and techniques and metrics to characterize the performance of each type of algorithm will be presented. The Filtered Back projection portion will discuss and provide a brief summary of relevant standard image reconstruction techniques in common use, and discuss the common tradeoffs when using the FBP algorithm. The iDose4 portion will present the algorithms used for iDose4 as well the different levels. The meaning of different levels of iDose4 available will be presented and quantified. Guidelines for selection iDose4 parameters based on the imaging need will be explained. The different image quality goals available with iDose4 and specifically how iDose4 enables noise reduction, spatial resolution improvement or both will be explained. The approaches to leveraging the benefits of iDose4 such as improved spatial resolution, decreased noise, and artifact prevention will be described and quantified; and measurements and metrics behind the improvements will be presented. The image quality benefits in specific imaging situations as well as how to best combine the technology with other dose reduction strategies to ensure the best image quality at a given dose level will be presented. Insight into the IMR algorithm as well as contrast to the iDose4 techniques and performance characteristics will be discussed. Metrics and techniques for characterizing this class of algorithm and IQ performance will be presented. The image quality benefits and the dose reduction capabilities of IMR will be explored. Illustrative examples of the noise reduction, spatial resolution improvement, and low contrast detectability improvements of the reconstruction method will be presented: clinical cases and phantom measurements demonstrating the benefits of IMR in the areas of low dose imaging, spatial resolution and low contrast resolution are discussed and the technical details behind the measurements will be presented compared to both iDose4 and traditional filtered back projection (FBP)« less

  10. Standard pentostatin dose reductions in renal insufficiency are not adequate: selected patients with steroid-refractory acute graft-versus-host disease.

    PubMed

    Poi, Ming J; Hofmeister, Craig C; Johnston, Jeffrey S; Edwards, Ryan B; Jansak, Buffy S; Lucas, David M; Farag, Sherif S; Dalton, James T; Devine, Steven M; Grever, Michael R; Phelps, Mitch A

    2013-08-01

    Pentostatin is an irreversible inhibitor of adenosine deaminase and has been used to prevent graft-versus-host disease (GVHD) and to treat both acute and chronic GVHD. Dose reduction equations for patients with renal insufficiency are based on few patients with limited pharmacokinetic and clinical results. This phase II study (NCT00201786) was conducted to assess pentostatin efficacy and infectious complications seen from our previous phase I study in steroid-refractory acute GVHD (aGVHD). Hospitalized patients with steroid-refractory aGVHD were given pentostatin 1.5 mg/m(2)/day intravenously on days 1-3 of each 14-day cycle. Prior to each dose, dose modifications were based on Cockcroft-Gault estimated creatinine clearance (eCrCL) with 30-50 mL/min/1.73 m(2) leading to a 50 % dose reduction and eCrCL less than 30 mL/min/1.73 m(2) leading to study removal. Plasma pentostatin area under the concentration-time curve (AUC) and incidence of infectious complications were evaluated. Two of the eight patients treated demonstrated excessive pentostatin exposure as determined by measurement of AUC. One of these patients had renal impairment, whereas the other patient demonstrated borderline renal function. Despite dose reduction to 0.75 mg/m(2), AUCs were significantly increased compared to the other patients in this study. Seven of eight patients treated with pentostatin had cytomegalovirus (CMV) viremia after pentostatin treatment; however none developed proven CMV disease. A 50 % dose reduction in patients with eCrCL 30-50 mL/min/1.73 m(2) seems reasonable. However, the eCrCL should be interpreted with extreme caution in patients who are critically ill and/or with poor performance status. Renal function assessment based on the Cockcroft-Gault method could be significantly overestimated thus risking pentostatin overdosing. These results imply a need to closely monitor pentostatin exposure in patients with renal insufficiency.

  11. Gonad dose in AP pelvis radiography: Impact of anode heel orientation.

    PubMed

    Mraity, H A A B; England, A; Hogg, P

    2017-02-01

    For antero posterior (AP) pelvis radiographic examination, determine the impact of anode heel orientation on female/male gonad dose. High sensitivity thermo-luminescent dosimeters (TLDs) were used with an ATOM dosimetry phantom; the phantom was positioned for AP pelvis. TLDs were placed into the testes and ovaries. Radiation dose received by these organs was measured with the feet toward anode and feet toward the cathode. kVp, mAs and SID were manipulated to generate a range of exposures. A dose profile was also generated using Unfors Mult-O-Meter 401 along the long axis of the phantom. A decrease in dose from the central ray toward the anode was noted, with a marked increase toward the cathode. A significant reduction in dose was received by the testes with feet towards the anode compared with feet towards cathode (P˂0.001). No difference was seen for ovarian dose (P˃0.05). kVp, mAs and SID all have an effect on male and female gonad dose. For male pelvis imaging, placing feet towards the anode can be used as a simple dose reduction method. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  12. SU-E-T-91: Correction Method to Determine Surface Dose for OSL Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T; Higgins, P

    Purpose: OSL detectors are commonly used in clinic due to their numerous advantages, such as linear response, negligible energy, angle and temperature dependence in clinical range, for verification of the doses beyond the dmax. Although, due to the bulky shielding envelope, this type of detectors fails to measure skin dose, which is an important assessment of patient ability to finish the treatment on time and possibility of acute side effects. This study aims to optimize the methodology of determination of skin dose for conventional accelerators and a flattening filter free Tomotherapy. Methods: Measurements were done for x-ray beams: 6 MVmore » (Varian Clinac 2300, 10×10 cm{sup 2} open field, SSD = 100 cm) and for 5.5 MV (Tomotherapy, 15×40 cm{sup 2} field, SAD = 85 cm). The detectors were placed at the surface of the solid water phantom and at the reference depth (dref=1.7cm (Varian 2300), dref =1.0 cm (Tomotherapy)). The measurements for OSLs were related to the externally exposed OSLs measurements, and further were corrected to surface dose using an extrapolation method indexed to the baseline Attix ion chamber measurements. A consistent use of the extrapolation method involved: 1) irradiation of three OSLs stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. Results: OSL measurements showed an overestimation of surface doses by the factor 2.31 for Varian 2300 and 2.65 for Tomotherapy. The relationships: SD{sup 2300} = 0.68 × M{sup 2300}-12.7 and SDτoμo = 0.73 × Mτoμo-13.1 were found to correct the single OSL measurements to surface doses in agreement with Attix measurements to within 0.1% for both machines. Conclusion: This work provides simple empirical relationships for surface dose measurements using single OSL detectors.« less

  13. Reduction factors for wooden houses due to external γ-radiation based on in situ measurements after the Fukushima nuclear accident.

    PubMed

    Yoshida-Ohuchi, Hiroko; Hosoda, Masahiro; Kanagami, Takashi; Uegaki, Masaki; Tashima, Hideo

    2014-12-18

    For estimation of residents' exposure dose after a nuclear accident, the reduction factor, which is the ratio of the indoor dose to the outdoor dose is essential, as most individuals spend a large portion of their time indoors. After the Fukushima nuclear accident, we evaluated the median reduction factor with an interquartile range of 0.43 (0.34-0.53) based on 522 survey results for 69 detached wooden houses in two evacuation zones, Iitate village and Odaka district. The results indicated no statistically significant difference in the median reduction factor to the representative value of 0.4 given in the International Atomic Energy Agency (IAEA)-TECDOC-225 and 1162. However, with regard to the representative range of the reduction factor, we recommend the wider range of 0.2 to 0.7 or at least 0.2 to 0.6, which covered 87.7% and 80.7% of the data, respectively, rather than 0.2 to 0.5 given in the IAEA document, which covered only 66.5% of the data. We found that the location of the room within the house and area topography, and the use of cement roof tiles had the greatest influence on the reduction factor.

  14. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children.

    PubMed

    Yoon, Haesung; Kim, Myung-Joon; Yoon, Choon-Sik; Choi, Jiin; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique.

  15. Ultrasound Evaluation of Thyroid Gland Pathologies After Radiation Therapy and Chemotherapy to Treat Malignancy During Childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lollert, André, E-mail: andre.lollert@unimedizin-mainz.de; Gies, Christina; Laudemann, Katharina

    Purpose: The purpose of this study was to evaluate correlations between treatment of malignancy by radiation therapy during childhood and the occurrence of thyroid gland pathologies detected by ultrasonography in follow-up examinations. Methods and Materials: Reductions of thyroid gland volume below 2 standard deviations of the weight-specific mean value, occurrence of ultrasonographically detectable thyroid gland pathologies, and hypothyroidism were retrospectively assessed in 103 children and adolescents 7 months to 20 years of age (median: 7 years of age) at baseline (1997-2013) treated with chemoradiation therapy (with the thyroid gland dose assessable) or with chemotherapy alone and followed by ultrasonography and laboratory examinations throughmore » 2014 (median follow-up time: 48 months). Results: A relevant reduction of thyroid gland volume was significantly correlated with thyroid gland dose in univariate (P<.001) and multivariate analyses for doses above 2 Gy. Odds ratios were 3.1 (95% confidence interval: 1.02-9.2; P=.046) for medium doses (2-25 Gy) and 14.8 (95% confidence interval: 1.4-160; P=.027) for high doses (>25 Gy). Thyroid gland dose was significantly higher in patients with thyroid gland pathologies during follow-up (P=.03). Univariate analysis revealed significant correlations between hypothyroidism and thyroid gland dose (P<.001). Conclusions: Ultrasonographically detectable changes, that is, volume reductions, pathologies, and hypothyroidism, after malignancy treatment during childhood are associated with thyroid gland dose. Both ultrasonography and laboratory follow-up examinations should be performed regularly after tumor therapy during childhood, especially if the treatment included radiation therapy.« less

  16. Ultrasound Evaluation of Thyroid Gland Pathologies After Radiation Therapy and Chemotherapy to Treat Malignancy During Childhood.

    PubMed

    Lollert, André; Gies, Christina; Laudemann, Katharina; Faber, Jörg; Jacob-Heutmann, Dorothee; König, Jochem; Düber, Christoph; Staatz, Gundula

    2016-01-01

    The purpose of this study was to evaluate correlations between treatment of malignancy by radiation therapy during childhood and the occurrence of thyroid gland pathologies detected by ultrasonography in follow-up examinations. Reductions of thyroid gland volume below 2 standard deviations of the weight-specific mean value, occurrence of ultrasonographically detectable thyroid gland pathologies, and hypothyroidism were retrospectively assessed in 103 children and adolescents 7 months to 20 years of age (median: 7 years of age) at baseline (1997-2013) treated with chemoradiation therapy (with the thyroid gland dose assessable) or with chemotherapy alone and followed by ultrasonography and laboratory examinations through 2014 (median follow-up time: 48 months). A relevant reduction of thyroid gland volume was significantly correlated with thyroid gland dose in univariate (P<.001) and multivariate analyses for doses above 2 Gy. Odds ratios were 3.1 (95% confidence interval: 1.02-9.2; P=.046) for medium doses (2-25 Gy) and 14.8 (95% confidence interval: 1.4-160; P=.027) for high doses (>25 Gy). Thyroid gland dose was significantly higher in patients with thyroid gland pathologies during follow-up (P=.03). Univariate analysis revealed significant correlations between hypothyroidism and thyroid gland dose (P<.001). Ultrasonographically detectable changes, that is, volume reductions, pathologies, and hypothyroidism, after malignancy treatment during childhood are associated with thyroid gland dose. Both ultrasonography and laboratory follow-up examinations should be performed regularly after tumor therapy during childhood, especially if the treatment included radiation therapy. Copyright © 2016. Published by Elsevier Inc.

  17. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  18. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    PubMed

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  19. EP3/FP dual receptor agonist ONO-9054 administered morning or evening to patients with open-angle glaucoma or ocular hypertension: results of a randomised crossover study

    PubMed Central

    Berlin, Michael S; Rowe-Rendleman, Cheryl; Ahmed, Ike; Ross, Douglas T; Fujii, Akifumi; Ouchi, Takafumi; Quach, Christine; Wood, Andrew; Ward, Caroline L

    2016-01-01

    Background/aims The novel prostaglandin E (EP) 3 and prostaglandin F (FP) receptor agonist ONO-9054 is effective in lowering intraocular pressure (IOP) in patients with ocular hypertension and open-angle glaucoma when administered once daily. This study compares the effects of morning (AM) versus evening (PM) dosing of ONO-9054 on tolerability and IOP lowering. Methods This was a single-centre, randomised, double-masked, two-sequence, placebo-controlled crossover study in 12 subjects with bilateral primary open-angle glaucoma or ocular hypertension. Two 14-day crossover regimens were separated by a 2-week washout: ONO-9054 (1 drop to each eye) in the morning (07:00) and vehicle in the evening (19:00) and vice versa. IOP was measured multiple times during select days. Ocular examinations also evaluated safety and tolerability. Results Mild ocular hyperaemia, reported by six subjects with PM dosing, was the most frequent adverse event. Mild to moderate dryness was also slightly more frequent after PM dosing. Maximum IOP reduction from baseline occurred on day 2 with decreases from baseline of −7.4 mm Hg (−30.8%) for AM dosing and −9.1 mm Hg, (−38.0%) for PM dosing; after 14 days, mean reduction in IOP was −6.8 mm Hg (−28.6%) for AM dosing and −7.5 mm Hg (−31.0%) for PM dosing. Conclusions PM dosing of ONO-0954 was associated with a slightly increased frequency of mild hyperaemia and mild to moderate dryness. Both dosing schedules provided sustained reduction in IOP. Trial registration number NCT01670266. PMID:26453641

  20. The velocity of antihypertensive effect of losartan/hydrochlorothiazide and angiotensin II receptor blocker.

    PubMed

    Metoki, Hirohito; Ohkubo, Takayoshi; Kikuya, Masahiro; Asayama, Kei; Inoue, Ryusuke; Obara, Taku; Hirose, Takuo; Sato, Michihiro; Hashimoto, Takanao; Imai, Yutaka

    2012-07-01

    The hypotensive effect and the time to attain the maximum antihypertensive effect (stabilization time) of losartan/hydrochlorothiazide (HCTZ) combination therapy and therapy with a maximal dose of angiotensin II receptor blockers (ARBs) in patients who failed to achieve adequate blood pressure (BP) control on a medium-dose of ARBs were compared by analyzing exponential decay functions using daily serial morning home BP measurements. Essential hypertensive patients treated with a medium dose of ARB, in whom a target home SBP (135 mmHg) was not achieved, were randomized into two groups: a combination group (n = 110) and a maximal-dose ARB group (n = 111). The combination therapy provided additional reduction of 5.2 mmHg [95% confidence interval (CI) 1.8 to 8.5 mmHg, P = 0.003] in home SBP over the maximal-dose ARB therapy in 8 weeks after randomization. A greater reduction in the home SBP values was seen in the combination group than in the maximal-dose ARB group from the second day after randomization on the basis of a linear mixed model. The maximum antihypertensive effect and stabilization time for home SBP were 10.9 ± 5.0 mmHg and 7.3 ± 29.7 days, respectively, in the combination group, whereas the corresponding values in the maximal-dose ARB group were 7.9 ± 2.6  mmHg and 122.3 ± 42.7 days, respectively, on the basis of a nonlinear mixed model. Changing from a medium dose of ARB monotherapy to combination therapy was more effective in the reduction of home SBP and achieved goal BP more rapidly than increasing the ARB dose. Home BP measurement is a useful tool for characterizing the antihypertensive effects of drugs.

  1. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    PubMed

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  2. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  3. Efficacy of Lens Protection Systems: Dependency on Different Cranial CT Scans in The Acute Stroke Setting.

    PubMed

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian

    2017-06-15

    To evaluate the dose-reduction potential with different lens protectors for patients undergoing cranial computed tomography (CT) scans. Eye lens dose was assessed in vitro (α-Al2O3:C thermoluminescence dosemeters) using an Alderson-Rando phantom® in cranial CT protocols at different CT scanners (SOMATOM-Definition-AS+®(CT1) and SOMATOM-Definition-Flash® (CT2)) using two different lens-protection systems (Somatex® (SOM) and Medical Imaging Systems® (MIS)). Summarised percentage of the transmitted photons: (1) CT1 (a) unenhanced CT (nCT) with gantry angulation: SOM = 103%, MIS = 111%; (2) CT2 (a) nCT without gantry angulation: SOM = 81%, MIS = 91%; (b) CT angiography (CTA) with automatic dose-modulation technique: SOM = 39%, MIS = 74%; (c) CTA without dose-modulation technique: SOM = 22%, MIS = 48%; (d) CT perfusion: SOM = 44%, MIS = 69%. SOM showed a higher dose-reduction potential than MIS maintaining equal image quality. Lens-protection systems are most effective in CTA protocols without dose-reduction techniques. Lens-protection systems lower the average eye lens dose during CT scans up to 1/3 (MIS) and 2/3 (SOM), respectively, if the eye lens is exposed to the direct beam of radiation. Considering both the CT protocol and the material of lens protectors, they seem to be mandatory for reducing the radiation exposure of the eye lens. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Panobinostat plus bortezomib and dexamethasone: impact of dose intensity and administration frequency on safety in the PANORAMA 1 trial.

    PubMed

    San-Miguel, Jesús F; Hungria, Vania T M; Yoon, Sung-Soo; Beksac, Meral; Dimopoulos, Meletios A; Elghandour, Ashraf; Jedrzejczak, Wieslaw W; Guenther, Andreas; Na Nakorn, Thanyaphong; Siritanaratkul, Noppadol; Schlossman, Robert L; Hou, Jian; Moreau, Philippe; Lonial, Sagar; Lee, Jae-Hoon; Einsele, Hermann; Salwender, Hans; Sopala, Monika; Redhu, Suman; Paul, Sofia; Corrado, Claudia; Richardson, Paul G

    2017-10-01

    Panobinostat in combination with bortezomib and dexamethasone demonstrated a significant and clinically meaningful progression-free survival benefit compared with placebo, bortezomib and dexamethasone in the phase 3 PANORAMA 1 (Panobinostat Oral in Multiple Myeloma 1) trial. Despite this benefit, patients in the panobinostat arm experienced higher rates of adverse events (AEs) and higher rates of discontinuation due to AEs. This PANORAMA 1 subanalysis examined AEs between 2 treatment phases of the study (TP1 and TP2), in which administration frequency of bortezomib and dexamethasone differed per protocol. The incidences of several key AEs were lower in both arms following the planned reduction of bortezomib dosing frequency in TP2. In the panobinostat arm, rates of thrombocytopenia (grade 3/4: TP1, 56·7%; TP2, 6·0%), diarrhoea (grade 3/4: TP1, 24·1%; TP2, 7·1%), and fatigue (grade 3/4: TP1, 16·3%; TP2, 1·8%) were lower in TP2 compared with TP1. Dose intensity analysis of panobinostat and bortezomib by cycle in the panobinostat arm showed reductions of both agent doses during cycles 1-4 due to dose adjustments for AEs. Exposure-adjusted analysis demonstrated a reduction in thrombocytopenia frequency in TP1 following dose adjustment. These results suggest that optimization of dosing with this regimen could improve tolerability, potentially leading to improved patient outcomes. © 2017 John Wiley & Sons Ltd.

  5. Anti-inflammatory and anti-pyretic properties of Spirulina platensis and Spirulina lonar: a comparative study.

    PubMed

    Somchit, Muhammad Nazrul; Mohamed, Nor Azura; Ahmad, Zuraini; Zakaria, Zainul Amiruddin; Shamsuddin, Lokman; Omar-Fauzee, Mohd Sofian; Kadir, Arifah Abdul

    2014-09-01

    Spirulina spp. is a blue-green algae belongs to the family of Oscillatoriaceae, which having diverse biological activity. The aim of this current study was to evaluate and compare the anti-pyretic and anti-inflammatory activity of Spirulina platensis/SP and Spirulina lonar/SL extracts. In the anti-pyretic study, the ability to reduce the rectal temperature of rats induced pyrexia with 2g/kg Brewer's Yeast (BY) was performed. Rats were dosed either 2 or 4 mg/kg SP or SL. Rectal temperature was taken every hour for 8 hours. Results shown that there were significant dose-dependent (p<0.05) reduction of both treatments. However, SP treatment revealed faster reduction in rectal temperature. For anti-inflammatory activity, the reduction in the volume of paw edema induced by Prostaglandin E2 (100 IU/rat intraplantar) was measured. Rats were dosed orally with 2 or 4 mg/kg SP or SL. The paw edema was measured every 30 minutes for 4 hours using plethysmometer. Results had shown a significant dose dependent reduction in diameter of paw edema (p<0.05). The finding suggests that SP and SL extracts have anti-pyretic and anti-inflammatory properties. However, SP was found to be more effective than SL as anti-pyretic and anti-inflammatory agent.

  6. Optimization of 64-MDCT urography: effect of dual-phase imaging with furosemide on collecting system opacification and radiation dose.

    PubMed

    Portnoy, Orith; Guranda, Larisa; Apter, Sara; Eiss, David; Amitai, Marianne Michal; Konen, Eli

    2011-11-01

    The purpose of this study was to compare opacification of the urinary collecting system and radiation dose associated with three-phase 64-MDCT urographic protocols and those associated with a split-bolus dual-phase protocol including furosemide. Images from 150 CT urographic examinations performed with three scanning protocols were retrospectively evaluated. Group A consisted of 50 sequentially registered patients who underwent a three-phase protocol with saline infusion. Group B consisted of 50 sequentially registered patients who underwent a reduced-radiation three-phase protocol with saline. Group C consisted of 50 sequentially registered patients who underwent a dual-phase split-bolus protocol that included a low-dose furosemide injection. Opacification of the urinary collecting system was evaluated with segmental binary scoring. Contrast artifacts were evaluated, and radiation doses were recorded. Results were compared by analysis of variance. A significant reduction in mean effective radiation dose was found between groups A and B (p < 0.001) and between groups B and C (p < 0.001), resulting in 65% reduction between groups A and C (p < 0.001). This reduction did not significantly affect opacification score in any of the 12 urinary segments (p = 0.079). In addition, dense contrast artifacts overlying the renal parenchyma observed with the three-phase protocols (groups A and B) were avoided with the dual-phase protocol (group C) (p < 0.001). A dual-phase protocol with furosemide injection is the preferable technique for CT urography. In comparison with commonly used three-phase protocols, the dual-phase protocol significantly reduces radiation exposure dose without reduction in image quality.

  7. Paediatric dose reduction with the introduction of digital fluorography.

    PubMed

    Mooney, R B; McKinstry, J

    2001-01-01

    Fluoroscopy guided examinations in a paediatric X ray department were initially carried out on a unit that used a conventional screen-film combination for spot-films. A new fluoroscopy unit was installed with the facilities of digital fluorography and last image hold. Comparison of equipment performance showed that the dose per image for screen-film and digital fluorography was 3 microGy and 0.4 microGy, respectively. Although the screen-film had superior image quality, the department's radiologist confirmed that digital fluorography provided a diagnostic image. Patient dose measurements showed that introduction of the new unit caused doses to fall by an average of 70%, although fluoroscopy time had not changed significantly. The new unit produced 40% less air kerma during fluoroscopy. The remaining 30% reduction in dose was due to the introduction of digital fluorography and last image hold facilities. It is concluded that the use of digital fluorography can be an effective way of reducing paediatric dose.

  8. Estimation of body surface area in the musk shrew ( Suncus murinus): a small animal for testing chemotherapy-induced emesis.

    PubMed

    Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C

    2017-10-01

    Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.

  9. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    PubMed

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  10. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose

    PubMed Central

    Silkosessak, O; Jacobs, R; Bogaerts, R; Bosmans, H; Panmekiate, S

    2014-01-01

    Objectives: To determine the optimal kVp setting for a particular cone beam CT (CBCT) device by maximizing technical image quality at a fixed radiation dose. Methods: The 3D Accuitomo 170 (J. Morita Mfg. Corp., Kyoto, Japan) CBCT was used. The radiation dose as a function of kVp was measured in a cylindrical polymethyl methacrylate (PMMA) phantom using a small-volume ion chamber. Contrast-to-noise ratio (CNR) was measured using a PMMA phantom containing four materials (air, aluminium, polytetrafluoroethylene and low-density polyethylene), which was scanned using 180 combinations of kVp/mA, ranging from 60/1 to 90/8. The CNR was measured for each material using PMMA as background material. The pure effect of kVp and mAs on the CNR values was analysed. Using a polynomial fit for CNR as a function of mA for each kVp value, the optimal kVp was determined at five dose levels. Results: Absorbed doses ranged between 0.034 mGy mAs−1 (14 × 10 cm, 60 kVp) and 0.108 mGy mAs−1 (14 × 10 cm, 90 kVp). The relation between kVp and dose was quasilinear (R2 > 0.99). The effect of mA and kVp on CNR could be modelled using a second-degree polynomial. At a fixed dose, there was a tendency for higher CNR values at increasing kVp values, especially at low dose levels. A dose reduction through mA was more efficient than an equivalent reduction through kVp in terms of image quality deterioration. Conclusions: For the investigated CBCT model, the most optimal contrast at a fixed dose was found at the highest available kVp setting. There is great potential for dose reduction through mA with a minimal loss in image quality. PMID:24708447

  11. Influence of a Commercial Lead Apron on Patient Skin Dose Delivered During Oral and Maxillofacial Examinations under Cone Beam Computed Tomography (CBCT).

    PubMed

    Schulze, Ralf Kurt Willy; Sazgar, Mahssa; Karle, Heiko; de Las Heras Gala, Hugo

    2017-08-01

    The purpose of this paper is to investigate the impact of a commercial lead apron on patient skin dose delivered during maxillofacial CBCT in five critical regions by means of solid-state-dosimetry. Five anatomical regions (thyroid gland, left and right breast, gonads, back of the phantom torso) in an adult female anthropomorphic phantom were selected for dose measurement by means of the highly sensitive solid-state dosimeter QUART didoSVM. Ten repeated single exposures were assessed for each patient body region for a total of five commercial CBCT devices with and without a lead apron present. Shielded and non-shielded exposures were compared under the paired Wilcoxon test, with absolute and relative differences computed. Reproducibility was expressed as the coefficient of variation (CV) between the 10 repeated assessments. The highest doses observed at skin level were found at the thyroid (mean shielded ± SD: 450.5 ± 346.7 μGy; non-shielded: 339.2 ± 348.8 μGy, p = 0.4922). Shielding resulted in a highly significant (p < 0.001) 93% dose reduction in skin dose in the female breast region with a mean non-shielded dose of approximately 35 μGy. Dose reduction was also significantly lower for the back-region (mean: -65%, p < 0.0001) as well as for the gonad-region (mean: -98%, p < 0.0001) in the shielded situation. Reproducibility was inversely correlated to skin dose (Rspearman = -0.748, p < 0.0001) with a mean CV of 10.45% (SD: 24.53 %). Skin dose in the thyroid region of the simulated patient was relatively high and not influenced by the lead apron, which did not shield this region. Dose reduction by means of a commercial lead apron was significant in all other regions, particularly in the region of the female breast.

  12. SU-E-I-57: Evaluation and Optimization of Effective-Dose Using Different Beam-Hardening Filters in Clinical Pediatric Shunt CT Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, K; Aldoohan, S; Collier, J

    Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measuremore » CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.« less

  13. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  14. Guar gum and reduction of post-prandial glycaemia: effect of incorporation into solid food, liquid food, and both.

    PubMed

    Wolever, T M; Jenkins, D J; Nineham, R; Alberti, K G

    1979-05-01

    1. The influence of the dose and the form in which guar gum was given on the degree of "flattening" of blood glucose curves was studied in five subjects using meals of bread and soup containing 5 or 10 g guar gum. 2. When 5 g guar gum was added to bread the peak increase of blood glucose was reduced by 41% (P less than 0.002), with 5 g guar in soup, the reduction was 54% (P less than 0.001) while a reduction of 68% (P less than 0.001) was seen with 10 g guar gum (5 g in bread and 5 g in soup). The corresponding reduction in insulin peak increases were 37% (P less than 0.002), 50% (P less than 0.001) and 65% (P less than 0.001) respectively. 3. The difference between the two 5 g doses was significant with respect to the reduction of the peak increases in blood glucose and serum insulin; however the difference between the 5 g dose in bread and the 10 g dose was significantly different (P less than 0.02 for glucose, P less than 0.01 for insulin). 4. The results indicate that as little as 5 g guar gum may reduce the glycaemia following a 45 g carbohydrate meal, but perhaps due to earlier and more complete mixing, guar gum is most effective when added to the liquid phase of the meal.

  15. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index.

    PubMed

    Dahan, A; Nieuwenhuijs, D; Olofsen, E; Sarton, E; Romberg, R; Teppema, L

    2001-06-01

    Respiratory depression is a serious side effect of anesthetics and opioids. The authors examined the influence of the combined administration of sevoflurane and alfentanil on ventilatory control, heart rate (HR), and Bispectral Index (BIS) in healthy volunteers. Step decreases in end-tidal partial pressure of oxygen from normoxia into hypoxia (approximately 50 mmHg) at constant end-tidal partial pressure of carbon dioxide (approximately 48 mmHg) were performed in nine male volunteers at various concentrations of alfentanil and sevoflurane, ranging from 0 to 50 ng/ml for alfentanil and from 0 to 0.4 end-tidal concentration (ET%) for sevoflurane, and with various combinations of alfentanil and sevoflurane. The alfentanil-sevoflurane interactions on normoxic resting (hypercapnic) ventilation (Vi), HR, hypoxic Vi, and HR responses and BIS were assessed by construction of response surfaces that related alfentanil and sevoflurane to effect using a population analysis. Concentration-effect relations were linear for alfentanil and sevoflurane. Synergistic interactions were observed for resting Vi and resting HR. Depression of Vi by 25% occurred at 38 +/- 11 ng/ml alfentanil (population mean +/- SE) and at 0.7 +/- 0.4 ET% sevoflurane. One possibility for 25% reduction when alfentanil and sevoflurane are combined is 13.4 ng/ml alfentanil plus 0.12 ET% sevoflurane. Additive interactions were observed for hypoxic Vi and HR responses and BIS. Depression of the hypoxic Vi response by 25% occurred at 16 +/- 1 ng/ml alfentanil and 0.14 +/- 0.05 ET% sevoflurane. The effect of sevoflurane on the BIS (25% reduction of BIS occurred at 0.45 +/- 0.08 ET%) was independent of the alfentanil concentration. Response surface modeling was used successfully to analyze the effect of interactions between two drugs on respiration. The combination of alfentanil and sevoflurane causes more depression of Vi and HR than does the summed effect of each drug administered separately. The effects of combining alfentanil and sevoflurane on hypoxic Vi and HR responses and BIS could be predicted from the separate dose-response curves. Over the dose range tested, the hypoxic response is more sensitive to the effects of anesthetics and opioids relative to resting ventilation.

  16. Neutron organ dose and the influence of adipose tissue

    NASA Astrophysics Data System (ADS)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  17. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    PubMed Central

    Anderson, Richard A.; Johnston, Zoe C.; Chetty, Tarini; Smith, Lee B.; Mckinnell, Chris; Dean, Afshan; Homer, Natalie Z.; Jorgensen, Anne; Camacho-Moll, Maria-Elena; Sharpe, Richard M.; Mitchell, Rod T.

    2016-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; p=0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; p=0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect. PMID:25995226

  18. Facilitating the implementation of pharmacokinetic-guided dosing of prophylaxis in haemophilia care by discrete choice experiment.

    PubMed

    Lock, J; de Bekker-Grob, E W; Urhan, G; Peters, M; Meijer, K; Brons, P; van der Meer, F J M; Driessens, M H E; Collins, P W; Fijnvandraat, K; Leebeek, F W G; Cnossen, M H

    2016-01-01

    Patients', parents' and providers' preferences with regard to medical innovations may have a major impact on their implementation. To evaluate barriers and facilitators for individualized pharmacokinetic (PK)-guided dosing of prophylaxis in haemophilia patients, parents of young patients, and treating professionals by discrete choice experiment (DCE) questionnaire. The study population consisted of patients with haemophilia currently or previously on prophylactic treatment with factor concentrate (n = 114), parents of patients aged 12-18 years (n = 19) and haemophilia professionals (n = 91). DCE data analysis was performed, taking preference heterogeneity into account. Overall, patients and parents, and especially professionals were inclined to opt for PK-guided dosing of prophylaxis. In addition, if bleeding was consequently reduced, more frequent infusions were acceptable. However, daily dosing remained an important barrier for all involved. 'Reduction of costs for society' was a facilitator for implementation in all groups. To achieve implementation of individualized PK-guided dosing of prophylaxis in haemophilia, reduction of bleeding risk and reduction of costs for society should be actively discussed as they are motivating for implementation; daily dosing is still reported to be a barrier for all groups. The knowledge of these preferences will enlarge support for this innovation, and aid in the drafting of implementable guidelines and information brochures for patients, parents and professionals. © 2015 John Wiley & Sons Ltd.

  19. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.

    PubMed

    Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji

    2017-09-14

    To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P < 0.01) and 75.5% ( P < 0.01), respectively, compared with levels in non-treated cells. Meanwhile, time- and dose-dependent reductions in the histone H3 acetylation levels were also detected upon treatment with curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.

  20. Evaluation and optimization of occupational eye lens dosimetry during positron emission tomography (PET) procedures.

    PubMed

    Guiu-Souto, Jacobo; Sánchez-García, Manuel; Vázquez-Vázquez, Rubén; Otero, Carlos; Luna, Victor; Mosquera, Javier; Busto, Ramón Lobato; Aguiar, Pablo; Ruibal, Álvaro; Pardo-Montero, Juan; Pombar-Cameán, Miguel

    2016-06-01

    The last recommendations of the International Commission on Radiological Protection for eye lens dose suggest an important reduction on the radiation limits associated with early and late tissue reactions. The aim of this work is to quantify and optimize the eye lens dose associated to nurse staff during positron emission tomography (PET) procedures. PET is one of the most important diagnostic methods of oncological and neurological cancer disease involving an important number of workers exposed to the high energy isotope F-18. We characterize the relevant stages as preparation and administration of monodose syringes in terms of occupational dose. A direct reading silicon dosimeter was used to measure the lens dose to staff. The highest dose of radiation was observed during preparation of the fluorodesoxyglucose (FDG) syringes. By optimizing a suitable vials' distribution of FDG we find an important reduction in occupational doses. Extrapolation of our data to other clinical scenarios indicates that, depending on the work load and/or syringes activity, safety limits of the dose might be exceeded.

  1. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.

  2. [Adherence of type 2 diabetes patients on insulin analogues application: missed dose, time imprecision and dose reduction. The results of GAPP2TM(Global Attitudes of Physicians and Patient) survey in the Czech Republic].

    PubMed

    Prázný, Martin

    2014-11-01

    Irregular insulin dose is one of the main problems associated with insulin therapy in patients with type 2 diabetes; its extent is not known precisely. The aim of survey conducted in the Czech Republic in the international project GAPP2 - Global Attitudes of Patients and Physicians was to determine the incidence and the impact of irregular use of basal insulin analogues in patients with type 2 diabetes, to point out the reasons for these irregularities and to focus on how physicians discuss irregular application of insulin with patients. The project GAPP2 is an international cross-sectional study performed on-line via the Internet using a questionnaire filled by diabetic patients treated with insulin analogues and physicians who treat these patients. The survey was conducted in two steps in 17 countries; the first step included 6 countries and was completed in the beginning of 2012, the second step involved 11 other countries including the Czech Republic with termination in 2014. The survey was designed to obtain the views of patients and physicians on certain aspects of insulin treatment and persistent issues in this field in the real daily practice. Special focus was on the incidence and management of hypoglycaemia as well as on irregularities of insulin application. In the part dedicated to adherence to basal insulin application were observed three types of irregular insulin therapy: missed dose, time imprecision of dose (± 2 hours vs. the prescribed time) and dose reduction in all cases in the past 30 days before completing the questionnaire. In addition, it was investigated the attitude and relation of patients to these issues. The results have shown that irregular insulin dose in the Czech Republic is less frequent than in other countries involved in the GAPP2 research. Nevertheless, approximately one fifth of diabetic patients using insulin analogues in basal-bolus or only basal therapy regimen is related to this problem. The last irregular insulin application was due to missed dose in 13% of cases, time imprecision in 23% and reduction of dose in 61% of cases. The most commonly reported reason was risk reduction of hypoglycaemia and the recommendations of health professionals. Fear of missed dose is present in 40% Czech patients and 35% would feel guilty if their insulin dose is missed (up to 47% in patients with intensified insulin regimen). Only 60% patients are aware of negative impact on their long-term health after missed dose of basal insulin. Questioned doctors have suspected that the patients report lower number of missed doses during regular medical check because one third of patients doesn´t admit missed dose. However, this fact conceded only 11% of patients on basal insulin and 15% of patients on intensified insulin therapy. Quarter of prescribing doctors admit that they usually don´t discuss with patients irregularities in basal insulin treatment. Although, type 2 diabetes patients in the Czech Republic follow prescribed basal insulin therapy scheme more often than patients in other countries participating in the survey GAPP2 , missed dose, time imprecision and reduction of dose is quite common and it deserves more attention from medical side during regular medical check together with appropriate education of patients.

  3. Peak skin and eye lens radiation dose from brain perfusion CT based on Monte Carlo simulation.

    PubMed

    Zhang, Di; Cagnon, Chris H; Villablanca, J Pablo; McCollough, Cynthia H; Cody, Dianna D; Stevens, Donna M; Zankl, Maria; Demarco, John J; Turner, Adam C; Khatonabadi, Maryam; McNitt-Gray, Michael F

    2012-02-01

    The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDI(vol)]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques. Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDI(vol) for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations. Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66-79% and 59-63%, respectively, of the CTDI(vol) values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated. CTDI(vol) should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.

  4. Radiation survey on Fukushima Medical University premises about four years after the Fukushima nuclear disaster

    PubMed Central

    Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo

    2016-01-01

    Abstract This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h-1 to 0.520 μGy h-1, and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h-1, which is close to 0.04 μGy h-1, which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected. PMID:26911302

  5. Radiation survey on Fukushima Medical University premises about four years after the Fukushima nuclear disaster.

    PubMed

    Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo

    2016-06-08

    This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h(-1) to 0.520 μGy h(-1), and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h(-1), which is close to 0.04 μGy h(-1), which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected.

  6. Three different up-titration regimens of ponesimod, an S1P1 receptor modulator, in healthy subjects.

    PubMed

    Scherz, Michael W; Brossard, Patrick; D'Ambrosio, Daniele; Ipek, Murat; Dingemanse, Jasper

    2015-06-01

    Ponesimod is a selective S1P1 receptor modulator, and induces dose-dependent reduction of circulating lymphocytes upon oral dosing. Previous studies showed that single doses up to 75 mg or multiple doses up to 40 mg once daily are well tolerated, and heart rate (HR) reduction and atrio-ventricular conduction delays upon treatment initiation are reduced by gradual up-titration to the maintenance dose. This single-center, open-label, randomized, multiple-dose, 3-treatment, 3-way crossover study compared the tolerability, safety, pharmacokinetics, cardiodynamics, and effects on lymphocytes of 3 different up-titration regimens of ponesimod in healthy male and female subjects. Up-titration regimens comprised escalating periods of b.i.d. dosing (2.5 or 5 mg) and q.d. dosing (10 or 20 mg or both). After the third up-titration period a variable-duration washout period of 1-3 days was followed by re-challenge with a single 20-mg dose of ponesimod. Adverse events were transient and mild to moderate in intensity, not different between regimens. HR decrease after the first dose was greater than after all subsequent doses, including up-titration doses. Little or no HR change was observed with morning doses of b.i.d. regimens, suggesting that 2.5 and 5 mg b.i.d. are sufficient to sustain cardiac desensitization for the 12-hours dosing interval. © 2015, The American College of Clinical Pharmacology.

  7. Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease.

    PubMed

    Skrunes, Rannveig; Tøndel, Camilla; Leh, Sabine; Larsen, Kristin Kampevold; Houge, Gunnar; Davidsen, Einar Skulstad; Hollak, Carla; van Kuilenburg, André B P; Vaz, Frédéric M; Svarstad, Einar

    2017-09-07

    Dose-dependent clearing of podocyte globotriaosylceramide has previously been shown in patients with classic Fabry disease treated with enzyme replacement. Our study evaluates the dose-dependent effects of agalsidase therapy in serial kidney biopsies of patients treated for up to 14 years. Twenty patients with classic Fabry disease (12 men) started enzyme replacement therapy at a median age of 21 (range =7-62) years old. Agalsidase- α or - β was prescribed for a median of 9.4 (range =5-14) years. The lower fixed dose group received agalsidase 0.2 mg/kg every other week throughout the follow-up period. The higher dose group received a range of agalsidase doses (0.2-1.0 mg/kg every other week). Dose changes were made due to disease progression, suboptimal effect, or agalsidase- β shortage. Serial kidney biopsies were performed along with clinical assessment and biomarkers and scored according to recommendations from the International Study Group of Fabry Nephropathy. No statistical differences were found in baseline or final GFR or albuminuria. Kidney biopsies showed significant reduction of podocyte globotriaosylceramide in both the lower fixed dose group (-1.39 [SD=1.04]; P =0.004) and the higher dose group (-3.16 [SD=2.39]; P =0.002). Podocyte globotriaosylceramide (Gb3) reduction correlated with cumulative agalsidase dose ( r =0.69; P =0.001). Arterial/arteriolar intima Gb3 cleared significantly in the higher dose group, all seven patients with baseline intimal Gb3 cleared the intima, one patient gained intimal Gb3 inclusions ( P =0.03), and medial Gb3 did not change statistically in either group. Residual plasma globotriaosylsphingosine levels remained higher in the lower fixed dose group (20.1 nmol/L [SD=11.9]) compared with the higher dose group (10.4 nmol/L [SD=8.4]) and correlated with cumulative agalsidase dose in men ( r =0.71; P =0.01). Reduction of podocyte globotriaosylceramide was found in patients with classic Fabry disease treated with long-term agalsidase on different dosing regimens, correlating with cumulative dose. Limited clearing of arterial/arteriolar globotriaosylceramide raises concerns regarding long-term vascular effects of current therapy. Residual plasma globotriaosylsphingosine correlated with cumulative dose in men. Copyright © 2017 by the American Society of Nephrology.

  8. [Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder].

    PubMed

    Zhou, Rong-Yi; Wang, Jiao-Jiao; You, Yue; Sun, Ji-Chao; Song, Yu-Chen; Yuan, Hai-Xia; Han, Xin-Min

    2017-05-01

    To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05). Both methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.

  9. Coverage, efficacy or dosing interval: which factor predominantly influences the impact of routine childhood vaccination for the prevention of varicella? A model-based study for Italy.

    PubMed

    Holl, Katsiaryna; Sauboin, Christophe; Amodio, Emanuele; Bonanni, Paolo; Gabutti, Giovanni

    2016-10-21

    Varicella is a highly infectious disease with a significant public health and economic burden, which can be prevented with childhood routine varicella vaccination. Vaccination strategies differ by country. Some factors are known to play an important role (number of doses, coverage, dosing interval, efficacy and catch-up programmes), however, their relative impact on the reduction of varicella in the population remains unclear. This paper aims to help policy makers prioritise the critical factors to achieve the most successful vaccination programme with the available budget. Scenarios assessed the impact of different vaccination strategies on reduction of varicella disease in the population. A dynamic transmission model was used and adapted to fit Italian demographics and population mixing patterns. Inputs included coverage, number of doses, dosing intervals, first-dose efficacy and availability of catch-up programmes, based on strategies currently used or likely to be used in different countries. The time horizon was 30 years. Both one- and two-dose routine varicella vaccination strategies prevented a comparable number of varicella cases with complications, but two-doses provided broader protection due to prevention of a higher number of milder varicella cases. A catch-up programme in susceptible adolescents aged 10-14 years old reduced varicella cases by 27-43 % in older children, which are often more severe than in younger children. Coverage, for all strategies, sustained at high levels achieved the largest reduction in varicella. In general, a 20 % increase in coverage resulted in a further 27-31 % reduction in varicella cases. When high coverage is reached, the impact of dosing interval and first-dose vaccine efficacy had a relatively lower impact on disease prevention in the population. Compared to the long (11 years) dosing interval, the short (5 months) and medium (5 years) interval schedules reduced varicella cases by a further 5-13 % and 2-5 %, respectively. Similarly, a 10 % increase in first-dose efficacy (from 65 to 75 % efficacy) prevented 2-5 % more varicella cases, suggesting it is the least influential factor when considering routine varicella vaccination. Vaccination strategies can be implemented differently in each country depending on their needs, infrastructure and healthcare budget. However, ensuring high coverage remains the critical success factor for significant prevention of varicella when introducing varicella vaccination in the national immunisation programme.

  10. The diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients: A systematic review and diagnostic meta-analysis.

    PubMed

    Yoon, Hee Mang; Suh, Chong Hyun; Cho, Young Ah; Kim, Jeong Rye; Lee, Jin Seong; Jung, Ah Young; Kim, Jung Heon; Lee, Jeong-Yong; Kim, So Yeon

    2018-06-01

    To evaluate the diagnostic performance of reduced-dose CT for suspected appendicitis. A systematic search of the MEDLINE and EMBASE databases was carried out through to 10 January 2017. Studies evaluating the diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients were selected. Pooled summary estimates of sensitivity and specificity were calculated using hierarchical logistic regression modelling. Meta-regression was performed. Fourteen original articles with a total of 3,262 patients were included. For all studies using reduced-dose CT, the summary sensitivity was 96 % (95 % CI 93-98) with a summary specificity of 94 % (95 % CI 92-95). For the 11 studies providing a head-to-head comparison between reduced-dose CT and standard-dose CT, reduced-dose CT demonstrated a comparable summary sensitivity of 96 % (95 % CI 91-98) and specificity of 94 % (95 % CI 93-96) without any significant differences (p=.41). In meta-regression, there were no significant factors affecting the heterogeneity. The median effective radiation dose of the reduced-dose CT was 1.8 mSv (1.46-4.16 mSv), which was a 78 % reduction in effective radiation dose compared to the standard-dose CT. Reduced-dose CT shows excellent diagnostic performance for suspected appendicitis. • Reduced-dose CT shows excellent diagnostic performance for evaluating suspected appendicitis. • Reduced-dose CT has a comparable diagnostic performance to standard-dose CT. • Median effective radiation dose of reduced-dose CT was 1.8 mSv (1.46-4.16). • Reduced-dose CT achieved a 78 % dose reduction compared to standard-dose CT.

  11. Effects of Three Low-Doses of D-Tagatose on Glycemic Control Over Six Months in Subjects with Mild Type 2 Diabetes Mellitus Under Control with Diet and Exercise.

    PubMed

    Ensor, Mark; Williams, Jarrod; Smith, Rebecca; Banfield, Amy; Lodder, Robert A

    2014-10-01

    The primary objective of this study was to evaluate the safety and the effect of D-tagatose on the glycemic control of subjects with type 2 diabetes as determined by HbA 1c levels at the end of 6 months of therapy using the subject's own baseline HbA 1c level as a comparator. The determination of the minimal dose required to cause a statistically significant reduction in HbA 1c was of particular interest. Eight weeks after screening, the qualifying subjects were randomized to receive one of three doses of D-tagatose: 2.5 g TID, 5.0 g TID or 7.5 g TID. Blood levels of HbA 1c , fasting blood glucose concentrations, plasma lipids, changes in body weight, changes in body mass index, and change in insulin levels were checked at each study visit and at the end of the study. Treatment success, as measured by the reduction of HbA 1c , was greatest for the 7.5 g D-tagatose dose group, although the difference between the treatments was not statistically significant. For fasting glucose, only the 7.5 g dosage group exhibited reductions from baseline at the 3- and 6-month time points. Mean body weights reduced in a dose-response fashion, with the 5.0 g and the 7.5 g D-tagatose doses providing the greatest reductions. D-tagatose at dosages of 2.5 g, 5.0 g, and 7.5 g TID for six months were well tolerated by this subject population. D-tagatose at 5.0 g TID was the minimal dose required to reduce HbA 1c . D-tagatose at 7.5 g TID provided the greatest effect in most measured efficacy parameters.

  12. Effects of Three Low-Doses of D-Tagatose on Glycemic Control Over Six Months in Subjects with Mild Type 2 Diabetes Mellitus Under Control with Diet and Exercise

    PubMed Central

    Ensor, Mark; Williams, Jarrod; Smith, Rebecca; Banfield, Amy; Lodder, Robert A.

    2014-01-01

    The primary objective of this study was to evaluate the safety and the effect of D-tagatose on the glycemic control of subjects with type 2 diabetes as determined by HbA1c levels at the end of 6 months of therapy using the subject’s own baseline HbA1c level as a comparator. The determination of the minimal dose required to cause a statistically significant reduction in HbA1c was of particular interest. Eight weeks after screening, the qualifying subjects were randomized to receive one of three doses of D-tagatose: 2.5 g TID, 5.0 g TID or 7.5 g TID. Blood levels of HbA1c, fasting blood glucose concentrations, plasma lipids, changes in body weight, changes in body mass index, and change in insulin levels were checked at each study visit and at the end of the study. Treatment success, as measured by the reduction of HbA1c, was greatest for the 7.5 g D-tagatose dose group, although the difference between the treatments was not statistically significant. For fasting glucose, only the 7.5 g dosage group exhibited reductions from baseline at the 3- and 6-month time points. Mean body weights reduced in a dose-response fashion, with the 5.0 g and the 7.5 g D-tagatose doses providing the greatest reductions. D-tagatose at dosages of 2.5 g, 5.0 g, and 7.5 g TID for six months were well tolerated by this subject population. D-tagatose at 5.0 g TID was the minimal dose required to reduce HbA1c. D-tagatose at 7.5 g TID provided the greatest effect in most measured efficacy parameters. PMID:25580449

  13. Periradicular Infiltration of the Cervical Spine: How New CT Scanner Techniques and Protocol Modifications Contribute to the Achievement of Low-Dose Interventions.

    PubMed

    Elsholtz, Fabian Henry Jürgen; Kamp, Julia Evi-Katrin; Vahldiek, Janis Lucas; Hamm, Bernd; Niehues, Stefan Markus

    2018-06-18

     CT-guided periradicular infiltration of the cervical spine is an effective symptomatic treatment in patients with radiculopathy-associated pain syndromes. This study evaluates the robustness and safety of a low-dose protocol on a CT scanner with iterative reconstruction software.  A total of 183 patients who underwent periradicular infiltration therapy of the cervical spine were included in this study. 82 interventions were performed on a new CT scanner with a new intervention protocol using an iterative reconstruction algorithm. Spot scanning was implemented for planning and a basic low-dose setup of 80 kVp and 5 mAs was established during intermittent fluoroscopy. The comparison group included 101 prior interventions on a scanner without iterative reconstruction. The dose-length product (DLP), number of acquisitions, pain reduction on a numeric analog scale, and protocol changes to achieve a safe intervention were recorded.  The median DLP for the whole intervention was 24.3 mGy*cm in the comparison group and 1.8 mGy*cm in the study group. The median pain reduction was -3 in the study group and -2 in the comparison group. A 5 mAs increase in the tube current-time product was required in 5 patients of the study group.  Implementation of a new scanner and intervention protocol resulted in a 92.6 % dose reduction without a compromise in safety and pain relief. The dose needed here is more than 75 % lower than doses used for similar interventions in published studies. An increase of the tube current-time product was needed in only 6 % of interventions.   · The presented ultra-low-dose protocol allows for a significant dose reduction without compromising outcome.. · The protocol includes spot scanning for planning purposes and a basic setup of 80 kVp and 5 mAs.. · The iterative reconstruction algorithm is activated during fluoroscopy.. · Elsholtz FH, Kamp JE, Vahldiek JL et al. Periradicular Infiltration of the Cervical Spine: How New CT Scanner Techniques and Protocol Modifications Contribute to the Achievement of Low-Dose Interventions. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-3930. © Georg Thieme Verlag KG Stuttgart · New York.

  14. 125I eye plaque dose distribution including penumbra characteristics.

    PubMed

    de la Zerda, A; Chiu-Tsao, S T; Lin, J; Boulay, L L; Kanna, I; Kim, J H; Tsao, H S

    1996-03-01

    The two main purposes of this work are (1) to determine the penumbra characteristics for 125I eye plaque and the relative influence of the plaque and eye-air interface on the dose distribution, and (2) to initiate development of a treatment planning algorithm for clinical dose calculations. Dose was measured in a newly designed solid water eye phantom for an 125I (6711) seed at the center of a 20 mm COMS eye plaque using thermoluminescent dosimeter (TLD) "cubes" and "minichips" inside and outside the eye, in the longitudinal and transverse central planes. TLD cubes were used in most locations, except for short distances from the seed and in the penumbra region. In the presence of both the plaque and the eye-air interface, the dose along the central axis was found to be reduced by 10% at 1 cm and up to 20% at 2.5 cm, relative to the bulk homogeneous phantom case. In addition, the overall dose reduction was greater for larger off-axis coordinates at a given depth. The penumbra characteristics due to the lip collimation were quantified, particularly the dependence of penumbra center and width on depth. Only small differences were observed between the profiles in the transverse and longitudinal planes. In the bulk geometry (without the eye-air interface), the dose reduction due to the presence of the plaque alone was found to be 7% at a depth of 2.5 cm. The additional reduction of 13% observed, with the presence of eye-air interface (20% combined), can be attributed to the lack of backscattering from the air in front of the eye. The dose-reduction effect due to the anterior air interface alone became unnoticeable at a depth of 1.1 cm (1.5 cm from the eye-air interface). An analytic fit to measured data was developed for clinical dose calculations for a centrally loaded seed. The central axis values of the dose rates multiplied by distance squared, Dr2, were fitted with a double exponential function of depth. The off-axis profile of Dr2, at a given depth, was parametrized by a modified Fermi-Dirac function to model both the penumbra characteristics due the plaque lip collimation and the effect of oblique filtration by silastic.

  15. SU-F-T-170: Patient Surface Dose Measurements Using Optically Stimulated Luminescence Dosimeters in Scanning Proton Beam Therapy for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Strauss, D; Langner, U

    Purpose: To establish patient surface dose dosimetry for scanning proton beam therapy (SPBT) for breast cancer using optically stimulated luminescence dosimeters (OSLD). Methods: OSLDs were calibrated with SPB under the similar conditions as the treatments for breast cancer. A range shifter (RS) of 5 cm water equivalent thickness (WET) was used. The air gap from the surface of the range shifter to the surface of the phantom was 15 cm. A uniform planar dose generated by nominal energy of 118 MeV was delivered. The range of 118 MeV proton beam after the 5cm RS is approximately 5 cm in water,more » which is the common range for breast treatments. The OSLDs were placed on the surface of high density polyethylene slabs, and a bolus of 1.06 cm WET was used for buildup. A variety of dose levels in the range of 0.5 to 8 Gy were delivered. Under the same condition, an ADCL calibrated parallel plate (PP) chamber was used to measure the reference dose. The correlation between the output signals of OSLDs and the reference doses was established. The calibration of OSLD was verified against the PP chamber measurements for two SPBT breast plans calculated for two patients. Results: the least squares fitting for the OSLD calibration curve was a polynomial function to the order of 2 in the range of 0.5 to 8 Gy (RBE). The differences between the dose measured with OSLDs and PP chamber were within 3% for the two breast proton plans. Conclusion: the calibrated OSLDs under the similar conditions as the treatments can be used for patient surface dose measurements.« less

  16. Defining unnecessary disinfection procedures for single-dose and multiple-dose vials.

    PubMed

    Buckley, T; Dudley, S M; Donowitz, L G

    1994-11-01

    Recommendations in the literature conflict on the necessity of disinfecting single-use vials prior to aspiration of fluid. Interventions to disinfect the stopper surface on multiple-dose vials vary considerably. To determine the necessity of alcohol disinfection of the stopper on single-dose vials and to compare povidone-iodine and alcohol versus alcohol-only disinfection of the stopper prior to each needle penetration on multiple-dose vials. The rubber stopper surfaces of 100 single-dose vials were cultured for the presence of bacteria. To determine the efficacy of two procedures for disinfection of multiple-dose vials, 87 stopper surfaces routinely disinfected with both povidone-iodine and alcohol were cultured for bacteria. After a change in practice, 100 multiple-dose vials routinely disinfected with alcohol only were cultured for the presence of bacteria. Of the cultures done on single-dose vial stoppers, 99% were sterile. A comparison of the two disinfection techniques for multiple-dose vials revealed that 83 (95%) of the 87 vials prepped with both povidone-iodine and alcohol were sterile, compared with all stoppers disinfected with alcohol only. This study shows the lack of necessity of any disinfection procedure on the rubber stopper of single-dose vials and the efficacy of alcohol only for disinfecting the stopper of multiple-dose vials.

  17. [Radiation conditions and radiation risks for cosmonauts flying to Mars using electrical jet microthrusters].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V

    2008-01-01

    According to recent workups, the Mars mission spacecraft will be designed with an electrical jet microthrusters rather than a power reactor facility. The article contains analysis of the main sources of radiation hazard during the exploration mission using this cost-efficient, ecological, easy-to-operate propulsion powered by solar arrays. In addition, the authors make predictions of the generalized doses of ionizing radiation for mission durations of 730 and 900 days behind various shielding thicknesses, and on the Martian surface. Calculation algorithms are described and radiation risks are estimated for the crew life span and possible life time reduction in consequence of participation in the mission.

  18. Increased dose near the skin due to electromagnetic surface beacon transponder.

    PubMed

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  19. Implementing smart infusion pumps with dose-error reduction software: real-world experiences.

    PubMed

    Heron, Claire

    2017-04-27

    Intravenous (IV) drug administration, especially with 'smart pumps', is complex and susceptible to errors. Although errors can occur at any stage of the IV medication process, most errors occur during reconstitution and administration. Dose-error reduction software (DERS) loaded on to infusion pumps incorporates a drug library with predefined upper and lower drug dose limits and infusion rates, which can reduce IV infusion errors. Although this is an important advance for patient safety at the point of care, uptake is still relatively low. This article discuses the challenges and benefits of implementing DERS in clinical practice as experienced by three UK trusts.

  20. Optimisation of low temperature extraction of banana juice using commercial pectinase.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu

    2014-05-15

    The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Characterization of MOSkin detector for in vivo skin dose measurement during megavoltage radiotherapy

    PubMed Central

    Jong, Wei Loong; Wong, Jeannie Hsiu Ding; Ng, Kwan Hoong; Ho, Gwo Fuang; Cutajar, Dean L.; Rosenfeld, Anatoly B.

    2014-01-01

    In vivo dosimetry is important during radiotherapy to ensure the accuracy of the dose delivered to the treatment volume. A dosimeter should be characterized based on its application before it is used for in vivo dosimetry. In this study, we characterize a new MOSFET‐based detector, the MOSkin detector, on surface for in vivo skin dosimetry. The advantages of the MOSkin detector are its water equivalent depth of measurement of 0.07 mm, small physical size with submicron dosimetric volume, and the ability to provide real‐time readout. A MOSkin detector was calibrated and the reproducibility, linearity, and response over a large dose range to different threshold voltages were determined. Surface dose on solid water phantom was measured using MOSkin detector and compared with Markus ionization chamber and GAFCHROMIC EBT2 film measurements. Dependence in the response of the MOSkin detector on the surface of solid water phantom was also tested for different (i) source to surface distances (SSDs); (ii) field sizes; (iii) surface dose; (iv) radiation incident angles; and (v) wedges. The MOSkin detector showed excellent reproducibility and linearity for dose range of 50 cGy to 300 cGy. The MOSkin detector showed reliable response to different SSDs, field sizes, surface, radiation incident angles, and wedges. The MOSkin detector is suitable for in vivo skin dosimetry. PACS number: 87.55.Qr PMID:25207573

  2. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  3. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    PubMed

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  4. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  5. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  6. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation.

    PubMed

    Barrett, A; Depledge, M H; Powles, R L

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to less than 0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  7. Effects of Gamma Irradiation on Bacterial Microflora Associated with Human Amniotic Membrane

    PubMed Central

    Binte Atique, Fahmida; Ahmed, Kazi Tahsin; Asaduzzaman, S. M.; Hasan, Kazi Nadim

    2013-01-01

    Human amniotic membrane is considered a promising allograft material for the treatment of ocular surface reconstruction, burns, and other skin defects. In order to avoid the transmission of any diseases, grafts should be perfectly sterile. Twenty-five amniotic sacs were collected to determine the microbiological quality of human amniotic membrane, to analyze the radiation sensitivity pattern of the microorganism, and to detect the radiation decimal reduction dose (D10) values. All the samples were found to be contaminated, and the bioburden was ranged from 3.4 × 102 to 1.2 × 105 cfu/g. Initially, a total fifty bacterial isolates were characterized according to their cultural, morphological, and biochemical characteristics and then tested for the radiation sensitivity in an incremental series of radiation doses from 1 to 10 KGy. The results depict gradual decline in bioburden with incline of radiation doses. Staphylococcus spp. were the most frequently isolated bacterial contaminant in tissue samples (44%). The D10 values of the bacterial isolates were ranged from 0.6 to 1.27 KGy. Streptococcus spp. were found to be the highest radioresistant strain with the radiation sterilization dose (RSD) of 11.4 KGy for a bioburden level of 1000. To compare the differences, D10 values were also calculated by graphical evaluations of the data with two of the representative isolates of each bacterial species which showed no significant variations. Findings of this study indicate that lower radiation dose is quite satisfactory for the sterilization of amniotic membrane grafts. Therefore, these findings would be helpful to predict the efficacy of radiation doses for the processing of amniotic membrane for various purposes. PMID:24063009

  8. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less

  9. Impact of imaging approach on radiation dose and associated cancer risk in children undergoing cardiac catheterization

    PubMed Central

    Einstein, Andrew J.; Januzis, Natalie; Nguyen, Giao; Li, Jennifer S.; Fleming, Gregory A.; Yoshizumi, Terry K.

    2016-01-01

    Objectives To quantify the impact of image optimization on absorbed radiation dose and associated risk in children undergoing cardiac catheterization. Background Various imaging and fluoroscopy system technical parameters including camera magnification, source-to-image distance, collimation, anti-scatter grids, beam quality, and pulse rates, all affect radiation dose but have not been well studied in younger children. Methods We used anthropomorphic phantoms (ages: newborn and 5-years-old) to measure surface radiation exposure from various imaging approaches and estimated absorbed organ doses and effective doses (ED) using Monte Carlo simulations. Models developed in the National Academies’ Biological Effects of Ionizing Radiation VII report were used to compare an imaging protocol optimized for dose reduction versus suboptimal imaging (+20cm source-to-image-distance, +1 magnification setting, no collimation) on lifetime attributable risk (LAR) of cancer. Results For the newborn and 5-year-old phantoms respectively ED changes were as follows: +157% and +232% for an increase from 6-inch to 10-inch camera magnification; +61% and +59% for a 20cm increase in source-to-image-distance; −42% and −48% with addition of 1-inch periphery collimation; −31% and −46% with removal of the anti-scatter grid. Compared to an optimized protocol, suboptimal imaging increased ED by 2.75-fold (newborn) and 4-fold (5-year-old). Estimated cancer LAR from 30-minutes of postero-anterior fluoroscopy using optimized versus sub-optimal imaging respectively was: 0.42% versus 1.23% (newborn female), 0.20% vs 0.53% (newborn male), 0.47% versus 1.70% (5-year-old female) and 0.16% vs 0.69% (5-year-old male). Conclusions Radiation-related risks to children undergoing cardiac catheterization can be substantial but are markedly reduced with an optimized imaging approach. PMID:27315598

  10. Impact of imaging approach on radiation dose and associated cancer risk in children undergoing cardiac catheterization.

    PubMed

    Hill, Kevin D; Wang, Chu; Einstein, Andrew J; Januzis, Natalie; Nguyen, Giao; Li, Jennifer S; Fleming, Gregory A; Yoshizumi, Terry K

    2017-04-01

    To quantify the impact of image optimization on absorbed radiation dose and associated risk in children undergoing cardiac catheterization. Various imaging and fluoroscopy system technical parameters including camera magnification, source-to-image distance, collimation, antiscatter grids, beam quality, and pulse rates, all affect radiation dose but have not been well studied in younger children. We used anthropomorphic phantoms (ages: newborn and 5 years old) to measure surface radiation exposure from various imaging approaches and estimated absorbed organ doses and effective doses (ED) using Monte Carlo simulations. Models developed in the National Academies' Biological Effects of Ionizing Radiation VII report were used to compare an imaging protocol optimized for dose reduction versus suboptimal imaging (+20 cm source-to-image-distance, +1 magnification setting, no collimation) on lifetime attributable risk (LAR) of cancer. For the newborn and 5-year-old phantoms, respectively ED changes were as follows: +157% and +232% for an increase from 6-inch to 10-inch camera magnification; +61% and +59% for a 20 cm increase in source-to-image-distance; -42% and -48% with addition of 1-inch periphery collimation; -31% and -46% with removal of the antiscatter grid. Compared with an optimized protocol, suboptimal imaging increased ED by 2.75-fold (newborn) and fourfold (5 years old). Estimated cancer LAR from 30-min of posteroanterior fluoroscopy using optimized versus suboptimal imaging, respectively was 0.42% versus 1.23% (newborn female), 0.20% versus 0.53% (newborn male), 0.47% versus 1.70% (5-year-old female) and 0.16% versus 0.69% (5-year-old male). Radiation-related risks to children undergoing cardiac catheterization can be substantial but are markedly reduced with an optimized imaging approach. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis.

    PubMed

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth; Vardhanabhuti, Varut; Stuckey, Colin; Gutteridge, Catherine; Hyde, Christopher; Roobottom, Carl

    2017-10-01

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. • MBIR allows reduced CT dose with similar diagnostic accuracy • MBIR outperforms ASIR when used for the reconstruction of reduced-dose scans • MBIR can be used to accurately assess stones 3 mm and above.

  12. Systemic administration of bevacizumab prolongs survival in an in vivo model of platinum pre-treated ovarian cancer

    PubMed Central

    REIN, DANIEL T.; VOLKMER, ANNE KATHRIN; VOLKMER, JENS; BEYER, INES M.; JANNI, WOLFGANG; FLEISCH, MARKUS C.; WELTER, ANNE KATHRIN; BAUERSCHLAG, DIRK; SCHÖNDORF, THOMAS; BREIDENBACH, MARTINA

    2012-01-01

    Ovarian cancer patients often suffer from malignant ascites and pleural effusion. Apart from worsening the outcome, this condition frequently impairs the quality of life in patients who are already distressed by ovarian cancer. This study investigated whether single intraperitoneal administration of the anti-VEGF antibody bevacizumab is capable of reducing the ascites-related body surface and prolonging survival. The study was performed in an orthotopic murine model of peritoneal disseminated platin-resistant ovarian cancer. Mice were treated with bevacizumab and/or paclitaxel or buffer (control). Reduction of body surface and increased survival rates were assessed as therapeutic success. Survival of mice in all treatment groups was significantly enhanced when compared to the non-treatment control group. The combination of paclitaxel plus bevacizumab significantly improved body surface as well as overall survival in comparison to a treatment with only one of the drugs. Treatment of malignant effusion with a single dose of bevacizumab as an intraperitoneal application, with or without cytostatic co-medication, may be a powerful alternative to systemic treatment. PMID:22740945

  13. Surface Modification of Silicone Rubber for Adhesion Patterning of Mesenchymal Stem Cells by Water Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.

    2011-01-01

    Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.

  14. Twelve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate.

    PubMed

    Bonekamp, David; Wolf, M B; Roethke, M C; Pahernik, S; Hadaschik, B A; Hatiboglu, G; Kuru, T H; Popeneciu, I V; Chin, J L; Billia, M; Relle, J; Hafron, J; Nandalur, K R; Staruch, R M; Burtnyk, M; Hohenfellner, M; Schlemmer, H-P

    2018-06-25

    To quantitatively assess 12-month prostate volume (PV) reduction based on T2-weighted MRI and immediate post-treatment contrast-enhanced MRI non-perfused volume (NPV), and to compare measurements with predictions of acute and delayed ablation volumes based on MR-thermometry (MR-t), in a central radiology review of the Phase I clinical trial of MRI-guided transurethral ultrasound ablation (TULSA) in patients with localized prostate cancer. Treatment day MRI and 12-month follow-up MRI and biopsy were available for central radiology review in 29 of 30 patients from the published institutional review board-approved, prospective, multi-centre, single-arm Phase I clinical trial of TULSA. Viable PV at 12 months was measured as the remaining PV on T2-weighted MRI, less 12-month NPV, scaled by the fraction of fibrosis in 12-month biopsy cores. Reduction of viable PV was compared to predictions based on the fraction of the prostate covered by the MR-t derived acute thermal ablation volume (ATAV, 55°C isotherm), delayed thermal ablation volume (DTAV, 240 cumulative equivalent minutes at 43°C thermal dose isocontour) and treatment-day NPV. We also report linear and volumetric comparisons between metrics. After TULSA, the median 12-month reduction in viable PV was 88%. DTAV predicted a reduction of 90%. Treatment day NPV predicted only 53% volume reduction, and underestimated ATAV and DTAV by 36% and 51%. Quantitative volumetry of the TULSA phase I MR and biopsy data identifies DTAV (240 CEM43 thermal dose boundary) as a useful predictor of viable prostate tissue reduction at 12 months. Immediate post-treatment NPV underestimates tissue ablation. • MRI-guided transurethral ultrasound ablation (TULSA) achieved an 88% reduction of viable prostate tissue volume at 12 months, in excellent agreement with expectation from thermal dose calculations. • Non-perfused volume on immediate post-treatment contrast-enhanced MRI represents only 64% of the acute thermal ablation volume (ATAV), and reports only 60% (53% instead of 88% achieved) of the reduction in viable prostate tissue volume at 12 months. • MR-thermometry-based predictions of 12-month prostate volume reduction based on 240 cumulative equivalent minute thermal dose volume are in excellent agreement with reduction in viable prostate tissue volume measured on pre- and 12-month post-treatment T2w-MRI.

  15. Treating primary dysmenorrhoea with acupuncture: a narrative review of the relationship between acupuncture 'dose' and menstrual pain outcomes.

    PubMed

    Armour, Mike; Smith, Caroline A

    2016-12-01

    A number of randomised controlled trials have been performed to determine the effectiveness or efficacy of acupuncture in primary dysmenorrhoea. The objective of this review was to explore the relationship between the 'dose' of the acupuncture intervention and menstrual pain outcomes. Eight databases were systematically searched for trials examining penetrating body acupuncture for primary dysmenorrhoea published in English up to September 2015. Dose components for each trial were extracted, assessed by the two authors and categorised by neurophysiological dose (number of needles, retention time and mode of stimulation), cumulative dose (total number and frequency of treatments), needle location and treatment timing. Eleven trials were included. Components of acupuncture dose were well reported across all trials. The relationship between needle location and menstrual pain demonstrated conflicting results. Treatment before the menses appeared to produce greater reductions in pain than treatment starting at the onset of menses. A single needle during menses may provide greater pain reduction compared to multiple needles. Conversely, multiple needles before menses were superior to a single needle. Electroacupuncture may provide more rapid pain reduction compared to manual acupuncture but may not have a significantly different effect on overall menstrual pain. There appear to be relationships between treatment timing and mode of needle stimulation, and menstrual pain outcomes. Needle location, number of needles used and frequency of treatment show clear dose-response relationships with menstrual pain outcomes. Current research is insufficient to make definitive clinical recommendations regarding optimum dose parameters for treating primary dysmenorrhoea. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. The impact of various protective tools on the dose reduction in the eye lens in an interventional cardiology-clinical study.

    PubMed

    Domienik, J; Bissinger, A; Grabowicz, W; Jankowski, Ł; Kręcki, R; Makowski, M; Masiarek, K; Plewka, M; Lubiński, A; Peruga, J Z

    2016-06-01

    The aim of the study was to check, in clinical practice, the potential for the dose reduction of lead eyewear and a ceiling-suspended shield used to protect the eye lens of physicians working in interventional cardiology. To this end, for the lead eyewear, the dose reduction factors were derived to correct the readings from a dosimeter used routinely outside the glasses. Four types of lead eyewear with attached loose thermoluminescent dosimeters and EYE-D dosimeters were worn by physicians in two clinical centres, for two-month periods, during coronary angiography (CA), percutaneous coronary intervention (PCI), and pacemaker procedures. In order to analyse, separately, how a ceiling-suspended lead screen absorbs the scattered radiation, a series of measurements was carried out during single CA/PCI procedures performed with and without the protection. The lead eyewear may reduce the doses to the eye closest to the x-ray tube by a factor between 1.1 and 3.4, depending on its model and the physician's position. The effectiveness of the eyewear may, however, vary-even for the same model and physician-almost twofold between different working periods. The ceiling-suspended shield decreases the doses in clinical practice by a factor of 2.3. The annual eye lens doses without the eyewear estimated from routine measurements are high-above or close to the new eye lens dose limit established by the recent EU Basic Safety Standards, even though the ceiling-suspended shield was used. Therefore, to comply with the new dose limit that is set in the Directive, protection of the eyes of physicians with high workloads might require the use of both the eyewear and the ceiling-suspended shield.

  17. Reviewing long-term antidepressants can reduce drug burden: a prospective observational cohort study

    PubMed Central

    Johnson, Chris F; Macdonald, Hector J; Atkinson, Pauline; Buchanan, Alasdair I; Downes, Noreen; Dougall, Nadine

    2012-01-01

    Background Antidepressant prescribing continues to rise. Contributing factors are increased long-term prescribing and possibly the use of higher selective serotonin re-uptake inhibitor (SSRI) doses. Aim To review general practice patients prescribed the same antidepressant long-term (≥2 years) and evaluate prescribing and management pre and post-review. Design and setting Prospective observational cohort study using routine data from 78 urban general practices, Scotland. Method All patients prescribed antidepressants (excluding amitriptyline) for ≥2 years were identified from records November 2009 to March 2010. GPs selected patients for face-to-face review of clinical condition and medication, December 2009 to September 2010. Pre- and post-review data were collected; average antidepressant doses and changes in prescribed daily doses were calculated. Onward referral to support services was recorded. Results 8.6% (33 312/388 656) of all registered patients were prescribed an antidepressant, 47.1% (15 689) were defined as long-term users and 2849 (18.2%) were reviewed. 811 (28.5%) patients reviewed had a change in antidepressant therapy: 7.0% stopped, 12.8% reduced dose, 5.3% increased dose, and 3.4% changed antidepressant, resulting in 9.5% (95% CI = 9.1% to 9.8% P<0.001) reduction in prescribed daily dose and 8.1% reduction in prescribing costs. 6.3% were referred onwards, half to NHS Mental Health Services. Pre-review SSRI doses were 10–30% higher than previously reported. Conclusion Almost half of all people prescribed antidepressants were long-term users. Appropriate reductions in prescribing can be achieved by reviewing patients. Higher SSRI doses may be contributing to current antidepressant growth. PMID:23211181

  18. Radiation Dose-rate Reduction Pattern in Well-differentiated Thyroid Cancer Treated with I-131.

    PubMed

    Khan, Shahbaz Ahmad; Khan, Muhammad Saqib; Arif, Muhammad; Durr-e-Sabih; Rahim, Muhammad Kashif; Ahmad, Israr

    2015-07-01

    To determine the patterns of dose rate reduction in single and multiple radioiodine (I-131) therapies in cases of well differentiated thyroid cancer patients. Analytical series. Department of Nuclear Medicine and Radiation Physics, Multan Institute of Nuclear Medicine and Radiotherapy (MINAR), Multan, Pakistan, from December 2006 to December 2013. Ninety three patients (167 therapies) with well differentiated thyroid cancer treated with different doses of I-131 as an in-patient were inducted. Fifty four patients were given only single I-131 therapy dose ranging from 70 mCi (2590 MBq) to 150 mCi (5550 MBq). Thirty nine patients were treated with multiple I-131 radioisotope therapy doses ranging from 80 mCi (2960 MBq) to 250 mCi (9250 MBq). T-test was applied on the sample data showed statistically significant difference between the two groups with p-value (p < 0.01) less than 0.05 taken as significant. There were 68 females and 25 males with an age range of 15 to 80 years. Mean age of the patients were 36 years. Among the 93 cases of first time Radio Active Iodine (RAI) therapy, 59 cases (63%) were discharged after 48 hours. Among 39 patients who received RAI therapy second time or more, most were discharged earlier after achieving acceptable discharge dose rate i.e 25 µSv/hour; 2 out of 39 (5%) were discharged after 48 hours. In 58% patients, given single I-131 therapy dose, majority of these were discharged after 48 hours without any major complications. For well differentiated thyroid cancer patients, rapid dose rate reduction is seen in patients receiving second or subsequent radioiodine (RAI) therapy, as compared to first time receiving RAI therapy.

  19. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction.

    PubMed

    Wellenberg, R H H; Boomsma, M F; van Osch, J A C; Vlassenbroek, A; Milles, J; Edens, M A; Streekstra, G J; Slump, C H; Maas, M

    2017-05-01

    To compare quantitative measures of image quality, in terms of CT number accuracy, noise, signal-to-noise-ratios (SNRs), and contrast-to-noise ratios (CNRs), at different dose levels with filtered-back-projection (FBP), iterative reconstruction (IR), and model-based iterative reconstruction (MBIR) alone and in combination with orthopedic metal artifact reduction (O-MAR) in a total hip arthroplasty (THA) phantom. Scans were acquired from high- to low-dose (CTDI vol : 40.0, 32.0, 24.0, 16.0, 8.0, and 4.0 mGy) at 120- and 140- kVp. Images were reconstructed using FBP, IR (iDose 4 level 2, 4, and 6) and MBIR (IMR, level 1, 2, and 3) with and without O-MAR. CT number accuracy in Hounsfield Units (HU), noise or standard deviation, SNRs, and CNRs were analyzed. The IMR technique showed lower noise levels (p < 0.01), higher SNRs (p < 0.001) and CNRs (p < 0.001) compared with FBP and iDose 4 in all acquisitions from high- to low-dose with constant CT numbers. O-MAR reduced noise (p < 0.01) and improved SNRs (p < 0.01) and CNRs (p < 0.001) while improving CT number accuracy only at a low dose. At the low dose of 4.0 mGy, IMR level 1, 2, and 3 showed 83%, 89%, and 95% lower noise values, a factor 6.0, 9.2, and 17.9 higher SNRs, and 5.7, 8.8, and 18.2 higher CNRs compared with FBP respectively. Based on quantitative analysis of CT number accuracy, noise values, SNRs, and CNRs, we conclude that the combined use of IMR and O-MAR enables a reduction in radiation dose of 83% compared with FBP and iDose 4 in the CT imaging of a THA phantom.

  20. Radiation dose in 320-slice multidetector cardiac CT: a single center experience of evolving dose minimization.

    PubMed

    Tung, Matthew K; Cameron, James D; Casan, Joshua M; Crossett, Marcus; Troupis, John M; Meredith, Ian T; Seneviratne, Sujith K

    2013-01-01

    Minimization of radiation exposure remains an important subject that occurs in parallel with advances in scanner technology. We report our experience of evolving radiation dose and its determinants after the introduction of 320-multidetector row cardiac CT within a single tertiary cardiology referral service. Four cohorts of consecutive patients (total 525 scans), who underwent cardiac CT at defined time points as early as 2008, are described. These include a cohort just after scanner installation, after 2 upgrades of the operating system, and after introduction of an adaptive iterative image reconstruction algorithm. The proportions of nondiagnostic coronary artery segments and studies with nondiagnostic segments were compared between cohorts. Significant reductions were observed in median radiation doses in all cohorts compared with the initial cohort (P < .001). Median dose-length product fell from 944 mGy · cm (interquartile range [IQR], 567.3-1426.5 mGy · cm) to 156 mGy · cm (IQR, 99.2-265.0 mGy · cm). Although the proportion of prospectively triggered scans has increased, reductions in radiation dose have occurred independently of distribution of scan formats. In multiple regression that combined all groups, determinants of dose-length product were tube output, the number of cardiac cycles scanned, tube voltage, scan length, scan format, body mass index, phase width, and heart rate (adjusted R(2) = 0.85, P < .001). The proportion of nondiagnostic coronary artery segments was slightly increased in group 4 (2.9%; P < .01). While maintaining diagnostic quality in 320-multidetector row cardiac CT, the radiation dose has decreased substantially because of a combination of dose-reduction protocols and technical improvements. Continued minimization of radiation dose will increase the potential for cardiac CT to expand as a cardiac imaging modality. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

Top