Fundamentals of sol-gel dip-coating
NASA Astrophysics Data System (ADS)
Brinker, C. Jeffrey; Hurd, Alan J.
1994-07-01
During the process of dip-coating, the substrate is withdrawn from the sol at a constant rate. After several seconds, the process becomes steady. The entrained film thins by evaporation of solvent and gravitational draining. Because the shape of the depositing film remains constant with respect to the reservoir surface, it is possible to use analytical methods such as ellipsometry and fluorescence spectroscopy to characterize the depositing film in situ. The microstructure and properties of the film depend on the size and structure of the inorganic sol species, the magnitude of the capillary pressure exerted during drying, and the relative rates of condensation and drying. By controlling these parameters, it is possible to vary the porosity of the film over a wide range. Pendant l'opération de " dip-coating ", le substrat est retiré du sol à vitesse constante. La couche s'amincit du fait de l'évaporation du solvant et de l'écoulement gravitationnel. Après plusieurs secondes, le processus atteint un régime stationnaire. Le profil du film déposé reste alors constant par rapport à la surface du sol. On peut le caractériser in situ par des méthodes optiques telles que l'ellipsométrie et la spectroscopie de fluorescence. La texture et les propriétés de la couche dépendent de la taille et de la structure (par exemple de la dimension fractale) des espèces en solution, de l'importance de la tension capillaire pendant le séchage, et des cinétiques de condensation. En contrôlant ces paramètres, on peut faire varier la porosité de la couche dans une large gamme.
Guibert, M.; Chaouat, M.; Boccara, D.; Marco, O.; Lavocat, R.; Alameri, O.; Deslandes, E.; Montlahuc, C.; Mimoun, M.
2016-01-01
Summary La greffe de peau mince expansée est très employée dans le traitement des brûlures aiguës. Nous avons étudié l’influence de la préparation du sous-sol sur le taux de prise et le délai de cicatrisation des greffes expansées. Nous avons analysé rétrospectivement les 1 129 greffes expansées réalisées dans notre service entre 1995 et 2005 pour le traitement des brûlures aiguës. Leur taux de prise a été significativement meilleur après une préparation du sous-sol par avulsion (82%) par rapport à une préparation du sous-sol par excision tangentielle (75%). Ce taux était meilleur lorsque l’avulsion était pratiquée dans les 7 jours suivant la brûlure (83% vs 73%). Pour une prise en charge entre 7 et 21 jours, ce taux a semblé être meilleur après excision tangentielle, mais de façon non significative. La durée d’évolution jusqu’à cicatrisation était significativement raccourcie pour une préparation du sous-sol par excision tangentielle par rapport à une préparation du sous-sol par avulsion. Ces résultats montrent, paradoxalement, qu’une préparation du sous-sol par avulsion favorise la prise des greffes expansées mais rallonge leur délai de cicatrisation au contraire de l’excision tangentielle. PMID:28149235
Radar response to crop residue cover and tillage application on postharvest agricultural surfaces
NASA Astrophysics Data System (ADS)
McNairn, Heather
Les informations sur les pratiques de conservation des sols comme le labourage et la gestion des residus de culture sont requises afin d'estimer avec exactitude les risques d'erosion des sols. Quoique les micro-ondes soient sensibles aux conditions d'humidite et aux proprietes geometriques des surfaces, il n'en demeure pas moins que l'on connait encore peu sur la sensibilite des micro-ondes polarisees lineaires ou des parametres polarimetriques du ROS en fonction des caracteristiques des residus. A partir de donnees prises a l'aide d'un diffusometre monte sur un camion en 1996 et lors d'une mission SIR-C menee en 1994, cette recherche a demontre que les micro-ondes sont sensibles a la fois a la quantite et au type de couverture de residus, de meme qu'a la teneur en eau des residus. La reponse des polarisations croisees lineaires et de plusieurs parametres polarimetriques, incluant la hauteur pedestre, a permis d'observer qu'une diffusion volumique importante avait lieu en presence de vegetation senescente qui se tenait debout et pour les champs non laboures. La diffusion de surface dominait cependant pour les champs avec de faibles quantites de residus et des residus plus fins. La recherche a toutefois demontre que des conditions de surface complexes etaient crees par differentes combinaisons de residus et de pratiques de labourage. Par consequent, il faudra attendre que des donnees multi-polarisees ou polarimetriques soient acquises par les capteurs prevus a bord du satellite canadien RADARSAT-2 et du satellite ENVISAT de l'Agence spatiale europeenne avant de pouvoir completement caracteriser les champs apres la recolte.
2014-11-01
Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 DRDC-RDDC-2014-R102 i...avec la surface des matériaux est d’une importance fondamentale pour de nombreux processus, dont l’adhésion, les réactions chimiques, le transport...hydrodynamique et la nettoyabilité des surfaces. Les propriétés des surfaces peuvent se situer dans une gamme allant d’un caractère hydrophile ou
Land subsidence caused by groundwater exploitation in Suzhou City, China
NASA Astrophysics Data System (ADS)
Chen, Chongxi; Pei, Shunping; Jiao, Jiu Jimmy
2002-09-01
Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation in pumping rates on the basis of the spatial distribution of the thick mud layer could significantly reduce the ground settlement. Résumé. La ville de Suzhou, située dans la basse vallée du fleuve Yangtsé dans le sud-est de la province de Jiangsu, est l'une des rares villes de Chine qui souffrent cruellement de tassements du sol. Un projet de recherche a été mené pour étudier ce problème. Des études géologiques et hydrogéologiques montrent qu'il existe un système aquifère multicouche constitué de trois niveaux distincts de limons non consolidés d'origine marine et lagunaire. Un examen des historiques des prélèvements d'eau souterraine, des niveaux de nappe et des tassements de sol montrent que la subsidence du sol est associée à des prélèvements continuellement croissants d'eau souterraine dans l'aquifère captif profond. On pense que le compactage des couches limoneuses non consolidées, en particulier de la troisième couche qui est épaisse et proche du principal aquifère pompé, contribue aux tassements du sol. Un modèle numérique aux différences finies en trois dimensions, représentant l'aquifère multicouche, a été réalisé pour étudier les tassements du sol en réponse aux prélèvements d'eau souterraine. Les paramètres de l'aquifère ont été estimés par calibration du modèle au moyen à la fois des niveaux piézométriques et des tassements du sol. Les résultats de la simulation s'ajustent convenablement aux résultats observés, ce qui indique que le modèle numérique peut reproduire les processus dynamiques aussi bien des écoulements souterrains que de compactage du sol. La conductivité hydraulique de la troisième couche de limon non consolidé au voisinage du centre du tassement de sol a été réduit de plus de 30% au cours des 14 dernières années. La dégradation progressive de la conductivité hydraulique du limon peut avoir un effet significatif néfaste sur la pérennité de la ressource en eau souterraine dans l'aquifère captif profond, puisque la recharge à partir des aquifères superficiels au travers de la couche de limon est la seule alimentation de l'aquifère profond. Une analyse des distributions spatiales de l'abaissement du niveau piézométrique et des tassements du sol montre que la région soumise à l'abaissement maximal de piézométrie n'est pas nécessairement celle des tassements maximaux du sol liés à la présence de la couche de limon non consolidé. Une simple révision des débits de pompage basée sur la distribution spatiale de la couche de limon épaisse peut réduire significativement les tassements du sol. Resumen. La ciudad de Suzhou, situada en el tramo inferior del Río Yangtze, al sudeste de la provincia de Jiangsu, es una de las pocas ciudades chinas que padece problemas serios de subsidencia. Esto ha motivado la realización de un proyecto de investigación en la zona. Estudios geológicos e hidrogeológicos apuntan a un modelo de acuífero multicapa, con tres niveles distintos de lodos blandos de orígenes marino y lacustre. Examinando los registros históricos de extracciones de agua subterránea, así como de nivel piezométrico y de subsidencia, se observa que ésta se halla asociada al bombeo cada vez mayor del acuífero confinado profundo. La hipótesis es que las capas de lodos blandos se van consolidando, si bien la que más contribuye a ello es la tercera, potente y próxima al acuífero más explotado. Se ha realizado un modelo numérico tridimensional en diferencias finitas que representa el sistema acuífero multicapa, con lo que se puede estudiar el efecto de la extracción de agua subterránea en la subsidencia. Calibrando el modelo con niveles piezométricos medidos y con datos de subsidencia, se ha podido estimar los parámetros del acuífero. Los resultados del modelo ajustan de forma razonable con los datos medidos, por lo que el modelo numérico es capaz de reproducir los procesos dinámicos de flujo de aguas subterráneas y consolidación del terreno. La conductividad hidráulica de la tercera capa de lodo cerca del centro de asentamiento se ha reducido en más del 30% durante los últimos 14 años. El deterioro gradual de la conductividad hidráulica del lodo puede tener efectos adversos notables en la sustentabilidad de los recursos de agua subterránea del acuífero confinado profundo, ya que se recarga exclusivamente de acuíferos más someros a través de la capa de lodo. El análisis de la distribución espacial de descenso del nivel piezométrico y de subsidencia muestra que el área de extracción máxima no coincide necesariamente con la de máxima subsidencia, debido a la existencia de la capa de lodos blandos. Una mera redistribución de los caudales de bombeo en función de las propiedades espaciales de la gruesa capa de lodos podría reducir drásticamente los problemas de subsidencia.
1996-10-01
CENTRE DE RECHERCHES POUR LA DEFENSE VALCARTIER,QuEBEC DREV - R - 9608 Unlimited Distribution I Distribution illimitee REMOTE DETERMINATION OF...propose une methode d’evaluation de la temperature et de la transmittance des nuages en se basant sur des mesures de radiance spectrale effectuees au...niveau du sol. Cette methode tire avantage du fait qu’il y a une forte bande d’emission de l’ozone a 9.6 J!ffi, ce qui constitue une source naturelle
Measurements and Analysis of Reverberation, Target Echo and Clutter
2013-12-01
réverbération pour prendre en charge les environne- ments dont les caractéristiques varient fortement en fonction de la distance ainsi que la géométrie...de faisceaux de réseaux remorqués dans un environnement dont les caractéristiques varient fortement en fonction de la distance ; (v) travaux...réverbération en mode normal pour prendre en charge la réverbération du sous-sol du fond, y compris dans les environnements dont les
Syndrome de larva migrans cutanée sur pied malformé (à propos d'un cas)
Benbella, Imane; Khalki, Hanane; Lahmadi, Khalid; Kouara, Sara; Abbadi, Abderrahim; Er-rami, Mohammed
2016-01-01
Le syndrome de larva migrans cutanée est une dermite sous cutanée causée par des larves d'ankylostomes d'animaux en impasse parasitaire chez l'homme. L'infestation transcutanée est favorisée par le contact avec le sol contaminé par les larves du parasite. Nous rapportons le cas d'un nourrisson de 15 mois, originaire de Guinée-Bissau, atteint d'un syndrome de larva migrans cutanée sur un pied malformé. Cette malformation sous forme d'une syndactylie associée à une tuméfaction du pied, était à l'origine d'un retard d'acquisition de la station debout. De même, on a rapporté une notion de pieds nus, vue la difficulté de chausser le pied malformé du patient. Tous ces facteurs auraient contribués à favoriser l'infestation du malade par les larves du nématode. PMID:27217876
Genetic variability of six French meat sheep breeds in relation to their genetic management.
Huby, Marie; Griffon, Laurent; Moureaux, Sophie; De Rochambeau, Hubert; Danchin-Burge, Coralie; Verrier, Etienne
2003-01-01
Some demographic parameters, the genetic structure and the evolution of the genetic variability of six French meat sheep breeds were analysed in relation with their management. Four of these breeds are submitted to more or less intense selection: the Berrichon du Cher (BCH), Blanc du Massif Central (BMC), Charollais (CHA) and Limousin (LIM); the other two breeds are under conservation: the Roussin de La Hague (RLH) and Solognot (SOL). Genealogical data of the recorded animals born from 1970 to 2000 and of their known ancestors were used. The most balanced contributions of the different flocks to the sire-daughter path was found in the SOL. In the BCH, a single flock provided 43% of the sire-AI sire path, whereas the contributions of the flocks were more balanced in the BMC and LIM (the only other breeds where AI is used to a substantial amount). The distribution of the expected genetic contribution of the founder animals was found to be unbalanced, especially in the BCH and LIM. The effective numbers of ancestors (founders or not) for the ewes born from 1996 to 2000 were equal to 35 (BCH), 144 (BMC), 112 (CHA), 69 (LIM), 40 (RLH) and 49 (SOL). Inbreeding was not analysed in the BMC, due to incomplete pedigree information. From 1980 on, the rates of inbreeding, in percentage points per year, were +0.112 (BCH), +0.045 (CHA), +0.036 (LIM), +0.098 (RLH) and +0.062 (SOL). The implications of the observed trends on genetic variability are discussed in relation to the genetic management of each breed. The need for a larger selection basis in the BCH, the efficiency of the rules applied in the SOL to preserve the genetic variability and the need for a more collective organisation in the CHA and RLH are outlined.
Analyse des interactions energetiques entre un arena et son systeme de refrigeration
NASA Astrophysics Data System (ADS)
Seghouani, Lotfi
La presente these s'inscrit dans le cadre d'un projet strategique sur les arenas finance par le CRSNG (Conseil de Recherche en Sciences Naturelles et en Genie du Canada) qui a pour but principal le developpement d'un outil numerique capable d'estimer et d'optimiser la consommation d'energie dans les arenas et curlings. Notre travail s'inscrit comme une suite a un travail deja realise par DAOUD et coll. (2006, 2007) qui a developpe un modele 3D (AIM) en regime transitoire de l'arena Camilien Houde a Montreal et qui calcule les flux de chaleur a travers l'enveloppe du batiment ainsi que les distributions de temperatures et d'humidite durant une annee meteorologique typique. En particulier, il calcule les flux de chaleur a travers la couche de glace dus a la convection, la radiation et la condensation. Dans un premier temps nous avons developpe un modele de la structure sous la glace (BIM) qui tient compte de sa geometrie 3D, des differentes couches, de l'effet transitoire, des gains de chaleur du sol en dessous et autour de l'arena etudie ainsi que de la temperature d'entree de la saumure dans la dalle de beton. Par la suite le BIM a ete couple le AIM. Dans la deuxieme etape, nous avons developpe un modele du systeme de refrigeration (REFSYS) en regime quasi-permanent pour l'arena etudie sur la base d'une combinaison de relations thermodynamiques, de correlations de transfert de chaleur et de relations elaborees a partir de donnees disponibles dans le catalogue du manufacturier. Enfin le couplage final entre l'AIM +BIM et le REFSYS a ete effectue sous l'interface du logiciel TRNSYS. Plusieurs etudes parametriques on ete entreprises pour evaluer les effets du climat, de la temperature de la saumure, de l'epaisseur de la glace, etc. sur la consommation energetique de l'arena. Aussi, quelques strategies pour diminuer cette consommation ont ete etudiees. Le considerable potentiel de recuperation de chaleur au niveau des condenseurs qui peut reduire l'energie requise par le systeme de ventilation de l'arena a ete mis en evidence. Mots cles. Arena, Systeme de refrigeration, Consommation d'energie, Efficacite energetique, Conduction au sol, Performance annuelle.
NASA Astrophysics Data System (ADS)
Maouche, B.; Feliachi, M.
1997-10-01
In this paper, a study of the interaction between the inductor and the load of an axisymmetrical induction device is proposed. This interaction concerns the effect of the eddy current on both the excitation current and on the system impedance. A half analytical model, based on a numerical discretization of the electromagnetic solution domain, is used. In each cell of the numerical discretization, an analytical calculation using the Moment Method (MM) is considered. In the case of strong skin effect (High Frequency: HF), the formulation makes use of the Impedance Boundary Condition (IBC); in the contrary case (Low Frequency: LF), the interior domain is discretized. Dans cet article nous proposons l'étude de l'influence d'une charge (induit) conductrice sur la répartition du courant inducteur ainsi que sur l'impédance du système. L'inducteur est à géométrie axisymétrique de forme solénoïdale ou pancake destiné au chauffage par induction. Une méthode semi-analytique, basée sur une discrétisation du domaine en mailles élémentaires auxquelles s'applique une formulation intégrale (Méthode des Circuits Couplés : MCC) des grandeurs électromagnétiques, est utilisée. Dans le cas où l'effet de peau est important (Haute Fréquence:HF), la formulation associe la Condition d'Impédance de Surface; dans le cas contraire (Basse Fréquence : BF), un maillage du domaine interne est pratiqué.
Water-gas dynamics and coastal land subsidence over Chioggia Mare field, northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Teatini, Pietro; Baú, Domenico; Gambolati, Giuseppe
2000-09-01
A major development programme comprising 15 gas fields of the northern Adriatic Sea has recently been submitted to the Ministry of the Environment, VIA Committee for the assessment of the environmental impact, by ENI-Agip, the Italian national oil company. One of the largest reservoirs is Chioggia Mare, located about 10 km offshore of the Venetian littoral, with a burial depth of 1000-1400 m. The planned gas production from this field is expected to impact the shoreline stability with a potential threat to the city of Venice, 25 km northwest of the center of Chioggia Mare. To evaluate the risk of anthropogenic land subsidence due to gas withdrawal, a numerical model was developed that predicts the compaction of both the gas-bearing formations and the lateral/bottom aquifer (water drive) during a 13-year producing and a 12-year post-production period, and the transference of the deep compaction to the ground surface. To address the uncertainty of a few important hydromechanical parameters, several scenarios are simulated and the most pessimistic predictions obtained. The modeling results show that at most 1 cm of land subsidence over 25 years may be expected at the city of Chioggia, whereas Venice is not subject to settlement. If aquifer drawdown is mediated by water injection, land subsidence is arrested 5 km offshore, with the Chioggia littoral zone experiencing a rebound of 0.6-0.7 cm. Résumé. Un important programme de développement portant sur 15 gisements de gaz du nord de l'Adriatique a été récemment soumis au Comité VIA pour l'évaluation de l'impact sur l'environnement du Ministère de l'Environnement, par la société ENI-Agip, la compagnie nationale pétrolière italienne. L'un des plus importants réservoirs est celui de Chioggia Mare, situé à environ 10 km au large du littoral vénitien, à une profondeur de 1000 à 1400 m. La production de gaz prévue pour ce gisement laisse envisager un impact sur la stabilité du trait de côte, avec une menace potentielle pour la ville de Venise, à 25 km au nord-ouest du centre de Chioggia Mare. Afin d'évaluer le risque de subsidence du sol provoquée par les prélèvements de gaz, un modèle numérique a été développé pour prévoir la compaction des formations réservoirs de gaz en même temps que celle de l'aquifère latéral et sous-jacent, par effet de drainance, sur une période de 13 ans de production, suivie de 12 ans, et pour prévoir le transfert de la compaction profonde jusqu'à la surface du sol. Afin de prendre en compte l'incertitude sur un petit nombre de paramètres hydromécaniques importants, plusieurs scénarios ont été simulés et les prévisions les plus pessimistes ont été obtenues. Les résultats de la modélisation montrent qu'on doit s'attendre, au cours des 25 ans, au plus à une subsidence du sol de 1 cm à Chioggia, tandis que Venise ne subira aucun effet. Si la baisse de l'aquifère est compensée par une injection d'eau, la subsidence du sol s'arrêtera à 5 km au large et la zone côtière de Chioggia subira un effet de 0,6 à 0,7 cm. Resumen. Recientemente, la compañía nacional italiana del petróleo, ENI-Agip, ha enviado al Ministerio de Medio Ambiente de Italia (Comité VIA) un gran programa de desarrollo de 15 campos de gas en el norte del Mar Adriático para la evaluación de su impacto medioambiental. Una de las reservas principales de gas se halla en el mar de Chioggia, a unos 10 km mar adentro de la costa veneciana, a una profundidad de entre 1.000 y 1.400 m. Se espera que la producción en este campo produzca un impacto en la estabilidad de la línea de costa, y que suponga una amenaza potencial para la ciudad de Venecia, situada a 25 km al noroeste de la explotación. Se desarrolló un modelo numérico para evaluar el riesgo de subsidencia debido a la extracción de gas a lo largo de los 13 años de producción y del período post-productivo de 12 años. Sus predicciones indican que se causará la compactación tanto de la formación que contiene el gas como del acuífero inferior y lateral. Además, esta compactación en profundidad tendrá un efecto en superficie. Con el objeto de estudiar la incertidumbre de unos pocos parámetros hidromecánicos fundamentales, se simularon diversos escenarios y se obtuvieron las predicciones más pesimistas. Los resultados numéricos muestran que, como máximo, se puede esperar una subsidencia de 1 cm en la ciudad de Chioggia al cabo de 25 años, mientras que no afectará a la ciudad de Venecia. Si se contrarresta el descenso de los niveles mediante inyecció de agua, se podrá limitar la subsidencia a un radio de 5 km mar adentro y propiciar un aumento de 0,6 a 0,7 cm en la costa de Chioggia.
Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E
2007-01-01
Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.
Hydrophobicity of hemp shiv treated with sol-gel coatings
NASA Astrophysics Data System (ADS)
Hussain, Atif; Calabria-Holley, Juliana; Schorr, Diane; Jiang, Yunhong; Lawrence, Mike; Blanchet, Pierre
2018-03-01
This is the first time sol-gel technology is used in the treatment of hemp shiv to develop sustainable thermal insulation building materials. The impact on the hydrophobicity of hemp shiv by depositing functionalised sol-gel coatings using hexadecyltrimethoxysilane (HDTMS) has been investigated. Bio-based materials have tendency to absorb large amounts of water due to their hydrophilic nature and highly porous structure. In this work, the influence of catalysts, solvent dilution and HDTMS loading in the silica sols on the hydrophobicity of hemp shiv surface has been reported. The hydrophobicity of sol-gel coated hemp shiv increased significantly when using acid catalysed sols which provided water contact angles of up to 118° at 1% HDTMS loading. Ethanol diluted sol-gel coatings enhanced the surface roughness of the hemp shiv by 36% as observed under 3D optical profilometer. The XPS results revealed that the surface chemical composition of the hemp shiv was altered by the sol-gel coating, blocking the hydroxyl sites responsible for hydrophilicity.
Sol-gel layers for ceramic microsystems application
NASA Astrophysics Data System (ADS)
Czok, Mateusz; Golonka, Leszek
2016-11-01
This paper describes research on sol-gel solutions preparation process. Utilize of a sol-gel layers in the LTCC technology for reduction of surface roughness and influence on the ceramics properties is examined and described. The influence of sol-gel layer on possible sedimentation of dyes or biological substances in channels, mixers or chambers of ceramic microfluidic structures was investigated. Moreover, properties of sol-gel coated surfaces have been precisely examined and described. Finally, positive results of conducted experiments made it possible to design and manufacture a simple microfluidic ceramic structure, with embedded protective layer of sol-gel, for fluorescence measurements.
Mandla A. Tshabalala; John E. Gangstad
2003-01-01
Accelerated weathering of wood surfaces coated with hexadecyltrimethoxysilane (HDTMOS) in the presence of methyltrimethoxysilane (MTMOS) by the sol-gel process was investigated. The sol-gel process allowed the deposition of a covalently bound thin layer of polysiloxane networks on the wood surface that was resistant to water sorption and water leaching. The rate of...
Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.
Hayes, J D; Malik, A
1997-07-18
A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.
Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting
Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.
2000-01-01
A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.
Moral, Ethical, and Psychological Preparation of Soldiers and Units for Combat
2011-01-01
Stoic phi los o pher Marcus Aurelius ob served, “Re spect be comes con crete through em pa thy.” Cicero re - minds us that a sol dier’s re spect must...build ing trust with the pop u la tion ought to be M C M A S T E R 1 3 * Marcus Tullius Cicero, On Du ties, ed. and trans. M. T. Grif fin and E. M. Atkins
Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3
NASA Astrophysics Data System (ADS)
Voevodin, Natalia Nikolajevna
The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol-gel coatings can be used as barrier layers in complex coating systems. The results clearly demonstrated that Zr-epoxy sol-gel coatings are a viable replacement for the currently used chromate-based surface treatments. This work expands the fundamental knowledge of chromate coating replacement with chromate-free sol-gel coatings and identifies possible ways to implement this goal.
Shin, Jin-Ho; Kim, Jung-Hwa; Koh, Jeong-Tae; Lim, Hyun-Pil; Oh, Gye-Jeong; Lee, Seok-Woo; Lee, Kwang-Min; Yun, Kwi-Dug; Park, Sang-Won
2015-08-01
Hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotubular surface has been developed to complement the defects of both TiO2 and HA. A sol-gel processing technique was used to coat HA on TiO2 nanotubular surface. All the titanium discs were blasted with resorbable blast media (RBM). RBM-blasted Ti surface, anodized Ti surface, and sol-gel HA coating on the anodized Ti surface were prepared. The characteristics of samples were observed using scanning electron microscopy and X-ray photoemission spectroscopy. Biologic responses were evaluated with human osteosarcoma MG63 cells in vitro. The top of the TiO2 nanotubes was not completely covered by HA particles when the coating time was less than 60 sec. It was demonstrated the sol-gel derived HA film was well-crystallized and this enhanced biologic responses in early stage cell response.
2011-01-01
The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria. PMID:22085594
Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating
NASA Astrophysics Data System (ADS)
Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan
2016-03-01
A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.
Material for surface-enhanced Raman spectroscopy, and SER sensors and method for preparing same
NASA Technical Reports Server (NTRS)
Farquharson, Stuart (Inventor); Nelson, Chad (Inventor); Lee, Yuan-Hsiang (Inventor)
2003-01-01
Metal-doped sol-gel materials, suitable for use as sensors for surface-enhanced Raman spectroscopic analysis for trace chemical detection, are produced by effecting gelation and solvent removal of a doped sol-gel under mild temperature conditions. At least in certain instances reaction and drying will desirably be effected in an oxygen-starved environment. The metal of the sol-gel material functions, when irradiated, to produce a plasmon field for interaction with molecules of an analyte in contact therewith, increasing by orders of magnitude Raman photons that are generate by excitation radiation, and the method allows matching of the metal and metal particle size to a wavelength of light (or incident radiation, e.g., laser radiation) to generate surface plasmons. The porosity of the sol-gel material dramatically increases the surface area, and thereby the amount of metal exposed for analyte interaction. The sensors provided may be in the form of glass vials, fiber optics, multi-well micro-sample plates, etc., having surface coatings of the doped sol-gel material, to provide sampling systems for use in a Raman instrument.
Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin
2013-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 deg S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.
Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin
2013-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 degrees South latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Solar longitude=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.
Calculation of Operations Efficiency Factors for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Layback, Sharon L.
2014-01-01
For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long enough time to capture variations in relay asset interactions, Earth/Mars time phasing, and seasonal variations in holidays). This model is used to estimate the ops efficiency factor for each operations configuration. The second model in a separate Excel spreadsheet is a scenario model, which uses the sol types to rack up the total number of "scenario sols" for that scenario (in other words, the ideal number of sols it would take to perform the scenario objectives). Then, the number of sols requiring ground in the loop is calculated based on the soil types contained in the given scenario. Next, the scenario contains a description of what sequence of operations configurations is used, for how many days each, and this is used with the corresponding ops efficiency factors for each configuration to calculate the "ops duration" corresponding to that scenario. Finally, a margin is applied to determine the minimum surface lifetime required for that scenario. Typically, this level of analysis has not been performed until much later in the mission, and has not been able to influence mission design. Further, the notion of moving to sustainable operations during Prime Mission - and the effect that that move would have on surface mission productivity and mission objective choices - has not been encountered until the most recent rover missions (MSL and Mars 2018).
Evaluation of probabilistic flow in two unsaturated soils
NASA Astrophysics Data System (ADS)
Boateng, Samuel
2001-11-01
A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilisées. Les propriétés sont basées sur le modèle de van Genuchten. Le domaine d'écoulement possède une surface de recharge, une limite de fuite à sa base et des limites sans écoulement sur les côtés. Les variables incertaines sont la teneur en eau à saturation, la teneur en eau résiduelle, les paramètres alpha (α) et n du modèle de van Genuchten et la conductivité hydraulique à saturation. L'objectif est d'évaluer la signification de chacune des variables incertaines dans l'écoulement probabiliste. Dans des conditions humides, la teneur en eau à saturation et la teneur en eau résiduelle sont les variables incertaines les plus significatives dans le sable. Toutefois, dans des conditions sèches dans le sable, les paramètres α et n du modèle de van Genuchten sont les plus significatifs. Le paramètre n du modèle et la conductivité hydraulique à saturation sont les plus significatifs pour un sol argileux humide. La teneur en eau à saturation est très significative pour le sol argileux sec. Resumen. Se ha acoplado un modelo de flujo de saturación variable con un algoritmo de fiabilidad de primer orden con el fin de simular el flujo no saturado en dos tipos de suelos. Se ha tratado las propiedades del suelo no saturado como variables inciertas, a las que se asigna las medias, desviaciones estándar y distribuciones de probabilidad marginal correspondientes. Así, cada simulación constituye un evento probabilístico de flujo no saturado y la sensibilidad de las variables inciertas es estimada para cada evento. Se ha utilizado las propiedades de la conductividad hidráulica no saturada de dos suelos con dos tipos de textura - fina y gruesa - mediante el modelo de van Genuchten. El dominio de flujo está delimitado por una superficie de recarga, base de goteo y contornos laterales de flujo nulo. Las variables inciertas son el contenido de agua residual, el de saturación, los parámetros del modelo de van Genuchten (α y n) y la conductividad hidráulica saturada. El objetivo era evaluar la contribución de cada variable incierta al flujo probabilístico. Para arenas, las variables inciertas más importantes, en condiciones de humedad, son el contenido de agua residual y el de saturación en ausencia de humedad, lo son ambos parámetros del modelo de van Genuchten. Para margas arcillosas, las variables más significativas en condiciones húmedas son el parámetro n y la conductividad hidráulica saturada; en condiciones secas, el contenido de agua en saturación.
Sol-gel chemical sensors for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Farquharson, Stuart; Kwon, Hueong-Chan; Shahriari, Mahmoud R.; Rainey, Petrie M.
1999-02-01
Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection. Unfortunately, the inability of SERS to perform quantitative chemical analysis has slowed its general use in laboratories. This is largely due to the difficulty of manufacturing either active surfaces that yield reproducible enhancements, or surfaces that are capable of reversible chemical adsorption, or both. In an effort to meet this need, we have developed metal-doped sol-gels that provide surface-enhancement of Raman scattering. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increases the interaction between the analyte and metal particles. This eliminates the need to concentrate the analyte on the surface by evaporating the solvent. The sol-gel is easily coated on a variety of surfaces, such as fiber optics, glass slides, or glass tubing, and can be designed into sample flow systems. Here we present the development of both gold- and silver-doped sol-gels, which have been used to coat the inside walls of glass sample vials for SERS applications. The performance of the metal-doped sol-gels was evaluated using p-aminobenzoic acid, to establish enhancement factors, detection limits, dynamic response range, reversibility, reproducibility, and suitability to commercial spectrometers. Measurements of trace chemicals, such as adenine and cocaine, are also presented.
3-(Triethoxysilyl)propionitrile sol-gel coating.
Li, Ying-Sing; Xiao, Yun; Wright, Paul B; Tran, Tuan
2005-05-01
3-(Triethoxysilyl)propionitrile (TESPN) sol-gel has been prepared under different conditions. It was employed for coating the surfaces of quartz and aluminum. Infrared (IR) and Raman spectra of TESPN and TESPN sol-gels have been recorded in the study of the sol-gel process. Transmission and reflection absorption IR (RAIR) spectra of TESPN sol-gel coated quartz and aluminum have also been collected for better understanding the film formation on the substrate surfaces. Spectra collected at different temperatures indicated that the silane film on quartz decomposes at 700 degrees C. Results from thermal gravimetric analysis (TGA) supported this result. Based on the group frequencies and the spectral behavior in different states, some vibrational modes were assigned to the observed bands. The anticorrosion behavior of the sol-gel coated aluminum in comparison with the uncoated metal was evaluated by measuring the potentiodynamic polarization and electrochemical impedance spectra (EIS).
Non Linear Dynamics and Chaos (La Dynamique Non-Lineaie et le Chaos)
1993-06-01
mention some aspects of non-linear dynamics and/or disorder is independence. All other definitions are merely negative chaos which p,.Laps a,, margin- al ...collection of fixed coefficients and input-output corellation is U1, pp. 1037-1044, 1990, Roger Cerf et al . Among ,ie very slightly modified. If Rl is...des param~tres qui ou la deformation 61astique d’une partie du sol d~finissent le syst~me A contr~ler, et donne lieu, soudainement A un saut
Mandla A. Tshabalala
2005-01-01
Wood specimens were coated with sol-gel deposits of aluminum isopropoxide, titanium isopropoxide, or zirconium propoxide in the presence of methytrimethoxysilane. Both zirconium propoxide and titanium isopropoxide sol-gel deposits reduced water sorption, whereas aluminum isopropoxide sol-gel deposit increased water sorption, compared with uncoated wood specimens. There...
Penna, Andrea; Elviri, Lisa; Careri, Maria; Mangia, Alessandro; Predieri, Giovanni
2011-05-01
Sol-gel-based materials were synthesized, characterized and finally tested as solid supports for desorption electrospray ionization-mass spectrometry (DESI-MS) analysis of a mixture of compounds of different polarity. Films with thickness in the 2-4 μm range were obtained by a dip-coating process using tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) as sol-gel precursors. Three types of surface with different hydrophobic character were obtained by varying the TEOS/OTES ratio in the sol-gel mixture. Each coating was characterized by atomic force microscopy investigations, gaining insight into homogeneity, smoothness and thickness of the obtained films. To study hydrophobicity of each surface, surface free energy measurements were performed. Different DESI-MS responses were observed when different solvent mixture deposition procedures and solvent spray compositions were investigated. Results were finally compared to those obtained by using commercial polytetrafluoroethylene-coated slides. It was found that surface free energy plays an important role in the desorption/ionization process as a function of the polarity of analytes.
Superhydrophobic properties induced by sol-gel routes on copper surfaces
NASA Astrophysics Data System (ADS)
Raimondo, M.; Veronesi, F.; Boveri, G.; Guarini, G.; Motta, A.; Zanoni, R.
2017-11-01
Superhydrophobic surfaces are attracting increasing attention in different fields such as energy, transportation, building industry and electronics, as they exhibit many interesting properties such as high water repellence, anti-fogging, anti-corrosion, anti-fouling and self-cleaning abilities. Here, superhydrophobic nanostructured hybrid materials obtained by depositing alumina nanoparticles on copper surfaces via dip coating in Al2O3 sol are presented. Two different preparation routes were explored, based on either an alcoholic or an aqueous Al2O3 sol, and the resulting wetting properties were compared. Wettability measurements showed that when the alcoholic sol is used superhydrophobicity is attained, with values of water contact angle very close to the upper limit of 180°, while highly hydrophobic coatings are obtained with the aqueous sol. These findings were further supported by electron microscopy and X-ray photoelectron spectroscopy, which revealed that the surface layer deposited on Cu is more homogenous and richer in alumina nanoparticles when the alcoholic sol was used. Durability of the superhydrophobic coating was assessed by performing ageing tests in chemically aggressive environments. A remarkable resistance is displayed by the superhydrophobic coating in acid environment, while alkaline conditions severely affect its properties. Such behaviors were investigated by XPS and FE-SEM measurements, which disclosed the nature of the surface reactions under the different conditions tested. The present results underline that a thorough investigation of surface morphology, chemical composition and wetting properties reveals their strongly connection and helps optimizing the combination of substrate nanostructuring and suitable chemical coating for an improved durability in different aggressive environments.
Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.
Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise
2012-11-01
Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.
Mandla A. Tshabalala; Peter Kingshott; Mark R. VanLandingham; David Plackett
2003-01-01
Sol-gel surface deposition of a hydrophobic polysiloxane coating on wood was accomplished by using a mixture of a low molecular weight multifunctional alkoxysilane, methyltrimethoxysilane (MTMOS), and a high molecular weight multifunctional alkoxysilane, hexadecyltrimethoxysilane (HDTMOS). Investigation of the surface chemistry and morphology of the wood specimens by...
Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul
2017-11-03
A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Sol-gel modification of wood substrates to retard weathering
Mandla A Tshabalala; Sam Williams
2008-01-01
Wood specimens were treated with sol-gel systems based on metalorganic precursors of silicon (Si), iron (Fe), zirconium (Zr), and titanium (Ti). The effect of these sol-gel systems on weathering properties of wood was investigated. These sol-gel systems were found to have a positive effect on surface color stability and water vapor resistance of the specimens. Under...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afrin, Samia; Dagdelen, John; Ma, Zhiwen
Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less
Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan
2017-09-29
The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.
Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir
2013-08-07
A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material was packed into a standard syringe (0.5 mL) to enhance the ease of use of the sol-gel material and for the elimination of additional mixing and separation procedures during the adsorption, washing and elution steps of the enrichment procedure. It was found that up to 28 phosphopeptides in milk digest were easily detectable by MALDI-MS at femtomole levels (around 20 fmol) using the microextraction syringe within less than one minute.
Method of making particles from an aqueous sol
Rankin, G.W.; Hooker, J.R.
1973-07-24
A process for preparing gel particles from an aqueous sol by forming the sol into droplets in a liquid system wherein the liquid phase contains a liquid organic solvent and a barrier agent. The barrier agent prevents dehydration from occurring too rapidly and permits surface tension effects to form sol droplets into the desired spheroidal shape. A preferred barrier agent is mineral oil. (Official Gazette)
Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.
Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Yamamoto, Koji; Otsuki, Bungo; Takemoto, Mitsuru; Tsukanaka, Masako; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi
2016-04-15
A polyetheretherketone (PEEK) surface was modified using a sol-gel-derived TiO2 coating in order to confer bone-bonding ability. To enhance the bonding strength of the coating layer, pretreatment with either O2 plasma or sandblasting was performed prior to sol-gel coating. Additionally, post-treatment with acid was carried out to confer apatite (calcium phosphate)-forming ability to the surface. Biomechanical and histological analyses performed using an in vivo rabbit tibia model showed that PEEK surfaces modified with sol-gel-derived TiO2 and acid post-treatment had better bone-bonding properties than uncoated PEEK surfaces. These modified surfaces also performed well in terms of their in vitro cell responses due to their modified surface chemistries and topographies. Although O2 plasma or sandblasting treatment were, for the most part, equivocal in terms of performance, we conclude that sol-gel-derived TiO2 coating followed by acid post-treatment significantly improves the bone bonding ability of PEEK surfaces, thus rendering them optimal for their use in surgical implants. The role of polyetheretherketone (PEEK) as an alternative biomaterial to conventional metallic implant materials has become increasingly important. However, its low bone bonding ability is yet to be resolved. This in vivo and in vitro investigation on the functionalization of PEEK surfaces highlights the utility of this material in clinical interventions that require implants, and may extend range of applications of PEEK. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je
2010-04-06
In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.
Iron Oxide Silica Derived from Sol-Gel Synthesis
Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos
2011-01-01
In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica. PMID:28879999
1987-12-01
2007 Kjeller 92320 Chitillon PORTUGAL Portuguese National Coordinator to AGARD GERMANY Gabinete de Estudos e Programas Fachinformationszentrum...OPI: DTIC-TID MAR 85~ AGARD-CP-4 31 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE ...et Pilotage avait organis6 A EGLIN (Floride), une conference sur le theme des "Missiles Tactiques Air-Sol et Air-Air". Depuis lors, de nombreux progres
Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process
NASA Astrophysics Data System (ADS)
Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah
2018-04-01
Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.
Hayes, J D; Malik, A
2001-03-01
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.
Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul
2005-01-07
A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).
Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxylsilane sol-gel and its coating.
Li, Ying-Sing; Wang, Yu; Tran, Tuan; Perkins, Anshion
2005-10-01
Organosilane sol-gels have been prepared under different conditions from mercaptopropyltrimethoxysilane (MPTMS) and mercaptopropyltriethoxysilane (MPTES). These sol-gels were applied for the thin film coating on aluminum. Vibrational spectroscopy has been employed to trace and to study the proceeding of the sol-gel formation and the curing of the coated films on Al. Based on the group frequencies as well as their spectral behavior under different conditions, vibrational assignments have been made for most of the observed bands. Surface enhanced Raman scattering has revealed the chemical adsorption of MPTMS sol-gel on silver particles. Recorded reflection and absorption infrared (RAIR) spectra of coated tiles cured at different temperatures have indicated that surface reaction may occur at high temperature. The anticorrosion characters of the coated metals have been evaluated with the measured electrochemical data. Results from cyclic voltammographs have indicated that each layer of sol-gel coating would reduce the redox current across the electrode/electrolyte solution interface. Tafel plots have shown that the anodic current of the coated electrode decreases significantly and the corrosion potentials shift to the positive side.
Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.
Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook
2015-08-01
Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.
Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.
Cheng, Kui; Zhang, Sam; Weng, Wenjian
2007-10-01
Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.
Forming foam structures with carbon foam substrates
Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.
2012-11-06
The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.
NASA Astrophysics Data System (ADS)
Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro
2004-10-01
Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.
Surface modification of quartz fibres for dental composites through a sol-gel process.
Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang
2017-05-01
In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun
2018-01-01
Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.
Li, Ying-Sing; Tran, Tuan; Xu, Yue; Vecchio, Nicolas E
2006-11-01
Trimethoxypropylsilane (TMPS) and bis(trimethoxysilyl)ethane (BTMSE) were used as surface modifiers of metal vie the sol-gel process and dip coating. In addition to the single coating of Al, Cu and Sn, double treatments of Al were also conducted by combining coatings with these sol-gels in different sequences. Reflection and absorption infrared spectroscopy (RAIR) was employed to characterize and to trace the proceeding of the sol-gel process of the films. It was found that the silanol condensation occurs in the coating films on Al and the covalent linkage exists between the TMPS film and copper surface. From the assigned vibration modes, two conformers were identified in pure TMPS, TMPS sol-gel and coated film. A series of dip coating experiments with different concentrations of TMPS sol-gel was conducted, and the results from the collected RAIR spectra of the coated samples suggested that the coated Cu consistently has a better RAIR spectrum than that of the coated Al. The TMPS sol-gel appeared to have a better affinity to Cu than to Al. The temperature effect and the aging effect in the coating films were studied. X-ray photoelectronic spectroscopy (XPS) was employed to characterize the coated film, and the XPS data confirm the formation of the siloxane film from the silane coupling agents (SCA). Electrochemical impedance spectra (EIS) have been collected for bare Al and Cu, BTMSE sol-gel coated Al, and TMPS sol-gel coated Cu in 0.15M NaCl solution. The corresponding electronic circuit parameters have been determined to match the experimental EIS data.
Influence des interactions entre écrans de soutènement sur le calcul de la butée
NASA Astrophysics Data System (ADS)
Magnan, Jean-Pierre; Meyer, Grégory
2018-05-01
La mobilisation de la butée devant un écran implique un volume de sol important, sur une distance plus grande que la fiche et qui dépend des paramètres du calcul. L'article passe en revue les méthodes de calcul utilisées pour évaluer la butée, en insistant sur la distance nécessaire au libre développement du mécanisme de butée. Il évalue ensuite de différentes façons l'effet de l'interaction entre deux écrans placés face à face de part et d'autre d'une excavation. La méthode recommandée pour calculer la butée mobilisable consiste à faire un calcul en éléments finis avec des valeurs réduites des paramètres de résistance au cisaillement dans la zone où se développera la butée. Cette démarche permet de déterminer des facteurs correctifs à appliquer au calcul de la butée d'un écran isolé en fonction du rapport de la distance entre écrans à leur fiche.
Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method.
Qu, Jie; Lu, Xiong; Li, Dan; Ding, Yonghui; Leng, Yang; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio
2011-04-01
Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings. Copyright © 2011 Wiley Periodicals, Inc.
Altération dans des sols de scories issues d'un atelier de fusion du plomb.
NASA Astrophysics Data System (ADS)
Sobanska, Sophie; Ledésert, Béatrice; Deneele, Dimitri; Laboudigue, Agnès
2000-08-01
A smelter located in northern France produces lead and zinc. Large amounts of metal bearing slag particles result from the process and constitute a main environmental problem. This work presents a characterization of the slag grains at the exit of the furnace and in the surrounding soils where they are frequently found. Their comparison shows an alteration in soils revealed by a strong increase of their porosity and a modification of their morphology. Chemical analyses indicate that Pb and Zn are released in the soils during the partial dissolution of the slag particles.
Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang
2009-02-01
The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant differences existed between each two groups after artificial aging, group P had the lowest bond durability, and group PTO had the highest bond durability. The sol-gel process is an effective way to prepare silica coating on dental glass-infiltrated alumina ceramic. Sol-gel processed silica coating can improve the resin bond strength of glass-infiltrated alumina ceramic.
Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebinger, M.H.; Essington, E.H.; Gladney, E.S.
1990-06-01
The environmental fate of fragments of depleted uranium (DU) penetrators in soils and waters at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) is a concern to the Testing and Evaluation Command (TECOM) of the US Army. This report presents the information from preliminary soil and water samples that were collected from the humid woodlands of APG and the arid Sonoran Desert of YPG. Soil samples collected beneath a penetrator fragment of the firing range at APG showed approximately 12% DU by weight in the surface horizon and DU significantly above background to a depth of about 20 cm.more » Samples of surface water at APG showed U only at background levels, and bottom sediments showed background U levels but with isotopic ratios of DU instead of natural U. Soil samples beneath a penetrator fragment at YPG showed about 0.5% by weight U in the surface horizon, but only background concentrations and isotopic ratios of U between 8 and 20 cm depth. Results from this preliminary study indicate that DU at APG was redistributed primarily be dissolution and transport with water and possibly by migration of DU colloids or DU attached to small particles. Redistribution at YPG, however, was mainly due to erosion of DU fragments from the impact area and redeposition in washes that drain the area. Proposed work for FY90-FY92 includes additional field sampling, laboratory column studies, and the development of a computer model of DU redistribution at both sites. 39 refs., 11 figs., 5 tabs.« less
Sol-Gel Thin Films for Plasmonic Gas Sensors
Della Gaspera, Enrico; Martucci, Alessandro
2015-01-01
Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216
Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol-gel films
NASA Astrophysics Data System (ADS)
Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O.; Defay, E.; Barrett, N.
2016-02-01
We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr0.52Ti0.48O3 (PZT) films synthesized by sol-gel method. In sol-gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO1.82-1.89 rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO1.82-1.89 could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.
Zhang, Xiuli; Martens, Dieter; Krämer, Petra M; Kettrup, Antonius A; Liang, Xinmiao
2006-01-13
An immunosorbent was fabricated by encapsulation of monoclonal anti-isoproturon antibodies in sol-gel matrix. The immunosorbent-based loading, rinsing and eluting processes were optimized. Based on these optimizations, the sol-gel immunosorbent (SG-IS) selectively extracted isoproturon from an artificial mixture of 68 pesticides. In addition to this high selectivity, the SG-IS proved to be reusable. The SG-IS was combined with liquid chromatography-tandem mass spectrometry (LC-MS-MS) to determine isoproturon in surface water, and the linear range was up to 2.2 microg/l with correlation coefficient higher than 0.99 and relative standard deviation (RSD) lower than 5% (n=8). The limit of quantitation (LOQ) for 25-ml surface water sample was 5 ng/l.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L
2013-02-26
Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) nonradiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic, and microscopic studies. Further enhancement of interparticle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications.
Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.
2013-01-01
Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924
The Sol-Gel-Xerogel Transition
1993-11-01
basic pH. Bioactive sol-gel glasses obtained by a surface adsorption of trypsin to a readymade xerogel were also completley * L...presence of siloxane chains and hydrophobic methyl groups an easy film deposition on glass sheets can be obtained. Rhodamine 6G and Coumarin 4 were...Research Proposal was prepared (early 1989) have witnessed a tremendous, almost explosive, progress in the field of organically doped sol-gel glasses
Modified silica sol coatings for surface enhancement of leather.
Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir
2012-06-01
The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.
Infrared and Raman spectra of triacetoxyvinylsilane, aqueous sol-gel and xerogel
NASA Astrophysics Data System (ADS)
Li, Ying-Sing; Ba, Abdul; Mahmood, Maleeha S.
2009-04-01
Triacetoxyvinylsilane (TAVS) has been used as a precursor to prepare sol-gel under aqueous conditions. The sol-gel product has been applied for the surface treatment of aluminum. Infrared and Raman spectra have been collected for TAVS and for TAVS sol-gel, xerogel and sol-gel-coated aluminum. Vibrational analyses have been suggested for the recorded spectra based essentially on the group frequencies and the spectral variation with the change of the sol-gel product states and the vibrational assignments of similar molecules. From the recorded infrared and Raman spectra of the sol-gel and xerogel, it is found that the sol-gel produced in the process with TAVS is essentially the same as that prepared from vinyltriethoxysilane. Thermo-gravimetric analysis (TGA) of TAVS xerogel has been conducted, and an explanation has been given in coordination with the results obtained from IR spectroscopic study of the xerogels cured at different temperatures. The study has demonstrated the thermal effect on the condensation of the sol-gel process and on the vinyl decomposition of TAVS xerogel.
NASA Astrophysics Data System (ADS)
Le Boeuf, David
Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de la phenomenologie entourant le comportement des resistances longitudinale et de Hall dans YBa2Cu3Oy, avec des systemes dans lesquels l'existence d'un ordre du type DW est etablie, notamment des cuprates a structure tetragonale a basse temperature ("Low Temperature Tetragonal", LTT), indique que l'ordre causant la reconstruction de la surface de Fermi est stabilise au voisinage du dopage p = 1/8, et est en competition directe avec la supraconductivite.
NASA Astrophysics Data System (ADS)
Nidya, M.; Umadevi, M.; Sankar, Pranitha; Philip, Reji; Rajkumar, Beulah J. M.
2015-04-01
An extensive study on the behavior of L-Phenylalanine capped silver nanoparticles (Phe-Ag NPs) in the aqueous phase and in a sol-gel thin film showed different UV/Vis, Transmission Electron Microscope (TEM), Dynamic Light Scattering and Zeta potential profiles. Scanning Electron Microscope (SEM) images of the samples in the sol gel film showed Ag embedded in the SiO2 matrix. Surface Enhanced Raman Spectra (SERS) confirmed that both in the aqueous media and in the sol gel film, the attachment of Phe to the Ag NP surface was through the benzene ring, with the sol-gel film showing a better enhancement. Photocatalytic degradation of crystal violet was measured spectrophotometrically using Phe-Ag NPs as a nanocatalyst under visible light illumination. Intensity-dependent nonlinear optical absorption of Phe-Ag measured using the open aperture Z-scan technique revealed that the material is an efficient optical limiter with potential applications.
L'Abondance du Deutérium, de l'Ultraviolet au Visible
NASA Astrophysics Data System (ADS)
Hébrard, Guillaume
2000-12-01
Dans le cadre du modèle standard du Big Bang, le deutérium est l'élément dont l'abondance primordiale est la plus sensible à la densité baryonique de l'Univers. Cet élément est uniquement créé lors de la nucléosynthèse primordiale, quelques minutes après le Big Bang ; aucune théorie standard n'en prédit actuellement d'autres sources significatives. Au contraire, étant brûlé dans les étoiles, son abondance D/H décroît au cours de l'évolution cosmique. Les mesures de D/H apportent ainsi des contraintes sur les modèles de Big Bang et d'évolution chimique des galaxies. On peut distinguer trois types de mesures de D/H: les abondances primordiale, proto-solaire et interstellaire, respectivement représentatives de l'Univers il y a environ 15 milliards d'années, 4.5 milliards d'années et à l'époque actuelle. Si l'évolution du deutérium semble qualitativement claire, les résultats concernant ces trois types d'abondance ne convergent pas pour l'instant vers trois valeurs bien définies. Les travaux entrepris durant cette thèse sont reliés à la mesure de l'abondance interstellaire du deutérium. Celle-ci s'obtient habituellement par l'observation spectroscopique en absorption des séries de Lyman de l'hydrogène et du deutérium. Ces observations se font dans le domaine ultraviolet, au moyen d'observatoires spatiaux. Les résultats présentés ici ont été obtenus avec le Télescope spatial Hubble puis le satellite FUSE, récemment mis en orbite. D'autre part, une nouvelle méthode d'observation du deutérium a été proposée, dans le domaine visible à partir de télescopes au sol. Ce travail a mené aux premières détections et à l'identification de la série de Balmer du deutérium, observée en émission dans des régions HII avec le Télescope Canada-France-Hawaii et le Very Large Telescope. On-line Thesis, Guillaume Hébrard
Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling
2015-11-07
In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.
NASA Astrophysics Data System (ADS)
Ahmad, N. A.; Leo, C. P.; Ahmad, A. L.
2013-11-01
Ceramic membranes possess natural hydrophilicity thus tending to absorb water droplets. The absorption of water molecules on membrane surface reduces their application in filtration, membrane distillation, osmotic evaporation and membrane gas absorption. Fluoroalkylsilane (FAS) grafting allows the conversion of hydrophilic ceramic membranes into superhydrophobic thin layer, but it usually introduces a great increment of mass transfer resistance. In this study, superhydrophobic alumina membranes were synthesized by dip coating alumina support into sol-gel and grafted with the fluoroalkylsilane (FAS) named (heptadecafluoro-1,1,2,2-tetra hydrodecyl) triethoxysilane. Steam impingement and water treatment acted as additional steps to generate surface roughness on sol-gel and most importantly to reduce mass transfer resistance. Superhydrophobic alumina membrane with high water contact angle (158.4°) and low resistance (139.5 ± 24.9 G m-1) was successfully formed when the alumina membrane was dip coated into sol-gel for 7 s, treated with steam impingement for 1 min and immersed in hot water at 100 °C. However, the mass transfer resistance was greatly induced to 535.6 ± 23.5 G m-1 when the dip coating time was increased to 60 s. Long dip coating time contributes more on the blockage of porous structure rather than creates a thin film on the top of membrane surface. Reducing the pore size and porosity significantly due to increase of coating molecules deposited on the membrane. Steam impingement for 1 min promoted the formation of cones and valleys on the sol-gel, but the macro-roughness was destroyed when the steam impingement duration was extended to more than 3 min. The immersions of membranes into hot water at temperatures higher than 60 °C encouraged the formation of boehmite which enhances the formation of additional roughness and enlarges pore size greatly. Thus, this work showed that the formation of superhydrophobic alumina membrane with low resistance is influenced by three factors; sol-gel dip coating time, steam impingement time and temperature of water treatment. The optimum dip coating time could promote appropriate thickness of the sol-gel layer on the membrane support. The highest surface roughness and porosity could be created when the sol-gel layer was further treated with optimum steam impingement duration and immersed in hot water at 100 °C. The presence of appropriate sol-gel thickness can reduce the penetration of FAS during the grafting and reduce the membrane resistance.
Wang, Si-qian; Zhang, Da-feng; Zhen, Tie-li; Yang, Jing-yuan; Lin, Ting-ting; Ma, Jian-feng
2016-04-01
To investigate the feasibility of using sol gel technique to produce thin layer nano silicon dioxide on zirconia ceramic surface and the effect of improving shear bond strength between zirconia and veneer porcelain. The presintered zirconia specimen was cut into a rectangle block piece (15 mm×10 mm×2.5 mm), a total of 40 pieces were obtained and divided into 4 groups, each group had 10 pieces. Four different treatments were used in each group respectively. Pieces in group A (control group) were only sintered at 1450°C to crystallization; pieces in group B underwent 30% nano silica sol infiltration first and then were sintered at 1450°C to crystallization; piece in group C underwent crystallization first at 1450°C, then 30% nano silica sol infiltration and were sintered at 1450°C again; pieces in group D was coated by nano silica sol and then sintered at 1450°C to crystallization; ten rectangle block pieces (12 mm×8 mm×2 mm) in group E were made. Cylinder veneers 5 mm in diameter and 4 mm in height were produced in each group and the shear bond strength was tested. Data were statistically analyzed by SPSS 19.0 software package. The shear bond strength of the 5 group specimens were: (28.12±2.95) MPa in group A, (31.09±3.94) MPa in group B, (25.60±2.45) MPa in group C, (31.75±4.90) MPa in group D, (28.67±3.95) MPa in group E, respectively. Significant differences existed between the 5 groups, and group C had significant difference compared with group B and D. CONCLUSIONS:① Use of nano silicon sol gel on presintered zirconia surface to make thin layer of nano silicon dioxide can improve the shear bond strength between zirconia and veneer; ②Using nano silicon sol gel on crystallization zirconia surface to make thin layer of nano silicon dioxide will decrease the shear bond strength between zirconia and veneer; ③ Zirconia veneer bilayer ceramic has the same shear bond strength with porcelain fused to Ni Cr alloy; ④Use of sol gel technique to produce thin layer nano silicon dioxide on zirconia ceramic surface is feasible and can improve shear bond strength between zirconia and veneer porcelain.
2011-01-01
Queen in Right of Canada, as represented by the Minister of National Defence, 2011 © Sa Majesté la Reine (en droit du Canada), telle que représentée par...alors que dans d’autres, elles sont faibles (Ra, Rq, Rz) et ne permettent pas d’extraire les diverses transitions qui surviennent au cours du...existe une corrélation élevée entre certains paramètres de rugosité et les étapes de transition au cours du mouillage de la surface. On observe aussi que
Environmentally benign sol-gel antifouling and foul-releasing coatings.
Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario
2014-02-18
Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.
Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul
2016-10-14
Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiquan Tao
2006-12-31
The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less
NASA Astrophysics Data System (ADS)
Wen, Wen; Li, Haibin; Chen, Xiaojing; Chang, Chengkang
Silica anti-reflective coatings have been prepared by a sol-gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate.
Sol-Gel Synthesis and Crystallization of Magnesium and Calcium Rich Silicate Dust Analogs
NASA Astrophysics Data System (ADS)
Gillot, J.; Roskosz, M.; Depecker, C.; Roussel, P.; Leroux, H.
2009-03-01
A new sol-gel method optimized to synthesize amorphous and porous silicate dust analogs is proposed. The crystallization of such analogs is metastable and polyphasic. Their high reactivity is probably due to high surface/volume ratio.
Mandla A. Tshabalala; Vina Yang; Ryan Libert
2009-01-01
Hybrid inorganic/organic thin films deposited on wood substrates have been shown to lower the rate of moisture sorption of the wood. Deposition of such thin films can be accomplished by solâgel deposition or by plasma-enhanced chemical vapor deposition. This paper describes in situ solâgel deposition of hybrid inorganic/organic thin films on wood substrates using...
Adams, Christopher S; Antoci, Valentin; Harrison, Gerald; Patal, Payal; Freeman, Terry A; Shapiro, Irving M; Parvizi, Javad; Hickok, Noreen J; Radin, Shula; Ducheyne, Paul
2009-06-01
Peri-prosthetic infection remains a serious complication of joint replacement surgery. Herein, we demonstrate that a vancomycin-containing sol-gel film on Ti alloy rods can successfully treat bacterial infections in an animal model. The vancomycin-containing sol-gel films exhibited predictable release kinetics, while significantly inhibiting S. aureus adhesion. When evaluated in a rat osteomyelitis model, microbiological analysis indicated that the vancomycin-containing sol-gel film caused a profound decrease in S. aureus number. Radiologically, while the control side showed extensive bone degradation, including abscesses and an extensive periosteal reaction, rods coated with the vancomycin-containing sol-gel film resulted in minimal signs of infection. MicroCT analysis confirmed the radiological results, while demonstrating that the vancomycin-containing sol-gel film significantly protected dense bone from resorption and minimized remodeling. These results clearly demonstrate that this novel thin sol-gel technology can be used for the targeted delivery of antibiotics for the treatment of periprosthetic as well as other bone infections. Copyright 2008 Orthopaedic Research Society
A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.
Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H
2015-02-01
In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.
Fabrication of advanced electrochemical energy materials using sol-gel processing techniques
NASA Technical Reports Server (NTRS)
Chu, C. T.; Chu, Jay; Zheng, Haixing
1995-01-01
Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
NASA Astrophysics Data System (ADS)
Aileen Yingst, R.; Cropper, Kevin; Blank, Jennifer; Goetz, Walter; Hamilton, Victoria; Hipkin, Victoria; Kah, Linda; Madsen, Morten Bo; Newsom, Horton; Williams, Rebecca; Bridges, John; Martinez-Frias, Jesús; King, Penelope
2015-04-01
The transport, sorting and abrasive processes that modify the loose surface fragments comprising a sedimentary population are best recorded in the morphologic characteristics of those fragments (also termed clasts or particles). Here we assess morphologic characteristics (size, shape, roundness, texture) of clasts in the pebble to cobble size range (2-256 mm) in Gale Crater imaged along the path of the Curisoty rover from sols 0 to 800. Pebble- to cobble-sized clasts along Curiosity's traverse most likely include geologic materials from the walls of fluvial canyons that debouch onto the crater floor, fragments shed from the central mound of the crater, and grains from modern eolian dunes. Our goal is to help constrain the boundaries of potential transport mechanisms important throughout the geologic history of the crater interior. Clast survey observations were taken on 162 sols. Most common clast types include: Type 1. These grey, fine-grained clasts are the most common type between sols 0 to ~650. Particles are angular to sub-angular (though sub-rounded clasts appear beginning ~sol 548), with flat facets terminating in sharp or slightly rounded edges. Surface texture is often smooth, but fresher facets can be rough and knobby at the sub-mm scale; occasionally, faint layers can be discerned. Wind-eroded features are common. Type 2. These clasts are gray and angular to sub-angular, displaying faces with circular or elongated concave-outward ellipsoids averaging 0.5-1.5 mm long-axis. A potential variant of this clast type is one in which ellipsoids are so deeply weathered that the particle takes on a scoria-like shape. Type 3. This class consists of angular to sub-angular void-rich clasts. These are rare, and disappear after ~sol 50, but reappear around sol 672. Type 4. These particles are angular to sub-angular and clast-rich. Clasts protrude as they wear, making surface textures jagged-looking. Type 5. Particles in this class vary in color, are equidimensional or somewhat elongate, and tend to be subrounded to well-rounded. Such fragments are a significant component of the clast population in some areas along traverse, often littering the surface surrounding larger conglomerate fragments. Type 6. These particles are angular to sub-rounded in shape, with a knobby, rugged surface texture. This type weathers to similar shapes as Type 4 but lacks protruding grains. Type 7. This class consists of platy or chunky fragments with a grainy surface texture. This type begins to appear around sol 746 and is the predominant clast type starting sol 780. This type is similar to the surrounding outcrop and thus likely did not travel far. The diverse morphology indicates that a complex interplay of varying lithologies, transport mechanisms, and environmental circumstances is responsible for the morphology observed. Morphology of clasts suggests that the majority of pebbles and cobbles have not been significantly altered in transport. The exceptions are pebbles that likely wore out of conglomerates, and a sub-rounded population near the base of Mt. Sharp that we are beginning to explore.
Effect of Parainfluenza-3 Neuraminidase on Bovine Nasal Secretion
Morein, Bror; Bergman, Rune
1972-01-01
Three samples of bovine nasal secretion were each separated into a sol phase and a surface gel phase. In all samples, the gel phase contained an approximately four times greater amount of bound N-acetylneuraminic acid (NANA) than the sol phase. From the gel phase, bound NANA could be released by exposure to parainfluenza-3 virus neuraminidase. The surface gel appears to be a natural substrate for this enzyme. PMID:4347547
NASA Astrophysics Data System (ADS)
Alaoui, Abdallah; Eugster, Werner
A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0-0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990-15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm). Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements. Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990-15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm). Les analyses de sensitivité ont montré que l'investigation de la couverture du sol est suffisante pour l'estimation locale de la RN du fait que l'eau traversant le plan du flux nul se trouverait sous la zone des racines et échapperait à l'évapotranspiration. La RN simulée sur les 0.70 m du sol sous les conditions d'équilibre était de 364 mm, ce qui est comparable aux mesures. Se propone un método sencillo para calibrar el modelo de doble porosidad "MACRO" mediante medidas in-situ obtenidas por TDR durante un breve ensayo de infiltración (2,8 horas), con el objetivo de estimar la recarga local al acuífero. Ésta ha sido modelada de dos formas: considerando los 3 m de suelo no saturado y empleando sólo desde la capa superior hasta el plano de flujo nulo (de 0 a 0,70 m). Se compara la recarga modelada con la recarga local medida en campo, la cual fue de 313 mm durante un ciclo anual (del 15 de octubre de 1990 al 15 de octubre de 1991). Las mejores simulaciones corresponden a la hipótesis de columna entera no saturada en condiciones de equilibrio, excluyendo el efecto de macroporos (valor de 330 mm), mientras que el resultado obtenido para condiciones de no equilibrio en la recarga local está sobreestimado (378 mm). Los análisis de sensibilidad muestran que la investigación del horizonte superior del suelo es suficiente para estimar la recarga local en este caso, ya que el agua almacenada por debajo de esta profundidad parece estar fuera del alcance típico de las raíces de la vegetación y no puede ser evapotranspirada. La recarga modelada en condiciones de equilibrio para la capa superior de 0,70 m de espesor es de 364 mm, valor aceptable respecto a las medidas.
Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid
2018-03-30
Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.
Prediction du profil de durete de l'acier AISI 4340 traite thermiquement au laser
NASA Astrophysics Data System (ADS)
Maamri, Ilyes
Les traitements thermiques de surfaces sont des procedes qui visent a conferer au coeur et a la surface des pieces mecaniques des proprietes differentes. Ils permettent d'ameliorer la resistance a l'usure et a la fatigue en durcissant les zones critiques superficielles par des apports thermiques courts et localises. Parmi les procedes qui se distinguent par leur capacite en terme de puissance surfacique, le traitement thermique de surface au laser offre des cycles thermiques rapides, localises et precis tout en limitant les risques de deformations indesirables. Les proprietes mecaniques de la zone durcie obtenue par ce procede dependent des proprietes physicochimiques du materiau a traiter et de plusieurs parametres du procede. Pour etre en mesure d'exploiter adequatement les ressources qu'offre ce procede, il est necessaire de developper des strategies permettant de controler et regler les parametres de maniere a produire avec precision les caracteristiques desirees pour la surface durcie sans recourir au classique long et couteux processus essai-erreur. L'objectif du projet consiste donc a developper des modeles pour predire le profil de durete dans le cas de traitement thermique de pieces en acier AISI 4340. Pour comprendre le comportement du procede et evaluer les effets des differents parametres sur la qualite du traitement, une etude de sensibilite a ete menee en se basant sur une planification experimentale structuree combinee a des techniques d'analyse statistiques eprouvees. Les resultats de cette etude ont permis l'identification des variables les plus pertinentes a exploiter pour la modelisation. Suite a cette analyse et dans le but d'elaborer un premier modele, deux techniques de modelisation ont ete considerees, soient la regression multiple et les reseaux de neurones. Les deux techniques ont conduit a des modeles de qualite acceptable avec une precision d'environ 90%. Pour ameliorer les performances des modeles a base de reseaux de neurones, deux nouvelles approches basees sur la caracterisation geometrique du profil de durete ont ete considerees. Contrairement aux premiers modeles predisant le profil de durete en fonction des parametres du procede, les nouveaux modeles combinent les memes parametres avec les attributs geometriques du profil de durete pour refleter la qualite du traitement. Les modeles obtenus montrent que cette strategie conduit a des resultats tres prometteurs.
High surface area, electrically conductive nanocarbon-supported metal oxide
Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.
2015-07-14
A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
High surface area, electrically conductive nanocarbon-supported metal oxide
Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H
2014-03-04
A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
High surface area silicon carbide-coated carbon aerogel
Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H
2014-01-14
A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.
Dubuisson, E; Monnier, V; Sanz-Menez, N; Boury, B; Usson, Y; Pansu, R B; Ibanez, A
2009-08-05
To develop highly sensitive biosensors, we made directly available to biological aqueous solutions organic nanocrystals previously grown in the pores of sol-gel films. Through the controlled dissolution of the sol-gel surface, we obtained emerging nanocrystals that remained strongly anchored to the sol-gel coating for good mechanical stability of the final sensing device. We demonstrated that in the presence of a solution of DNA functionalized with a molecular probe, the nanocrystal fluorescence is strongly quenched by Förster resonance energy transfer thus opening the way towards very sensitive fluorescent biosensors through biomolecules grafted onto fluorescent nanocrystals. Finally, this controlled dissolution, involving weak concentrated NaOH solution, is a generic process that can be used for the thinning of any kind of sol-gel layer.
Sol-gel synthesis and adsorption properties of mesoporous manganese oxide
NASA Astrophysics Data System (ADS)
Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.
2015-03-01
Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.
Sublimation of Exposed Snow Queen Surface Water Ice as Observed by the Phoenix Mars Lander
NASA Astrophysics Data System (ADS)
Markiewicz, W. J.; Keller, H. U.; Kossacki, K. J.; Mellon, M. T.; Stubbe, H. F.; Bos, B. J.; Woida, R.; Drube, L.; Leer, K.; Madsen, M. B.; Goetz, W.; El Maarry, M. R.; Smith, P.
2008-12-01
One of the first images obtained by the Robotic Arm Camera on the Mars Phoenix Lander was that of the surface beneath the spacecraft. This image, taken on sol 4 (Martian day) of the mission, was intended to check the stability of the footpads of the lander and to document the effect the retro-rockets had on the Martian surface. Not completely unexpected the image revealed an oval shaped, relatively bright and apparently smooth object, later named Snow Queen, surrounded by the regolith similar to that already seen throughout the landscape of the landing site. The object was suspected to be the surface of the ice table uncovered by the blast of the retro-rockets during touchdown. High resolution HiRISE images of the landing site from orbit, show a roughly circular dark region of about 40 m diameter with the lander in the center. A plausible explanation for this region being darker than the rest of the visible Martian Northern Planes (here polygonal patterns) is that a thin layer of the material ejected by the retro-rockets covered the original surface. Alternatively the thrusters may have removed the fine surface dust during the last stages of the descent. A simple estimate requires that about 10 cm of the surface material underneath the lander is needed to be ejected and redistributed to create the observed dark circular region. 10 cm is comparable to 4-5 cm predicted depth at which the ice table was expected to be found at the latitude of the Phoenix landing site. The models also predicted that exposed water ice should sublimate at a rate not faster but probably close to 1 mm per sol. Snow Queen was further documented on sols 5, 6 and 21 with no obvious changes detected. The following time it was imaged was on sol 45, 24 sols after the previous observation. This time some clear changes were obvious. Several small cracks, most likely due to thermal cycling and sublimation of water ice appeared. Nevertheless, the bulk of Snow Queen surface remained smooth. The next image of Snow Queen was taken on sol 73. This time its appearance was dramatically different. The surface had become much rougher and many cracks of at least 1 mm depth and decimeter scale length had appeared. The surface colour of Snow Queen was now no longer different from that of the surrounding regolith. This observation is compatible with the ice table sublimating away, leaving behind a lag deposit of thickness of the order of 1 mm. We will present these data as well as thermal models, including the diurnal cycle of the interaction with the atmosphere, which may explain the observed evolution of Snow Queen.
Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides
NASA Technical Reports Server (NTRS)
Lopez, Gabriel P.; Niemczyk, Thomas
1999-01-01
Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.
Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels
NASA Astrophysics Data System (ADS)
Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.
2018-04-01
Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.
[Surface modification of dental alumina ceramic with silica coating].
Xie, Hai-Feng; Zhang, Fei-Min; Wang, Xiao-Zu; Xia, Yang
2006-12-01
To make silica coating through sol-gel process, and to evaluate the wettability of dental alumina ceramic with or without coating. Silica coating was prepared with colloidal silica sol on In-Ceram alumina ceramic surface which had been treated with air particle abrasion. Coating gel after heat treatment was observed with atomic force microscope (AFM), and was analyzed by infrared spectrum (IR) with gel without sintered as control. Contact angles of oleic acid to be finished, sandblasted and coated ceramic surface of were measured. AFM pictures showed that some parts of nano-particles in coating gel conglomerated after heat treatment. It can be seen from the IR picture that bending vibration absorption kurtosis of Si-OH also vanished after heat treatment. Among contact angles of three treated surface, the ones on polished surface were the biggest (P = 0.000, P = 0.000), and sandblasting+silica coating surface the smallest (P = 0.000, P = 0.003). Silica coating can be made with sol-gel process successfully. Heat treatment may reinforce Si-O-Si net structure of coating gel. Wettability of dental alumina ceramic with silica coating is higher than with sandblasting and polishing.
Progress of the Mars Array Technology Experiment (MATE) on the 2001 Lander
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Baraona, Cosmo; Wilt, Dave; Jenkins, Phil; Krasowski, Michael; Greer, Lawrence; Lekki, John; Spina, Daniel; Landis, Geoff
2005-01-01
NASA is planning missions to Mars every two years until 2010, these missions will rely on solar power. Sunlight on the surface of Mars is altered by airborne dust and fluctuates from day to day. The MATE flight experiment was designed to evaluate solar cell performance and will fly on the Mars 2001 surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure several solar cell technologies and characterize the Martian environment's solar power. This will be done by measuring full IV curvers on solar cells, direct and global insolation, temperature, and spectral content. The lander is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator, is a powered landing, and is baselined for 90 sols. The intent of this paper is to provide a brief overview of the MATE experiment and progress to date. The MATE Development Unit (DU) hardware has been built and has completed testing, work is beginning in the Qualification Unit which will start testing later this year, Flight Hardware is to be delivered next spring.
Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando
2014-02-01
When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay. © 2013 Wiley Periodicals, Inc.
Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Berthier, Serge; Sondergard, Elin; Arribart, Hervé
2008-12-01
An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 degrees water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 degrees C and 500 degrees C.
ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES
In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...
Li, Ying-Sing; Lu, Weijie; Wang, Yu; Tran, Tuan
2009-09-01
Bis(trimethoxysilyl)ethane (BTMSE) and (3-mercaptopropyl)trimethoxysilane (MPTMS) have been used as precursors to prepare sol-gels and hybrid sol-gel under acidic condition. From the X-ray photoelectron spectroscopy data on MPTMS sol-gel coated aluminum and copper, it has been shown that the silane film is covalently bonded to Al surface through the interfacial condensation. There is no evidence of bonding interaction between the thiol group and the Cu. The recorded reflection adsorption IR (RAIR) spectrum has provided evidence that the coating BTMSE film covalently interacts with Al. Vibrational assignments have been suggested for pure BTMSE, BTMSE sol-gel, BTMSE xerogel, and BTMSE coated Al panel based on the group frequencies and the variation of frequencies with the sample treatment conditions. The progression of condensation reaction has been observed from the IR spectra of the BTMSE sol-gel and the sol-gel coated film after the treatments at different temperatures with different lengths of time. The corrosion protection of the sol-gel coated Al and Cu has been characterized in NaCl solutions by cyclic voltammetric, potentiodynamic polarization and impedance spectroscopy methods. All these electrochemical measurements indicate that the sol-gel coated metals have better corrosion protection than the corresponding uncoated metals.
Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2014-01-01
Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.
New Record Five-Wheel Drive, Spirit's Sol 1856
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical projection with geometric seam correction.Wang, Y; Zeng, Z; Guan, N; Cheng, J
2001-07-01
A novel open-tubular capillary electrochromatography (OT-CEC) column coated with 2,6-dibutyl-beta-cyclodextrin (DB-beta-CD) was prepared using sol-gel technique. In the sol-gel approach, owing to the three-dimensional network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. We achieved high efficiencies of 5-14 x 10(4) plates/m for the isomeric nitrophenols using the sol-gel-derived DB-beta-CD columns. The migration time reproducibility of the separation of the isomeric nitrophenols was better than 2.2% over five runs and 4.5% from column to column. These sol-gel-coated DB-beta-CD columns have shown improved separations of isomeric aminophenols, isomeric dihydroxybenzenes and isomeric nitrophenols, in comparison with the sol-gel matrix capillary column. The influences of buffer pH and methanol solvent on separation were investigated. The chiral resolution of enantiomers such as ibuprofen and binaphthol was explored primarily.
Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul
2007-12-07
Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.
Opportunity's Surroundings on Sol 1687
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a cylindrical projection with geometric seam correction.Opportunity's Surroundings on Sol 1687 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a vertical projection with geometric seam correction.Opportunity's Surroundings on Sol 1687 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.Cai, Shuang; Zhang, Yulu; Zhang, Hongli; Yan, Hongwei; Lv, Haibing; Jiang, Bo
2014-07-23
Hydrophobic antireflective coatings with a low refractive index were prepared via a base/acid-catalyzed two-step sol-gel process using tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) as precursors, respectively. The base-catalyzed hydrolysis of TEOS leads to the formation of a sol with spherical silica particles in the first step. In the second step, the acid-catalyzed MTES hydrolysis and condensation occur at the surface of the initial base-catalyzed spherical silica particles, which enlarge the silica particle size from 12.9 to 35.0 nm. By a dip-coating process, this hybrid sol gives an antireflective coating with a refractive index of about 1.15. Moreover, the water contact angles of the resulted coatings increase from 22.4 to 108.7° with the increases of MTES content, which affords the coatings an excellent hydrophobicity. A "core-shell" particle growth mechanism of the hybrid sol was proposed and the relationship between the microstructure of silica sols and the properties of AR coatings was investigated.
Time for a Change; Spirit's View on Sol 1843 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate.Time for a Change; Spirit's View on Sol 1843 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate.Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong
2013-07-01
A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time for a Change; Spirit's View on Sol 1843
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate. This view is presented as a cylindrical projection with geometric seam correction.The effect of silica-coating by sol-gel process on resin-zirconia bonding.
Lung, Christie Ying Kei; Kukk, Edwin; Matinlinna, Jukka Pekka
2013-01-01
The effect of silica-coating by sol-gel process on the bond strength of resin composite to zirconia was evaluated and compared against the sandblasting method. Four groups of zirconia samples were silica-coated by sol-gel process under varied reagent ratios of ethanol, water, ammonia and tetraethyl orthosilicate and for different deposition times. One control group of zirconia samples were treated with sandblasting. Within each of these five groups, one subgroup of samples was kept in dry storage while another subgroup was aged by thermocycling for 6,000 times. Besides shear bond testing, the surface topography and surface elemental composition of silica-coated zirconia samples were also examined using scanning electron microscopy and X-ray photoelectron spectroscopy. Comparison of silica coating methods revealed significant differences in bond strength among the Dry groups (p<0.001) and Thermocycled groups (p<0.001). Comparison of sol-gel deposition times also revealed significant differences in bond strength among the Dry groups (p<0.01) and Thermocycled groups (p<0.001). Highest bond strengths were obtained after 141-h deposition: Dry (7.97±3.72 MPa); Thermocycled (2.33±0.79 MPa). It was concluded that silica-coating of zirconia by sol-gel process resulted in weaker resin bonding than by sandblasting.
NASA Astrophysics Data System (ADS)
Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng
2018-01-01
In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.
Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.
Catauro, M; Papale, F; Sapio, L; Naviglio, S
2016-08-01
The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanosilica coating for bonding improvements to zirconia.
Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin
2013-01-01
Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.
NASA Astrophysics Data System (ADS)
Schunk, P. R.; Hurd, A. J.; Brinker, C. J.
Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.
Segro, Scott S; Cabezas, Yaniel; Malik, Abdul
2009-05-15
A sol-gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol-gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol-gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol-gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol-gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol-gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions-even after 18h of exposure to 1M HCl (pH approximately 0.0) and 1M NaOH (pH approximately 14.0).
Non-destructive analysis of DU content in the NIF hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.
2015-12-16
The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thicknessmore » is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.« less
Development of a functionalized coating for inhibition of marine corrosion and biofouling
NASA Astrophysics Data System (ADS)
Gittens, Jeanette Elizabeth
The financial loss incurred by corrosion of metals in the marine environment has led to a need to develop effective, economic and environmentally friendly methods of protection. Traditional methods of counteracting the development of surface biofilms and biofouling within aqueous environments have involved implementing chemical biocides, often with a deleterious effect on non-target organisms. Sol gel coating technology offers a convenient route for immobilizing functional additives, such as inhibitors or, in the case of this study, biologically active microorganisms. Paenibacillus polymyxa biofilms inhibit the corrosion of metal substrates and this strain has the advantage of forming endospores can withstand the solvent and acid concentrations required in sol-gel formulation. Encapsulation of viable P. polymyxa endospores within the sol-gel matrix allowed germination on exposure to nutrients, when germinating endospores and vegetative cells were seen after fluorescence microscopy to be distributed throughout the coating. Laboratory electrochemical impedance tests were used to characterize the corrosion behaviour of the endospore-containing (biotic) sol-gel coating in comparison to an abiotic (no endospores) sol-gel only coating and one containing non-viable (killed) endospores. The technology enabled manipulation of the sol-gel formulation and the method of application to produce biotic sol-gel with enhanced corrosion inhibition properties on aluminium alloy. Field trials in a marine environment confirmed the corrosion protecting properties of the biotic coating and that the biotic coatings inhibited macroscopic biofouling for at least 29 weeks relative to the controls without encapsulated live endospores. Production of polymyxin by the encapsulated bacteria, which was proposed as a mechanism by which they inhibit MIC, was less than 1 mug per ml and below the threshold of detection by liquid chromatography mass spectrometry and antimicrobial bioassay. Microcosm experiments were used to study differences in the corrosion of abiotic and biotic coatings in the presence of a corrosion-causing sulphate-reducing bacterium. Scanning electrochemical microscopy was developed as a technique to study electrochemical processes on the coating surface and showed differences in the distribution of copper ions on the surface of abiotic and biotic coatings.The results of the experimental work in this thesis show the potential of encapsulating metabolically active bacterial cells within a sol-gel coating on metals for the control of marine corrosion and biofouling.
Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich.
Fletcher, Melissa; Alexson, D M; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles
2011-02-01
α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm(-1)) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm(-1) disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy
2012-12-01
A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.
The development and characterization of sol-gel substrates for chemical and optical applications
NASA Astrophysics Data System (ADS)
Powers, Kevin William
1998-12-01
The sol gel process can be used to make monolithic porous glass for various scientific and engineering uses. The porosity of the material imparts a large surface area which is advantageous in applications such as catalyst supports or in the study of surface mediated chemical reactions. The chemical stability and transparency of the porous glass also make it suitable for use in the emerging field of optical sensors. In this study fluoride catalysis is used to produce sol gel monoliths with pore radii of up to 400 Angstroms, four times larger than any previously reported using conventional drying techniques. Gel monoliths with pore radii of 200 Angstroms were found to have the best combination of surface area, pore volume and optical transparency. Typical monoliths have surface areas of 150 m2/g and pore volumes of 1.60 cm3/g with good transparency. The monoliths are chemically stable, have good mechanical strength and can be easily rehydrated without cracking. The substrates are also suitable for sintering into dense high purity silica glass with little tendency towards foaming. An in-depth study of the catalytic effect of fluoride on the sol gel process is also included. It has been theorized that fluoride serves to expand the coordination sphere of the silicon center making it more subject to nucleophilic attack. In this work an ion-specific fluoride electrode is used to monitor free fluoride concentrations in HF catalyzed sols while silicic acid is added in the form of tetramethoxysilane (TMOS). It is found that fluoride is rapidly bound by the silicic acid in a ratio of four to one, indicating the formation of silicon tetrafluoride. A concurrent decrease in pH suggests that a pentacoordinate species is formed that is more stable than previously thought. A polymerization mechanism is proposed that explains the hydrophobicity of fluoride catalyzed gels and the difficulty in retaining structural fluoride in fluoride catalyzed sol gel glasses. Finally, several porous monoliths are doped with colloidal gold and the optical properties evaluated as a function of heat treatment. This demonstrates the feasibility of using porous glass nanocomposites in sensors and other optical components.
Systematic study of inorganic functionalization of ZnO nanorods by Sol-Gel method
NASA Astrophysics Data System (ADS)
Gamarra, J. K.; Solano, C.; Piñeres, I.; Gómez, H.; Mass, J.; Montenegro, D. N.
2017-01-01
A systematic study of the inorganic surface functionalization of ZnO nanostructures by sol-gel method is shown. We have emphasized on the evolution of morphology properties of samples as a function of functionalization parameters. In addition, the effects on thermal stability and some optical properties of samples are discussed.
NASA Astrophysics Data System (ADS)
Kwon, Seung Lee; Jin, Young Un; Kim, Byeong Jo; Han, Man Hyung; Han, Gill Sang; Shin, Seunghak; Lee, Sangwook; Jung, Hyun Suk
2017-09-01
Organic-inorganic halide perovskites (OIHPs) has emerged as promising optoelectronic materials for solar cells and light-emitting diodes. OIHPs are usually coated on a flat surface or mesoporous scaffold for the applications. Herein, we report a facile sol-gel-derived solution route for coating methylammonium lead iodide (MAPbI3) perovskite layers onto various nanoporous structures. We found that lead-acetate solution has superior infiltration property onto surface of oxide membranes, and it can easily be converted to MAPbI3 by sequential transform to PbO, PbI2, and finally MAPbI3. Excellent pore-filling and full coverage of the nanostructures with the final MAPbI3 perovskite material are demonstrated via this sol-gel-derived solution route, using mesoporous TiO2, TiO2 nanorods, and high-aspect ratio nanopores in anodic aluminum oxide membranes. Given that this sol-gel-based method fills nanopores better than other conventional coating methods for OIHPs, this method may find wide applications in nanostructured OIHPs-based optoelectronic systems.
Aymerich, María; Gómez-Varela, Ana I; Álvarez, Ezequiel; Flores-Arias, María T
2016-08-25
A study of PDMS (polydimethylsiloxane) sol-gel-coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion.
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-11-22
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.
Porous alumina scaffold produced by sol-gel combined polymeric sponge method
NASA Astrophysics Data System (ADS)
Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.
2012-09-01
Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.
NASA Astrophysics Data System (ADS)
Reid, Jean-Philippe
ommaire La structure du gap supraconducteur et sa modulation sont intimement liees au potentiel d'interaction responsable de l'appariement des electrons d'un supraconducteur. Ainsi, l'etude de la structure du gap-SC et de sa modulation permettent de faire la lumiere sur la nature du mecanisme d'appariement des electrons. A cet egard, les resultats experimentaux des supraconducteurs a base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous presenterons une etude systematique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivite thermique, une sonde directionnelle du gap-SC, nous avons ete en mesure de reveler la structure du gap-SC pour les composes suivants : Ba1-xKxFe 2As2, Ba(Fe1-xCo x)2As2, LiFeAs et Fe1-deltaTe 1-xSex. L'etude de ces quatre composes, de trois differentes familles structurales, a pu etablir un tableau partiel mais tres exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustre dans cette these, ces quatre composes ne possedent aucun noeud dans leur structure du gap-SC a dopage optimal. Toutefois, a une concentration differente de celle optimale pour les composes K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extremites 'du dome supraconducteur. Ceci suggere fortement que, pour ces composes, la presence de noeuds sur la surface de Fermi est nuisible a la phase supraconductrice. Mots-cles: Supraconducteurs a base de fer, Pnictides, Structure du gap supraconducteur, Conductivite thermique
Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang
2011-01-01
A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations. PMID:22319388
NASA Astrophysics Data System (ADS)
Dong, Siyu; Xie, Lingyun; He, Tao; Jiao, Hongfei; Bao, Ganghua; Zhang, Jinlong; Wang, Zhanshan; Cheng, Xinbin
2017-09-01
For the sol-gel method, it is still challenging to achieve excellent spectral performance when preparing antireflection (AR) coating by this way. The difficulty lies in controlling the film thickness accurately. To correct the thickness error of sol-gel coating, a hybrid approach that combined conventional sol-gel process with ion-beam etching technology was proposed in this work. The etching rate was carefully adjusted and calibrated to a relatively low value for removing the redundant material. Using atomic force microscope (AFM), it has been demonstrated that film surface morphology will not be changed in this process. After correcting the thickness error, an AR coating working at 1064 nm was prepared with transmittance higher than 99.5%.
Li, Ying-Sing; Church, Jeffrey S; Woodhead, Andrea L; Vecchio, Nicolas E; Yang, Johnny
2014-11-11
Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals. From the vibrational spectra, TTPI is likely to have the C1 point group. Vibrational assignments are suggested based on group frequencies, the expected reactions in the sol-gel process and the vibrational studies of some related molecules. From the experimental infrared spectra of xerogels annealed at different temperatures and from the thermal-gravimetric analysis, it is found that the TTPI xerogel decomposes at around 450°C with silica being the major decomposition product. A cyclic voltammetric study of the metal electrodes coated with different concentrations of TTPI ranging from 5% to 42% (v/v) has shown that the films with high concentrations of sol would provide better corrosion protection for aluminum and copper. Copyright © 2014 Elsevier B.V. All rights reserved.
Absorption and Modification of Lower Hybrid Waves in the Scrape Off Layer
NASA Astrophysics Data System (ADS)
Parker, R.; Wallace, G.; Shiraiwa, S.; Baek, S.-G.; Faust, I.
2015-11-01
Loss of current drive efficiency of lower hybrid waves at high density in Alcator C-Mod current drive experiments has been attributed, at least in part, to interactions in the SOL. While ray-tracing calculations indicate that collisional absorption and modification of n|| during reflections in the SOL can be significant, their validity can be called into question owing to steep SOL gradients. In order to further quantify these losses, full-wave calculations using a plane-stratified SOL model have been carried out. The results show that the loss resulting from reflections in the SOL can be substantial, with collisional losses accounting for a loss of up to 50% per bounce of the incident wave power. The loss is sensitive to the SOL parameters with the strongest collisional absorption occurring in the case of steep temperature and weak density gradients. Modification of n|| can also be significant when the density gradient and normal to the flux surfaces are not aligned. These effects are less severe for the fast wave since its penetration into the SOL is significantly less than that of the slow wave. Work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.
Comparison of self-cleaning properties of three titania coatings on float glass
NASA Astrophysics Data System (ADS)
Piispanen, Minna; Hupa, Leena
2011-11-01
This work compares the self-cleaning properties of experimental TiO2 and TiO2-Ag coatings on float glass with a commercial self-cleaning glass. In the experimental surfaces, TiO2 coating was applied to float glass via the sol-gel route, while TiO2-Ag coating was applied by the liquid flame spray method, which deposits TiO2-Ag composite nanoparticles on the surface. The effect of the coatings on the surface wettability and the activation time for achieving hydrophilicity was studied through water contact angle as a function of exposure time to UV light. The surface morphology was investigated by using scanning electron microscopy (SEM) and confocal optical microscopy. The photocatalytic activity of the coatings was examined with methylene blue and stearic acid degradation tests. Finally, the soil attachment to the surfaces was tested with a sebum-based model soil. The sol-gel TiO2 coating became superhydrophilic within a few hours, while the activation time needed for the commercial titania coated glass was several days. The surface with the TiO2-Ag nanoparticles did not show any marked changes in the water contact angle. The commercial titania coated and the sol-gel TiO2 surfaces showed self-cleaning properties and clearly lower attachment of soil than the uncoated and TiO2-Ag coated surfaces. The difference in the interaction of the surfaces with the organic contaminants was assumed to depend mainly on differences in the thickness of the coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn
2015-07-15
Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shearmore » flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.« less
Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher
2018-06-18
Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.
Xie, Haifeng; Zhu, Ye; Chen, Chen; Gu, Ning; Zhang, Feimin
2011-10-01
To examine the availability of sol-gel processed silica coating for alumina-based ceramic bonding, and determine which silica sol concentration was appropriate for silica coating. Sixty disks of In-Ceram alumina ceramic were fabricated and randomly divided into 5 main groups. The disks received 5 different surface conditioning treatments: Group Al, sandblasted; Group AlC, sandblasted + silane coupling agent applied; Groups Al20C, Al30C, and Al40C, sandblasted, silica coating via sol-gel process prepared using 20 wt%, 30 wt%, and 40 wt% silica sols, and then silane coupling agent applied. Before bonding, one-step adhesives were applied on pre-prepared ceramic surfaces of all groups. Then, 60 dentin specimens were prepared and conditioned with phosphoric acid and one-step adhesive. Ceramic disks of all groups were cemented to dentin specimens with dual-curing resin cements. Fracture strength was determined at 24 h and after 20 days of storage in water. Groups Al20C, Al30C, and Al40C revealed significantly higher fracture strength than groups Al and AlC. No statistically significant difference in fracture strength was found between groups Al and AlC, or among groups Al20C, Al30C, and Al40C. Fracture strength values of all the groups did not change after 20 days of water storage. Sol-gel processed silica coating can enhance fracture strength of In-Ceram alumina ceramic after bonding to dentin, and different silica sol concentrations produced the same effects. Twenty days of water storage did not decrease the fracture strength.
Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.
2008-01-01
This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.
Kayili, H Mehmet; Salih, Bekir
2016-08-01
Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. Copyright © 2016 Elsevier B.V. All rights reserved.
SolTrace FAQs | Concentrating Solar Power | NREL
that should be noted: when using a cubic spline file to describe a surface, if that file contains a help for script functions? A: Yes, when typing a script function within the scripting window, as you results. When the limit is reached, SolTrace generates the following error message (Windows version; Mac
Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes
Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey
2002-11-26
The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.
Sol-gel matrices for direct colorimetric detection of analytes
Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey
2000-01-01
The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.
Mechanical compatibility of sol-gel annealing with titanium for orthopaedic prostheses.
Greer, Andrew I M; Lim, Teoh S; Brydone, Alistair S; Gadegaard, Nikolaj
2016-01-01
Sol-gel processing is an attractive method for large-scale surface coating due to its facile and inexpensive preparation, even with the inclusion of precision nanotopographies. These are desirable traits for metal orthopaedic prostheses where ceramic coatings are known to be osteoinductive and the effects may be amplified through nanotexturing. However there are a few concerns associated with the application of sol-gel technology to orthopaedics. Primarily, the annealing stage required to transform the sol-gel into a ceramic may compromise the physical integrity of the underlying metal. Secondly, loose particles on medical implants can be carcinogenic and cause inflammation so the coating needs to be strongly bonded to the implant. These concerns are addressed in this paper. Titanium, the dominant material for orthopaedics at present, is examined before and after sol-gel processing for changes in hardness and flexural modulus. Wear resistance, bending and pull tests are also performed to evaluate the ceramic coating. The findings suggest that sol-gel coatings will be compatible with titanium implants for an optimum temperature of 500 °C.
Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; Hernández-Ramírez, Aracely; Barraza, Felipe F Castillón; Valente, Jaime S
2014-03-12
The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al₂O₃ phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al₂O 3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al₂O₃ lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.
Electrochemical and spectroscopic characterization of surface sol-gel processes.
Chen, Xiaohong; Wilson, George S
2004-09-28
(3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.
NASA Astrophysics Data System (ADS)
Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba
2013-06-01
The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.
Human body surface area database and estimation formula.
Yu, Chi-Yuang; Lin, Ching-Hua; Yang, Yi-Hsueh
2010-08-01
This study established human body surface area (BSA) database and estimation formula based on three-dimensional (3D) scanned data. For each gender, 135 subjects were drawn. The sampling was stratified in five stature heights and three body weights according to a previous survey. The 3D body surface shape was measured using an innovated 3D body scanner and a high resolution hand/foot scanner, the total body surface area (BSA) and segmental body surface area (SBSA) were computed based on the summation of every tiny triangular area of triangular meshes of the scanned surface; and the accuracy of BSA measurement is below 1%. The results of BSA and sixteen SBSAs were tabulated in fifteen strata for the Male, the Female and the Total (two genders combined). The %SBSA data was also used to revise new Lund and Browder Charts. The comparison of BSA shows that the BSA of this study is comparable with the Du Bois and Du Bois' but smaller than that of Tikuisis et al. The difference might be attributed to body size difference between the samples. The comparison of SBSA shows that the differences of SBSA between this study and the Lund and Browder Chart range between 0.00% and 2.30%. A new BSA estimation formula, BSA=71.3989 x H(.7437) x W(.4040), was obtained. An accuracy test showed that this formula has smaller estimation error than that of the Du Bois and Du Bois'; and significantly better than other BSA estimation formulae.
Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon
2017-12-19
Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.
Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa
2015-04-01
In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.
Spirit Beside 'Home Plate,' Sol 1809
NASA Technical Reports Server (NTRS)
2009-01-01
NASA Mars Exploration Rover Spirit used its navigation camera to take the images assembled into this 120-degree view southward after a short drive during the 1,809th Martian day, or sol, of Spirit's mission on the surface of Mars (February 3, 2009). Spirit had driven about 2.6 meters (8.5 feet) that sol, continuing a clockwise route around a low plateau called 'Home Plate.' In this image, the rocks visible above the rovers' solar panels are on the slope at the northern edge of Home Plate. This view is presented as a cylindrical projection with geometric seam correction.Opportunity's Surroundings on Sol 1818
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.NASA Technical Reports Server (NTRS)
2008-01-01
This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.' Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Nespoli, F.; Labit, B.; Furno, I.; Theiler, C.; Sheikh, U. A.; Tsui, C. K.; Boedo, J. A.; TCV Team
2018-05-01
In inboard-limited plasmas, foreseen to be used in future fusion reactor start-up and ramp down phases, the Scrape-Off Layer (SOL) exhibits two regions: the "near" and "far" SOL. The steep radial gradient of the parallel heat flux associated with the near SOL can result in excessive thermal loads onto the solid surfaces, damaging them and/or limiting the operational space of a fusion reactor. In this article, leveraging the results presented in the study by F. Nespoli et al. [Nucl. Fusion 57, 126029 (2017)], we propose a technique for the mitigation and suppression of the near SOL heat flux feature by impurity seeding. The first successful experimental results from the TCV tokamak are presented and discussed.
Soft nanoimprint lithography on SiO2 sol-gel to elaborate sensitive substrates for SERS detection
NASA Astrophysics Data System (ADS)
Hamouda, Frédéric; Bryche, Jean-François; Aassime, Abdelhanin; Maillart, Emmanuel; Gâté, Valentin; Zanettini, Silvia; Ruscica, Jérémy; Turover, Daniel; Bartenlian, Bernard
2017-12-01
This paper presents a new alternative fabrication of biochemical sensor based on surface enhanced Raman scattering (SERS) by soft nanoimprint lithography (S-NIL) on SiO2 sol-gel. Stabilization of the sol-gel film is obtained by annealing which simplifies the manufacturing of these biosensors and is compatible with mass production at low cost. This detector relies on a specific pattern of gold nanodisks on a thin gold film to obtain a better sensitivity of molecules' detection. Characterizations of SERS devices were performed on a confocal Raman microspectrophotometer after a chemical functionalization. We report a lateral collapse effect on poly(diméthylsiloxane) (PDMS) stamp for specific nanostructure dimensions. This unintentional effect is used to evaluate S-NIL resolution in SiO2 sol-gel.
Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd
2017-04-01
Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.
Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H
2011-01-01
Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.
Microprobes aluminosilicate ceramic membranes
Anderson, Marc A.; Sheng, Guangyao
1993-01-01
Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.
Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375
NASA Technical Reports Server (NTRS)
Leovy, C. B.
1984-01-01
The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.
Effects of sol aging on resistive switching behaviors of HfOx resistive memories
NASA Astrophysics Data System (ADS)
Hsu, Chih-Chieh; Sun, Jhen-Kai; Tsao, Che-Chang; Chen, Yu-Ting
2017-03-01
This work investigates effects of long-term sol-aging time on sol-gel HfOx resistive random access memories (RRAMs). A nontoxic solvent of ethanol is used to replace toxic 2-methoxyethanol, which is usually used in sol-gel processes. The top electrodes are fabricated by pressing indium balls onto the HfOx surface rather than by using conventional sputtering or evaporation processes. The maximum process temperature is limited to be 100 ℃. Therefore, influences of plasma and high temperature on HfOx film can be avoided. Under this circumstance, effects of sol aging time on the HfOx films can be more clearly studied. The current conduction mechanisms in low and high electric regions of the HfOx RRAM are found to be dominated by Ohmic conduction and trap-filled space charge limited conduction (TF-SCLC), respectively. When the sol aging time increases, the resistive switching characteristic of the HfOx layer becomes unstable and the transition voltage from Ohmic conduction to TF-SCLC is also increased. This suggests that an exceedingly long aging time will give a HfOx film with more defect states. The XPS results are consistent with FTIR analysis and they can further explain the unstable HfOx resistive switching characteristic induced by sol aging.
Preparation, purification, and characterization of aminopropyl-functionalized silica sol.
Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila
2013-01-15
A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.
[Effect of silicon coating on bonding strength of ceramics and titanium].
Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing
2009-06-01
This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.
Aymerich, María; Gómez-Varela, Ana I.; Álvarez, Ezequiel; Flores-Arias, María T.
2016-01-01
A study of PDMS (polydimethylsiloxane) sol-gel–coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion. PMID:28773848
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-01-01
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061
NASA Astrophysics Data System (ADS)
Aliouane, T.; Bouzid, D.; Belkhir, N.; Bouzid, S.; Herold, V.
2005-05-01
La fabrication des composants en verre optique nécessite des moyens de grande précision dans les procédés de finition vue l'importance accordée à leur qualité. Durant le processus de polissage des verres optiques, le polissoir est un élément clé et a un impact direct sur les performances des composants optiques, non seulement il est utilisé comme support de grains abrasifs mais il doit posséder la fonction de transmission de la pression aux grains. La connaissance de ses propriétés, essentiellement mécanique, est impérative afin d'obtenir un état de surface optimal des composants optiques destinés à remplir des fonctions très précises dans des appareils optiques très performants. Dans cette étude, nous avons constaté que les propriétés des polissoirs en polyuréthanne tel que la dureté, le module d'élasticité et la densité varient au cours du polissage. Ce changement a des effets sur l'état de surface de verre optique, causé par le changement microstructural de la surface du polissoir (distribution et dimensions des pores) et par conséquent sur la quantité des abrasifs (en oxyde de cérium) insérée dans les pores, ce qui influe sur la quantité de verre enlevée et sur l'état de surface du composant. Sur la base des résultats obtenus, il a été prouvé que le polissoir subit des modifications très importantes ce qui influe considérablement sur son efficacité de polissage.
Singh, S; Khandpur, S; Sharma, V K; Ramam, M
2013-11-01
Both Oral PUVA and PUVA sol have been successfully used in vitiligo treatment. However, there is paucity of studies comparing the two therapies, especially under subtropical conditions of abundant sunlight where PUVA sol is more feasible. To compare the efficacy and side effects of oral PUVA versus oral PUVA sol therapy in generalized vitiligo. Comparative prospective clinical trial conducted on consecutive patients of generalized vitiligo. Response to treatment was assessed using change in Lund & Browder (L & B) score for assessment of reduction in body surface area of involvement, patient global assessment (PGA) of improvement in vitiligo, investigator's global assessment (IGA) of extent of repigmentation, and quality of life (QOL) assessment using Tjioe et al questionnaire. Thirty five patients were recruited- 18 in PUVA and 17 in PUVA sol group. Mean percentage change in L & B score at 36 weeks was 46.4% in PUVA and 26.1% in PUVA sol group (P = 0.06), mean PGA score in PUVA was 4.58 ± 2.23 and in PUVA sol group was 6 ± 2.08 (P = 0.13), mean IGA score was 3.08 ± 1.68 in PUVA and 1.79 ± 0.57 in PUVA sol group (P = 0.11). QOL scores were significantly higher in PUVA group as compared to the PUVA sol group (P = 0.04). Side effects were comparable in two groups except for phototoxic side effects which were significantly more in PUVA group. PUVA is more efficacious than PUVA sol and also provides greater psychological benefit in treatment of generalized vitiligo but is associated with more phototoxic adverse effects. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.
On pressure measurement and seasonal pressure variations during the Phoenix mission
NASA Astrophysics Data System (ADS)
Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim
2010-03-01
In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.
Seyyal, Emre; Malik, Abdul
2017-04-29
Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD) (4.2-26.3 ng L -1 ) for environmentally important analytes including polycyclic aromatic hydrocarbons, ketones and aliphatic hydrocarbons. In CME-GC experiments (n = 5), the capillary-to-capillary RSD value was ∼2.1%; such a low RSD value is indicative of excellent reproducibility of the sol-gel method used for the preparation of these CME coatings. The dual-ligand sol-gel coating provided stable performance in capillary microextraction of analytes from saline samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Taché, Alex; Gan, Lu; Deporter, Douglas; Pilliar, Robert M
2004-01-01
The effect of adding a thin sol-gel-formed calcium phosphate (CaP) coating to sintered porous-surfaced titanium alloy (Ti-6Al-4V) implants on rates of initial bone ingrowth was investigated. Control implants (as manufactured) and similar implants with sol-gel CaP coatings were randomly placed in distal femoral rabbit condyles (1 implant/leg). After healing for 6, 9, 12, and 16 days, 8 of 10 rabbits in each time group were assessed for maximum implant pullout force (N) and interface stiffness (N/mm). Selected extracted implants also were examined by secondary electron imaging to characterize affected surfaces. The implants of the remaining 2 rabbits in each group were examined by backscattered scanning electron microscopy (BSEM). Significantly greater pullout forces and interface stiffness were found for CaP-coated implants at 6 and 9 days. At 6 days, BSEM revealed bone ingrowth on CaP-coated implants but not on control implants. Secondary electron imaging and BSEM observations also suggested greater bone ingrowth with CaP-coated porous implants at 9, 12, and 16 days. Sol-gel-formed CaP surface films significantly enhance rates of bone ingrowth into sintered porous-surfaced implants. This surface treatment may have a number of clinical benefits, including shortening the period prior to functional loading of such implants and improving treatment outcomes in situations of poor bone quality and/or quantity. (More than 50 references).
NASA Astrophysics Data System (ADS)
Buelna Quijada, Genoveva
2001-07-01
Regenerative, alumina-supported, copper-based sorbent/catalysts provide a promising technique for simultaneous removal of SO2 and NO x from flue gas. These sorbents can remove over 90% of SO2 and 70+% of NOx while generating no wastes, reducing energy consumption, and producing valuable by-products. The lack of a cost-effective sorbent with low attrition rate and good reactivity has been the main hurdle to commercialization of this copper oxide process. Developing such a sorbent is the focus of this dissertation. This work examines using sol-gel techniques rather than traditional processes to produce gamma-alumina and copper coated 7-alumina granular sorbents. Important modifications to the established sol-gel synthesis process were made, which minimized generated wastes and reduced preparation time and sorbent cost. A laboratory scale semi-continuous process providing a basis for large-scale synthesis was developed. The effect of the copper content on the surface area and dispersion of the active species on sol-gel-derived sorbents coated by the one step and wet-impregnation methods was studied. The sol-gel-derived sorbents showed superior sulfation and regeneration properties than the existing commercial sorbents used in the copper oxide process in terms of sulfation capacity, fast regeneration, recovery of sorption capacity, and SO2 concentration in the regenerated effluent. The optimum temperature for NO reduction by NH3 over sol-gel-derived CuO/gamma-Al2O3 was found to be 350°C for both fresh and sulfated catalysts. This was also the optimum operating temperature for simultaneous removal of SO2 and NOx from simulated flue gas. At 350°C, the adsorption capacity of the sol-gel sorbent/catalyst was higher than UOP's sorbent, and very close to the capacity of ALCOA's sorbent, while the catalytic activity for NO reduction of the sol-gel-derived CuO/gamma-Al 2O3 sorbent fell between the commercial sorbents. The new mesoporous sol-gel-derived materials showed larger surface area, better mechanical strength, and more uniform dispersion of the copper species than existing commercially available sorbents. The superior mechanical properties, better cost effectiveness, and comparable efficiency for simultaneous removal of SO2 and NOx of the sol-gel-derived CuO/gamma-Al 2O3 sorbents with respect to the commercial ones make them a good option for use in the copper oxide process for combined removal of SO2 and NOx from flue gas.
Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation
NASA Astrophysics Data System (ADS)
Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi
2016-03-01
Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.
Enhanced self-repairing capability of sol-gel derived SrTiO3/nano Al2O3 composite films
NASA Astrophysics Data System (ADS)
Yao, Manwen; Peng, Yong; Xiao, Ruihua; Li, Qiuxia; Yao, Xi
2016-08-01
SrTiO3/nano Al2O3 inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO3 films doped by equivalent amount of sol-Al2O3 have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO3 films doped with sol-Al2O3. The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodic oxidation reaction in origin, which can repair the internal and/or surface defects of the films.
Sigman, Michael E.; Dindal, Amy B.
2003-11-11
Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.
Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; Hernández-Ramírez, Aracely; Castillón Barraza, Felipe F.; Valente, Jaime S.
2014-01-01
The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%. PMID:28788556
The influence of precursor addition order on the porosity of sol-gel bioactive glasses.
Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina
2018-06-16
The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
2014-05-01
de simulation du Simulateur de Contre- mesures de la Menace Navale afin de pouvoir inclure des leurres et des autodirecteurs de missiles ; 4) Une...sur le littoral ; 2) La détection des petites cibles de surface sur le littoral ; 3) L’amélioration et la validation de la modélisation et du code...amélioration et une validation supplémentaire de la modélisation et du
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilmette, Ray A.; Hahn, Fletcher F.; Durbin, P. W.
A number of U. S. veterans of the Persian Gulf War were wounded with depleted uranium (DU) metal fragments as a result of 'friendly fire' incidents, in which Abrams tanks and Bradley fighting vehicles were struck by DU anti-armor munitions. Some of the crew members who survived were left with multiple small fragments of DU in their muscles and soft tissues. The number, size and location of the fragments made them inoperable in general, and therefore subject to long-term retention. Because there was inadequate data to predict the potential carcinogenicity of DU fragments in soft tissues, Hahn et al. (2003)more » conducted a lifespan cancer study in rats. As part of that study, a number of rats were maintained to study the biokinetics and dosimetry of DU implanted intramuscularly in male Wistar rats. Typically, four metal fragments, either as cylindrical pellets or square wafers were implanted into the biceps femoris muscles of the rats. Urine samples were collected periodically during their lifespans, and DU was analyzed in kidneys and eviscerated carcass (minus the implant sites) at death. The daily DU urinary excretion rate increased steeply during the first 30 d after implantation peaking at about 90 d at 3-10 x 10{sup -3}%/d. During the first 150 d, the average excretion rate was 2.4 x 10{sup -3}%/d, decreasing thereafter to about 1 x 10{sup -3}%/d. Serial radiographs were made of the wound sites to monitor gross morphologic changes in the DU implant and the surrounding tissue. As early as 1 w after implantation, radiographs showed the presence of surface corrosion and small, dense bodies near the original implant, presumably DU. This corrosion from the surface of the implant continued with time, but did not result in an increasing amount of DU reaching the blood and urine after the first 3 mo. During this 3-mo period, connective tissue capsules formed around the implants, and are hypothesized to have reduced the access of DU to tissue fluids by limiting the diffusion rate of dissolved chemical forms of DU. Using a model of wound-site retention being developed by a committee of the U.S. National Council of Radiation Protection and Measurements (NCRP), it was found that the average retention of DU in the wound site could be described by a two-component exponential function in which 0.5% of the DU was retained with a half time of 80 d and the remainder with a half time of about 300 y.« less
Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller
2011-01-01
In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...
Novel benzo-15-crown-5 sol-gel coating for solid-phase microextraction.
Wang, Danhua; Xing, Jun; Peng, Jiagang; Wu, Caiying
2003-07-11
A novel dihydroxy-terminated benzo-15-crown-5 was synthesized and applied to prepare a solid-phase microextraction (SPME) fiber coating with sol-gel technology. The optimization of the sol-gel process was studied. The coating method with sol-gel was improved and completed in one run, which economized materials and allowed easier control of the fiber thickness. The repeatability of coating fiber to fiber was better than 4.94% (RSD). The surface of the fiber coating was well-distributed and an electron microscopy experiment suggested a porous structure for crown ether coating, providing high surface areas and allowing for high extraction efficiency. The coating has a high thermal stability (350 degrees C), long lifetime and can stand solvent (organic and inorganic) rinsing due to the chemical binding between the coating and the fiber surface. Non-polar benzene, toluene, ethylbenzene, xylenes, chlorobenzenes, polar phenolic compounds and arylamines were used to evaluate the character of the fiber coating by headspace SPME-gas chromatography technology. For phenols, the linear concentrations ranged from 5 to 1000 microg/l, the detection limits were between 0.05 and 1 microg/l, and the RSD was less than 5%. The addition of benzo-crown ether not only increases the thermal stability of the fiber coating, but also enhances the selectivity of the fiber coating. Compared with commercially available SPME fibers poly(dimethylsiloxane) and polyacrylate, the few phases showed better selectivity and sensitivity towards non-polar and polar aromatic compounds.
Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.
Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M
1999-08-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.
Opportunity's Surroundings on Sol 1818 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.Opportunity's Surroundings on Sol 1818 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J
2003-11-01
Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. Copyright 2003 Wiley Periodicals, Inc.
Yin, H; Casey, P S; Chow, G M
2012-11-01
Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.
Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z
2009-08-15
Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).
The environs of viking 2 lander.
Shorthill, R W; Moore, H J; Hutton, R E; Scott, R F; Spitzer, C R
1976-12-11
Forty-six days after Viking 1 landed, Viking 2 landed in Utopia Planitia, about 6500 kilometers away from the landing site of Viking 1. Images show that in the immediate vicinity of the Viking 2 landing site the surface is covered with rocks, some of which are partially buried, and fine-grained materials. The surface sampler, the lander cameras, engineering sensors, and some data from the other lander experiments were used to investigate the properties of the surface. Lander 2 has a more homogeneous surface, more coarse-grained material, an extensive crust, small rocks or clods which seem to be difficult to collect, and more extensive erosion by the retro-engine exhaust gases than lander 1. A report on the physical properties of the martian surface based on data obtained through sol 58 on Viking 2 and a brief description of activities on Viking 1 after sol 36 are given.
Regulation of human airway surface liquid.
Widdicombe, J H; Widdicombe, J G
1995-01-01
Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.
Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S
2002-05-15
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika
2006-09-12
Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.
The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.
Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G
1997-12-05
The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.
Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.
Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing
2013-03-01
Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME. Copyright © 2013 Elsevier B.V. All rights reserved.
Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.
Allhusen, John S; Conboy, John C
2013-11-27
RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onchi, T.; Zushi, H.; Hanada, K.
2015-08-15
Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (I{sub p}) ramp-up phase, high heat flux (>1 MW/m{sup 2}) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of I{sub p} at 20 Hz is observed. Heat flux and subsonic plasma flowmore » in the far-SOL are modified corresponding to the I{sub p}-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-I{sub p} phase. Modification of plasma flow in the far SOL occurs earlier than the I{sub p} crash. The M–I{sub p} curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core–SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of I{sub p} in the IPN configuration.« less
Silk flame retardant finish by ternary silica sol containing boron and nitrogen
NASA Astrophysics Data System (ADS)
Zhang, Qiang-hua; Chen, Guo-qiang; Xing, Tie-ling
2017-11-01
A ternary flame retardant sol system containing Si, B and N was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor, boric acid (H3BO3) and urea (CO(NH2)2) as flame retardant additives and then applied to silk fabric flame retardant finish. The FT-IR and SEM results showed that the nitrogen-boron-silica ternary sol was successfully prepared and entrapped onto the surface of silk fibers. The limiting oxygen index (LOI) test indicated that the silk fabric treated with 24% boric acid and 6% urea (relative to the TEOS) doped ternary silica sol system performed excellent flame retardancy with the LOI value of 34.6%. Furthermore, in order to endow silk fabric with durable flame retardancy, the silk fabric was pretreated with 1,2,3,4-butanetetracarboxylic acid (BTCA) before the ternary sol system treatment. The BTCA pretreat ment applied to silk could effectively promote the washing durability of the ternary sol, and the LOI value of the treated sample after 10 times washing could still maintain at 30.8% compared with that of 31.0% before washing. Thermo gravimetric (TG), micro calorimeter combustion (MCC) and smoke density test results demonstrated that the thermal stability, heat release and smoke suppression of the nitrogen-boron-silica ternary system decreased somewhat compared with the boron-silica binary flame retardant system.
NASA Astrophysics Data System (ADS)
Bindig, U.; Ulatowska-Jarza, A.; Kopaczynska, M.; Müller, G.; Podbielska, H.
2008-01-01
In view of laser-assisted medical applications, the construction of silica-based sol-gel fiberoptic sensors based on photolon (Ph) and protoporphyrin IX (PP IX) is discussed. Electron microscopy and AFM were used to characterize the silica sol-gel coatings. AFM measurements indicate a change in the surface porosity. The PP IX-based sensors were constructed as a one-layer optode as well as a multilayered structure. An additional hybrid sensor made up of alternate layers of PP IX-and Ph-doped sol-gel was also constructed and examined. Sol-gel matrices were prepared from silicate precursor tetraethylorthosilicate (TEOS) mixed with ethanol in acid-catalyzed hydrolysis. The carrier matrices of photosensitive dyes were produced with factor R = 20, where R denotes the ratio of solvent moles (ethanol) to the number of TEOS moles. A multilayered coating was built up using the reverse-dipping technique. The overall coating thickness was determined by electron microscopy. Doped sol-gels with different PP IX concentrations were used to produce fiberoptic coatings. The film optodes with a different number of layers were examined by fluorescence spectroscopy. It was found that photolon and protoporphyrin IX entrapped in sol-gel preserve their chemical reactivity and have contact with the external environment. The hybrid sensor demonstrated clear fluorescence and a reversible behavior in gaseous environments.
NASA Astrophysics Data System (ADS)
Jiang, Zhenlin; Fang, Shuying; Wang, Chaosheng; Wang, Huaping; Ji, Chengchang
2016-12-01
For a surface to be superhydrophobic a combination of surface roughness and low surface energy is required. In this study, polyorganosiloxane superhydrophobic surfaces were fabricated using a sol-gel and heat treatment process followed by coating with a nanosilica (SiO2) sol and organosiloxane 1, 1, 1, 3, 5, 5, 5-heptamethyl-3-[2-(trimethoxysilyl)ethyl]-trisiloxane (β-HPEOs). The nano-structure was superimposed using self-assembled, surface-modified silica nanoparticles, forming two-dimensional hierarchical structures. The water contact angle (WCA) of polyorganosiloxane superhydrophobic surface was 143.7 ± 0.6°, which was further increased to 156.7 ± 1.1° with water angle hysteresis of 2.5 ± 0.6° by superimposing nanoparticles using a heat treatment process. An analytical characterization of the surface revealed that the nano-silica and polyorganosiloxane formed a micro/nano structure on the films and the wetting behaviour of the films changed from hydrophilic to superhydrophobic. The WCA of these films were 143.7 ± 0.6° and at heat treatment temperatures of less than 400 °C, the WCA increased from 144.5 ± 0.7° to 156.7 ± 1.1°. The prepared superhydrophobic films were stable even after heat treatment at 430 °C for 30 min and their superhydrophobicity was durable for more than 120 days. The effects of heat treatment process on the surface chemistry structure, wettability and morphology of the polyorganosiloxane superhydrophobic films were investigated in detail. The results indicated that the stability of the chemical structure was required to yield a thermally-stable superhydrophobic surface.
A study of the quality of duplicated radiographs.
Erales, F A; Manson-Hing, L R
1979-01-01
The resolution, contrast, and clinical appearance of radiographs and duplicate radiographs made with two types of duplicating film were compared. Duplicating conditions evaluated were type and shape of light, light-film distance, type of exposure surface, and developer temperature. Major observations were as follows: both Kodak and DuPont films produced clinically acceptable duplicates; Kodak film was faster; DuPont film responded better in incandescent photoflood light than Kodak film; clear glass with appropriate light-film distance was the best exposure surface.
Coating and curing apparatus and methods
Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S
2015-02-24
Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.
NASA Astrophysics Data System (ADS)
Xia, N.; Gerhardt, R. A.
2016-11-01
Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.
Biocompatible Nb2O5 thin films prepared by means of the sol-gel process.
Velten, D; Eisenbarth, E; Schanne, N; Breme, J
2004-04-01
Thin biocompatible oxide films with an optimised composition and structure on the surface of titanium and its alloys can improve the implant integration. The preparation of these thin oxide layers with the intended improvement of the surface properties can be realised by means of the sol-gel process. Nb2O5 is a promising coating material for this application because of its extremely high corrosion resistance and thermodynamic stability. In this study, thin Nb2O5 layers ( < 200 nm) were prepared by spin coating of polished discs of cp-titanium with a sol consisting of a mixture of niobium ethoxide, butanol and acetylacetone. The thickness, phase composition, corrosion resistance and the wettability of the oxide layers were determined after an optimisation of the processing parameters for deposition of oxide without any organic impurities. The purity of the oxide layer is an important aspect in order to avoid a negative response to the cell adhesion. The biocompatibility of the oxide layers which was investigated by in vitro tests (morphology, proliferation rate, WST-1, cell spreading) is improved as compared to uncoated and TiO2 sol-gel coated cp-titanium concerning the spreading of cells, collagen I synthesis and wettability.
Observed Changes at Viking Lander 1
NASA Technical Reports Server (NTRS)
Moore, H. J.
1985-01-01
A local dust storm raged in Chryse Planitia, Mars, in June 1981. The changes wrought in the vicinity of the lander (Mutch Memorial Station) by this storm sometime near Sol 1742 were partly described previously. Here, changes related to the storm are itemized, evidence for wind directions during the peak of the storm are cited, and two observations unrelated to the storm are noted. The observations suggest that the eroding winds of the Sol 1742 storm were more easterly (N. 35 deg to 90 deg E.) than those (N. 5 deg to 11 deg E.) that formed the large wind tails; and fragments in erosional residues are 0.7 cm and larger, but smaller ones may be present. Some fragments 0.4 to 0.5 cm and smaller were somehow removed, at least locally; wind speeds of the 1742 local storm were probably greater than those of a previous local dust storm (25 to 30 m/s) that occurred during the same season on Sol 423 because the earlier storm did not alter the surface; the major, if not entire, amount of erosion by the storm occurred between Sols 1728 and 1757; and erosion chiefly occurred where the surface configuration and material properties were altered by the lander and its sampler.
Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E
2001-01-01
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, M. L.
2014-07-01
SolCalc is a software suite that computes and displays magnetic fields generated by a three dimensional (3D) solenoid system. Examples of such systems are the Mu2e magnet system and Helical Solenoids for muon cooling systems. SolCalc was originally coded in Matlab, and later upgraded to a compiled version (called MEX) to improve solving speed. Matlab was chosen because its graphical capabilities represent an attractive feature over other computer languages. Solenoid geometries can be created using any text editor or spread sheets and can be displayed dynamically in 3D. Fields are computed from any given list of coordinates. The field distributionmore » on the surfaces of the coils can be displayed as well. SolCalc was benchmarked against a well-known commercial software for speed and accuracy and the results compared favorably.« less
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features.
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-12-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features
NASA Astrophysics Data System (ADS)
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-04-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis
Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor
2013-01-01
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052
Color View 'Dodo' and 'Baby Bear' Trenches
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 14 (June 8, 2008), the 14th Martian day after landing. It shows two trenches dug by Phoenix's Robotic Arm. Soil from the right trench, informally called 'Baby Bear,' was delivered to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, on Sol 12 (June 6). The following several sols included repeated attempts to shake the screen over TEGA's oven number 4 to get fine soil particles through the screen and into the oven for analysis. The trench on the left is informally called 'Dodo' and was dug as a test. Each of the trenches is about 9 centimeters (3 inches) wide. This view is presented in approximately true color by combining separate exposures taken through different filters of the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Ivanova, A. K.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Zayarny, D. A.; Nguyen, L. V.; Nguyen, T. T. H.; Pham, M. H.; Pham, D. V.; Do, T. H.
2017-06-01
Hybrid plasmonic-dielectric antennae are fabricated by laser ablation of gold in water sols of micro-diamonds. Electron microscopy and energy-dispersive x-ray spectroscopy of their deposits on a silicon wafer surface indicate close proximity of gold nanoparticles and micro-diamonds, which is supported by photoluminescence studies demonstrating strong (eight-fold) damping of micro-diamond luminescence owing to the attachment of the gold nanoparticles. UV-near-IR spectroscopy of their sols reveals a considerable plasmonic effect, related to red spectral shifts of surface plasmon resonance for the gold nanoparticles in the laser-ablation-fabricated antennae.
Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.
Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni
2015-01-01
Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images.
Theory of Advanced Magnetic Divertors
NASA Astrophysics Data System (ADS)
Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent
2013-10-01
The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI < 1) fall on opposite sides of the standard divertor SD (DI = 1). Amongst other things, DI signifies the rate of convergence (divergence) of the flux surfaces near the divertor plate; the flux surfaces of SFD are more convergent contracting) than the SD while the XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.
NASA Astrophysics Data System (ADS)
Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu
2012-08-01
By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.
Application of surface analytical methods in thin film analysis
NASA Astrophysics Data System (ADS)
Wen, Xingu
Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite films. The stability of Ru complexes with respect to dopant leaching was dependent on the film microstructures. Three methods aiming to improve the dopant stability were also explored. In addition, the ion exchange properties of the composite films, upon exposure to various ions in aqueous solutions, were investigated by XPS, and the ion exchange mechanism was elucidated.
Stotesbury, Theresa; Illes, Mike; Wilson, Paul; Vreugdenhil, Andrew J
2017-01-01
Solution-gelation chemistry has promising applications in forensic synthetic blood substitute development. This research offers a silicon-based sol-gel approach to creating stable materials that share similar rheological properties to that of whole human blood samples. Room temperature, high water content, silicon sol-gels were created using the organosilane precursors 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate along with various concentrations of filler and pigment. Shear-thinning non-Newtonian properties were observed within most formulations of the presented materials. The effects of colloidal concentration, temperature, age and filler addition on the viscosity of the sol-gels were investigated. SEM-EDS analysis was used to identify the behavior of the fillers within the film and support their inclusion for basic bloodstain pattern simulation. A final proposed candidate sol-gel was assessed using a previously reported passive drip simulation test on a hard, dry surface and passed. This works represents encouraging development in providing safe material alternatives to using whole human blood for forensic training and research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.
Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo
2017-11-01
The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO 2 ) coating, zirconia with sol-gel derived zirconia (ZrO 2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO 2 coated and ZrO 2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO 2 showed significantly lower fibroblast proliferation compared to other groups (p < 0.05). In conclusion, sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO 2 coated specimens showed significantly lower cell proliferation after 12 days than TiO 2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2401-2407, 2017. © 2016 Wiley Periodicals, Inc.
Ellenberger, Daniel J; Miller, Dave A; Kucera, Sandra U; Williams, Robert O
2018-03-14
Vemurafenib is a poorly soluble, low permeability drug that has a demonstrated need for a solubility-enhanced formulation. However, conventional approaches for amorphous solid dispersion production are challenging due to the physiochemical properties of the compound. A suitable and novel method for creating an amorphous solid dispersion, known as solvent-controlled coprecipitation, was developed to make a material known as microprecipitated bulk powder (MBP). However, this approach has limitations in its processing and formulation space. In this study, it was hypothesized that vemurafenib can be processed by KinetiSol into the same amorphous formulation as MBP. The KinetiSol process utilizes high shear to rapidly process amorphous solid dispersions containing vemurafenib. Analysis of the material demonstrated that KinetiSol produced amorphous, single-phase material with acceptable chemical purity and stability. Values obtained were congruent to analysis conducted on the comparator material. However, the materials differed in particle morphology as the KinetiSol material was dense, smooth, and uniform while the MBP comparator was porous in structure and exhibited high surface area. The particles produced by KinetiSol had improved in-vitro dissolution and pharmacokinetic performance for vemurafenib compared to MBP due to slower drug nucleation and recrystallization which resulted in superior supersaturation maintenance during drug release. In the in-vivo rat pharmacokinetic study, both amorphous solid dispersions produced by KinetiSol exhibited mean AUC values at least two-fold that of MBP when dosed as a suspension. It was concluded that the KinetiSol process produced superior dosage forms containing vemurafenib with the potential for substantial reduction in patient pill burden.
Eco-hydrology: Groundwater flow and site factors in plant ecology
NASA Astrophysics Data System (ADS)
Klijn, Frans; Witte, Jan-Philip M.
Résumé En écologie végétale, le site est un concept central. Un site, c'est l'endroit où une espèce végétale ou une communauté de plantes se développe le site assure un ensemble de conditions dans lesquelles elles vivent. Dans un matériau homogène à l'origine, l'écoulement gravitaire d'une nappe influence les conditions du site par l'intermédiaire de la distribution spatiale des nutriments et d'autres composés chimiques associés. Les remontées d'eau peuvent tout spécialement produire et maintenir les conditions du site essentielles pour différentes espèces et communautés de plantes relativement rares. Les écologues ont porté une attention accrue à ces remontées d'eau, en sorte qu'une coopération avec les hydrologues en a résulté, avec l'émergence d'une discipline propre, l'éco-hydrologie, à la limite des deux domaines scientifiques et liée au concept de site. Aux Pays-Bas, une classification des types d'eau, basée sur l'histoire de l'eau souterraine à proximité de la surface, a été mise en oeuvre pour constituer une base nationale de données géographiques sur les remontées d'eau d'intérêt écologique. Des analyses des correspondances des données de cette base, portant sur l'existence de certaines espèces de plantes, montrent que dans les sols sableux pauvres du Pléistocène la remontée d'eau explique très bien la présence de certaines espèces et communautés, alors que, dans les plaines fluviales et les régions de polders à sols argileux riches, l'influence de la remontée d'eau est masquée par l'importance des caractéristiques des sols. En conclusion donc, certaines espèces de plantes peuvent être utilisées comme des indicateurs de la remontée d'eau dans des diagnostiques et des levés de terrain rapides, mais à condition de prendre en permanence des précautions sur les limites de l'approche. Resumen En ecología botánica un concepto de gran importancia es el de emplazamiento, definido como el lugar que proporciona unas condiciones de vida adecuadas que permiten el crecimiento de una especie o una comunidad botánica. En un material inicialmente homogéneo, el flujo subterráneo gravífico influencia las condiciones del emplazamiento variando la distribución espacial de los nutrientes y de otros agentes químicos relevantes. En especial, el flujo ascendente puede producir y mantener una serie de condiciones que son esenciales para algunas especies y comunidades de plantas relativamente raras. La especial atención hacia este fenómeno ha dado lugar a una cooperación entre ecologistas e hidrogeólogos y a la aparición de una nueva disciplina - eco-hidrología -, en la frontera de los dos campos científicos. En Holanda, se ha usado una clasificación sencilla de tipos de agua para crear una base de datos, a nivel nacional, de lugares donde la presencia de flujos ascendentes pueda ser de interés ecológico. El análisis de correspondencias entre esta base de datos y los tipos de plantas existentes muestra que en los suelos arenosos pobres del Pleistoceno los flujos ascendentes explican la presencia de algunas especies y comunidades de plantas. Por el contrario, en las llanuras fluviales y pólders, con suelos más arcillosos, la influencia de estos flujos es despreciable frente a la relativa a las propias características de los suelos. Se concluye que las especies botánicas se pueden usar como indicadores de la presencia de flujo ascendente sólo en campañas preliminares, pero que el método presenta grandes limitaciones para su extensión a casos generales.
Opportunity's Surroundings on Sol 1798 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a vertical projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.Opportunity's Surroundings on Sol 1798 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.Opportunity's Surroundings on Sol 1798
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.NASA Technical Reports Server (NTRS)
2004-01-01
Dubbed 'Carousel,' the rock in this image was the target of the Mars Exploration Rover Opportunity science team's outcrop 'scuff test.' The image on the left, taken by the rover's navigation camera on sol 48 of the mission (March 12, 2004), shows the rock pre-scuff. On sol 51 (March 15, 2004), Opportunity slowly rotated its left front wheel on the rock, abrading it in the same way that geology students use a scratch test to determine the hardness of minerals. The image on the right, taken by the rover's navigation camera on sol 51, shows the rock post-scuff. In this image, it is apparent that Opportunity scratched the surface of 'Carousel' and deposited dirt that it was carrying in its wheel rims.
Wang, Zhijie; Etienne, Mathieu; Urbanova, Veronika; Kohring, Gert-Wieland; Walcarius, Alain
2013-04-01
A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
NASA Astrophysics Data System (ADS)
Jolivet, Claudy; Guillet, Bernard; Karroum, Michel; Andreux, Francis; Bernoux, Martial; Arrouays, Dominique
2001-11-01
In spodosols of Gascony (France), conversion of maritime pine stands into maize cropping leads to an incorporation of maize organic matter, which changed the isotopic ( δ13C) and phenolic signature in A and L horizons of soil. Hydrolysis of phenol lignin in forests and cultivated soils showed the predominance of vanillic units under forest and the early but moderate incorporation of cinnamic acids. Incorporation of syringic units appeared higher, related to a large maize production of stable syringic phenols. Syringic units represented a long-term marker of maize inputs in soils, whereas vanillic units revealed the degradation of forest organic matter.
Digging Movie from Phoenix's Sol 18
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.' The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing. The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols. The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches). The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.A new powder production route for transparent spinel windows: powder synthesis and window properties
NASA Astrophysics Data System (ADS)
Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim
2005-05-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.
NASA Astrophysics Data System (ADS)
Fatih, Khalid
L'electrolyse de l'eau demeure la seule technologie industrielle de generation de l'hydrogene et de l'oxygene tres purs sans rejet de CO2 dans l'atmosphere, ce qui le rend tres attrayant par rapport a la combustion de carburants fossiles qui provoque presentement de serieux problemes environnementaux. Dans le but d'ameliorer le rendement de ce procede, nous avons developpe de nouveaux materiaux d'anode peu couteux, a base de l'oxyde mixte CuyCo3-yO 4, qui possedent une cinetique rapide pour la reaction de degagement de l'oxygene (RDO). Cette reaction suscite un interet particulier en raison de la surtension d'activation relativement elevee a l'anode qui cause la principale perte de rendement du procede. Une etude systematique a ete effectuee sur la substitution du Cu par du Li (0 a 40%), afin d'elucider les proprietes electrocatalytiques des oxydes LixCuy-xCo3-yO4. Ces oxydes, prepares sous forme de poudres par decomposition thermique des nitrates precurseurs entre 300 et 500°C, ont montre (DRX et FTIR) une structure spinelle inverse non-stcechiometrique avec une diminution du volume de la maille cristalline. La surface specifique par BET est d'environ 6 m2 g-1. Le pcn, obtenu par titrage acido-basique, a indique une diminution de la force du lien M-OH avec le taux du Li dans l'oxyde. Les analyses par XPS, realisees sur des films d'oxyde prepares par nebulisation reactive sur un substrat lisse de nickel, revelent un enrichissement de la surface en Cu a partir de 30% Li, et la presence des cations de surface Co2+, Co3+, Cu +, Cu2+ et Cu3+. La concentration de ce dernier montre un maximum a 10 et 20% Li. Suite a la substitution du Cu par du Li, la compensation de la charge serait assuree principalement par la formation d'especes Cu3+ pour les oxydes contenant jusqu'a 20% Li, et par la formation d'especes Co3+ aux taux de substitution superieurs. Les micrographies MEB montrent une morphologie hemispherique des particules d'oxyde reparties uniformement sur le substrat de nickel avec une tendance a l'agglomeration lorsque le taux de Li est accru. Les micrographies AFM revelent une micro-porosite de ces particules d'oxyde. Les films minces deposes sur un substrat de verre ont montre une conductivite tres interessante de l'ordre de 103O-1 cm-1 pour LixCuy-x Co3-yO4 comparee a 2,8 O-1 cm-1 pour Co3O4. La spectroscopie d'impedance a permis de distinguer les processus de la surface interne des films d'oxydes de ceux de l'interface electrode/electrolyte. Les courbes Mott-Schottky (1/C2 en fonction du potentiel) montrent que les films d'oxyde se comportent comme des semi-conducteurs de type p tres dopes (degeneres). Le potentiel de bandes plates et la densite des porteurs de charge majoritaires des oxydes LixCuy-xCo3-yO4 sont de l'ordre de 0,48 a 0,52 V et 1019 a 10 20 cm-3 respectivement. Pour Co 3O4 ces parametres sont de 0,47 V et ≈10 18 cm-3. (Abstract shortened by UMI.)
Switchable vanadium oxide films by a sol-gel process
NASA Astrophysics Data System (ADS)
Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.
1991-07-01
Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.
Sol-Gel Synthesis of Non-Silica Monolithic Materials
Gaweł, Bartłomiej; Gaweł, Kamila; Øye, Gisle
2010-01-01
Monolithic materials have become very popular because of various applications, especially within chromatography and catalysis. Large surface areas and multimodal porosities are great advantages for these applications. New sol-gel preparation methods utilizing phase separation or nanocasting have opened the possibility for preparing materials of other oxides than silica. In this review, we present different synthesis methods for inorganic, non-silica monolithic materials. Some examples of application of the materials are also included.
ERIC Educational Resources Information Center
Rodrigue, Christine M.
2011-01-01
This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…
Coating and curing apparatus and methods
Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze'ev R.
2016-04-19
Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.
76 FR 78974 - Wisconsin Central Ltd.-Abandonment Exemption-in Fond Du Lac County, WI
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 303 (Sub-No. 38X)] Wisconsin Central Ltd.--Abandonment Exemption--in Fond Du Lac County, WI Wisconsin Central Ltd. (WCL) \\1\\ filed a verified notice of exemption under 49 CFR pt. 1152 subpart F--Exempt Abandonments to abandon...
Overview of the Mars Exploration Rover Mission
NASA Astrophysics Data System (ADS)
Adler, M.
2002-12-01
The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the results returned in the afternoon of that Sol guiding the plans for the following Sol. Between the command sessions, the rover will autonomously execute the requested activities, including as an example traverses of tens of meters using autonomous navigation and hazard avoidance.
Deforming water droplets with a superhydrophobic silica coating.
Li, Xiaoguang; Shen, Jun
2013-11-04
The surface liquidity of a water droplet is eliminated by rubbing hydrophobic particles onto the droplet surface using a sol-gel silica coating with extremely weak binding force, which results in solid-like deformability of a liquid drop.
Caracterisation thermique de modules de refroidissement pour la photovoltaique concentree
NASA Astrophysics Data System (ADS)
Collin, Louis-Michel
Pour rentabiliser la technologie des cellules solaires, une reduction du cout d'exploitation et de fabrication est necessaire. L'utilisation de materiaux photovoltaiques a un impact appreciable sur le prix final par quantite d'energie produite. Une technologie en developpement consiste a concentrer la lumiere sur les cellules solaires afin de reduire cette quantite de materiaux. Or, concentrer la lumiere augmente la temperature de la cellule et diminue ainsi son efficacite. Il faut donc assurer a la cellule un refroidissement efficace. La charge thermique a evacuer de la cellule passe au travers du recepteur, soit la composante soutenant physiquement la cellule. Le recepteur transmet le flux thermique de la cellule a un systeme de refroidissement. L'ensemble recepteur-systeme de refroidissement se nomme module de refroidissement. Habituellement, la surface du recepteur est plus grande que celle de la cellule. La chaleur se propage donc lateralement dans le recepteur au fur et a mesure qu'elle traverse le recepteur. Une telle propagation de la chaleur fournit une plus grande surface effective, reduisant la resistance thermique apparente des interfaces thermiques et du systeme de refroidissement en aval vers le module de refroidissement. Actuellement, aucune installation ni methode ne semble exister afin de caracteriser les performances thermiques des recepteurs. Ce projet traite d'une nouvelle technique de caracterisation pour definir la diffusion thermique du recepteur a l'interieur d'un module de refroidissement. Des indices de performance sont issus de resistances thermiques mesurees experimentalement sur les modules. Une plateforme de caracterisation est realisee afin de mesurer experimentalement les criteres de performance. Cette plateforme injecte un flux thermique controle sur une zone localisee de la surface superieure du recepteur. L'injection de chaleur remplace le flux thermique normalement fourni par la cellule. Un systeme de refroidissement est installe a la surface opposee du recepteur pour evacuer la chaleur injectee. Les resultats mettent egalement en evidence l'importance des interfaces thermiques et les avantages de diffuser la chaleur dans les couches metalliques avant de la conduire au travers des couches dielectriques du recepteur. Des recepteurs de multiples compositions ont ete caracterises, demontrant que les outils developpes peuvent definir la capacite de diffusion thermique. La repetabilite de la plateforme est evaluee par l'analyse de l'etendue des mesures repetees sur des echantillons selectionnes. La plateforme demontre une precision et reproductibilite de +/- 0.14 ° C/W. Ce travail fournit des outils pour la conception des recepteurs en proposant une mesure qui permet de comparer et d'evaluer l'impact thermique de ces recepteurs integres a uri module de refroidissement. Mots-cles : cellule solaire, photovoltaique, transfert de chaleur, concentration, resistances thermiques, plateforme de caracterisation, refroidissement
NASA Astrophysics Data System (ADS)
Gururaj, T.; Subasri, R.; Raju, K. R. C. Soma; Padmanabham, G.
2011-02-01
An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA
NASA Astrophysics Data System (ADS)
Fryar, Alan; Mullican, William; Macko, Stephen
2001-11-01
The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solutés dans les sols des hautes terres par évapotranspiration, avec le ruissellement et l'infiltration dans les playas et les fossés (modifiée localement par l'écoulement en retour des eaux usées et des laisses d'irrigation). Des réactions probables intervenant au cours de la recharge sont l'oxydation de la matière organique, la dissolution et le dégazage du CO2, la dissolution du CaCO3, l'altération des silicates et l'échange de cations. Les données concernant Si et 14C laissent penser qu'il existe une drainance descendante à partir d'aquifères perchés vers l'aquifère des Hautes Plaines. Des modèles vraisemblables de bilan de matière pour l'aquifère des Hautes Plaines prennent en compte des scénarios d'écoulement avec drainance mais sans réactions, des écoulements avec réactions mais sans drainance et des écoulements sans réactions ni drainance. Les mécanismes de recharge et d'évolution chimique déterminés dans cette étude sont en accord avec ceux mis en évidence dans d'autres aquifères du centre sud et du sud-ouest des états-Unis. Resumen. El acuífero libre de High Plains (Ogallala) es el mayor de los Estados Unidos y supone la fuente principal de abastecimiento en la región semiárida del sur de High Plains (Texas) y de Nuevo México. Los análisis de agua y suelos realizados al nordeste de Amarillo (Texas), junto con los datos de otros estudios regionales, indican que los procesos que tienen lugar durante la recarga del acuífero controlan la composición de las aguas subterráneas en la mitad septentrional de los High Plains del Sur. Los datos isotópicos y hidroquímicos son coherentes con una secuencia de episodios de precipitación, concentración de solutos en la parte superior del suelo por evapotranspiración, escorrentía, e infiltración a través de 'playas' y zanjas (modificadas localmente por los flujos de retorno de aguas residuales y de excedentes de riego).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroesi, Laszlo, E-mail: korosi@enviroinvest.hu; Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs; Papp, Szilvia
2012-08-15
Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative resultsmore » of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500 Degree-Sign C. Black-Right-Pointing-Pointer Stable TNT sols can be prepared by the peptization of TNT gels. Black-Right-Pointing-Pointer High-transparency TNT thin films of high quality were fabricated.« less
NASA Astrophysics Data System (ADS)
Das, S.; Bera, K. P.; Nath, T. K.
2017-05-01
Synthesis of Nd-doped BFO multiferroic nanoceramic by the conventional sol-gel method has been carried out. HRXRD and FESEM have been used for the structural analysis to confirm the triclinic structure and to obtain the surface morphology showing agglomeration and to find out the size of the nanoparticles. A high precision LCR meter has been used to record the dielectric constants at various temperatures. Several anomalies are observed whose physical explanations have been given. Space charge polarization effect and magnetoelectric coupling have been confirmed in the synthesized Bi0.9Nd0.1FeO3 nanoceramic sample.
Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng
2006-10-06
A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor,
Lee, Hyunji; Park, Jung-Hwan; Park, Jung Ho
2017-12-01
A low temperature hollow microneedle system was devised to deliver sol-gel transition formulation near the surface of the skin for extended release and local delivery of drug by a non-invasive method. This new system can improve treatment of intermittent fecal incontinence. The low-temperature system was integrated with a hollow microneedle to maintain the low temperature of the sol formulation. Various sol-gel formulations using Pluronic F-127 (PF-127) and Hydroxy-propyl-methyl-cellulose (HPMC) were prepared, and their gelation temperature, flow property, and diffusion retardation were observed. Resting anal sphincter pressure in response to a phenylephrine (PE) sol-gel formulation was measured using an air-charged catheter. The biocompatibility of the sol-gel PE formulation was evaluated by observing the immunological response. When the PF-127 25%, HPMC 1% and PE formulation (PF25-HPMC1-PE) was injected through the peri-anal skin of the rat in vivo, the highest pressure on the anal sphincter muscle occurred at 6-8 h and anal pressure increased and lasted twice as long as with the phosphate-buffered saline (PBS)-PE formulation. There was no significant difference in the number of mast cells after administration into the rat in vivo between the PF25-HPMC1-PE formulation and the PBS-PE formulation. The combination of a low-pain hollow microneedle system and an injectable sol-gel formulation improved the efficacy of treatment of intermittent fecal incontinence. A low-temperature hollow microneedle system using a sol-gel formulation has many applications in medical treatments that require depot effect, local targeting, and pain control.
NASA Astrophysics Data System (ADS)
Varni, Marcelo R.; Usunoff, Eduardo J.
A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface, suggérant ainsi que la description par le modèle des relations rivière-nappe est correcte. Resumen Se ha utilizado el modelo MODFLOW, del Servicio Geológico de los Estados Unidos, para simular el flujo de agua subterránea en la cuenca del arroyo del Azul, Provincia de Buenos Aires, Argentina, con el objeto de evaluar el modelo hidrogeológico conceptual. Los niveles hidráulicos simulados ajustan satisfactoriamente con los niveles observados. Los resultados de la simulación indican que: (1) la recarga no es uniforme, sino que puede caracterizarse con tres zonas en las que sus valores decrecen en la medida en que decrece la pendiente, que guarda similitud con la distribución de suelos y características geomorfológicas y (2) la evapotranspiración sería mayor que la estimada en estudios previos, en los que se utilizó el método de Thornthwaite-Mather. La evapotranspiración estimada mediante la presente simulación concuerda con resultados de varios estudios independientes en la región. Respecto de la relación acuífero-río, existe un muy buen ajuste entre los aportes del acuífero al río simulados y los valores históricos de caudal base.
Catauro, M; Papale, F; Bollino, F
2016-01-01
The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0
NASA Astrophysics Data System (ADS)
Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.
2015-05-01
A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.
Tropospheric ozone in east Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadnis, M.J.
1996-12-31
An analysis of the observed data for the tropospheric ozone at mid latitudes in east Asia is done. There are three ways by which the tropospheric ozone is calculated, namely: (1) Ozonesonde measurements, (2) Fishman`s method of Residual Ozone and (3) TOMS measurements - an indirect method of calculating tropospheric ozone. In addition the surface ozone values at the network sites in Japan is also considered. The analysis of data is carried out for a period of twelve years from 1979 to 1991. In general it is observed that the tropospheric ozone is more in summer than winter, obviously becausemore » of the larger tropopause height in summer. On an average for the period of the analysis, the ozone values are at a high of about 60 DU (dobson units). While in winter the values go down to around 30 DU. Also a time series analysis shows an increasing trend in the values over the years. The ozonesonde values are correlated more to the TOMS tropospheric ozone values. For the stations analyzed in Japan, the TOMS tropospheric ozone values are generally greater than the ozonesonde values. The analysis of the average monthly surface ozone in Japan shows highs in spring and lows in summer. This can be attributed to movement of pollutant laden fronts towards Japan during spring. The highs for surface ozone are about 50 DU while the lows are around 20 DU.« less
Phospho-silicate and silicate layers modified by hydroxyapatite particles
NASA Astrophysics Data System (ADS)
Rokita, M.; Brożek, A.; Handke, M.
2005-06-01
Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.
Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Dharmaprakash, S. M.
2015-06-24
In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and showmore » the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.« less
Opportunity's View After Drive on Sol 1806 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a polar projection with geometric seam correction.Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei
2016-10-07
Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-09-18
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
Opportunity's View After Drive on Sol 1806 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a vertical projection with geometric seam correction.Opportunity's View After Drive on Sol 1806
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical projection with geometric seam correction.Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein
2016-01-01
The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.
NASA Astrophysics Data System (ADS)
Huang, Feng-Hsi; Chang, Chao-Ching; Oyang, Tai-Yueh; Chen, Ching-Chung; Cheng, Liao-Ping
2011-09-01
Surface modification of silica nanoparticles synthesized by the sol-gel process was performed using coupling agents, 3-(trimethoxysilyl) propyl methacrylate (MSMA) and/or trimethyethoxylsilane (TMES). The chemical structures of the formed particles were analyzed by means of Fourier Transform Infrared Spectroscopy (FTIR) and solid-state Si-Nuclear Magnetic Resonance (Si-NMR), and the particle sizes were determined by Transmission Electron Microscopy (TEM) imaging. The latter results indicate that such surface modifications can effectively lessen the serious aggregation being common to pure silica nanoparticles. In some cases, separate particles of ca. 5-10 nm dia. could be obtained, when both MSMA and TMES were employed during the modification process. Dynamic light scattering method was adopted to examine the stability of the prepared silica sols during a long-term storage. It was found that the aggregation phenomenon can essentially be eliminated in case that the surface of silica contained sufficient amount of TMES moiety. Vacuum distillation was used to remove the volatile components such as methanol, ethanol, and water from the silica sol. The condensed product, containing 2 wt% residual solvent, appeared as a uniform transparent paste-like material, which can be dispersed in common organic solvents and monomers within a few seconds.
Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device
NASA Astrophysics Data System (ADS)
Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda
2017-11-01
In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.
Time for a Change; Spirit's View on Sol 1843 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11973 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11973 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate. This view is presented as a cylindrical-perspective projection with geometric seam correction.Opportunity's View After Long Drive on Sol 1770 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini. The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).Opportunity's View After Long Drive on Sol 1770
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009). Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini. The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical projection with geometric seam correction.Opportunity's View After Long Drive on Sol 1770 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009). This view is presented as a vertical projection with geometric seam correction. North is at the top. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini. The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection.
Duong, Hong Dinh; Rhee, Jong Il
2008-09-19
In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K(m)=2.0745mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K(m)=0.549mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K(m)=0.1698mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications.
Fast wave power flow along SOL field lines in NSTX
NASA Astrophysics Data System (ADS)
Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.
2012-10-01
On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.
Sol-Gel Manufactured Energetic Materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2005-05-17
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Sol-gel manufactured energetic materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2003-12-23
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Opportunity's Surroundings on Sol 1687 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11739 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11739 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). The view appears three-dimensional when viewed through red-blue glasses. Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This panorama combines right-eye and left-eye views presented as cylindrical-perspective projections with geometric seam correction.Phoenix Conductivity Probe after Extraction from Martian Soil on Sol 99
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Surface Stereo Imager on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. This imaging served as a check of whether soil had stuck to the needles. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Sol-Gel Chemistry for Carbon Dots.
Malfatti, Luca; Innocenzi, Plinio
2018-03-14
Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A sol-powder coating technique for fabrication of yttria stabilised zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron
Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando
When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of themore » obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.« less
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
Grain Size Measurements of Eolian Ripples in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Weitz, C. M.; Sullivan, R. J., Jr.; Lapotre, M. G. A.; Rowland, S. K.; Edgett, K. S.; Grant, J. A., III; Yingst, R. A.
2017-12-01
The Curiosity rover team has explored several different eolian sand targets in Gale crater, including dunes and ripples. Using Curiosity's Mars Hand Lens Imager (MAHLI), we measured the size of grains on or near ripple crests within dunes, ripple fields, and in isolated ripples. The Barby target (Sol 1184) is on the crest of a ripple on the lower stoss slope of the barchan High dune. Flume Ridge (Sol 1604) and Avery Peak (Sol 1651) are smaller ripples on the Nathan Bridges and Mount Desert Island linear dunes. Schoolhouse Ledge (Sol 1688) is an isolated megaripple not associated with either a dune or ripple field. Enchanted Island (Sol 1751) is a ripple contained within a larger ripple field near the Vera Rubin Ridge. Our results show the grains of the Avery Peak and Flume Ridge targets are mostly 75-150 µm in size and grain motion was observed during each MAHLI imaging sequence. Barby is dominated by 250-450 µm grains assumed to be active based upon the lack of a dust coating, though grain motion was not observed. The Enchanted Island target has slightly larger grains than Barby, with most between 300-500 µm. The grains have some dust aggregates on their surfaces, suggesting they have been less active in recent months or years relative to the ripples examined within the Bagnold dune field. Finally, grains along the crest of Schoolhouse Ledge are the largest, 400-600 µm, and all of the grain surfaces have a thin dust coating, indicating the ripple is not currently active. Some of the ripple crests have similar grain sizes on both the stoss and lee sides (Schoolhouse Ledge, Barby) whereas other ripples showed larger grains concentrated on the stoss side (Enchanted Island, Avery Peak, Flume Ridge). Scuffing by the rover's front wheel revealed both Schoolhouse Ledge and Enchanted Island had coarser grains dominating the ripple surface with finer grains within the ripple interior. In general, the surfaces of active sand ripples have smaller grains compared to the inactive ripples which exhibit an armor of larger grains. Our results indicate grain sizes vary widely depending upon such factors as ripple activity, location along the ripple, ripple size, dune type, and orientation relative to the wind direction.
New Record Five-Wheel Drive, Spirit's Sol 1856 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11962 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11962 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical-perspective projection with geometric seam correction.NASA Astrophysics Data System (ADS)
Ebrahimpour, Omid
In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the SiC particles and alumina nano powders were mixed in alumina sol to adjust the alumina weight to 35 wt%. Then, the desired amount of catalyst, which depends on the total surface area of the particles, was grafted onto the surface of the powders under an inert atmosphere. Consequently, the polymerization started from the surface of the substrate. The treated powders were characterized by SEM, XPS and TGA. In addition, the amount of pore-former was determined by TGA analysis. Porous SiC ceramics, which were fabricated by the novel process, consist of mullite, SiC, cristobalite and a small amount of alumina and TiO 2 as a result of reaction of TiCl4 with air. Furthermore, the effect of the sintering temperatures (1500°C, 1550°C and 1600°C) on the crystalline structure of the porous samples was investigated. Furthermore, it was proposed that converting TiCl4 to TiO2 acted as the sintering additive to form mullite at a lower sintering temperature. (Abstract shortened by UMI.).
Ornelas, Mariana; Azenha, Manuel; Araújo, Maria João; Marques, Eduardo F; Dias-Cabral, A C; Pereira, Carlos; Silva, A Fernando
2016-03-11
A strategy based on water-in-oil emulsion for the dispersion of a sol-gel mixture into small droplets was employed with the view of the production of naproxen-imprinted micro- and nanospheres. The procedure, aiming at a surface imprinting process, comprised the synthesis of a naproxen-derived surfactant. The imprinting process occurred at the interface of the emulsions or microemulsions, by the migration of the NAP-surfactant head into the sol-gel drops to leave surficial imprints due mainly to ion-pair interaction with a cationic group contained within the growing sol-gel network. The surface-imprinted microspheric particles exhibited a log-normal size distribution with geometric mean diameter of 3.1μm. A mesoporous texture was found from measurements of the specific surface area (206m(2)/g) and pore diameter (Dp 2nm). Evaluation of the microspheres as packed HPLC stationary phases resulted in the determination of the selectivity factor against ibuprofen (α=2.1), demonstrating the successful imprinting. Chromatographic efficiency, evaluated by the number of theoretical plates (222platescm(-3)), emerged as an outstanding feature among the set of all relatable formats produced before, an advantage intrinsic to the location of the imprinted sites on the surface. The material presented a capacity of 3.2μmolg(-1). Additionally, exploratory work conducted on their nanoscale counterparts resulted in the production of nanospheres in the size order of 10nm providing good indications of a successful imprinting process. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun
2016-12-01
SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.
NASA Astrophysics Data System (ADS)
Yang, Li; Li, Xu; Wang, Ziru; Shen, Yun; Liu, Ming
2017-10-01
TiO2 microtubes with a yam-like surface were prepared for the first time through a simple and efficient double soaking sol-gel route by utilizing Platanus acerifolia seed fibers as bio-templates. The physicochemical properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer Emmett Teller (BET) surface analysis and Ultraviolet-visible absorption spectroscopy (UV-vis). The results showed that the obtained TiO2 microtubes had an anatase phase and were composed of a smooth internal wall and a rough yam-like external wall with an average diameter of 24 μm and the wall thickness of 2 μm. The surface area and pore volume of the as-prepared TiO2 microtubes reached 128.271 m2/g and 0.149 cm3/g, respectively. The UV-vis analysis displayed a favorable extension of light absorption capacity of TiO2 microtubes. The synthetic mechanism was preliminarily discussed as well. The moisture in the natural fiber templates facilitated the mild hydrolysis of titanium sol, leaving a prime layer on the surface of the fibers, and subsequently assisted in the successful preparation of TiO2 microtubes with a yam-like surface without requiring specific control of hydrolysis. Photocatalytic experiments indicated that the as-obtained TiO2 microtubes exhibited a higher efficiency than commercial P25 in the degradation of tetracycline hydrochloride.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.S.
Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface areamore » of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.« less
Hakki, Amer; Yang, Lu; Wang, Fazhou; Macphee, Donald E.
2017-01-01
The chemical bonding of particulate photocatalysts to supporting material surfaces is of great importance in engineering more efficient and practical photocatalytic structures. However, the influence of such chemical bonding on the optical and surface properties of the photocatalyst and thus its photocatalytic activity/reaction selectivity behavior has not been systematically studied. In this investigation, TiO2 has been supported on the surface of SiO2 by means of two different methods: (i) by the in situ formation of TiO2 in the presence of sand quartz via a sol-gel method employing tetrabutyl orthotitanium (TBOT); and (ii) by binding the commercial TiO2 powder to quartz on a surface silica gel layer formed from the reaction of quartz with tetraethylorthosilicate (TEOS). For comparison, TiO2 nanoparticles were also deposited on the surfaces of a more reactive SiO2 prepared by a hydrolysis-controlled sol-gel technique as well as through a sol-gel route from TiO2 and SiO2 precursors. The combination of TiO2 and SiO2, through interfacial Ti-O-Si bonds, was confirmed by FTIR spectroscopy and the photocatalytic activities of the obtained composites were tested for photocatalytic degradation of NO according to the ISO standard method (ISO 22197−1). The electron microscope images of the obtained materials showed that variable photocatalyst coverage of the support surface can successfully be achieved but the photocatalytic activity towards NO removal was found to be affected by the preparation method and the nitrate selectivity is adversely affected by Ti-O-Si bonding. PMID:28715384
High surface area neodymium phosphate nano particles by modified aqueous sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh
2011-12-15
Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less
Martian Arctic Dust Devil, Phoenix Sol 104
NASA Technical Reports Server (NTRS)
2008-01-01
The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008. Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104. Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those. The image has been enhanced to make the dust devil easier to see. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Moritz, N; Jokinen, M; Peltola, T; Areva, S; Yli-Urpo, A
2003-04-01
Sol-gel-derived TiO(2) coatings are known to promote bonelike hydroxyapatite formation on their surfaces in vitro and in vivo. Hydroxyapatite integrates into bone tissue. In some clinical applications, the surface of an implant is simultaneously interfaced with soft and hard tissues, so it should match the properties of both. A new method is introduced for treating the coatings locally in a controlled manner. The local densification of sol-gel-derived titania coatings on titanium substrates with a CO(2) laser was studied in terms of the in vitro calcium phosphate-inducting properties. CO(2)-laser-treated multilayer coatings were compared with furnace-fired coatings prepared with the same recipe and previously shown to be bioactive. Additionally, local areas of furnace-fired multilayer coatings (previously shown to be bioactive in vitro) were further laser-treated to achieve various properties in the same implant. Topological surface properties were examined with atomic force microscopy. The formation of hydroxyapatite was studied with Fourier transform infrared and scanning electron microscopy energy-dispersive X-ray analysis. The results show that calcium phosphate formation can be adjusted locally by laser treatment. Calcium phosphate is a bonelike hydroxyapatite. The local treatment of sol-gel-derived coatings with a CO(2) laser is a promising technique for creating implants with various properties to interface different tissues and a possible way of coating implants that do not tolerate furnace firing. Copyright 2003 Wiley Periodicals, Inc.
Crystals with a surface deformed by a non-epitaxial growth (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1972-11-30
Ces cristaux sont obtenus par mise en contact avec un agent generateur de cristaux solides, finement divise, ayant des dimensions particulaires comprises entre moins de 44 microns et 175 microns environ, pendant un laps de temps predetermine, l'agent generateur de cristaux etant associe a une quantite suffisante d'une fraction transferable capable d'engendrer par croissance une couche non epitaxiale sur la surface du cristal de base, cette croissance ayant lieu d'une maniere sensiblement uniforme mais neanmoins non ordonnee, independante de l'orientation microscopique du cristal de base. Ces cristaux peuvent etre utilises pour des scintillateurs. (FR)
1967-07-10
3136/2032/2517/3526/ 40 301 44 65 23/ 41291 3523/ 3724/ 3928/3 31/ _3 ...- ~ 5 /~ 34L ~4 ’/ ,ii Ll - _ __ -- .... -- . MEAN 37.3 35.7 40. 37. 35.1 38...6 461 42 65 548 * 1210 WS 01 O. 5 . S (o. Sol I T’U.;L4 , .,- - --" --- --. 7 t ’k .who Y"e 1 - + = =’ EXTREME VALUES 10 SURFACE WINDS IFROM DAIRY...0 la_ 55.2 s 2.3 3.8- 2.2 .wA ._ .0 Sol 5 -6 SSW 1.0 ,j. 5 1.41 .3 e 0 4e2 6o), SW . 1. 1 .. .--*A _ * _ 136 65 r WSW ._ 9 .9 -- *1 *a .01 2.6 6.9 w
[TLC-FT-SERS study on ingredients of Isrhynchophylline].
Wang, Yuan; Wang, Song-ying; Zhao, Yi-xue; Ren, Gui-fen; Zi, Feng-lan
2002-02-01
A new method for analysing the ingredients of Isrhynchophylline in Uncaria Rhynchophylla Jacks by thin layer chromatography (TLC) and the surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectra bands of Isrhynchophylline situated at the thin layer with the amount of sample about 2.5 micrograms were obtained. The difference between SERS and solid spectra was found. Great enhancement of the 1,615 cm-1 spectral band was abstained. Molecule was absorbed in surface silver sol by pi electrons in phenyl and by pair of electrons in N together. An absorption model of Isrhynchophylline and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.
Bioinspired assembly of surface-roughened nanoplatelets.
Lin, Tzung-Hua; Huang, Wei-Han; Jun, In-Kook; Jiang, Peng
2010-04-15
Here we report a novel electrophoretic deposition technology for assembling surface-roughened inorganic nanoplatelets into ordered multilayers that mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells. A thin layer of sol-gel silica is coated on smooth gibbsite nanoplatelets in order to increase the surface roughness to mimic the asperity of aragonite platelets found in nacres. To avoid the severe cracking caused by the shrinkage of sol-gel silica during drying, polyelectrolyte polyethyleneimine is used to reverse the surface charge of silica-coated-gibbsite nanoplatelets and increase the adherence and strength of the electrodeposited films. Polymer nanocomposites can then be made by infiltrating the interstitials of the aligned nanoplatelet multilayers with photocurable monomer followed by photopolymerization. The resulting self-standing films are highly transparent and exhibit nearly three times higher tensile strength and one-order-of-magnitude higher toughness than those of pure polymer. The measured tensile strength agrees with that predicted by a simple shear lag model. Published by Elsevier Inc.
Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck
2015-01-01
To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420
NASA Astrophysics Data System (ADS)
Cao, Zhi; Zhang, Zhijun
2011-02-01
Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.
Dust Devil in Spirit's View Ahead on Sol 1854
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009). The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854. West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.' This view is presented as a cylindrical projection with geometric seam correction.Opportunity's Surroundings After Sol 1820 Drive (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.Opportunity's Surroundings After Sol 1820 Drive
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). South is at the center; north at both ends. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.Opportunity's Surroundings After Sol 1820 Drive (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography.
Stehlin, Fabrice; Bourgin, Yannick; Spangenberg, Arnaud; Jourlin, Yves; Parriaux, Olivier; Reynaud, Stéphanie; Wieder, Fernand; Soppera, Olivier
2012-11-15
Deep-UV lithography using high-efficiency phase mask has been developed to print 100 nm period grating on sol-gel based thin layer. High efficiency phase mask has been designed to produce a high-contrast interferogram (periodic fringes) under water immersion conditions for 244 nm laser. The demonstration has been applied to a new developed immersion-compatible sol-gel layer. A sol-gel photoresist prepared from zirconium alkoxides caped with methacrylic acids was developed to achieve 50 nm resolution in a single step exposure. The nanostructures can be thermally annealed into ZrO(2). Such route considerably simplifies the process for elaborating nanopatterned surfaces of transition metal oxides, and opens new routes for integrating materials of interest for applications in the field of photocatalysis, photovoltaic, optics, photonics or microelectronics.
Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans
NASA Technical Reports Server (NTRS)
Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.
2016-01-01
The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i.e., replenishing rates for Fe-bonding ligands from below. This study suggests that in future ocean biogeochemistry models more attention should be devoted to better quantification of the role of atmospheric organic acids in the lifetime of aerosol sol-Fe after its deposition to the ocean and the improvements of upper ocean turbulence parameterizations.
The fabrication of visible light responsive Ag-SiO2 co-doped TiO2 thin films by the sol-gel method
NASA Astrophysics Data System (ADS)
Dam Le, Duy; Dung Dang, Thi My; Thang Chau, Vinh; Chien Dang, Mau
2010-03-01
In this study we have successfully deposited Ag-SiO2 co-doped TiO2 thin films on glass substrates by the sol-gel method. After being coated by a dip coating method, the film was transparent, smooth and had strong adhesion on the glass surface. The deposited film was characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM) and atomic force microscope (AFM) to investigate its crystallization, transmittance and surface structure. The antifogging ability is explained by the contact angle of water on the surface of the glass substrates under visible-light. The obtained results show that Ag-SiO2 co-doped TiO2 film has potential applications for self cleaning and anti-bacterial ceramic tiles.
Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M
2008-03-01
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
NASA Astrophysics Data System (ADS)
Fatimah, I.
2017-02-01
TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.
Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface
NASA Astrophysics Data System (ADS)
Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Cinteză, Ludmila Otilia; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Ianchiş, Raluca; Anastasescu, Mihai; Stoica, Mihai
2015-08-01
Monolayer and bilayer coatings deposited on polypropylene (PP) surface were prepared by sol-gel process at room temperature. Monolayer coatings were produced from sol-gel acidic solutions, containing tetraethylorthosilicate (TEOS) and different co-precursors such as phenyltriethoxysilane (PhTES), octylmethyldimethoxysilane (OMDMS) and dodecyltriethoxysilane (DOTES). Bilayer coatings consist of one layer prepared in a similar way described for monolayer coatings, followed by a second layer, obtained from fluorinated silica nanoparticles dispersion. The fluorinated group has been confirmed by the presence of Csbnd F bonds along with network Sisbnd Osbnd Si vibrational mode. Water contact angle values registered for bilayer-coated polypropylene are higher, comparing with the reference (pristine PP) and with the monolayer-coated substrate, and varies as a function of the hydrophobic functional groups of the silica co-precursors: phenyl < octyl < dodecyl. The fluorooctyl functions lead to a significant decrease in the surface energy values for bilayer coating, with very small values of polar component.
Nguyen, H Q; Deporter, D A; Pilliar, R M; Valiquette, N; Yakubovich, R
2004-02-01
Ti-6Al-4V implants formed with a sintered porous surface for implant fixation by bone ingrowth were prepared with or without the addition of a thin surface layer of calcium phosphate (Ca-P) formed using a sol-gel coating technique over the porous surface. The implants were placed transversely across the tibiae of 17 rabbits. Implanted sites were allowed to heal for 2 weeks, after which specimens were retrieved for morphometric assessment using backscattered scanning electron microscopy and quantitative image analysis. Bone formation along the porous-structured implant surface, was measured in relation to the medial and lateral cortices as an indication of implant surface osteoconductivity. The Absolute Contact Length measurements of endosteal bone growth along the porous-surfaced zone were greater with the Ca-P-coated implants compared to the non-Ca-P-coated implants. The Ca-P-coated implants also displayed a trend towards a significant increase in the area of bone ingrowth (Bone Ingrowth Fraction). Finally, there was significantly greater bone-to-implant contact within the sinter neck regions of the Ca-P-coated implants.
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
NASA Astrophysics Data System (ADS)
Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.
2016-05-01
This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.
Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M
2014-08-01
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4 m 2 to ∼10 7 m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2 m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m -2 K -1 s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.
Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M
2014-01-01
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m−2 K−1 s−1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. PMID:26213666
Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; ...
2015-09-01
The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-01-01
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080
Aghamohammadi, Sogand; Haghighi, Mohammad; Karimipour, Samira
2013-07-01
Carbon dioxide reforming of methane is an interesting route for synthesis gas production especially over nano-sized catalysts. The present research deals with catalyst development for dry reforming of methane with the aim of reaching the most stable catalyst. Effect of preparation method, one of the most significant variables, on the properties of the catalysts was taken in to account. The Ni/Al2O3-MgO catalysts were prepared via sol-gel and sequential impregnation methods and characterized with XRD, FESEM, EDAX, BET and FTIR techniques. The reforming reactions were carried out using different feed ratios, gas hourly space velocities (GHSV) and reaction temperatures to identify the influence of operational variables. FESEM images indicate uniform particle size distribution for the sample synthesized with sol-gel method. It has been found that the sol-gel method has the potential to improve catalyst desired properties especially metal surface enrichment resulting in catalytic performance enhancement. The highest yield of products was obtained at 850 degrees C for both of the catalysts. During the 10 h stability test, CH4 and CO2 conversions gained higher values in the case of sol-gel made catalyst compared to impregnated one.
Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.
Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco
2015-12-15
An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.
Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin
2016-07-29
In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings. Copyright © 2016 Elsevier B.V. All rights reserved.
Nucléation, ascension et éclatement d'une bulle de champagne
NASA Astrophysics Data System (ADS)
Liger-Belair, G.
2006-03-01
People have long been fascinated by bubbles and foams dynamics, and since the pioneering work of Leonardo da Vinci in the early 16th century, this subject has generated a huge bibliography. However, only quite recently, much interest was devoted to bubbles in Champagne wines and carbonated beverages. Since the time of the benedictine monk dom Pierre Perignon (1638-1715), champagne is the wine of celebration. This fame is largely linked to the elegance of its effervescence and foaming properties. In this book, the latest results about the chemical physics behind the bubbling properties of Champagne and sparkling wines are collected and fully illustrated. The first chapter is devoted to the history of champagne and to a presentation of the tools of the physical chemistry of interfaces needed for a whole comprehension of the book. Then, the three main steps of a fleeting champagne bubble's life are presented in chronological order, that is, the bubble nucleation on the glass wall (Chap.2), the bubble ascent and growth through the liquid matrix (Chap.3), and the bursting of bubbles at the liquid surface (Chap.4), which constitutes the most intriguing, functional, and visually appealing step. L'objectif général de ce travail consacré à l'étude des processus physicochimiques liés à l'effervescence des vins de Champagne était de décortiquer les différentes étapes de la vie d'une bulle de champagne en conditions réelles de consommation, dans une flûte. Nous résumons ci-après les principaux résultats obtenus pour chacune des étapes de la vie de la bulle, depuis sa naissance sur les parois d'une flûte, jusqu'à son éclatement en surface. Nucléation À l'aide d'une caméra rapide munie d'un objectif de microscope, nous avons pu mettre à mal une idée largement répandue. Ce ne sont pas les anfractuosités de la surface du verre ou de la flûte qui sont responsable de la nucléation hétérogène des bulles, mais des particules adsorbées sur les parois du verre ou de la flûte. Dans la majorité des cas, il s'agit de fibres de cellulose creuses dont les propriétés géométriques permettent le piégeage d'une poche d'air en leur sein au moment du versement. Un modèle de piégeage a été construit et met en avant le rôle fondamental joué par la vitesse du versement. Plus cette vitesse augmente, plus on augmente la probabilité de piéger des poches d'air au sein de ces fibres, provoquant ainsi une effervescence plus importante. La dynamique de production des bulles a également été filmée in situ à l'aide de la caméra, puis modélisée en utilisant les équations de la diffusion adaptées à la géométrie de notre fibre supposée approximativement cylindrique. Nous avons montré que le temps caractéristique de production d'une bulle par la fibre est largement gouverné par la croissance de cette petite poche de gaz par diffusion du CO{2} dissous vers la poche. Nous avons démontré que la convection du liquide joue un rôle essentiel lors du transfert de masse du CO{2} dissous vers la poche. En effet, un modèle purement diffusif ne permet pas du tout de reproduire la dynamique de croissance expérimentale de ces poches de gaz piégées au cœur des fibres. Nous avons également pu mettre en évidence des changements spectaculaires dans la dynamique de bullage de certains sites de nucléation suivis au cours du temps pendant le processus de dégazage. Ces observations font de la fibre de cellulose immergée dans le champagne le plus petit système de bullage non-linéaire observé à ce jour. Dynamique ascensionnelle Pour mesurer la vitesse d'une bulle tout au long de son trajet vers la surface libre du champagne, nous avons tiré profit de la production répétitive de bulles au niveau des sites de nucléation. Par la mise en place d'un dispositif expérimental simple qui associe une lumière stroboscopique et un appareil photographique muni de bagues macros, nous avons pu accéder à l'observation fine des trains de bulles ainsi qu'à la détermination de la vitesse ascensionnelle des bulles. Les mesures expérimentales du rayon et de la vitesse d'une bulle nous ont permis de déterminer le coefficient de traînée d'une bulle montante qui constitue une mesure indirecte de son état de surface en termes de mobilité interfaciale. Ces mesures nous ont montré que l'interface d'une bulle de champagne conserve une grande mobilité interfaciale pendant sa phase ascensionnelle, à la différence des bulles de taille fixe qui montent dans une solution de macromolécules tensioactives. C'est la faible dilution du champagne en macromolécules tensioactives et le grossissement continu des bulles pendant l'ascension qui assurent aux bulles une faible contamination de leur interface. Pour comparaison, nous avons réalisé le même type de mesures sur des bulles de bière. Le contenu en macromolécules tensioactives étant beaucoup plus important dans une bière, l'effet de dilution du matériel tensioactif à la surface des bulles lié à l'accroissement de la surface des bulles ne compense plus l'adsorption massive des tensioactifs à la surface des bulles. Contrairement aux bulles du champagne, les bulles de bière adoptent vite un comportement de type sphère rigide. Nous avons également discuté l'influence relative de certains paramètres sur la taille des bulles lorsqu'elles parviennent en surface. Il a notamment été montré que le rôle théorique joué par la température du champagne sur la taille des bulles est quasiment négligeable. Pour finir, nous avons proposé d'essayer de faire du train de bulles une sorte d'empreinte digitale du liquide effervescent dans lequel il évolue en analysant la dynamique ascensionnelle des bulles via la mesure de leur coefficient de frottement. Nous avons pu différencier à ce jour par cette méthode trois grandes familles de boissons gazeuses : les vins effervescents au sens large (champagne compris), les bières et les eaux gazeuses. Éclatement En utilisant les techniques classiques de la macrophotographie, nous avons obtenu des instantanés de la situation qui suit immédiatement la rupture du mince film liquide qui constitue la partie émergée d'une bulle isolée en surface. Nous avons ainsi pu mettre en évidence l'existence des jets de liquide engendrés par les éclatements de bulle, et leur rupture en gouttelettes suite au développement très rapide de l'instabilité de Rayleigh-Plateau. En faisant un parallèle légitime entre le pétillement des bulles à la surface du champagne et le “pétillement de l'océan”, nous avons émis l'idée que les gouttelettes de jet étaient beaucoup plus concentrées en matériel tensioactif (et potentiellement aromatique) que le cœur de phase du liquide. Il semble donc que l'éclatement de bulles joue un rôle essentiel dans l'effet exhausteur d'arômes au cours de la dégustation d'un champagne. Pendant les quelques secondes qui suivent le versement du champagne dans la flûte, nous avons également réalisé des clichés macrophotographiques et des films à haute vitesse d'éclatements de bulles en monocouche (ou radeau de bulles). Les premiers résultats de ces observations font apparaître des déformations spectaculaires dans le film liquide des bulles premières voisines littéralement aspirées par succion capillaire dans la cavité laissée vacante par la bulle centrale en train d'éclater. Ces premières images suggèrent des contraintes, dans le mince film des bulles déformées, très supérieures à celles qui existent dans le sillage d'une bulle isolée qui éclate. Nous avons également pu mettre en évidence des différences structurales entre les jets de liquide qui suivent l'éclatement des bulles isolées et celles qui éclatent dans un radeau de bulles.
Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C
2013-05-01
Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghisleni, Rudy
A study on the effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived thin films has been performed. Hybrid organic/inorganic modified silicate thin films were synthesized by sol-gel processing from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto (100) Si substrates. The synthesized films were investigated by nanoindentation, photoluminescence spectroscopy, and Raman spectroscopy. Hybrid TEOS/MTES sol-gel films modified by ion irradiation with deposited electronic energies of 1.87 x 1025 eV/cm3 or higher showed higher values of reduced elastic modulus and hardness than 800°C heat treated films. Thus, ion irradiation was found to be an effective means in converting the polymer sol into ceramic type coatings. The ions used in this study were Cu2+, N2+, Si+, O+, N+, He+, and H+, with incident energies ranging from 100 keV to 2 MeV, and fluences ranging from 1 x 1014 to 1 x 1017 ions/cm2. Both the reduced elastic modulus and hardness were seen to increase monotonically with the increase in ion fluence, with an observed maximum hardness of 7.7 GPa (an unirradiated film hardness was 0.4 GPa) and a maximum reduced elastic modulus of 84.0 GPa (an unirradiated film reduced elastic modulus was 7.1 GPa) for 250 keV N2+ irradiation with a 5 x 1016 ions/cm2 fluence. The electronic stopping power was found to be principally responsible for the film hardening, while the role of nuclear stopping power was minimal. A monotonic increase in hardness with increase in electronic energy deposited to the film surface was found. A model describing the hardening of ion irradiated films was developed. This model characterizes the hardening effectiveness of the ion species considered by two parameters: the constant hardening cross-section and the hardening coefficient. Where the hardening cross-section represents the cross-sectional area hardened by the interaction of an incident ion with the target, and the hardening coefficient represents an index of the cross-sectional area gradient as a function of fluence. The increase in hardness of hybrid sol-gel films following ion irradiation was linked to structural changes. Ion irradiation results in a cross-linked silica film as well as the segregation of amorphous carbon clusters, both of which contributed to increase the mechanical properties of the films.
Zhang, Suling; Du, Zhuo; Li, Gongke
2012-10-19
A graphene-supported zinc oxide (ZnO) solid-phase microextraction (SPME) fiber was prepared via a sol-gel approach. Graphite oxide (GO), with rich oxygen-containing groups, was selected as the starting material to anchor ZnO on its nucleation center. After being deoxidized by hydrazine, the Zn(OH)2/GO coating was dehydrated at high temperature to give the ZnO/graphene coating. Sol-gel technology could efficiently incorporate ZnO/graphene composites into the sol-gel network and provided strong chemical bonding between sol-gel polymeric SPME coating and silica fiber surface, which enhanced the durability of the fiber and allowed more than 200 replicate extractions. Results indicated that pure ZnO coated fiber did not show adsorption selectivity toward sulfur compounds, which might because the ZnO nanoparticles were enwrapped in the sol-gel network, and the strong coordination action between Zn ion and S ion was therefore blocked. The incorporation of graphene into ZnO based sol-gel network greatly enlarged the BET surface area from 1.2 m2/g to 169.4 m2/g and further increased the adsorption sites. Combining the superior properties of extraordinary surface area of graphene and the strong coordination action of ZnO to sulfur compounds, the ZnO/graphene SPME fiber showed much higher adsorption affinity to 1-octanethiol (enrichment factor, EF, 1087) than other aliphatic compounds without sulfur-containing groups (EFs<200). Also, it showed higher extraction selectivity and sensitivity toward sulfur compounds than commercial polydimethylsiloxane (PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibers. Several most abundant sulfur volatiles in Chinese chive and garlic sprout were analyzed using the ZnO/graphene SPME fiber in combination with gas chromatography-mass spectrometry (GC-MS). Their limits of detection were 0.1-0.7 μg/L. The relative standard deviation (RSD) using one fiber ranged from 3.6% to 9.1%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 4.8-10.8%. The contents were in the range of 1.0-46.4 μg/g with recoveries of 80.1-91.6% for four main sulfides in Chinese chive and 17.1-122.6 μg/g with recoveries of 73.2-80.6% for three main sulfides in garlic sprout. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jing; Huang, Wanxia; Shi, Qiwu; Cai, Jinghan; Zhao, Dong; Zhang, Yubo; Yan, Jiazhen
2013-03-01
This paper described the synthesis of vanadium dioxide (VO2) thin films on mica substrates with different annealing temperatures by an organic sol-gel method. We performed X-ray diffraction, scanning electron microscope and optical transmission measurements to investigate the effect of the annealing temperature on the crystalline structure, morphology, and phase transition properties of these films. The results showed that a polycrystalline structure with high crystallinity and compact surface at the annealing temperature of 500 °C. The film exhibited a V6O13 phase and a flat surface with small grain size at 440 °C. By contrast, the VnO2n-1 appeared when the annealing temperature at 540 °C, and the film surface split into segregation of spherical grain and aggregates of continuously dendritic particles. Accordingly, the optimal annealing temperature was 500 °C using the organic sol-gel method. And it turned out that the films mainly contained VO2 (M) phase at room temperature with high content of V4+ valence. Particularly, the films showed different changes in the infrared transmittance and hysteresis width during the phase transition. The largest transformation of the infrared transmittance before and after MIT was 73%, while the narrowest temperature hysteresis width was 8 °C at 500 °C.
Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.
Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro
2011-11-15
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.
2011-01-01
Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral commensal species tested than the other surfaces. PMID:21385428
NASA Astrophysics Data System (ADS)
Liu, Huicong; Zhu, Liqun; Li, Weiping
Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.
Spirit's View Beside 'Home Plate' on Sol 1823
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this 180-degree view of the rover's surroundings during the 1,823rd Martian day, or sol, of Spirit's surface mission (Feb. 17, 2009). The center of the view is toward the south-southwest. The rover had driven 7 meters (23 feet) eastward earlier on Sol 1823, part of maneuvering to get Spirit into a favorable position for climbing onto the low plateau called 'Home Plate.' However, after two driving attempts with negligible progress during the following three sols, the rover team changed its strategy for getting to destinations south of Home Plate. The team decided to drive Spirit at least partway around Home Plate, instead of ascending the northern edge and taking a shorter route across the top of the plateau. Layered rocks forming part of the northern edge of Home Plate can be seen near the center of the image. Rover wheel tracks are visible at the lower edge. This view is presented as a cylindrical projection with geometric seam correction.Spirit Begins Drive Around Home Plate
NASA Technical Reports Server (NTRS)
2009-01-01
The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,829th Martian day, or sol, of Spirit's mission on the surface of Mars (Feb. 24, 2009). On Sol 1829, Spirit drove 6.29 meters (21 feet) northwestward, away from the northern edge of the low plateau called 'Home Plate.' The track dug by the dragged right-front wheel as the rover drove backward is visible in this image, receding toward the southeast. Rock layers of the northern slope of Home Plate are visible in the upper right portion of the image. In sols prior to 1829, the rover team had been trying to maneuver Spirit to climb onto the northern edge of Home Plate, ready to drive southward across the top of the plateau toward science destinations south of Home Plate. The Sol 1829 drive was the first move of a revised strategy to circle at least partway around Home Plate on the trek toward the sites south of the plateau.Martian Soil Ready for Robotic Laboratory Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck. The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander. This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera. The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Wynn, A.; Lipschultz, B.; Cziegler, I.; Harrison, J.; Jaervinen, A.; Matthews, G. F.; Schmitz, J.; Tal, B.; Brix, M.; Guillemaut, C.; Frigione, D.; Huber, A.; Joffrin, E.; Kruzei, U.; Militello, F.; Nielsen, A.; Walkden, N. R.; Wiesen, S.; Contributors, JET
2018-05-01
The low temperature boundary layer plasma (scrape-off layer or SOL) between the hot core and the surrounding vessel determines the level of power loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces—and subsequent erosion. We find that increases in SOL parallel resistivity, Λdiv (=[L || ν eiΩi]/c sΩe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in SOL shoulder amplitude, A s, only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with A s for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv and A s is also found for H-mode discharges. Thus, while it may be necessary for Λdiv to be above a threshold of ~1 for shoulder formation and/or growth, another mechanism is required. More significantly, we find that in contrast to parallel resistivity, outer divertor recycling, as quantified by the total outer divertor Balmer D α emission, I-D α , does scale with A s where Λdiv does and even where Λdiv does not. Divertor recycling could lead to SOL density shoulder formation through: (a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and (b) changes in radial electric fields which lead to E × B poloidal flows as well as potentially affecting SOL turbulence birth characteristics. Thus, changes in divertor recycling may be the sole process involved in bringing about SOL density shoulders or it may be that it acts in tandem with parallel resistivity.
Effect of ethanol variation on the internal environment of sol-gel bulk and thin films with aging.
Gupta, R; Mozumdar, S; Chaudhury, N K
2005-10-15
Sol-gel derived bulk and thin films were prepared from different compositions at low pH ( approximately 2.0) containing varying concentrations of ethanol from 15 to 60% at constant water (H(2)O)/tetraethyl-orthosilicate (TEOS) ratio (R=4). The fluorescence microscopic and spectroscopic measurements on fluorescent probe, Hoechst 33258 (H258) entrapped in these compositions were carried out at different days of storage to monitor the effects of concentration of ethanol on the internal environment of sol-gel materials. Fluorescence microscopic observations on sol-gel thin films, prepared by dip coating technique depicted uniform and cracked surface at withdrawal speed 1cm/min (high speed) and 0.1cm/min (low speed) respectively, which did not change during aging. Fluorescence spectral measurements showed emission maximum of H258 at approximately 535 nm in fresh sols at all concentrations of ethanol which depicted slight blue shift to 512 nm during aging in bulk. No such spectral shift has been observed in sol-gel thin films coated at high speed whereas thin films coated at low speed clearly showed an additional band at approximately 404 nm at 45 and 60% concentration of ethanol after about one month of storage. Analysis of the fluorescence lifetime data indicated single exponential decay (1.6-1.8 ns) in fresh sol and from third day onwards, invariably double exponential decay with a short (tau(1)) and a long (tau(2)) component were observed in sol-gel bulk with a dominant tau(1) at approximately 1.2 ns at all concentrations of ethanol. A double exponential decay consisting of a short component (tau(1)) at approximately 0.2 ns and a long component (tau(2)) at approximately 3.5 ns were observed at all ethanol concentrations in both fresh and aged sol-gel thin films. Further, distribution analysis of lifetimes of H258 showed two mean lifetimes with increased width in aged bulk and thin films. These results are likely to have strong implications in designing the internal environment for applications in biosensors.
'Diamond Jenness': Before the Grind
NASA Technical Reports Server (NTRS)
2004-01-01
This microscopic imager mosaic of the rock called 'Diamond Jenness' was snapped on sol 177 before NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool, or 'Rat.' Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer. On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed. The image mosaic is about 6 centimeters (2.4 inches) across.'Diamond Jenness': Before the Grind
2004-08-03
This microscopic imager mosaic of the rock called "Diamond Jenness" was snapped on sol 177 before NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool, or "Rat." Opportunity has bored nearly a dozen holes into the inner walls of "Endurance Crater." On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer. On Sol 178, Opportunity's "robotic rodent" dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed. The image mosaic is about 6 centimeters (2.4 inches) across. http://photojournal.jpl.nasa.gov/catalog/PIA06748
NASA Astrophysics Data System (ADS)
Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart
2004-12-01
The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.
High frequency EMI sensing for estimating depleted uranium radiation levels in soil
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Barrowes, Benjamin E.; Ballard, John; Unz, Ron; Randle, Adam; Larson, Steve L.; O'Neill, Kevin A.
2018-04-01
This paper studies high (100 kHz up to 15 MHz) frequency electromagnetic responses (HFEMI) for DU metallic pieces and DU contaminated soils and derives a simple empirical expression from the measured HFEMI data for estimating DU contamination levels in soil. Depleted uranium (DU) is the byproduct of uranium enrichment and contains 33% less radioactive isotopes than natural uranium. There are at least thirty facilities at fourteen separate locations in the US, where munitions containing DU have been evaluated or used for training. At these sites, which vary in size, evaluation studies have been conducted with and without catch boxes. In addition, the DoD used DU at open firing ranges as large as thousands of acres (hundreds of hectares), for both artillery and aircraft training. These activities have left a legacy of DU contamination. Currently at military sites where DU munitions have been or are being used, cleanup activities mainly are done by excavating and shipping large volumes of site soil and berm materials to a hazardous material radiation disposal site. This approach is very time consuming, costly, and associated with the potential for exposure of personnel performing excavation and transportation. It also limits range use during the operation. So, there is an urgent need for technologies for rapid surveying of large areas to detect, locate, and removal of DU contaminants at test sites. Additionally, the technologies are needed to detect material at a depth of at least 30 cm as well as discriminate between DU metals and oxides from natural uranium and from other conductive metals such as natural and man-made range clutter. One of the potential technologies for estimating DU radiation levels in soils is HFEMI sensing. In this paper, HFEMI signals are collected for DU metal pieces, sodium diunarate (Na2U2 O3) and tri-uranium octoxide (U3O8). The EMI signal's sensitivity with respect to DU material composition and conditions are illustrated and analyzed. A new scheme for extracting near-surface soil's EM parameters is formulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Peng, Yong; Xiao, Ruihua
SrTiO{sub 3}/nano Al{sub 2}O{sub 3} inorganic nanocomposites were prepared by using a conventional sol-gel spin coating process. For comparison, SrTiO{sub 3} films doped by equivalent amount of sol-Al{sub 2}O{sub 3} have also been investigated. Aluminum deposited by using vacuum evaporation was used as the top electrode. The nanocomposites exhibited a significantly enhanced dielectric strength of 506.9 MV/m, which was increased by 97.4% as compared with the SrTiO{sub 3} films doped with sol-Al{sub 2}O{sub 3}. The leakage current maintained of the same order of microampere until the ultimate breakdown of the nanocomposites. The excellent electrical performances are ascribed to the anodicmore » oxidation reaction in origin, which can repair the internal and/or surface defects of the films.« less
NASA Astrophysics Data System (ADS)
Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.
2018-03-01
Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.
Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology.
Spirk, Stefan; Findenig, Gerald; Doliska, Ales; Reichel, Victoria E; Swanson, Nicole L; Kargl, Rupert; Ribitsch, Volker; Stana-Kleinschek, Karin
2013-03-01
The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed. Copyright © 2012 Elsevier Ltd. All rights reserved.
'Illinois' and 'New York' Wiped Clean
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic camera image was taken by NASA's Mars Exploration Rover Spirit on sol 79 after completing a two-location brushing on the rock dubbed 'Mazatzal.' A coating of fine, dust-like material was successfully removed from targets named 'Illinois' (right) and 'New York' (left), revealing the weathered rock underneath. In this image, Spirit's panoramic camera mast assembly, or camera head, can be seen shadowing Mazatzal's surface. This approximate true color image was taken with the 601, 535 and 482 nanometer filters.
The center of the two brushed spots are approximately 10 centimeters (3.9 inches) apart and will be aggressively analyzed by the instruments on the robotic arm on sol 80. Plans for sol 81 are to grind into the New York target to get past any weathered rock and expose the original, internal rock underneath.NASA Astrophysics Data System (ADS)
Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.
2018-03-01
Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.
Structure and electromagnetic properties of FeSiAl particles coated by MgO
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhou, Ting-dong
2017-03-01
FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.
Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area
NASA Astrophysics Data System (ADS)
Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho
2018-01-01
In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.
Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes
NASA Astrophysics Data System (ADS)
Deetz, Joshua David
The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that the rate of alkoxysilane hydrolysis is strongly dependent on the concentration of water. The dynamics of siloxane cluster formation are revealed, which provides insight for experimentalists. The silanization of hydroxylated silica surfaces by alkoxysilanes was modeled in pseudo-infinite liquid solution. Butyl-, octyl-, or dodecylsilanes were exposed to hydroxylated silica surfaces in order to observe the influence of silyl headgroup size on the morphology and formation kinetics of silane films on silica substrates. The radius of gyration and order parameter of the hydrocarbon silyl groups were found to increase with grafting density. This was the first simulation study of the dynamic grafting of alkoxysilanes to a substrate.
Gil-Albarova, Jorge; Salinas, Antonio J; Bueno-Lozano, Antonio L; Román, Jesus; Aldini-Nicolo, Nicolo; García-Barea, Agustina; Giavaresi, Gianluca; Fini, Milena; Giardino, Roberto; Vallet-Regí, Maria
2005-07-01
The in vivo evaluation, in New Zealand rabbits, of a sol-gel glass 70% CaO-30% SiO2 (in mol%) and a glass-ceramic obtained from thermal treatment of the glass, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Femoral bone diaphyseal critical defects were filled with: (i) sol-gel glass cylinders, (ii) glass-ceramic cylinders, or (iii) no material (control group). Osteosynthesis was done by means of anterior screwed plates with an associate intramedullar Kirschner wire. Each group included 10 mature rabbits, 9 months old. Follow-up was 6 months. After sacrifice, macroscopic study showed healing of bone defects, with bone coating over the cylinders, but without evidence of satisfactory repair in control group. Radiographic study showed good implant stability and periosteal growth and bone remodelling around and over the filled bone defect. The morphometric study showed minimum evidences of degradation or resorption in glass-ceramic cylinders, maintaining its original shape, but sol-gel glass cylinders showed abundant fragmentation and surface resorption. An intimate union of the new-formed bone to both materials was observed. Mechanical study showed the higher results in the glass-ceramic group, whereas sol-gel glass and control group showed no differences. The minimum degradation of glass-ceramic cylinders suggests their application in critical bone defects locations of transmission forces or load bearing. The performance of sol-gel glass cylinders suggests their usefulness in locations where a quick resorption should be preferable, considering the possibility of serving as drug or cells vehicle for both of them.
Hafezeqoran, Ali; Koodaryan, Roodabeh
2017-09-21
Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.
Des proprietes de l'etat normal du modele de Hubbard bidimensionnel
NASA Astrophysics Data System (ADS)
Lemay, Francois
Depuis leur decouverte, les etudes experimentales ont demontre que les supra-conducteurs a haute temperature ont une phase normale tres etrange. Les proprietes de ces materiaux ne sont pas bien decrites par la theorie du liquide de Fermi. Le modele de Hubbard bidimensionnel, bien qu'il ne soit pas encore resolu, est toujours considere comme un candidat pour expliquer la physique de ces composes. Dans cet ouvrage, nous mettons en evidence plusieurs proprietes electroniques du modele qui sont incompatibles avec l'existence de quasi-particules. Nous montrons notamment que la susceptibilite des electrons libres sur reseau contient des singularites logarithmiques qui influencent de facon determinante les proprietes de la self-energie a basse frequence. Ces singularites sont responsables de la destruction des quasi-particules. En l'absence de fluctuations antiferromagnetiques, elles sont aussi responsables de l'existence d'un petit pseudogap dans le poids spectral au niveau de Fermi. Les proprietes du modele sont egalement etudiees pour une surface de Fermi similaire a celle des supraconducteurs a haute temperature. Un parallele est etabli entre certaines caracteristiques du modele et celles de ces materiaux.
Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials
NASA Astrophysics Data System (ADS)
Chiu, Chi-Kai
Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3 was ground into two different sizes of powder followed by powder pressing, heat-treating and etching. A new robust porous silver foam was then successfully made. By combining the results from room temperature and high temperature processes, we further study the patterned silver nanoparticles arrays in order to examine how mobility of silver can be controlled on a quantifiable scale. Furthermore, we have identified a thiolcontaining sol-gel precursor to control the affinity between silver and silica matrix. Lastly, the effects of interfacial interactions between sol-gel silica and other nanocomposite components and the effect of thickness of the sol-gel layer on mechanical properties were investigated. These studies were applied to the biomimetic hydroxyapatite-gelatin system. We have found that by limiting the thickness while maintaining interfacial interactions of the sol-gel layer, a unique moldable property and short hardening time from these nanocomposites can be achieved without compromising its biocompatibility. Their biocompatibility has been proven based on the in vitro and in vivo testing of these materials. In conclusion, the present study has demonstrated that polymer-silica nanocomposite is a versatile platform to carry out applications in nanocrystal growth, nanoporous metals, metal-ceramic composites, nano-imprint thin film, and bone grafts. These important findings not only provide new insights into nanocomposites but also give new meanings to the previously functional-limited sol-gel materials.
From core to coax: extending core RF modelling to include SOL, Antenna, and PFC
NASA Astrophysics Data System (ADS)
Shiraiwa, Syun'ichi
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.
Chemistry and Processing of Nanostructured Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, G A; Baumann, T F; Hope-Weeks, L J
2002-01-18
Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroesi, Laszlo, E-mail: l.korosi@chem.u-szeged.hu; Papp, Szilvia; Oszko, Albert
2012-04-15
Highlights: Black-Right-Pointing-Pointer The synthesis of ITO powders and thin films from PVP-containing sols is presented. Black-Right-Pointing-Pointer The nano- and microstructures of ITO are more compact when PVP is used. Black-Right-Pointing-Pointer PVP acts both as a steric stabilizer of the sol and as a pre-sintering agent. Black-Right-Pointing-Pointer The PVP-induced enhanced sintering results in ITO with lower electrical resistance. Black-Right-Pointing-Pointer The surface composition of the ITO films is independent of the initial PVP content. -- Abstract: Indium tin hydroxide (ITH) xerogel powders and thin films with different polyvinylpyrrolidone (PVP) contents (0-22%, w/w) were prepared by a classical sol-gel method. To obtain nanocrystallinemore » indium tin oxide (ITO), the ITH xerogels were calcined at 550 Degree-Sign C. The effect of the initial polymer content on the structure of the ITO powders was studied by means of N{sub 2}-sorption measurements, small-angle X-ray scattering (SAXS), transmission and scanning electron microscopy. The N{sub 2}-sorption measurements revealed that the ITO powders obtained contained micropores and both their porosity and specific surface area decreased with increasing PVP content of the ITH xerogels. The SAXS measurements confirmed the enhanced sintering of the particles in the presence of PVP. The calculated mass fractal dimensions of the ITO powders increased significantly, indicating a significant compaction in structure. The pre-sintered structure could be achieved at relatively low temperature, which induced a significant decreasing (three orders of magnitude) in the electrical resistance of the ITO films.« less
Upper-Ocean Processed Under the Stratus Cloud Deck in the Southeast Pacific Ocean
2010-01-19
based on Woods Hole Oceano - graphic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are...Jason-1 and Jason-2 sea surface heights and geostrophic currents (computed from absolute topography) produced by Segment Sol Multimissions d’Altimetrie
NASA Astrophysics Data System (ADS)
Bu, Dan; Zhuang, Huisheng
2013-01-01
Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.
Trace drug analysis by surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Farquharson, Stuart; Lee, Vincent Y.
2000-12-01
Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Xu, Xuejiao; Lin, Yuehe
2007-07-27
A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmoticmore » flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.« less
NASA Astrophysics Data System (ADS)
Labombard, B.; Brunner, D.; Kuang, A. Q.; McCarthy, W.; Terry, J. L.
2017-10-01
The scrape-off layer (SOL) power channel width, λq, is projected to be 0.5 mm in power reactors, based on multi-machine measurements of divertor target heat fluxes in H-mode at low levels of divertor dissipation. An important question is: does λq change with the level of divertor dissipation? We report results in which feedback controlled nitrogen seeding in the divertor was used to systematically vary divertor dissipation in a series of otherwise identical L-mode plasmas at three plasma currents: 0.55, 0.8 and 1.1 MA. Outer midplane profiles were recorded with a scanning Mirror Langmuir Probe; divertor plasma conditions were monitored with `rail' Langmuir probe and surface thermocouple arrays. Despite an order of magnitude reduction in divertor target heat fluxes (q// 400 MW m-2 to 40 MW m-2) and corresponding change in divertor regime from sheath-limited through high-recycling to near-detached, the upstream electron temperature profile is found to remain unchanged or to become slightly steeper in the near SOL and to drop significantly in the far SOL. Thus heat in the SOL appears to take advantage of this impurity radiation `heat sink' in the divertor by preferentially draining via the narrow (and perhaps an increasingly narrow) λq of the near SOL. Supported by USDoE award DE-FC02-99ER54512.
Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.
2008-01-01
Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566
Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C
2008-01-31
To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.
Uchiyama, Hiroaki; Mantani, Yuto; Kozuka, Hiromitsu
2012-07-10
Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.
Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.
Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong
2012-01-01
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.
Optical enhancement of Au doped ZrO2 thin films by sol-gel dip coating method
NASA Astrophysics Data System (ADS)
John Berlin, I.; Joy, K.
2015-01-01
Homogeneous and transparent Au doped ZrO2 thin films were prepared by sol-gel dip coating method. The films have mixed phase of tetragonal, monoclinic and face centered cubic with crack free surface. Due to the increase in Au doping concentration many-body interaction occurs between free carriers and ionized impurities causing decrease in optical band gap from 5.72 to 5.40 eV. Localized surface plasmon resonance peak of the Au doped films appeared at 610 nm. Conversion of photons to surface plasmons allows the sub-wavelength manipulation of electromagnetic radiation. Hence the prepared Au doped ZrO2 thin films can be applied in nanoscale photonic devices such as lenses, switches, waveguides etc. Moreover the photoluminescence (PL) intensity of Au doped ZrO2 thin films decrease due to decrease in the radiative recombination, life time of the excitons and suppression of grain growth of ZrO2 with increasing Au dopant.
In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.
2013-01-01
The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
Impediment to Spirit Drive on Sol 1806
NASA Technical Reports Server (NTRS)
2009-01-01
The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,806th Martian day, or sol, (January 31, 2009) of Spirit's mission on the surface of Mars. The wheel at the bottom right of the image is Spirit's right-front wheel. Because that wheel no longer turns, Spirit drives backwards dragging that wheel. The drive on Sol 1806 covered about 30 centimeters (1 foot). The rover team had planned a longer drive, but Spirit stopped short, apparently from the right front wheel encountering the partially buried rock visible next to that wheel. The hazard avoidance cameras on the front and back of the rover provide wide-angle views. The hill on the horizon in the right half of this image is Husband Hill. Spirit reached the summit of Husband Hill in 2005.Phoenix Robotic Arm's Workspace After 90 Sols
NASA Technical Reports Server (NTRS)
2008-01-01
During the first 90 Martian days, or sols, after its May 25, 2008, landing on an arctic plain of Mars, NASA's Phoenix Mars Lander dug several trenches in the workspace reachable with the lander's robotic arm. The lander's Surface Stereo Imager camera recorded this view of the workspace on Sol 90, early afternoon local Mars time (overnight Aug. 25 to Aug. 26, 2008). The shadow of the the camera itself, atop its mast, is just left of the center of the image and roughly a third of a meter (one foot) wide. The workspace is on the north side of the lander. The trench just to the right of center is called 'Neverland.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Salanskis, Jean-Michel
Disons pour conclure que, en tout état de cause, la façon de concevoir philosophiquement le conflit du continu et de l'espace que nous avons trouvée chez Hegel n'est pas homogène avec le style et les modalités de la pensée mathématique: 1) d'une part, le lien classique, le lien de référence entre continu et espace en mathématiques n'est pas que l'espace serait premier et privé de pensée, et le continu second, venant dissoudre l'espace en apportant la qualité, l'infini et la pensée, mais tout au contraire, il consiste en ce que l'espace est fondé sur l'abîme infinitaire du continu ; 2) d'autre part, l'éventuel divorce entre l'espace et le continu dans l'aire mathématique n'est pas celui d'une réflexivité purement conceptuelle du continu avec un positivisme géométrique, n'équivaut pas à une rupture disciplinaire ; il est plutôt le symptôme de la dérive d'une herméneutique à l'égard d'une autre, au sein d'un continent juridique commun définissant la discipline (la mathématique ensembliste), cette dérive pouvant, à la limite, induire une refonte de ce sol juridique, sans que jamais il soit question pour autant de nier l'unité des mathématiques, à comprendre ici comme l'unité ultime de responsabilité de la communauté mathématique à l'égard des trois questions Qu'est-ce que l'espace?”, “Qu'est-ce que le continu?” et “Qu'est-ce que l'infini?”.
Water-assisted crystallization of mesoporous anatase TiO2 nanospheres
NASA Astrophysics Data System (ADS)
Li, Na; Zhang, Qiao; Joo, Ji Bong; Lu, Zhenda; Dahl, Michael; Gan, Yang; Yin, Yadong
2016-04-01
We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications.We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01892k
Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating
NASA Astrophysics Data System (ADS)
Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang
2017-12-01
A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.
Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates
NASA Astrophysics Data System (ADS)
Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward
2002-02-01
The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.
Research on degradation of omethoate with Y2O3:Er3+ and TiO2
NASA Astrophysics Data System (ADS)
Liu, Zhiping; Mai, Yanling; Yan, Aiguo; Fan, Hailu; Yuan, Taidou
2018-06-01
Application of visible light excited photocatalytic degradation reagent of pesticide residues is not only suitable for the farmers, can also be used for city residents for daily use. Up conversion material Y2O3:Er3+ was prepared by sol gel method, then mixed with anatase TiO2 sol solution, to carry out the research of omethoate degradation under visible light. In order to get the higher degradability, it's important to study the technological parameters. Among so many parameters, four parameters were selected. They were vegetable surface omethoate concentration, photocatalytic degradation reagent dosage, pH value and degradation time. Utilizing orthogonal experimental design program, all parameters were optimized. The results showed that: the degradation rate was the largest concerned with the vegetable surface omethoate concentration, and then the degradation time.
Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups
NASA Astrophysics Data System (ADS)
Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.
2016-02-01
In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.
NASA Astrophysics Data System (ADS)
Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.
2017-03-01
Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.
Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Chen, Shih-Lun; Tu, Wei-Chen; Lee, Chia-Yen; Chang, Yia-Chung; Chu, Chih-Wei
2018-04-25
This manuscript describes how to design and fabricate efficient inverted solar cells, which are based on a two-dimensional conjugated small molecule (SMPV1) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by utilizing ZnO nanorods (NRs) grown on a high quality Al-doped ZnO (AZO) seed layer. The inverted SMPV1:PC71BM solar cells with ZnO NRs that grew on both a sputtered and sol-gel processed AZO seed layer are fabricated. Compared with the AZO thin film prepared by the sol-gel method, the sputtered AZO thin film exhibits better crystallization and lower surface roughness, according to X-ray diffraction (XRD) and atomic force microscope (AFM) measurements. The orientation of the ZnO NRs grown on a sputtered AZO seed layer shows better vertical alignment, which is beneficial for the deposition of the subsequent active layer, forming better surface morphologies. Generally, the surface morphology of the active layer mainly dominates the fill factor (FF) of the devices. Consequently, the well-aligned ZnO NRs can be used to improve the carrier collection of the active layer and to increase the FF of the solar cells. Moreover, as an anti-reflection structure, it can also be utilized to enhance the light harvesting of the absorption layer, with the power conversion efficiency (PCE) of solar cells reaching 6.01%, higher than the sol-gel based solar cells with an efficiency of 4.74%.
NASA Astrophysics Data System (ADS)
Benard, Pierre
Nous presentons une etude des fluctuations magnetiques de la phase normale de l'oxyde de cuivre supraconducteur La_{2-x}Sr _{x}CuO_4 . Le compose est modelise par le Hamiltonien de Hubbard bidimensionnel avec un terme de saut vers les deuxiemes voisins (modele tt'U). Le modele est etudie en utilisant l'approximation de la GRPA (Generalized Random Phase Approximation) et en incluant les effets de la renormalisation de l'interaction de Hubbard par les diagrammes de Brueckner-Kanamori. Dans l'approche presentee dans ce travail, les maximums du facteur de structure magnetique observes par les experiences de diffusion de neutrons sont associes aux anomalies 2k _{F} de reseau du facteur de structure des gaz d'electrons bidimensionnels sans interaction. Ces anomalies proviennent de la diffusion entre particules situees a des points de la surface de Fermi ou les vitesses de Fermi sont tangentes, et conduisent a des divergences dont la nature depend de la geometrie de la surface de Fermi au voisinage de ces points. Ces resultats sont ensuite appliques au modele tt'U, dont le modele de Hubbard usuel tU est un cas particulier. Dans la majorite des cas, les interactions ne determinent pas la position des maximums du facteur de structure. Le role de l'interaction est d'augmenter l'intensite des structures du facteur de structure magnetique associees a l'instabilite magnetique du systeme. Ces structures sont souvent deja presentes dans la partie imaginaire de la susceptibilite sans interaction. Le rapport d'intensite entre les maximums absolus et les autres structures du facteur de structure magnetique permet de determiner le rapport U_ {rn}/U_{c} qui mesure la proximite d'une instabilite magnetique. Le diagramme de phase est ensuite etudie afin de delimiter la plage de validite de l'approximation. Apres avoir discute des modes collectifs et de l'effet d'une partie imaginaire non-nulle de la self-energie, l'origine de l'echelle d'energie des fluctuations magnetiques est examinee. Il est ensuite demontre que le modele a trois bandes predit les memes resultats pour la position des structures du facteur de structure magnetique que le modele a une bande, dans la limite ou l'hybridation des orbitales des atomes d'oxygene des plans Cu-O_2 et l'amplitude de sauts vers les seconds voisins sont nulles. Il est de plus constate que l'effet de l'hybridation des orbitales des atomes d'oxygene est bien modelise par le terme de saut vers les seconds voisins. Meme si ils decrivent correctement le comportement qualitatif des maximums du facteur de structure magnetique, les modeles a trois bandes et a une bande ne permettent pas d'obtenir une position de ces structures conforme avec les mesures experimentales, si on suppose que la bande est rigide, c'est-a-dire que les parametres du Hamiltonien sont independants de la concentration de strontium. Ceci peut etre cause par la dependance des parametres du Hamiltonien sur la concentration de strontium. Finalement, les resultats sont compares avec les experiences de diffusion de neutrons et les autres theories, en particulier celles de Littlewood et al. (1993) et de Q. Si et al. (1993). La comparaison avec les resultats experimentaux pour le compose de lanthane suggere que le liquide de Fermi possede une surface de Fermi disjointe, et qu'il est situe pres d'une instabilite magnetique incommensurable.
NASA Astrophysics Data System (ADS)
Abed, Y.; Arrar, Z.; Hammouti, B.; Aouniti, A.; Kertit, S.; Mansri, A.
1999-09-01
The influence of the addition of poly(4-vinylpyridine poly-3-oxide ethylene) (P4VPP3OE) on the corrosion of Armco iron in molar sulphuric acid has been investigated by potentiodynamic and polarisation resistance measurements. The polymer studied reduces the corrosion current densities. The inhibition efficiency (E%) of P4VPP3OE increases wiht its concentration and attains 99% at 3.33 10-5 M. E% obtained from cathodic Tafel plots and polarisation resistance methods were in good agreement. The inhibitor was adsorbed on the iron surface according to the Frumkin adsorption isotherm model. Polarisation measurements show also that the compound acts as a cathodic inhibitor. L'influence de l'addition du Poly(4-vinylpyridine poly-3-oxyde éthylène) nouvellement synthétisé au laboratoire sur la corrosion du fer Armco dans l'acide sulfurique molaire a été étudié par les méthodes potentiodynamique et la résistance de polarisation. La présence du polymère réduit la densité du courant cathodique et augmente la résistance de polarisation. Ce phénomène s'accentue avec la concentration du produit. Les pentes de Tafel obtenues à partir des courbes cathodiques sont parallèles indiquant qu'en absence et en présence de l'inhibiteur, la réduction du proton se fait selon le même mécanisme d'activation pure. L'efficacité d'inhibition augmente avec la concentration et atteint 99 % à 3.3 10-5 M. Les efficacités obtenues par les deux méthodes sont en bon accord. L'inhibiteur s'adsorbe sur la surface métallique selon l'isotherme de Frumkin. Les mesures de polarisation montrent ainsi que le composé agit essentiellement comme inhibiteur cathodique.
Au NPs immersed in sol-gel matrix: nonlinear optical characterization
NASA Astrophysics Data System (ADS)
Aguilera-Zavala, Angélica; Trejo-Durán, Mónica; Ortiz-Jiménez, Orlando; Cornejo-Monroy, Delfino; Severiano-Carrillo, Israel; Alvarado-Méndez, Edgar
2016-09-01
Physical and optical characterization of thin films doped with Au Nanoparticles onto a silica substrate is presented. Films were prepared through sol-gel process, by using Au nanoparticles immersed in lipoic acid as dopant by means of hydrolysis and acid catalyzed reaction of tetraethyl-orthosilicate. The surface was characterized by SEM and AFM microscopies. Z-scan technique was used to measure nonlinear optical properties as nonlinear absorption and refraction indexes, using two different wavelengths. At 633 nm it was possible to observe nonlinear absorption only but at 514 nm both nonlinear properties were observed.
Immobilized lipid-bilayer materials
Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.
2000-01-01
A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.
Preparation of hydrophobic coatings
Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM
2009-02-03
A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.
[Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].
Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang
2005-08-01
ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.
[Influence of different sol-gel systems on the luminescence of nanocrystalline ZnO powders].
Guo, Shu-xia; Zhang, Zhong-suo; Zhang, Xing-tang; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang
2005-11-01
ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of the powdersamples was examined by XRD and TEM. The results indicate that two ZnO samples have the same crystal and energy band structure. Their photolurminescence (PL) spectra in the ultraviolet region are analogous, but their photoluminescence (PL) spectra in the visible region are different. The reason is that two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.
NASA Technical Reports Server (NTRS)
2004-01-01
This graph shows the predicted daily change in the atmospheric temperature one meter above the surface of Mars at Gusev Crater, the Mars Exploration Rover Spirit's landing site. The blue curve denotes predicted values for sol 1 (the first day of Spirit's mission) and the yellow for sol 100 (100 days into the mission). The light blue symbols represent temperatures for a total atmospheric dust abundance of 0.7 visible optical depth units, and the darker blue symbols for a total atmospheric dust abundance of 1.0 visible optical depth units. Scientists use this data to ensure that Spirit stays within the right temperature range.
Phoenix Carries Soil to Wet Chemistry Lab
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30. This image has been enhanced to brighten the scene. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Surface preparation of substances for continuous convective assembly of fine particles
Rossi, Robert
2003-01-01
A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.
Three-dimensional scrape off layer transport in the helically symmetric experiment HSX
NASA Astrophysics Data System (ADS)
Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.
2016-08-01
The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.
Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.
Debecker, Damien P
2017-12-11
Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keshmiri, Mehrdad; Troczynski, Tom; Mohseni, Madjid
2006-02-06
The previously developed composite sol-gel (CSG) process is proposed for the deposition of thick (10-50 microm) porous films of photocatalytic TiO2. The CSG titania was developed by binding pre-calcined TiO2 particles with TiO2 sol. It had relatively high surface area (15-35 m2/g) and good resistance against mechanical stress and abrasion. Photocatalytic activity tests were carried out on trichloroethylene (TCE) and toluene, and compared with those of standard Degussa P-25 titania. The CSG photocatalyst provided good photo-efficiency in removing both pollutants from contaminated air streams. When compared with P-25 titania, the CSG photocatalyst showed a similar photo-efficiency with first-order kinetic rate constants not significantly different from that of P-25. For both photocatalysts the rate of photocatalytic oxidation of TCE was significantly greater than that obtained for toluene. Overall, the combination of better mechanical integrity, resistance against abrasion, and comparable photocatalytic efficiency of the CSG titania versus that of P-25 titania, make the composite sol-gel (CSG) photocatalyst a viable alternative for industrial applications where long term stability, superior mechanical properties, and good photo-efficiency are of critical value.
An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, Nur Fahana Mohd; Ng, Sha Shiong
2017-12-01
In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.
Raut, Hemant Kumar; Dinachali, Saman Safari; Ansah-Antwi, Kwadwo Konadu; Ganesh, V Anand; Ramakrishna, Seeram
2013-12-20
Despite recent progress in the fabrication of magnesium fluoride (MgF2) anti-reflective coatings (ARCs), simple, effective and scalable sol-gel fabrication of MgF2 ARCs for large-area glass substrates has prospective application in various optoelectronic devices. In this paper, a polymer-based sol-gel route was devised to fabricate highly uniform and porous MgF2 ARCs on large-area glass substrates. A sol-gel precursor made of polyvinyl acetate and magnesium trifluoroacetate assisted in the formation of uniformly mesoporous MgF2 ARCs on glass substrates, leading to the attainment of a refractive index of ~1.23. Systematic optimization of the thickness of the ARC in the sub-wavelength regime led to achieving ~99.4% transmittance in the case of the porous MgF2 ARC glass. Precise control of the thickness of porous MgF2 ARC glass also resulted in a mere ~0.1% reflection, virtually eliminating reflection off the glass surface at the target wavelength. Further manipulation of the thickness of the ARC on either side of the glass substrate led to the fabrication of relatively broadband, porous MgF2 ARC glass.
NASA Astrophysics Data System (ADS)
Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun
2012-01-01
A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.
Hydroxyapatite Coating on TiO₂ Nanotube by Sol-Gel Method for Implant Applications.
Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin
2018-02-01
The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 < P < 0.1). Bone to implant contact (BIC) ratio in the control group, group N, and group HN were 32.5%, 33.1%, and 43.8%, respectively. Results of this study showed that HA coated TiO2 nanotube using sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.
Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B
2018-06-05
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering.
Houmard, Manuel; Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2012-04-01
Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol-gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2-12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol-gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances.
A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
Wu, Chunfei; Williams, Paul T
2010-08-01
Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.
2012-09-12
This image shows the Mars Hand Lens Imager MAHLI on NASA Curiosity rover, with the Martian landscape in the background. The image was taken by Curiosity Mast Camera on the 32nd Martian day, or sol, of operations on the surface.
Melamine-formaldehyde aerogels
Pekala, Richard W.
1992-01-01
Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.
NASA Astrophysics Data System (ADS)
Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.
2017-10-01
In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.
Shankhwar, Nisha; Srinivasan, A
2016-05-01
Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Opportunity's View After Long Drive on Sol 1770 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11791 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11791 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings just after driving 104 meters (341 feet) on the 1,770th Martian day, or sol, of Opportunity's surface mission (January 15, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Prior to the Sol 1770 drive, Opportunity had driven less than a meter since Sol 1713 (November 17, 2008), while it used the tools on its robotic arm first to examine a meteorite called 'Santorini' during weeks of restricted communication while the sun was nearly in line between Mars and Earth, then to examine bedrock and soil targets near Santorini. The rover's position after the Sol 1770 drive was about 1.1 kilometer (two-thirds of a mile) south southwest of Victoria Crater. Cumulative odometry was 13.72 kilometers (8.53 miles) since landing in January 2004, including 1.94 kilometers (1.21 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical-perspective projection with geometric seam correction.Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu
2017-06-01
Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p < 0.01); enzyme immobilized by simple sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.
Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
Chen, Qi-Zhi; Thouas, George A
2011-10-01
Although Bioglass® has existed for nearly half a century its ability to trigger bone formation and tuneable degradability is vastly superior to other bioceramics, such as SiO(2)-CaO bioactive glasses. The sol-gel process of producing glass foams is well established for SiO(2)-CaO compositions, but not yet established for 45S5 composites containing Na(2)O. In this work the sol-gel derived 45S5 Bioglass® has for the first time been foamed into highly porous three-dimensional scaffolds using a surfactant, combined with vigorous mechanical stirring and subsequent sintering at 1000°C for 2 h. It was found that the mechanical strength of the sintered sol-gel derived Bioglass® scaffolds was significantly improved, attributable to the small fraction of material on the pore walls. More importantly, the compressive strength of the three-dimensional scaffolds produced by this surfactant foaming method could be predicted using Gibson and Ashby's closed cell model of porous networks. A comparative experiment revealed that ion release from the sol-gel derived Bioglass® foams was faster than that of counterparts produced by the replication technique. In vitro evaluation using osteoblast-like cells demonstrated that the sol-gel derived 45S5 Bioglass foams supported the proliferation of viable cell populations on the surface of the scaffolds, although few cells were observed to migrate into the virtually closed pores within the foams. Further work should be focused on modifications of the reaction conditions or alternative foaming techniques to improve pore interconnection. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
PICARD SOL mission, a ground-based facility for long-term solar radius measurement
NASA Astrophysics Data System (ADS)
Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.
2012-09-01
For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.
Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors
NASA Astrophysics Data System (ADS)
Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.
2010-04-01
The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.
NASA Astrophysics Data System (ADS)
Habbane, Mohamed
L'objectif de cette etude est d'elaborer un processus decisionnel a reference spatiale (PDRS) pour la mariculture. Le PDRS est applique aux eaux cotieres de la baie des Chaleurs, dans le golfe du Saint-Laurent (Canada). Une carte preliminaire regionale d'indices du potentiel maricole, d'une limite de resolution spatiale de 1 kmsp2, est produite avec des parametres du niveau 1. Ces parametres englobent la temperature de l'eau de surface, extraite des images AVHRR, la salinite, les courants ainsi que les pigments chlorophylliens, quantifies a l'aide de mesures in situ. Les images AVHRR, prises en 1994, ont ete utiliees comme reference primaire pour selectionner des aires pouvant supporter une activite maricole sur la cote nord de la baie des Chaleurs. La temperature de surface extraite de ces images permet une analyse mesoechelle a la fois qualitative et quantitative des processus cotiers observes pendant la periode d'acquisition des donnees. Les autres donnees, soit la salinite, les courants et les concentrations en pigments chlorophylliens, sont analysees de facon a identifier la variabilite spatio-temporelle des caracteristiques des eaux de surface. L'ensemble des informations permet de produire une carte preliminaire regionale d'indices du potentiel maricole de la partie centrale de la baie des Chaleurs. Selon cet indice (defini entre 0 et 1), le secteur de potentiel aquicole de 0,5 a 0,75 s'etend sur une superficie d'environ 300 kmsp2. La localisation de cette aire potentielle est en accord avec les fortes concentrations en pigments chlrophylliens, presentant des conditions environnementales ideales a une haute productivite biologique. Par la suite la carte preliminaire est modifiee en tenant compte des parametres du niveau 2. Ces parametres sont la geomorphologie littorale, la bathymetrie, les sediments en suspension, les vents, les vagues, le debit d'eau douce, la glace marine, le carbone organique dissous, les aires de peche et les sources de pollution. Ces parametres sont compares deux a deux par rapport a la carte preliminaire regionale d'indices du potentiel maricole pour determiner leur poids relatif. La carte finale produite avec ces parametres du niveau 2 presente un secteur ou les indices du potentiel maricole sont de 0,5 a 0,75. Ce secteur longe la cote et epouse les isobathes de 10 a 30 m de profondeur. L'effet de la profondeur d'eau semble avoir jouer un role important. Le secteur de potentiel maricole de 0,25 a 0,5 est toujours present et couvre une superficie d'environ 426 kmsp2. L'etude necessitera toujours un suivi des conditions environnementales prevalant dans la region. Ce suivi peut etre effectue a l'aide d'un outil de vision aerospatiale (capteurs de teledetection) et d'analyse spatio-temporelle (SIG-PDRS). (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Mas, Sebastien
Les mesures satellitaires de couleur des oceans sont largement determinees par les proprietes optiques inherentes (IOPs) des eaux de surface. D'autre part, le phytoplancton de petite taille (<20 mum) est le plus souvent dominant dans les oceans, et peut donc etre une source importante de variation des IOPs dans les oceans. Dans ce contexte, le but principal de ce doctorat etait de definir l'impact du phytoplancton (<20 mum) sur les variations des proprietes optiques de l'Estuaire et du Golfe du Saint-Laurent (Canada). Afin d'atteindre cet objectif, il etait necessaire de determiner en milieu controle les facteurs de variabilite des proprietes optiques cellulaires et des IOPs du phytoplancton (<20 mum) des eaux du Saint-Laurent, et d'evaluer la contribution du phytoplancton (<20 mum) aux proprietes optiques totales des eaux du Saint-Laurent. Des experiences en laboratoire ont montre que les variations des proprietes optiques des cellules phytoplanctoniques soumises a un cycle jour-nuit, ainsi qu'a des changements concomitants d'intensite lumineuse, peuvent contribuer significativement a la variabilite des proprietes optiques observee en milieu naturel. D'autres experiences ont, quant a elles, mis en evidence que les variations des proprietes optiques des cellules phytoplanctoniques dues aux phases de croissance peuvent alterer les IOPs des oceans, particulierement pendant les periodes de floraison. De plus, la presence de bacteries et de particules detritiques peut egalement affecter la variabilite des IOPs totales, notamment la diffusion. Au printemps, dans l'Estuaire et le Golfe du Saint-Laurent, la contribution du phytoplancton <20 mum aux IOPs presentait des differences regionales evidentes pour les proprietes d'absorption et de diffusion. En plus de la variabilite spatiale, les proprietes optiques cellulaires presentaient des variations journalieres, et ce particulierement pour le picophytoplancton. Enfin, la plupart des differences observees dans les proprietes biooptiques, particulierement l'absorption, etaient attribuables a la contribution du phytoplancton <20 mum. Ceci confirme l'importance de la structure de taille des communautes phytoplanctoniques dans les modeles bio-optiques appliques au Saint-Laurent. L'ensemble des resultats a permis de mettre en evidence l'importance des mecanismes de photoacclimatation et de synchronisation du cycle cellulaire du phytoplancton sur les variations journalieres des IOPs, ainsi que de l'etat physiologique relie au stade de croissance sur les variations temporelles a long terme des IOPs. De plus, le phytoplancton <20 mum contribue de maniere importante aux IOPs et a leur variabilite dans l'Estuaire et le Golfe du St-Laurent, et ce particulierement pour l'absorption. Cette etude de doctorat souligne donc l'importance du phytoplancton <20 mum sur la variabilite des IOPs des oceans.
Dust loading in Gusev crater, Mars: Results from two active dust devil seasons
NASA Astrophysics Data System (ADS)
Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.
2009-12-01
Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged during Season One and resulted in an average of ~50 active dust devils/km2/sol extrapolated out to the LAZ while 103 dust devils were imaged during Season Two resulting in an average of ~5 active dust devils/km2/sol within the LAZ. This drop in dust devil frequency from one season to the next was coupled with a 50% decrease in the amount of dust loaded into the atmosphere during Season Two (~19 kg/km2/sol in Season One and ~10 kg/km2/sol in Season Two). Previous models indicate that the increased amount of dust in the atmosphere during the storm decreased the amount of solar insolation to the surface therefore also decreasing the surface heat flux. The rapidly decreasing surficial heat flux prevents the temperature lapse rate (change in temperature gradient with elevation) from becoming super-adiabatic and therefore causes the low-altitude atmospheric temperature profile to become too homogeneous to sustain convective plumes.
77 FR 37779 - Airworthiness Directives; Agusta S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... numbers (S[sol]Ns) except S[sol]Ns 31002, 31003, 31004, and 31007. EASA advises that laboratory tests... helicopters, S[sol]Ns 31005 up to S[sol]N 31143, except for S[sol]Ns 31007, 31037, 31038, 31094; S[sol]N 31112; S[sol]Ns 31146 up to S[sol]N 31148; S[sol]N 31155; S[sol]Ns 31201 up to S[sol]N 31218; and S[sol]Ns...
Yang, Yukun; Fang, Guozhen; Liu, Guiyang; Pan, Mingfei; Wang, Xiaomin; Kong, Lingjie; He, Xinlei; Wang, Shuo
2013-09-15
Quinoxaline-2-carboxylic acid (QCA) is difficult to measure since only trace levels are present in commercial meat products. In this study, a rapid, sensitive and selective molecularly imprinted electrochemical sensor for QCA determination was successfully constructed by combination of a novel modified glassy carbon electrode (GCE) and differential pulse voltammetry (DPV). The GCE was fabricated via stepwise modification of multi-walled carbon nanotubes (MWNTs)-chitosan (CS) functional composite and a sol-gel molecularly imprinted polymer (MIP) film on the surface. MWNTs-CS composite was used to enhance the electron transfer rate and expand electrode surface area, and consequently amplify QCA reduction electrochemical response. The imprinted mechanism and experimental parameters affecting the performance of MIP film were discussed in detail. The resulting MIP/sol-gel/MWNTs-CS/GCE was characterized using various electrochemical methods involving cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and DPV. The sensor using MIP/sol-gel/MWNTs-CS/GCE as working electrode showed a linear current response to the target QCA concentration in the wide range from 2.0×10(-6) to 1.0×10(-3)molL(-1) with a low detection limit of 4.4×10(-7)molL(-1) (S/N=3). The established sensor with excellent reproductivity and stability was applied to evaluate commercial pork products. At five concentration levels, the recoveries and standard deviations were calculated as 93.5-98.6% and 1.7-3.3%, respectively, suggesting the proposed sensor is promising for the accurate quantification of QCA at trace levels in meat samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jameel, Zainab N., E-mail: zeinb76-alrekbe@yahoo.com; Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com; Taha, Samar Y., E-mail: samarjam2002@yahoo.com
A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). Themore » nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... laboratories. http:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol]. DATES: The accreditation and approval of Inspectorate America...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... laboratories. http:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol]. DATES: The accreditation and approval of Inspectorate America...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
.... http:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol] DATES: The accreditation and approval of Intertek USA, Inc., as...
Durcissement superficiel de la fonte grise Ft25 induit par un traitement de surface dans le moule
NASA Astrophysics Data System (ADS)
Bouitna, Mohamed; Boutarek-Zaourar, Naïma; Mansour, Samir; Chentouf, Samir Mourad; Mossang, Eric
2018-02-01
L'objectif de cette étude est la consolidation en surface de la fonte grise lamellaire Ft25 par un dépôt riche en manganèse en développant une méthode combinant en une seule opération l'élaboration et le traitement de surface dans le moule. Les effets de la granulométrie du ferro-manganèse (80 % Mn + 20 % Fe), ainsi que l'épaisseur des pièces en fontes sur les couches formées ont été étudiés. On a retenu trois granulométries du ferro-manganèse de 0,18 mm, 0,25 mm et 0,5 mm pour le traitement des pièces en fontes présentant des épaisseurs de 25 mm, 100 mm et 200 mm. Parmi les résultats obtenus, on distingue une consolidation des propriétés en surface induite par la formation d'une couche riche en manganèse continue et homogène. L'effet de la granulométrie du ferro-manganèse sur l'épaisseur de la couche traitée a été mis en évidence. La variation de l'épaisseur des couches formées diminue avec l'augmentation de la granulométrie du ferro-manganèse. Pour une pièce de 100 mm d'épaisseur, la couche formée est estimée à 350 μm pour une granulométrie de 0,18 alors qu'elle n'est que de 180 μm pour une granulométrie de 0,5. L'effet de l'épaisseur de la pièce n'est en revanche pas assez prononcé sur la taille des couches formées. Une amélioration nette de la résistance, à l'usure de la fonte traitée en relation avec les transformations en surface, a été mise en évidence.
2008-06-27
This image was acquired by NASA Phoenix Mars Lander Surface Stereo Imager SSI in the late afternoon of the 30th Martian day of the mission, or Sol 30 June 25, 2008. This is hours after the beginning of Martian northern summer.
Melamine-formaldehyde aerogels
Pekala, R.W.
1992-01-14
Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.
Rind-Like Features at a Meridiani Outcrop
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated image of PIA04189 Rind-Like Features at a Meridiani Outcrop After months spent crossing a sea of rippled sands, Opportunity reached an outcrop in August 2005 and began investigating exposures of sedimentary rocks, intriguing rind-like features that appear to cap the rocks, and cobbles that dot the martian surface locally. Opportunity spent several martian days, or sols, analyzing a feature called 'Lemon Rind,' a thin surface layer covering portions of outcrop rocks poking through the sand north of 'Erebus Crater.' In images from the panoramic camera, Lemon Rind appears slightly different in color than surrounding rocks. It also appears to be slightly more resistant to wind erosion than the outcrop's interior. This is an approximately true-color composite produced from frames taken during Opportunity's 552nd martian day, or sol (Aug. 13, 2005).Ten-minute analysis of drugs and metabolites in saliva by surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Shende, Chetan; Inscore, Frank; Maksymiuk, Paul; Farquharson, Stuart
2005-11-01
Rapid analysis of drugs in emergency room overdose patients is critical to selecting appropriate medical care. Saliva analysis has long been considered an attractive alternative to blood plasma analysis for this application. However, current clinical laboratory analysis methods involve extensive sample extraction followed by gas chromatography and mass spectrometry, and typically require as much as one hour to perform. In an effort to overcome this limitation we have been investigating metal-doped sol-gels to both separate drugs and their metabolites from saliva and generate surface-enhanced Raman spectra. We have incorporated the sol-gel in a disposable lab-on-a-chip format, and generally no more than a drop of sample is required. The detailed molecular vibrational information allows chemical identification, while the increase in Raman scattering by six orders of magnitude or more allows detection of microg/mL concentrations. Measurements of cocaine, its metabolite benzoylecgonine, and several barbiturates are presented.
Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.
Park, Jihye; Jung, Miewon
2014-05-01
CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.
NASA Astrophysics Data System (ADS)
Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka
2016-11-01
The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.
Deepest Trenching at Phoenix Site on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander widened the deepest trench it has excavated, dubbed 'Stone Soup,' (in the lower half of this image) to collect a sample from about 18 centimeters (7 inches) below the surface for analysis by the lander's wet chemistry laboratory. Phoenix's Surface Stereo Imager took this image on Sol 95 (Aug. 30, 2008), the 95th Martian day since landing. For scale, the rock to the right of the Stone Soup trench is about 15 centimeters (6 inches) across. The lander's robotic arm scooped up a sample from the left half of the trench for delivery the following sol to the wet chemistry laboratory. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Fournier, Patrick
Le Modele de l'Etat Critique Generalise (MECG) est utilise pour decrire les proprietes magnetiques et de transport du YBa_2Cu_3O _7 polycristallin. Ce modele empirique permet de relier la densite de courant critique a la densite de lignes de flux penetrant dans la region intergrain. Deux techniques de mesures sont utilisees pour caracteriser nos materiaux. La premiere consiste a mesurer le champ au centre d'un cylindre creux en fonction du champ magnetique applique pour des temperatures comprises entre 20 et 85K. En variant l'epaisseur de la paroi du cylindre creux, il est possible de suivre l'evolution des cycles d'hysteresis et de determiner des champs caracteristiques qui varient en fonction de cette dimension. En utilisant un lissage des resultats experimentaux, nous determinons J _{co}, H_ {o} et n, les parametres du MECG. La forme des cylindres, avec une longueur comparable au diametre externe, entrai ne la presence d'un champ demagnetisant qui peut etre inclus dans le modele theorique. Ceci nous permet d'evaluer la fraction du volume ecrante, f _{g}, ainsi que le facteur demagnetisant N. Nous trouvons que J_{ co}, H_{o} et f_{g} dependent de la temperature, tandis que n et N (pour une epaisseur de paroi fixe) n'en dependent pas. La deuxieme technique consiste a mesurer le courant critique de lames minces en fonction du champ applique pour differentes temperatures. Nous utilisons un montage que nous avons developpe permettant d'effectuer ces mesures en contact direct avec le liquide refrigerant, i.e. dans l'azote liquide. Nous varions la temperature du liquide en variant la pression du gaz au-dessus du bain d'azote. Cette methode nous permet de balayer des temperatures entre 65K et la temperature critique du materiau ({~ }92K). Nous effectuons le lissage des courbes de courant critique en fonction du champ applique encore a l'aide du MECG, pour a nouveau obtenir ses parametres. Pour trois echantillons avec des traitements thermiques differents, les parametres sont differents confirmant que la variation des proprietes macroscopiques de ces supraconducteurs est intimement reliee a la nature des jonctions entre les grains et de la surface des grains. L'oxygenation prolongee retablit les proprietes initiales des echantillons qui se sont degrades durant le recuit des contacts.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
...:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol]. DATES: The accreditation and approval of Intertek USA, Inc., as commercial gauger...
L'etude de l'InP et du GaP suite a l'implantation ionique de Mn et a un recuit thermique
NASA Astrophysics Data System (ADS)
Bucsa, Ioan Gigel
Cette these est dediee a l'etude des materiaux InMnP et GaMnP fabriques par implantation ionique et recuit thermique. Plus precisement nous avons investigue la possibilite de former par implantation ionique des materiaux homogenes (alliages) de InMnP et GaMnP contenant de 1 a 5 % atomiques de Mn qui seraient en etat ferromagnetique, pour des possibles applications dans la spintronique. Dans un premier chapitre introductif nous donnons les motivations de cette recherche et faisons une revue de la litterature sur ce sujet. Le deuxieme chapitre decrit les principes de l'implantation ionique, qui est la technique utilisee pour la fabrication des echantillons. Les effets de l'energie, fluence et direction du faisceau ionique sur le profil d'implantation et la formation des dommages seront mis en evidence. Aussi dans ce chapitre nous allons trouver des informations sur les substrats utilises pour l'implantation. Les techniques experimentales utilisees pour la caracterisation structurale, chimique et magnetique des echantillons, ainsi que leurs limitations sont presentees dans le troisieme chapitre. Quelques principes theoriques du magnetisme necessaires pour la comprehension des mesures magnetiques se retrouvent dans le chapitre 4. Le cinquieme chapitre est dedie a l'etude de la morphologie et des proprietes magnetiques des substrats utilises pour implantation et le sixieme chapitre, a l'etude des echantillons implantes au Mn sans avoir subi un recuit thermique. Notamment nous allons voir dans ce chapitre que l'implantation de Mn a plus que 1016 ions/cm 2 amorphise la partie implantee du materiau et le Mn implante se dispose en profondeur sur un profil gaussien. De point de vue magnetique les atomes implantes se trouvent dans un etat paramagnetique entre 5 et 300 K ayant le spin 5/2. Dans le chapitre 7 nous presentons les proprietes des echantillons recuits a basses temperatures. Nous allons voir que dans ces echantillons la couche implantee est polycristalline et les atomes de Mn sont toujours dans un etat paramagnetique. Dans les chapitres 8 et 9, qui sont les plus volumineux, nous presentons les resultats des mesures sur les echantillons recuits a hautes temperatures: il s'agit d'InP et du GaP implantes au Mn, dans le chapitre 8 et d'InP co-implante au Mn et au P, dans le chapitre 9. D'abord, dans le chapitre 8 nous allons voir que le recuit a hautes temperatures mene a une recristallisation epitaxiale du InMnP et du GaMnP; aussi la majorite des atomes de Mn se deplacent vers la surface a cause d'un effet de segregation. Dans les regions de la surface, concentres en Mn, les mesures XRD et TEM identifient la formation de MnP et d'In cristallin. Les mesures magnetiques identifient aussi la presence de MnP ferromagnetique. De plus dans ces mesures on trouve qu'environ 60 % du Mn implante est en etat paramagnetique avec la valeur du spin reduite par rapport a celle trouvee dans les echantillons non-recuits. Dans les echantillons InP co-implantes au Mn et au P la recristallisation est seulement partielle mais l'effet de segregation du Mn a la surface est beaucoup reduit. Dans ce cas plus que 50 % du Mn forme des particules MnP et le restant est en etat paramagnetique au spin 5/2, dilue dans la matrice de l'InP. Finalement dans le dernier chapitre, 10, nous presentons les conclusions principales auxquels nous sommes arrives et discutons les resultats et leurs implications. Mots cles: implantation ionique, InP, GaP, amorphisation, MnP, segregation, co-implantation, couche polycristalline, paramagnetisme, ferromagnetisme.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... site, at http:[sol][sol]www.ftc.gov[sol]os[sol]publiccomments.shtm. Because comments will be made.../simonproperty . If this Notice appears at http:[sol][sol]www.regulations.gov[sol]search[sol]index.jsp, you may... regulations.gov forwards to it. You may also visit the FTC Web site at http:[sol][sol]www.ftc.gov[sol] to read...
Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces
NASA Astrophysics Data System (ADS)
Kimmerle, Achim; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin; Haug, Halvard
2016-01-01
We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1-14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953-959 (1992); 35, 961-967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598-1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684-3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1-6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30-36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181-1183 (1993)].
Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A
2009-03-01
The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.
Namkhang, Pornpan; Kongkachuichay, Paisan
2015-07-01
The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.
NASA Astrophysics Data System (ADS)
Fauteux-Lefebvre, Clemence
Le developpement de sources d'energie alternatives fiables et efficaces est aujourd'hui une necessite. L' interet dans le reformage d'hydrocarbures liquides est ainsi croissant puisqu'il s'agit d'une voie pour l'alimentation des piles a combustible. Les piles a combustible ont une efficacite pour la conversion d'energie en electricite plus grande que celle des moteurs a combustion et font ainsi partie de la recherche de solution en efficacite energetique. Ces piles consomment de l'hydrogene comme combustible pour produire de l'electricite, d'ou l'interet pour le reformage. En effet, cette reaction permet de produire de l'hydrogene et du monoxyde de carbone (un autre combustible des piles a combustible a electrolyte solide) a partir d'hydrocarbure liquide, notamment le diesel. Les piles pourraient donc etre integrees avec une unite de reformage leur fournissant directement le combustible necessaire a partir de diesel. Dans ce projet de recherche, un nouveau catalyseur de nickel sous forme de spinelle nickel-alumine (spinelle NiAl2O4 sur support d'alumine et de zircone stabilisee avec yttria) a ete developpe et teste en laboratoire pour du reformage de propane, d'hydrocarbures liquides et de diesel, a la vapeur d'eau. Par ailleurs, une methode d'ajout des reactifs novatrice a ete utilisee afin de diminuer la pyrolyse precedant le reformage, en utilisant une emulsion. Les resultats de reformage d'hydrocarbures purs ont montre des concentrations tres pres de l'equilibre thermodynamique et une activite constante sans desactivation du catalyseur ni formation de carbone, et ce avec des ratios H2O/C de moins de 2.5 et des temperatures d'operation variant entre 630 °C et 750 °C. Lors de tests effectues en utilisant du diesel fossile, a 705°C, avec un debit volumique des reactifs de plus de 50 000 cm3gcat-1h-1 et un ratio H2O/C de moins de 2.5, l'activite a ete maintenue pendant plus de 15 heures, malgre une operation en cycles. L'analyse du catalyseur apres cette utilisation n'a montre aucun carbone significatif sur la surface.- En comparaison, un catalyseur de nickel metallique sur support d'Al2O3 et YSZ a ete utilise dans des conditions similaires. Il y a eu desactivation du catalyseur et obstruction du reacteur par du carbone apres trois heures d'operation. L'analyse de ce catalyseur a permis de verifier qu'il etait recouvert de carbone en filament. L'analyse du systeme reactionnel a montre que la reaction est controlee par la reaction de. surface et non par le transfert de masse. Par ailleurs, les analyses des catalyseurs de spinelle ont demontre qu'il n'y avait pas de modification de sa forme chimique ni de reduction du spinelle en nickel metallique apres l'utilisation. Mots cles : Reformage a la vapeur, diesel, hydrocarbure liquide, catalyseur, spinelle nickel-alumine, equilibre thermodynamique
NASA Astrophysics Data System (ADS)
Villeneuve, Eric
Ce projet, realise a la demande du Laboratoire International des Materiaux Antigivre, a pour but de mesurer et definir experimentalement l'impact de revetements hydrophobes sur les coefficients de trainee et de portance d'un profil NACA 0012. Pour ce faire, la balance aerodynamique du LIMA devait tout d'abord etre amelioree afin d'offrir une sensibilite suffisante pour realiser le projet. Plusieurs ameliorations ont ete faites, comme le changement des cellules de charge, la diminution du nombre de cellules de charge, le changement du cadre de la balance, etc. Une fois ces ameliorations terminees, la reproductibilite, l'exactitude et la sensibilite ont ete valides afin de s'assurer de la fiabilite des resultats offerts par la balance. Pour les angles d'attaque etudies avec les revetements, soient -6° et 0°, la balance a une reproductibilite de +/-2,06% a 360 000 de nombre de Reynolds. Pour valider la sensibilite, des essais a -6° et 0° d'angle d'attaque et des nombres de Reynolds de 360 000 et 500 000 ont ete faits avec des papiers sables. Les resultats de ces essais ont permis de, tracer des courbes de tendances du coefficient de trainee du NACA 0012 en fonction de la rugosite de surface et d'etablir la valeur de la sensibilite de la balance a +/-8 mu m. Cinq revetements populaires ont ete choisis pour l'experimentation, soient le Wearlon, le Staclean, le Hirec, le Phasebreak ainsi que le Nusil. Les revetements sont soumis aux memes conditions experimentales que les papiers sables, et une rugosite equivalente est trouvee par extrapolation des resultats. Cependant, les rugosites equivalentes de surfaces different entre -6° et 0°. Les essais avec le Staclean et le Hirec donnent des coefficients de trainee equivalent a ceux avec l'aluminium, alors que le Wearlon, le Nusil et le Phasebreak donnent une augmentation du coefficient de trainee de 13%, 17% et 25% respectivement par rapport a l'aluminium. Pour les coefficients de portance, la balance ne detecte pas l'effet des revetements, ni des papiers sables, sur la force de portance ce qui signifie qu'il entre dans l'insensibilite de la balance. La derniere etape experimentale consistait a mesurer l'impact des revetements sur la formation de la glace ainsi que sur l'evolution des coefficients de trainee et de portance du NACA 0012 en fonction de l'accumulation de glace sur celui-ci. Le Wearlon a ete choisi comme revetement en raison de sa grande popularite. Des essais a -5°C et -20°C ont ete faits et les resultats ont montres que le Wearlon n'apporte pas d'effet benefique au NACA 0012 en conditions d'accumulations de glace. L'augmentation du coefficient de trainee du profil muni du Wearlon debutait plus rapidement que sur l'aluminium et de l'eau gelait legerement plus loin vers l'arriere du profil pendant les essais, ce qui n'est pas souhaitable. Le coefficient de trainee est superieur d'environ 13% pour le Wearlon par rapport a l'aluminium pendant toute l'accumulation de glace, ce qui correspond au meme ecart lorsque la glace n'est pas en cause. Pour le coefficient de portance, les resultats ne peuvent etre utilises pour une raison qui doit etre investiguee.
Bakre, Pratibha V; Volvoikar, Prajesh S; Vernekar, Amit A; Tilve, S G
2016-07-15
Nano-sized titanium dioxide photocatalysts were synthesized by hybrid hydrolytic nonhydrolytic sol-gel method using aliphatic organic acid templates to study the effect of chain length on their properties. X-ray diffraction pattern indicated crystalline anatase phase. The Barrett-Joyner-Halenda surface area measurement gave surface area ranging from 98.4 to 205.5m(2)/g and was found to be dependent on the chain length of the aliphatic acid. The longer chain acids rendered the material with high surface area. The organic acids acted as bidentate ligand and a surfactant in controlling the size and the mesoporosity. The size of the TiO2 nanoparticulate was found to be in the range of 10-18nm. The catalyst prepared by employing long chain acids octanoic acid and palmitic acid had smaller size, narrow pore radius, higher surface area and showed better photocatalytic activity than the commercially available Degussa P25 catalyst for the degradation of methylene blue dye. A new intermediate was identified by tandem liquid chromatography mass spectrometry studies during the degradation of methylene blue solution. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di
2009-01-01
Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.
SURPHEX (tm): New dry photopolymers for replication of surface relief diffractive optics
NASA Technical Reports Server (NTRS)
Shvartsman, Felix P.
1993-01-01
High efficiency, deep groove, surface relief Diffractive Optical Elements (DOE) with various optical functions can be recorded in a photoresist using conventional interferometric holographic and computer generated photolithographic recording techniques. While photoresist recording media are satisfactory for recording individual surface relief DOE, a reliable and precise method is needed to replicate these diffractive microstructures to maintain the high aspect ratio in each replicated DOE. The term 'high aspect ratio' means that the depth of a groove is substantially greater, i.e. 2, 3, or more times greater, than the width of the groove. A new family of dry photopolymers SURPHEX was developed recently at Du Pont to replicate such highly efficient, deep groove DOE's. SURPHEX photopolymers are being utilized in Du Pont's proprietary Dry Photopolymer Embossing (DPE) technology to replicate with very high degree of precision almost any type of surface relief DOE. Surfaces relief microstructures with width/depth aspect ratio of 1:20 (0.1 micron/2.0 micron) were faithfully replicated by DPE technology. Several types of plastic and glass/quartz optical substrates can be used for economical replication of DOE.
Water repellent porous silica films by sol-gel dip coating method.
Rao, A Venkateswara; Gurav, Annaso B; Latthe, Sanjay S; Vhatkar, Rajiv S; Imai, Hiroaki; Kappenstein, Charles; Wagh, P B; Gupta, Satish C
2010-12-01
The wetting of solid surfaces by water droplets is ubiquitous in our daily lives as well as in industrial processes. In the present research work, water repellent porous silica films are prepared on glass substrate at room temperature by sol-gel process. The coating sol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), water (H(2)O) constant at 1:12.90:4.74, respectively, with 2M NH(4)OH throughout the experiments and the molar ratio (M) of MTES/Ph-TMS was varied from 0 to 0.22. A simple dip coating technique is adopted to coat silica films on the glass substrates. The static water contact angle as high as 164° and water sliding angle as low as 4° was obtained for silica film prepared from M=0.22. The surface morphological studies of the prepared silica film showed the porous structure with pore sizes typically ranging from 200nm to 1.3μm. The superhydrophobic silica films prepared from M=0.22 retained their superhydrophobicity up to a temperature of 285°C and above this temperature the films became superhydrophilic. The porous and water repellent silica films are prepared by proper alteration of the Ph-TMS in the coating solution. The prepared silica films were characterized by surface profilometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, humidity tests, chemical aging tests, static and dynamic water contact angle measurements. Copyright © 2010 Elsevier Inc. All rights reserved.
Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures
Pekala, R.W.
1998-04-28
The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.
Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures
Pekala, Richard W.
1998-04-28
The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.
Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures
Pekala, Richard W.
1995-01-01
The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.
Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures
Pekala, R.W.
1995-12-19
The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.
Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures
Pekala, Richard W.
1996-01-01
The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.
Surface and catalytic properties of acid metal carbons prepared by the sol gel method
NASA Astrophysics Data System (ADS)
Aguado-Serrano, J.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M.; López-Peinado, A. J.; Gómez-Serrano, V.
2006-06-01
The sol-gel method has been applied for the synthesis of a series of acid metal-carbon xerogels (with M = V, Cr, Mo and Ni) by polymerisation of resorcinol with formaldehyde in the presence of metallic precursors. A blank sample was also prepared without any metal addition. The xerogels were heated in nitrogen at 1000 °C to obtain the pyrolysed products. The samples were characterised by different techniques such as thermal-mass spectrometry analysis, gas physisorption, and mercury porosimetry. In addition, the acid character of the pyrolysed products was tested by the Claisen-Schmidt condensation between benzaldehyde and acetophenone for the formation of chalcones.
Kersen, Ulo; Keiski, Riitta
2005-10-01
A lanthanum molybdate aerogel, La2Mo2O9, with a mean particle size in the range from 100 to 150 nm, was synthesized by the sol-gel method and high-temperature supercritical drying. In this communication it is shown that control over the crystallinity of product aerogels can be exercised by changing the amount of water used for hydrolysis and the temperature for subsequent heat treatment. Methoxy species are formed on the surface during synthesis. The new aerogel may prove useful as a catalyst for the oxidation of hydrocarbons to oxygenated organic compounds.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-adergani, Behrouz; Abdel-Rehim, Mohamed
2015-03-21
In this work, a novel method based on in situ molecularly imprinted sol-gel for the surface modification of a polysulfone membrane (PSM) was developed. A modified molecularly imprinted sol-gel polysulfone membrane (MSM) was placed in a homemade plastic tube and coupled on-line with LC/MS/MS for the selective extraction and screening of l-Tyrosine (Tyr) as a tentative lung cancer biomarker in human plasma samples. The existence of molecularly imprinted sol-gel layers on both sides of a PSM was examined using scanning electron microscopy (SEM). To evaluate the role of precursor in the extraction performance, repeatability, and selectivity of developed method, three precursors, 3-(propylmethacrylate) trimethoxysilane (P1), 3-(triethoxysilyl)-propylamine (P2), tetraethyl orthosilicate (P3), individually and together were used for treatment of PSM. Our investigation showed that a single precursor's route is more repeatable, straightforward, precise, accurate, and selective for the extraction of Tyr in plasma samples. Moreover, to achieve the best conditions and extraction efficiency, the effect of influential parameters, including the conditioning, washing, and elution of solvents, sample flow rate, loading time, desorption time, loading sample volume, salt effect, pH, and adsorption capacity for the most efficiently prepared membranes were truly investigated. The non-molecularly imprinted sol-gel polysulfone membrane (NSM) was prepared as a blank via the same process but in the absence of the Tyr. The LOD (S/N = 3/1) was 0.1 nmol L(-1) and the LOQ (S/N = 10/1) was 0.34 nmol L(-1) for Tyr in the plasma samples. The linearity for the Tyr was in the range of 0.34-2000 nmol L(-1) in the plasma samples. The coefficients of determination values were ≥0.998 for all runs. The extraction recovery was between 80%-85% for Tyr in the plasma samples. In addition, MSM could be used for up to 50 extractions without a significant change in recovery percentage.
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit took this panoramic camera image of the rock target named 'Mazatzal' on sol 77 (March 22, 2004). It is a close-up look at the rock face and the targets that will be brushed and ground by the rock abrasion tool in upcoming sols.
Mazatzal, like most rocks on Earth and Mars, has layers of material near its surface that provide clues about the history of the rock. Scientists believe that the top layer of Mazatzal is actually a coating of dust and possibly even salts. Under this light coating may be a more solid portion of the rock that has been chemically altered by weathering. Past this layer is the unaltered rock, which may give scientists the best information about how Mazatzal was formed. Because each layer reveals information about the formation and subsequent history of Mazatzal, it is important that scientists get a look at each of them. For this reason, they have developed a multi-part strategy to use the rock abrasion tool to systematically peel back Mazatzal's layers and analyze what's underneath with the rover's microscopic imager, and its Moessbauer and alpha particle X-ray spectrometers. The strategy began on sol 77 when scientists used the microscopic imager to get a closer look at targets on Mazatzal named 'New York,' 'Illinois' and 'Arizona.' These rock areas were targeted because they posed the best opportunity for successfully using the rock abrasion tool; Arizona also allowed for a close-up look at a range of tones. On sol 78, Spirit's rock abrasion tool will do a light brushing on the Illinois target to preserve some of the surface layers. Then, a brushing of the New York target should remove the top coating of any dust and salts and perhaps reveal the chemically altered rock underneath. Finally, on sol 79, the rock abrasion tool will be commanded to grind into the New York target, which will give scientists the best chance of observing Mazatzal's interior. The Mazatzal targets were named after the home states of some of the rock abrasion tool and science team members.NASA Technical Reports Server (NTRS)
2008-01-01
This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Parts of Phoenix can be seen in the foreground. The first two trenches dug by the lander's Robotic Arm, called 'Dodo' and 'Goldilocks,' were enlarged on the 19th Martian day of the mission, or Sol 18 (June 12, 2008), to form one trench, dubbed 'Dodo-Goldilocks.' Scoops of material taken from those trenches are informally called 'Baby Bear' and 'Mama Bear.' Baby Bear was carried to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, instrument for analysis, while Mama Bear was delivered to Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA, for a closer look. The color inset picture of the Dodo-Goldilocks trench, also taken with Phoenix's SSI, reveals white material thought to be ice. More recently, on Sol 22 (June 16, 2008), Phoenix's Robotic Arm began digging a trench, dubbed 'Snow White,' in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.' The Snow White trench, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 25 (June 19, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.
1999-10-05
An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.
Magnified Look at a Meteorite on Mars
2009-08-06
NASA Mars Exploration Rover Opportunity used its microscopic imager to get this view of the surface of a rock called Block Island during the 1,963rd Martian day, or sol, of the rover mission on Mars Aug. 1, 2009.
Stanford, D. R.; Whitney, M. L.; Hurto, R. L.; Eisaman, D. M.; Shen, W.-C.; Hopper, A. K.
2004-01-01
SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1–SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed. PMID:15454531
Stanford, D R; Whitney, M L; Hurto, R L; Eisaman, D M; Shen, W-C; Hopper, A K
2004-09-01
SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1-SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed.
NASA Astrophysics Data System (ADS)
Frikach, Kamal
2001-09-01
Dans ce travail je presente une etude de l'impedance de surface, ainsi que de l'attenuation et la variation de la vitesse ultrasonores dans les etats normal et supraconducteur sur les composes organiques k-(ET)2X (X = Cu(SCN) 2, Cu[N(CN)2]Br). A partir des mesures d'impedance de surface, les deux composantes sigma 1 et sigma2 de la conductivite complexe sont extraites en utilisant le modele de Drude. Ces mesures montrent que la symetrie du parametre d'ordre dans ces composes est differente de celle du cas BCS. Afin de comprendre le profil de sigma1 (T) nous avons etudie les fluctuations supraconductrices a partir de la paraconductivite sigma'( T). Cette etude est rendue possible grace a la structure quasi-2D des composes k-(ET)2X dans lesquelles les fluctuations supraconductrices sont fortes. Ces dernieres sont observees sur deux decades de temperatures dans le Cu(SCN)2. L'application du modele de Aslamazov-Larkin 2D et 3D montre la possibilite du passage du regime 2D a haute temperature au regime 3D au voisinage de Tc. En se basant sur ce resultat, nous avons calcule la paraconductivite en utilisant une approche a l'ordre d'une boucle a partir du modele de Lawrence-Doniach. En tenant compte de la correction par la self energie dans la limite dynamique (17 GHz), l'ajustement de la paraconductivite calculee est en bon accord avec les donnees experimentales. Le couplage interplan obtenu est compatible avec le caractere quasi-2D des composes organiques. Le temps de relaxation des quasi-particules dans l'etat supraconducteur est ensuite extrait pour la premiere fois dans ces composes dont le comportement en fonction de la temperature est compatible avec la presence des noeuds dans le gap. Dans l'etat normal, la variation de la vitesse ultrasonore presente un comportement anormal caracterise par un fort ramollissement a T = 38 K et 50 K dans k-(ET) 2Cu(SCN)2 et k-(ET)2Cu[N(CN) 2]Br respectivement dont l'amplitude est independante du champ magnetique jusqu'a H = Hc 2. Cette anomalie semble exister seulement dans les modes qui sondent le couplage interplan. Ce comportement est attribue au couplage entre les fluctuations antiferromagnetiques et les phonons acoustiques.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... below for a complete listing of CBP approved gaugers and accredited laboratories. http:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol]. DATES: The accreditation and approval of Intertek USA, Inc., as commercial gauger and laboratory...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... listed below for a complete listing of CBP approved gaugers and accredited laboratories. http:[sol][sol]cbp.gov[sol]xp[sol]cgov[sol]import[sol]operations-- support[sol]labs--scientific--svcs[sol]commercial--gaugers[sol]. DATES: The accreditation and approval of Intertek USA, Inc., as commercial gauger and...
NASA Astrophysics Data System (ADS)
Gerland, M.; Dufour, J. P.; Presles, H. N.; Violan, P.; Mendez, J.
1991-10-01
A new surface treatment technique with a primary explosive deposited in thin layer was applied to a polycrystalline pure copper. After treatment, surface roughness remains of high quality especially when compared to shot peened surfaces. The treated zone extends over several hundreds microns in depth and the microhardness profile exhibits a significant increasing of hardness with a maximum reaching 100% at the surface. The transmission electron microscopy shows a microstructure which changes with depth : below the surface, there is a thin recrystallized layer with very small grains followed by a region with numerous mechanical twins the density of which decreases when depth increases. Tested in fatigue with a constant plastic strain amplitude, the treated copper specimens exhibit a strong hardening from the first cycles compared to the untreated specimen ; however this initial hardening erases after 2% of the fatigue life. The fatigue resistance is not modified by the treatment. Une nouvelle technique de traitement de surface à l'aide d'un explosif primaire déposé en couche mince a été utilisée sur du cuivre pur polycristallin. L'état de surface après traitement reste de très bonne qualité, surtout comparé aux surfaces grenaillées. La zone traitée s'étend sur une profondeur de quelques centaines de microns et le profil de microdureté montre une importante augmentation de dureté avec un maximum en surface pouvant atteindre 100%. La micrcrostructure, observée par microscopie électronique en transmission, est caractérisée par une fine recristallisation en surface, puis par un abondant maclage dont la densité décroît lorsque la profondeur augmente. Testé en fatigue à déformation plastique imposée, le cuivre traité présente un fort écrouissage initial dès les premiers cycles, mais qui s'efface progressivement au cours du cyclage après 2% de la durée de vie, cette dernière n'étant pas modifiée par le traitement.
Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films
Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia
2018-01-01
Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338
Preparations of an inorganic-framework proton exchange nanochannel membrane
NASA Astrophysics Data System (ADS)
Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.
2016-09-01
In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.
Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin
2012-10-01
With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.
Electrical and optical properties of sol-gel derived La modified PbTiO 3 thin films
NASA Astrophysics Data System (ADS)
Chopra, Sonalee; Sharma, Seema; Goel, T. C.; Mendiratta, R. G.
2004-09-01
Lanthanum modified lead titanate (Pb 1- xLa xTi 1- x/4 O 3) PLT x ( x=0.08 i.e. PLT8) sol-gel derived thin films have been prepared on indium tin oxide (ITO) coated glass and quartz substrates using lead acetate trihydrate, lanthanum acetate hydrate and titanium isopropoxide as precursors along with 2-methoxyethanol as solvent and acetic acid as catalyst by spin coating method. The microstructure and surface morphology of the films annealed at 650 °C have been studied by X-ray diffraction technique and atomic force microscope (AFM). XRD has shown a single phase with tetragonal structure and AFM images have confirmed a smooth and crack-free surface with low surface roughness. The dependence of leakage current on applied voltage show ohmic behavior at low field region with a space charge conduction mechanism at high fields. The wavelength dispersion curve of thin films obtained from the transmission spectrum of thin films show that the films have high optical transparency in the visible region.
NASA Astrophysics Data System (ADS)
Winters, V. R.; Brezinsek, S.; Effenberg, F.; Rasinski, M.; Schmitz, O.; Stephey, L.; Biedermann, C.; Dhard, C. P.; Frerichs, H.; Harris, J.; Krychowiak, M.; König, R.; Pedersen, T. Sunn; Wurden, G. A.; the W7-X Team
2017-12-01
The first operational campaign of Wendelstein 7-X (W7-X) provided an excellent environment for the study of plasma-surface interaction (PSI) in a stellarator. In situ spectroscopic analysis via a combined visible/infrared camera system and a filterscope system revealed that the primary erosion zone was correlated with the high heat flux regions on the limiter. This analysis matched to where the erosion zone was found in the post-mortem analysis, which was done with scanning electron microscopy/focused ion beam/electron dispersive x-ray spectroscopy imaging. Additionally, a region of prompt deposition was found to the inside of these high heat flux zones. A region of far scrape-off layer (SOL) deposition was found at the edges of the limiter tiles. All deposition regions were identified by their homogeneous, increased oxygen content compared to the pure carbon makeup of the limiters. Poloidal variation of the impinging heat flux follow the imprint of the 3D SOL flux tubes. In how far this reflects in the PSI will require further analysis and modeling.
Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails.
Muhonen, V; Kujala, S; Vuotikka, A; Aäritalo, V; Peltola, T; Areva, S; Närhi, T; Tuukkanen, J
2009-02-01
We investigated bone response to sol-gel-derived titania-silica coated functional intramedullary NiTi nails that applied a continuous bending force. Nails 26 mm in length, either straight or with a radius of curvature of 28 or 15 mm, were implanted in the cooled martensite form from a proximal to distal direction into the medullary cavity of the right femur in 40 Sprague-Dawley rats. Body temperature restored the austenite form, causing the curved implants to generate a bending force on the bone. The femurs were examined after 24 weeks. Bone length measurements did not reveal any bowing or shortening of the bone in the experimental groups. The results from histomorphometry demonstrated that the stronger bending force, together with sol-gel surface treatment, resulted in more bone deposition around the implant and the formation of significantly less fibrous tissue. Straight intramedullary nails, even those with a titania-silica coating, were poorly attached when compared to the implants with a curved austenite structure.
Optical and morphological properties of sol gel derived titanium dioxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, A. B.; Sharma, S. K.; M, Vishwas
2015-08-28
Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studiedmore » by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.« less
Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh
2017-08-01
Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL -1 . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Holographic sol-gel monoliths: optical properties and application for humidity sensing
NASA Astrophysics Data System (ADS)
Ilatovskii, Daniil A.; Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.
2018-05-01
Sol-gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.
NASA Astrophysics Data System (ADS)
Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul
2018-03-01
The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process
Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun
2013-01-01
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. PMID:28811410
Kundu, Chanchal Kumar; Wang, Xin; Hou, Yanbei; Hu, Yuan
2018-02-01
Phosphorylated chitosan (PCS) was synthesized and grafted onto the surface of polyamide 6.6 (PA 6.6) fabrics via UV-induced grafting polymerization in order to improve the flame retardant properties. Subsequently, PCS grafted PA 6.6 fabrics were modified by (3-aminopropyl) triethoxysilane (APTES) through sol-gel process in order to form a cross-linking coating. The results obtained from the vertical burning test indicated that only the PCS grafted and simultaneously sol-gel treated fabrics could stop the melt dripping. A maximum reduction (30%) in the peak heat release rate was achieved for the PA6.6-PCS-4W-SG fabric sample. The optimal flame retardant effect was achieved for the PA6.6 fabrics treated by PCS and APTES simultaneously, which was attributed to the joint effect of thermal shielding exerted by the silica and char-forming effect derived from PCS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical Constants of Crystallized TiO₂ Coatings Prepared by Sol-Gel Process.
Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun
2013-07-12
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO₂ coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.
Process for preparing energetic materials
Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA
2011-12-13
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn
Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less
KOH catalysed preparation of activated carbon aerogels for dye adsorption.
Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E
2011-05-01
Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.
The Complex Sol-Gel Process for producing small ThO2 microspheres
NASA Astrophysics Data System (ADS)
Brykala, Marcin; Rogowski, Marcin
2016-05-01
Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.
View Ahead After Spirit's Sol 1861 Drive
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this 210-degree view of the rover's surroundings during the 1,861st to 1,863rd Martian days, or sols, of Spirit's surface mission (March 28 to 30, 2009). The center of the scene is toward the south-southwest. East is on the left. West-northwest is on the right. The rover had driven 22.7 meters (74 feet) southwestward on Sol 1861 before beginning to take the frames in this view. The drive brought Spirit past the northwestern corner of Home Plate. In this view, the western edge of Home Plate is on the portion of the horizon farthest to the left. A mound in middle distance near the center of the view is called 'Tsiolkovsky' and is about 40 meters (about 130 feet) from the rover's position. This view is presented as a cylindrical projection with geometric seam correction.Trunk muscle activity increases with unstable squat movements.
Anderson, Kenneth; Behm, David G
2005-02-01
The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p < 0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).
Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review
Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara
2017-01-01
Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496
Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott
2011-01-01
Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069
NASA Astrophysics Data System (ADS)
Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.
2014-08-01
An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.
Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Chang, C. S.; Ku, S.; Dominski, J.
2017-10-01
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of δ {n}e/{\\bar{n}}e˜ 0.18. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s-1. Strong poloidal motion of the blobs is also present, near 20 km s-1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of ‘holes’, followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Qualitative comparisons will be made to experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. M.; Chang, C. S.; Ku, S.
Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value ofmore » $$\\delta {n}_{e}/{\\bar{n}}_{e}\\sim 0.18$$. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s –1. Strong poloidal motion of the blobs is also present, near 20 km s –1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Lastly, qualitative comparisons will be made to experimental observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muaz, A. K. M.; Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.
2016-07-06
In this paper, the sol-gel method is used to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films at different annealing temperature. The prepared sol was deposited on the p-SiO{sub 2} substrates by spin coating technique under room temperature. The nanoparticles TiO{sub 2} solution was synthesized using Ti{OCH(CH_3)_2}{sub 4} as a precursor with an methanol solution at a molar ratio 1:10. The prepared TiO{sub 2} sols will further validate through structural, morphological and electrical properties. From the X-ray diffraction (XRD) analysis, as-deposited films was found to be amorphous in nature and tend to transform into tetragonal anatase and rutile phase asmore » the films annealed at 573 and 773 K, respectively. The diversification of the surface roughness was characterized by atomic force microscopy (AFM) indicated the roughness and thickness very dependent on the annealing temperature. The two-point probe electrical resistance and conductance of nanoparticles TiO{sub 2} thin films were determined by the DC current-voltage (IV) analysis. From the I-V measurement, the electrical conductance increased as the films annealed at higher temperature.« less
Contribution a l'etude et au developpement de nouvelles poudres de fonte
NASA Astrophysics Data System (ADS)
Boisvert, Mathieu
L'obtention de graphite libre dans des pieces fabriquees par metallurgie des poudres (M/P) est un defi auquel plusieurs chercheurs se sont attardes. En effet, la presence de graphite apres frittage ameliore l'usinabilite des pieces, permettant donc de reduire les couts de production, et peut aussi engendrer une amelioration des proprietes tribologiques. L'approche utilisee dans cette these pour tenter d'obtenir du graphite libre apres frittage est par l'utilisation de nouvelles poudres de fontes atomisees a l'eau. L'atomisation a l'eau etant un procede de production de poudres relativement peu couteux qui permet de grandes capacites de production, le transfert des decouvertes de ce doctorat vers des applications industrielles sera donc economiquement plus favorable. En plus de l'objectif d'obtenir du graphite libre apres frittage, un autre aspect important des travaux est le controle de la morphologie du graphite libre apres frittage. En effet, il est connu dans la litterature des fontes coulees/moulees que la morphologie du graphite influencera les proprietes des fontes, ce qui est aussi vrai pour les pieces de M/P. Les fontes ductiles, pour lesquelles le graphite est sous forme de nodules spheroidaux isoles les uns des autres, possedent des proprietes mecaniques superieures aux fontes grises pour lesquelles le graphite est sous forme lamellaire et continu dans la matrice. Les resultats presentes dans cette these montrent qu'il est possible, dans des melanges contenant des poudres de fontes, d'avoir un controle sur la morphologie du graphite et donc sur les proprietes des pieces. Le controle de la morphologie du graphite a principalement ete realise par le type de frittage et le phenomene de diffusion " uphill " du carbone cause par des gradients en silicium. En effet, pour les frittages en phase solide, tous les nodules de graphite sont presents a l'interieur des grains de poudre apres frittage. Pour les frittages en phase liquide, l'intensite de la diffusion " uphill " permet de conserver plus ou moins de graphite nodulaire a l'interieur des regions riches en silicium, alors que le reste du graphite precipite sous forme lamellaire/vermiculaire dans les regions interparticulaires. L'etude des poudres de fontes et la recherche des mecanismes regissant la morphologie du graphite dans les fontes coulees/moulees nous ont amenes a produire des poudres de fontes traitees au magnesium avant l'atomisation. Plusieurs resultats fondamentaux ont ete obtenus de la caracterisation des poudres traitees au magnesium et de leur comparaison avec des poudres de chimies similaires non traitees au magnesium. D'abord, il a ete possible d'observer des bifilms d'oxyde de silicium dans la structure du graphite primaire d'une poudre de fonte grise hypereutectique. Il s'agit des premieres images montrant la structure double de ces defauts, venant ainsi appuyer la theorie elaboree par le professeur John Campbell. Ensuite, il a ete montre que le traitement au magnesium forme une atmosphere protectrice gazeuse autogeneree qui empeche l'oxydation de la surface du bain liquide et donc, la formation et l'entrainement des bifilms. Le role du magnesium sur la morphologie du graphite est de diminuer le soufre en solution en formant des precipites de sulfure de magnesium et ainsi d'augmenter l'energie d'interface graphite-liquide. En reponse a cette grande energie d'interface graphite-liquide, le graphite cherche a minimiser son ratio surface/volume, ce qui favorise la formation de graphite spheroidal. De plus, deux types de germination ont ete observes dans la poudre de fonte hypereutectique traitee au magnesium. Le premier type est une germination heterogene sur un nombre limite de particules faites de magnesium, d'aluminium, de silicium et d'oxygene. Le deuxieme type est une germination homogene des nodules dans certaines regions du liquide plus riches en silicium. L'observation du centre reel tridimensionnel, en microscopie electronique en transmission en haute resolution, d'un des nodules ayant subi une germination homogene a permis de confirmer que le mode de croissance du graphite spheroidal se produit selon le modele de la croissance en feuille de chou. (Abstract shortened by ProQuest.).
Thin sol-gel-derived silica coatings on dental pure titanium casting.
Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M
1999-01-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.
Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization
Xue, Chao-Hua; Jia, Shun-Tian; Chen, Hong-Zheng; Wang, Mang
2008-01-01
By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry. PMID:27877998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in; Manda, Premkumar
The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phasesmore » arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasankar, M.; Ananthakumar, S.; Mukundan, P.
A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less
Nanocrystalline mesoporous SMO thin films prepared by sol gel process for MEMS-based hydrogen sensor
NASA Astrophysics Data System (ADS)
Gong, Jianwei; Fei, Weifeng; Seal, Sudipta; Chen, Quanfang
2004-01-01
MEMS based SnO2 gas sensor with sol gel synthesized mesoporous nanocrystalline (<10 nm) semiconductor thin (100~150 nm) film has been recently developed. The SnO2 nano film is fabricated with the combination of polymeric sol gel chemistry with block copolymers used for structure directing agents. The novel hydrogen sensor has a fast response time (1s) and quick recovery time (3s), as well as good sensitivity (about 90%), comparing to other hydrogen sensors developed. The improved capabilities are credited to the large surface to volume ratio of gas sensing thin film with nano sized porous surface topology, which can greatly increase the sensitivity even at relatively low working temperature. The gas sensing film is deposited onto a thin dielectric membrane of low thermal conductivity, which provides good thermal isolation between substrate and the gas-sensitive heated area on the membrane. In this way the power consumption can be kept very low. Since the fabrication process is completely compatible with IC industry, it makes mass production possible and greatly reduces the cost. The working temperature of the new sensor can be reduced as low as 100°C. The low working temperature posse advantages such as lower power consumption, lower thermal induced signal shift as well as safe detection in certain environments where temperature is strictly limited.
NASA Astrophysics Data System (ADS)
Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.
2015-10-01
The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.
Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols
NASA Astrophysics Data System (ADS)
Kolobkova, E. V.; Evstropiev, S. K.; Nikonorov, N. V.; Vasilyev, V. N.; Evstropyev, K. S.
2017-11-01
Thin and uniform ZnO and ZnO:Al coatings were prepared on glass surfaces by using film-forming colloidal solutions containing small ZnS nanoparticles and polyvinylpyrrolidone as a polymer stabilizer. Film-forming ZnS sols were synthesized in the mixed water-propanol-2 solutions by chemical reaction between zinc nitrate and sodium sulfide. The addition of modifying component such as Al(NO3)3 into the film-forming solutions allows one to obtain thin and uniform ZnO:Al coatings. An increase in the sodium sulfide content in film-forming solutions leads to the growth of light absorption in the UV. The evolution of a coating material at all technological stages from the ZnS sols up to the transparent ZnO and ZnO:Al2O3 coatings (the latter kind being denoted further, in accord with a common practice, by ZnO:Al) was studied using the optical spectroscopy, XRD analysis, DSC-TGA, and SEM methods. The chemical processes of decomposing salts and the polymer occur by heating the intermediate composite ZnS/polyvinylpyrrolidone coatings in the 280-500 °C temperature range. Experimental data show that the ZnO and ZnO:Al coatings prepared consist of the slightly elongated oxide nanoparticles. These coatings fully cover the glass surface and demonstrate a high transparency in the UV and visible.
Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin
2014-06-28
Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
MPF Lander Measured Surface Pressure
1997-10-14
In this figure from NASA's Mars Pathfinder, you can see a significant increase in pressure on Sol 81, Sept. 25 1997. This is an indication of a frontal system has moved across the landing sight. http://photojournal.jpl.nasa.gov/catalog/PIA00977
Transparent photocatalytic coatings on the surface of the tips of medical fibre-optic bundles
NASA Astrophysics Data System (ADS)
Evstropiev, S. K.; Volynkin, V. M.; Kiselev, V. M.; Dukelskii, K. V.; Evstropyev, K. S.; Demidov, V. V.; Gatchin, Yu. A.
2017-12-01
We report the results of the development of the sol - gel method for obtaining thin, transparent (in the visible part of the spectrum) TiO2/MgO coatings on the surfaces of the tips of medical fibre-optic bundles. Such coatings are capable of generating singlet oxygen under the action of UV radiation and are characterised by high antibacterial activity.
1997-07-10
This 360 degree "monster" panorama was taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. All three petals, the perimeter of the deflated airbags, deployed rover Sojourner, forward and backward ramps and prominent surface features are visible. The IMP stands 1.8 meters over the Martian surface. The curvature and misalignment of several sections are due to image parallax. http://photojournal.jpl.nasa.gov/catalog/PIA00662
Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films
Mandla A. Tshabalala; Li-Piin Sung
2007-01-01
Interest in the use of nanoparticles of iron, titanium, aluminum, and zinc oxides in transparent coatings for wood is increasing. Such nano-composite coatings have the potential of not only preserving the natural color of the wood, but also stabilizing the wood surface against the combined degradative effects of sunlight and moisture. The nanoparticles can be used as...
Charge transfer from TiO2 into adsorbed benzene diazonium compounds
NASA Astrophysics Data System (ADS)
Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram
2004-08-01
Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.
Deák, Ágota; Janovák, László; Tallósy, Szabolcs Péter; Bitó, Tamás; Sebők, Dániel; Buzás, Norbert; Pálinkó, István; Dékány, Imre
2015-02-17
Aqueous suspensions of spherical ZnMgAl-layered double hydroxides [LDH(sph)] and antibacterial silver nanoparticles (AgNPs) deposited on the lamellae of montmorillonite were used for the synthesis of composites, which behave like coherent gels at low pH (≲4.5) and incoherent sols at higher pH (≳4.5). The composition of the composite was chosen as LDH(sph)/Ag°-montm. = 25:75 wt % in order to ensure a sol-gel transition that can also be characterized by viscometry. This pH-sensitive heterocoagulated system consisting of oppositely charged colloid particles was suitable for the release of antimicrobial AgNPs immobilized on the clay lamellae via a pH-controlled gel-sol transition. The heterocoagulation process was also characterized by surface charge titration measurements. Spherical LDH/Ag°-montmorillonite composite samples were identified by X-ray diffraction (XRD) measurements. The morphological properties of the composites were studied, and the presence of the heterocoagulated structure was confirmed by scanning electron microscopy (SEM). The nanoscale structure of the LDH(sph)-Ag°-montmorillonite composite obtained was also verified by small-angle X-ray scattering (SAXS), and the rheological characteristics were studied at various pH values. The viscosity and yield value of the composite decreased by an order of magnitude upon increasing the pH from 3.0 to 5.5. The sol-gel transition of the composite suspension was reversible in the previously mentioned pH range.
Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination
NASA Astrophysics Data System (ADS)
Sobac, Benjamin; Brutin, David
2011-11-01
The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.
NASA Astrophysics Data System (ADS)
Johnson, J. R.; Bell, J. F., III; Hayes, A.; Deen, R. G.; Godber, A.; Arvidson, R. E.; Lemmon, M. T.
2015-12-01
The Mastcam imaging system on the Curiosity rover continued acquisition of multispectral images of the same terrain at multiple times of day at three new rover locations between sols 872 and 1003. These data sets will be used to investigate the light scattering properties of rocks and soils along the Curiosity traverse using radiative transfer models. Images were acquired by the Mastcam-34 (M-34) camera on Sols 872-892 at 8 times of day (Mojave drill location), Sols 914-917 (Telegraph Peak drill location) at 9 times of day, and Sols 1000-1003 at 8 times of day (Stimson-Murray Formation contact near Marias Pass). Data sets were acquired using filters centered at 445, 527, 751, and 1012 nm, and the images were jpeg-compressed. Data sets typically were pointed ~east and ~west to provide phase angle coverage from near 0° to 125-140° for a variety of rocks and soils. Also acquired on Sols 917-918 at the Telegraph Peak site was a multiple time-of-day Mastcam sequence pointed southeast using only the broadband Bayer filters that provided losslessly compressed images with phase angles ~55-129°. Navcam stereo images were also acquired with each data set to provide broadband photometry and terrain measurements for computing surface normals and local incidence and emission angles used in photometric modeling. On Sol 1028, the MAHLI camera was used as a goniometer to acquire images at 20 arm positions, all centered at the same location within the work volume from a near-constant distance of 85 cm from the surface. Although this experiment was run at only one time of day (~15:30 LTST), it provided phase angle coverage from ~30° to ~111°. The terrain included the contact between the uppermost portion of the Murray Formation and the Stimson sandstones, and was the first acquisition of both Mastcam and MALHI photometry images at the same rover location. The MAHLI images also allowed construction of a 3D shape model of the Stimson-Murray contact region. The attached figure shows a phase color composite of the western Stimson area, created using phase angles of 8°, 78°, and 130° at 751 nm. The red areas correspond to highly backscattering materials that appear to concentrate along linear fractures throughout this area. The blue areas correspond to more forward scattering materials dispersed through the stratigraphic sequence.
DGT technique to assess P mobilization from greenhouse vegetable soils in China: A novel approach.
Kalkhajeh, Yusef Kianpoor; Sørensen, Helle; Huang, Biao; Guan, Dong-Xing; Luo, Jun; Hu, Wenyou; Holm, Peter E; Hansen, Hans Christian Bruun
2018-07-15
Intensive phosphorus (P) inputs to plastic-covered greenhouse vegetable production (PGVP) in China has led to excessive soil P accumulation increasing the potential for leaching to surface waters. This study examined the mobility and hence the potential risk of P losses through correlations between soil solution P (P Sol ) and soil extractable P as determined by conventional soil P test methods (STPs) including degree of P saturations (DPSs), and diffusive gradient in thin-films (DGT P) technique. A total of 75 topsoil samples were chosen from five representative Chinese PGVPs covering a wide range of physiochemical soil properties and cultivation history. Total P and Olsen P contents varied from 260 to 4900, and 5 to 740mgkg -1 , respectively, while P Sol concentrations were between 0.01 and 10.8mgL -1 reflecting the large differences in vegetation history, fertilization schemes, and soil types. Overall, DGT P provided the best correlation with P Sol (r 2 =0.97) demonstrating that DGT P is a versatile measure of P mobility regardless of soil type. Among the DPSs tested, oxalate extractable Al (DPS Ox-Al ) had the best correlation with P Sol (r 2 =0.87). In the STP versus P Sol relationships, STP break-points above which P mobilization increases steeply were 513μgL -1 and 190mgkg -1 for DGT P or Olsen P, respectively, corresponding to P Sol concentration of 0.88mgL -1 . However, for P Sol concentration of 0.1mgL -1 that initiates eutrophication, the corresponding DGT P and Olsen P values were 27μgL -1 and 22mgkg -1 , respectively. Over 80% of the investigated soils had DGT P and Olsen P above these values, and thus are at risk of P mobilization threatening receiving waters by eutrophication. This paper demonstrates that the DGT extracted P is a powerful measure for soluble P and hence for assessment of P mobility from a broad range of soil types. Copyright © 2018 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
...:[sol][sol]www.regulations.gov, including any personal information provided, unless the comment includes... http:[sol][sol]www.regulations.gov or e-mail. The http:[sol][sol]www.regulations.gov Web site is an... through http:[sol][sol]www.regulations.gov, your e-mail address will be automatically captured and...
Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone
NASA Astrophysics Data System (ADS)
Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.
2018-03-01
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.
Annealing of (DU-10Mo)-Zr Co-Rolled Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James
2017-01-20
Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Almore » cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.« less
The Mars atmosphere as seen from Curiosity
NASA Astrophysics Data System (ADS)
Mischna, Michael
Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.
Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmerle, Achim, E-mail: achim-kimmerle@gmx.de; Momtazur Rahman, Md.; Werner, Sabrina
We investigate the surface recombination velocity S{sub p} at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carriermore » concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased S{sub p} at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth
2009-03-01
The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is importantmore » as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.« less
Analyse chronometrique intersexes de la resolution de la tache d'horizontalite des liquides
NASA Astrophysics Data System (ADS)
Berthiaume, Francois
D'abondantes recherches ont demontre que la reussite a la tache d'horizontalite des liquides est en moyenne plus elevee chez les individus de sexe masculin que chez ceux de sexe feminin. Deux facteurs principaux ont ete proposes: il s'agit de la connaissance du principe physique de l'invariance de l'orientation des liquides et de certaines habiletes perceptives d'ordre visuel. Le but de la presente recherche est d'etablir la duree detaillee de la resolution de la tache d'horizontalite des liquides chez 185 filles et 180 garcons, ages de 15 a 19 ans et repartis en 8 groupes. Dans une version informatisee, le premier groupe trace la position de la surface de l'eau a l'interieur d'un contenant dans diverses inclinaisons et le deuxieme evalue si l'orientation d'une ligne y represente bien cette position; le troisieme groupe trace une horizontale dans un rectangle et le quatrieme juge si la ligne illustree y est bien horizontale. Quatre autres groupes executent respectivement les memes taches dans la version classique papier-crayon. Le temps accorde a la reflexion avant de commencer le trace, le temps de tracage comme tel et le temps de verification du trace complete sont calcules. Chez les groupes qui evaluent l'orientation d'une ligne sur support informatique, le temps requis pour y parvenir est note. Enfin, un questionnaire estime si les participants connaissent ou non le principe physique d'invariance de l'orientation de la surface d'un liquide. Les resultats revelent que cette connaissance est plus frequente chez les garcons dans l'ensemble des groupes. Dans le cas ou les sujets ont a tracer une ligne, les filles reussissent moins d'essais que les garcons s'il faut, sur support informatique, tracer la surface de l'eau dans un contenant incline ou a l'horizontale. Il en va de meme s'il faut, sur support papier, tracer une horizontale dans un contenant incline. Le trace de la surface de l'eau est plus exact chez les sujets connaissant le principe d'invariance et l'ecart intersexes disparait si l'analyse tient compte de cette connaissance. Sur le plan du temps de reponse, les deux sexes ne se distinguent que lors du trace de la surface de l'eau dans un contenant incline, les garcons reflechissant alors plus longtemps. Le temps mis a produire, puis a verifier un trace, ne differe pas selon le sexe des participants. Dans l'evaluation de l'orientation d'une ligne cependant, les filles ne se distinguent pas des garcons et les participants connaissant le principe d'invariance reussissent mieux que ceux l'ignorant. Par ailleurs, les filles procedent toujours moins rapidement que les garcons. Pour les contenants inclines ou a l'horizontale, si la ligne represente la surface de l'eau, la difference intersexes est annulee quand la connaissance du principe est prise en compte. (Abstract shortened by UMI.)