Effect of superhydrophobicity on surface damage of silicone rubber under AC voltage
NASA Astrophysics Data System (ADS)
Li, Yufeng; Jin, Haiyun; Nie, Shichao; Tong, Cheng; Gao, Naikui
2018-03-01
In this paper, the influence of superhydrophobicity on the surface damage of silicone rubber is studied. On a common silicone rubber surface, a droplet can become elongated, and arc discharge induced by the droplet can cause tracking on the silicone rubber surface. However, for a superhydrophobic silicone rubber surface, a droplet can leave the silicone rubber due to the low adhesion of the superhydrophobic surface. Accordingly, arc discharge caused by the droplet does not occur, and the surface of the silicone rubber is not affected. Results demonstrate that using a superhydrophobic surface has a significant effect on limiting the surface damage of silicone rubber.
Bidirectional reflectance distribution function effects in ladar-based reflection tomography.
Jin, Xuemin; Levine, Robert Y
2009-07-20
Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
Zhuang, Wen; Gao, Xuelu
2014-06-15
Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hendriks, D.; Ball, S. M.; Van der Wegen, M.; Verkaik, J.; van Dam, A.
2016-12-01
We present a coupled groundwater-surface water model for the San Francisco Bay and Sacramento Valley that consists of a combination of a spatially-distributed groundwater model (Modflow) based on the USGS Central Valley model(1) and the Flexible Mesh (FM) surface water model of the Bay Area(2). With this coupled groundwater-surface water model, we assessed effects of climate, surface water abstractions and groundwater pumping on surface water and groundwater levels, groundwater-surface water interaction and infiltration/seepage fluxes. Results show that the effect of climate (high flow and low flow) on surface water and groundwater is significant and most prominent in upstream areas. The surface water abstractions cause significant local surface water levels decrease (over 2 m), which may cause inflow of bay water during low flow periods, resulting in salinization of surface water in more upstream areas. Groundwater level drawdown due to surface water withdrawal is moderate and limited to the area of the withdrawals. The groundwater pumping causes large groundwater level drawdowns (up to 0.8 m) and significant changes in seepage/infiltration fluxes in the model. However, the effect on groundwater-surface water exchange is relatively small. The presented model instrument gives a sound first impression of the effects of climate and water abstraction on both surface water and groundwater. The combination of Modflow and Flexible Mesh has potential for modelling of groundwater-surface water exchange in deltaic areas, also in other parts of the world. However, various improvements need to be made in order to make the simulation results useful in practice. In addition, a water quality aspect could be added to assess salinization processes as well as groundwater-surface water aspects of water and soil pollution. (1) http://ca.water.usgs.gov/projects/central-valley/central-valley-hydrologic-model.html (2) www.d3d-baydelta.org
Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts
NASA Astrophysics Data System (ADS)
Zhang, N.
2017-12-01
Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.
Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo
2011-01-01
AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis.
Calculation and simulation of atmospheric refraction effects in maritime environments
NASA Astrophysics Data System (ADS)
Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc
2001-01-01
Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
Effect of the surface roughness on interfacial breakdown between two dielectric surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, D.
1996-12-31
Cable splices and accessories are the weak link in an underground power distribution system. Investigations of problems related to cable splices and accessories becomes quite intricate once the simpler causes of failures are dismissed to allow more complex phenomena to be examined. The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. In order to better understand this phenomenon, breakdown experiments were performed at interfaces found in cable splices. An experimental jig was designed to induce breakdown between dielectric surfaces longitudinally along their interface. Effects of surface roughness at EPDM/XLPEmore » and EPDM/EPDM interfaces as well as the presence of silicone grease are taken into account.« less
Specification for a surface-search radar-detection-range model
NASA Astrophysics Data System (ADS)
Hattan, Claude P.
1990-09-01
A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.
Erosion of a grooved surface caused by impact of particle-laden flow
NASA Astrophysics Data System (ADS)
Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young
2016-11-01
Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.
Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi
2015-06-01
The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.
Fault Analysis on Bevel Gear Teeth Surface Damage of Aeroengine
NASA Astrophysics Data System (ADS)
Cheng, Li; Chen, Lishun; Li, Silu; Liang, Tao
2017-12-01
Aiming at the trouble phenomenon for bevel gear teeth surface damage of Aero-engine, Fault Tree of bevel gear teeth surface damage was drawing by logical relations, the possible cause of trouble was analyzed, scanning electron-microscope, energy spectrum analysis, Metallographic examination, hardness measurement and other analysis means were adopted to investigate the spall gear tooth. The results showed that Material composition, Metallographic structure, Micro-hardness, Carburization depth of the fault bevel gear accord with technical requirements. Contact fatigue spall defect caused bevel gear teeth surface damage. The small magnitude of Interference of accessory gearbox install hole and driving bevel gear bearing seat was mainly caused. Improved measures were proposed, after proof, Thermoelement measures are effective.
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
NASA Astrophysics Data System (ADS)
Ageev, Vladimir P.; Konov, Vitalii I.; Krechetov, A. I.
1990-08-01
An analysis is made of the photoemission of electrons in gases when the surface of a solid is subjected to high-intensity ultraviolet laser radiation which does not cause surface heating. Various situations are considered in which generation of high local electric fields and of a dense cloud of charged particles near the surface may alter and even determine the mechanism of laser-stimulated processes on surfaces of solids.
Estimated land-surface subsidence in Harris County, Texas, 1915-17 to 2001
Kasmarek, Mark C.; Gabrysch, Robert K.; Johnson, Michaela R.
2009-01-01
Land-surface subsidence, or land subsidence, in Harris County, Texas, which encompasses much of the Houston area, has been occurring for decades. Land subsidence has increased the frequency and extent of flooding, damaged buildings and transportation infrastructure, and caused adverse environmental effects. The primary cause of land subsidence in the Houston area is withdrawal of groundwater, although extraction of oil and gas also has contributed. Throughout most of the 20th century, groundwater was the primary source of municipal, agricultural, and industrial water supply for Harris County. Currently (2009) a transition to surface water as the primary source of supply, guided by a groundwater regulatory plan developed by the Harris-Galveston Subsidence District (2001), is in effect. The aquifers in Harris County contain an abundant amount of potable groundwater, but they also contain layers of clay. Groundwater withdrawals caused compaction of the clay layers, which in turn resulted in the widespread, substantial land-surface subsidence that has occurred in the Houston area.
Tutorial on Atomic Oxygen Effects and Contamination
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2017-01-01
Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.
2017-12-01
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.
NASA Astrophysics Data System (ADS)
Bechert, M.; Scheid, B.
2017-11-01
The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.
The Effects of Surface Waviness and of Rib Stitching on Wing Drag
NASA Technical Reports Server (NTRS)
Hood, Manley J
1939-01-01
Surface waviness and rib stitching have been investigated as part of a series of tests to determine the effects on wing drag of common surface irregularities. The tests were made in the N.A.C.A. 8-foot high-speed wind tunnel at Reynolds Numbers up to 17,000,000. The results of the tests showed that the waviness common to airplane wings will cause no serious increase in drag unless the waviness exists on the forward part of the wing, where it may cause premature transition or premature compressibility effects. Waves 3 inches wide and 0.048 inch high, for example, increased the drag 1 percent when they covered the rear 67 percent of both surfaces and 10 percent when they covered the rear 92 percent. A single wave 3 inches wide and only 0.020 inch high at the 10.5-percent-chord point on the upper surface caused transition to occur on the wave and increased the drag 6 percent. Rib stitching increased the drag 7 percent when the rib spacing was 6 inches; the drag increment was proportional to the number of ribs for wider spacings. About one-third of the increase was due to premature transition at the forward ends of the stitching.
Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.
Francica, Joseph R; Matukonis, Meghan K; Bates, Paul
2009-01-20
Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.
Mozhaev, V G; Weihnacht, M
2000-07-01
The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.
NASA Technical Reports Server (NTRS)
Howell, G. A.; Crosthwait, E. L.; Witte, M. C.
1981-01-01
A STOL fighter model employing the vectored-engine-over wing concept was tested at low speeds in the NASA/Ames 40 by 80-foot wind tunnel. The model, approximately 0.75 scale of an operational fighter, was powered by two General Electric J-97 turbojet engines. Limited pressure and thermal instrumentation were provided to measure power effects (chordwise and spanwise blowing) and control-surface-deflection effects. An indepth study of the pressure and temperature data revealed many flow field features - the foremost being wing and canard leading-edge vortices. These vortices delineated regions of attached and separated flow, and their movements were often keys to an understanding of flow field changes caused by power and control-surface variations. Chordwise blowing increased wing lift and caused a modest aft shift in the center of pressure. The induced effects of chordwise blowing extended forward to the canard and significantly increased the canard lift when the surface was stalled. Spanwise blowing effectively enhanced the wing leading-edge vortex, thereby increasing lift and causing a forward shift in the center of pressure.
High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography
2015-08-03
Navier-Stokes equation, in effect randomizing the subfilter-scale (SFS) stress divergence. In the intervening years it has been discovered that this...surface stress models do introduce spurious effects that force deviations from LOTW at the first couple grid levels adjacent to the surface. Fig. 10 shows...SFS stress is sufficiently overwhelming to produce the overshoot. When the LES is moved into the HAZ so that the viscous effects causing the
The amplitude effects of sedimentary basins on through-passing surface waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.; Pasyanos, M.
2016-12-01
Understanding the effect of sedimentary basins on through-passing surface waves is essential in many aspects of seismology, including the estimation of the magnitude of natural and anthropogenic events, the study of the attenuation properties of Earth's interior, and the analysis of ground motion as part of seismic hazard assessment. In particular, knowledge of the physical causes of amplitude variations is important in the application of the Ms:mb discriminant of nuclear monitoring. Our work addresses two principal questions, both in the period range between 10 s and 20 s. The first question is: In what respects can surface wave propagation through 3D structures be simulated as 2D membrane waves? This question is motivated by our belief that surface wave amplitude effects down-stream from sedimentary basins result predominantly from elastic focusing and defocusing, which we understand as analogous to the effect of a lens. To the extent that this understanding is correct, 2D membrane waves will approximately capture the amplitude effects of focusing and defocusing. We address this question by applying the 3D simulation code SW4 (a node-based finite-difference code for 3D seismic wave simulation) and the 2D code SPECFEM2D (a spectral element code for 2D seismic wave simulation). Our results show that for surface waves propagating downstream from 3D sedimentary basins, amplitude effects are mostly caused by elastic focusing and defocusing which is modeled accurately as a 2D effect. However, if the epicentral distance is small, higher modes may contaminate the fundamental mode, which may result in large errors in the 2D membrane wave approximation. The second question is: Are observations of amplitude variations across East Asia following North Korean nuclear tests consistent with simulations of amplitude variations caused by elastic focusing/defocusing through a crustal reference model of China (Shen et al., A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 206(2), 2015)? We simulate surface wave propagation across Eastern Asia with SES3D (a spectral element code for 3D seismic wave simulation) and observe significant amplitude variations caused by focusing and defocusing with a magnitude that is consistent with the observations.
Hatipoglu, M; Barutcigil, C
2015-01-01
The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces of restorative materials. Diode lasers can be preferred for periodontal surgery.
A Hiatus of the Greenhouse Effect.
Song, Jinjie; Wang, Yuan; Tang, Jianping
2016-09-12
The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.
A Hiatus of the Greenhouse Effect
Song, Jinjie; Wang, Yuan; Tang, Jianping
2016-01-01
The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203
A Hiatus of the Greenhouse Effect
NASA Astrophysics Data System (ADS)
Song, Jinjie; Wang, Yuan; Tang, Jianping
2016-09-01
The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.
NASA Astrophysics Data System (ADS)
Collier, Terry Odell, III
Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface modified polyurethane materials to control macrophage adhesion indicates the complexity of macrophage adhesion and protein adsorption onto a surface. These studies have indicated components and adhesive mechanisms which can be utilized to create materials with enhanced resistance to macrophage adhesion and/or degradative abilities.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
NASA Astrophysics Data System (ADS)
Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi
2018-02-01
The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.
USDA-ARS?s Scientific Manuscript database
Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...
USDA-ARS?s Scientific Manuscript database
Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo
2012-12-01
We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.
Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires.
Mane, Pratap P; Pawar, Renuka; Ganiger, Chanamallappa; Phaphe, Sandesh
2012-05-01
The aim of this study was to see the effect of topical fluoride on surface texture on nickel-titanium and copper-nickel-titanium orthodontic archwires. Preformed rectangular NiTi and CuNiTi wires were immersed in in fluoride solution and artificial saliva (control) for 90 minutes at 37°C. after immersion optical microscope was used to see the fluoride effect on the wire topography. The acidulated fluoride agents appeared to cause greater corrosive effects as compared to the neutral fluoride agents. The result suggest that using topical fluoride agents leads to corrosion of surface topography indirectly affecting the mechanical properties of the wire that will lead to prolonged orthodontic treatment. The use of topical fluoride agents has to be limited in patients with prolonged orthodontic treatment as it causes the corrosion of the NiTi and CuNiTi wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...
2017-11-17
Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less
Shot peening for Ti-6Al-4V alloy compressor blades
NASA Technical Reports Server (NTRS)
Carek, Gerald A.
1987-01-01
A text program was conducted to determine the effects of certain shot-peening parameters on the fatigue life of the Ti-6Al-4V alloys as well as the effect of a demarcation line on a test specimen. This demarcation line, caused by an abrupt change from untreated surface to shot-peened surface, was thought to have caused the failure of several blades in a multistage compressor at the NASA Lewis Research Center. The demarcation line had no detrimental effect upon bending fatigue specimens tested at room temperature. Procedures for shot peening Ti-6Al-4V compressor blades are recommended for future applications.
Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei
2012-01-02
The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
NASA Astrophysics Data System (ADS)
Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao
In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.
Kendrick, Katherine J.; Camille Partin,; Graham, Robert C.
2016-01-01
Rock surface erosion by wildfire is significant and widespread but has not been quantified in southern California or for chaparral ecosystems. Quantifying the surface erosion of bedrock outcrops and boulders is critical for determination of age using cosmogenic radionuclide techniques, as even modest surface erosion removes the accumulation of the cosmogenic radionuclides and causes significant underestimate of age. This study documents the effects on three large granitic boulders following the Esperanza Fire of 2006 in southern California. Spalled rock fragments were quantified by measuring the removed rock volume from each measured boulder. Between 7% and 55% of the total surface area of the boulders spalled in this single fire. The volume of spalled material, when normalized across the entire surface area, represents a mean surface lowering of 0.7–12.3 mm. Spalled material was thicker on the flanks of the boulders, and the height of the fire effects significantly exceeded the height of the vegetation prior to the wildfire. Surface erosion of boulders and bedrock outcrops as a result of wildfire spalling results in fresh surfaces that appear unaffected by chemical weathering. Such surfaces may be preferentially selected by researchers for cosmogenic surface dating because of their fresh appearance, leading to an underestimate of age.
Evaluation of current techniques for isolation of chars as natural adsorbents
Chun, Y.; Sheng, G.; Chiou, C.T.
2004-01-01
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Thermobaricity, cabbeling, and water-mass conversion
NASA Astrophysics Data System (ADS)
McDougall, Trevor J.
1987-05-01
The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at changing the potential temperature of a water mass than would be implied by simply calculating the vertical derivative of the fingering heat flux.
Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate
ERIC Educational Resources Information Center
Science, 1971
1971-01-01
Mathematical models indicate increasing atmospheric carbon dioxide causes an increase in surface temperature at a decreasing rate, and the rate of temperature decrease caused by increasing aerosols increases with aerosol concentration. (AL)
Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.
Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao
2017-08-16
The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2014-02-01
The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.
Temperature Distribution Measurement of The Wing Surface under Icing Conditions
NASA Astrophysics Data System (ADS)
Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm
2016-11-01
De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.
Environmental effects and large space systems
NASA Technical Reports Server (NTRS)
Garrett, H. B.
1981-01-01
When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.
The surface properties of fluorinated polyimides exposed to VUV and atomic oxygen
NASA Technical Reports Server (NTRS)
Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1995-01-01
The effect of atomic oxygen flux and VUV radiation alone and in combination on the surface of fluorinated polyimide films was studied using XPS spectroscopy. Exposure of fluorinated polyimides to VUV radiation alone caused no observable damage to the polymer surface, while an atomic oxygen flux resulted in substantial oxidation of the surface. On the other hand, exposure to VUV radiation and atomic oxygen in combination caused extensive oxidation of the polymer surface after only 2 minutes of exposure. The amount of oxidized carbon on the polymer surface indicated that there is aromatic ring opening oxidation. The changes in the O1s/C1s, N1s/C1s, and F1s/C1s ratios suggested that an ablative degradation process is highly favorable. A synergistic effect of VUV radiation in the presence of atomic oxygen is clearly evidenced from the XPS study. The atomic oxygen could be considered as the main factor in the degradation process of fluorinated polyimide films exposed to a low earth orbit environment.
Investigation of scrubbing and impingement noise
NASA Technical Reports Server (NTRS)
Fink, M. R.
1975-01-01
Tests were conducted in an acoustic wind tunnel to determine surface pressure spectra and far field noise caused by turbulence impinging on an airfoil and turbulence convected past a sharp trailing edge. Measured effects of flow velocity and turbulence intensity were compared with predictions from several theories. Also, tests were conducted in an anechoic chamber to determine surface pressure spectra and far field noise caused by a deflected airfoil scrubbed by a subsonic jet. This installation simulated both an under-the-wing and an upper-surface-blowing externally blown flap, depending on the deflection angle. Surface and far field spectra, and cross correlation coherence and delay time, were utilized to infer the major noise-producing mechanisms.
Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs
NASA Astrophysics Data System (ADS)
Gudipati, Murthy; Henderson, Bryana; Bateman, Fred
2017-10-01
MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by JPL’s R&TD Program and NASA Solar System Workings Program.
Joshi, Chaitanya Pradeep; Patil, Agraja Ganpat; Karde, Prerna Ashok; Mahale, Swapna Arunkumar; Dani, Nitin Hemchandra
2017-01-01
Background: Plaque control has been shown to have a pivotal role in maintaining optimal periodontal health. Toothbrushing as a mechanical plaque control tool is the most popular and effective option for self-performed oral health maintenance. However, the detrimental effects of bristle hardness and force exerted by toothbrushes on the tooth surface are the areas of concern. Objective: The aim of this in vitro study was to evaluate the abrasive effect of two different manual toothbrushes exerting predetermined forces on cemental surfaces of the teeth. Materials and Methods: Sixty extracted first molars were selected. Totally six experimental groups were formed based on the three predetermined forces 1.5, 3, and 4.5 Newton (N) and two types of manual toothbrushes, i.e., soft and medium bristle hardness. Buccal and lingual surfaces were independently brushed for 5000 cycles using specially designed toothbrushing machine. Throughout the experiment, type and quantity of toothpaste were kept constant. Post 5000 cycles of toothbrushing, change in surface roughness was measured using profilometer in microns and change in weight indicating loss of substance was measured in milligrams. Results: Abrasion of cementum is force dependent. Data revealed that both soft and medium bristle hardness toothbrushes cause significant cemental abrasion at 3 and 4.5 N forces. Conclusions: Higher is the force, more is the cemental surface abrasion. Soft bristled toothbrush causes more cemental abrasion than medium bristled toothbrush at 3 and 4.5 N forces. PMID:29386794
1981-08-01
protective coating between the plates, the reduction in frictional effects caused by the fluid did cause a significant reduction in fatigue life ... surface treatments for aluminum alloys , there has been a return to anodizing for new weapons systems rather than chromate conversion coatings . Both sulfuric...good alternate coating material in many applications requiring good corrosion resistance and minimal effect on fatigue properties. Only two aluminum
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Wadsworth, Jennifer; Cockell, Charles S
2017-05-01
The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn
2000-01-01
Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.
Superhydrophobic Blood-Repellent Surfaces.
Jokinen, Ville; Kankuri, Esko; Hoshian, Sasha; Franssila, Sami; Ras, Robin H A
2018-06-01
Superhydrophobic surfaces repel water and, in some cases, other liquids as well. The repellency is caused by topographical features at the nano-/microscale and low surface energy. Blood is a challenging liquid to repel due to its high propensity for activation of intrinsic hemostatic mechanisms, induction of coagulation, and platelet activation upon contact with foreign surfaces. Imbalanced activation of coagulation drives thrombogenesis or formation of blood clots that can occlude the blood flow either on-site or further downstream as emboli, exposing tissues to ischemia and infarction. Blood-repellent superhydrophobic surfaces aim toward reducing the thrombogenicity of surfaces of blood-contacting devices and implants. Several mechanisms that lead to blood repellency are proposed, focusing mainly on platelet antiadhesion. Structured surfaces can: (i) reduce the effective area exposed to platelets, (ii) reduce the adhesion area available to individual platelets, (iii) cause hydrodynamic effects that reduce platelet adhesion, and (iv) reduce or alter protein adsorption in a way that is not conducive to thrombus formation. These mechanisms benefit from the superhydrophobic Cassie state, in which a thin layer of air is trapped between the solid surface and the liquid. The connections between water- and blood repellency are discussed and several recent examples of blood-repellent superhydrophobic surfaces are highlighted. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effectiveness of antistripping additives in the field.
DOT National Transportation Integrated Search
1995-01-01
Stripping has long been recognized as a cause of asphalt pavement damage. Water may get between the asphalt film and the aggregate surface, causing an adhesive failure, or water may combine with the asphalt to affect the cohesive strength of the mate...
Effects of immobilization mask material on surface dose
Hadley, Scott W.; Kelly, Robin; Lam, Kwok
2005-01-01
This work investigates the increase in surface dose caused by thermoplastic masks used for patient positioning and immobilization. A thermoplastic mask is custom fit by stretching a heated mask over the patient at the time of treatment simulation. This mask is then used at treatment to increase the reproducibility of the patient position. The skin sparing effect of mega‐voltage X‐ray beams can be reduced when the patient's skin surface is under the mask material. The sheet of thermoplastic mask has holes to reduce this effect and is available from one manufacturer with two different sizes of holes, one larger than the other. This work investigates the increase in surface dose caused by the mask material and quantifies the difference between the two samples of masks available. The change in the dose buildup was measured using an Attix parallel plate chamber by measuring tissue maximum ratios (TMRs) using solid water. Measurements were made with and without the mask material on the surface of the solid water for 6‐MV and 15‐MV X‐ray beams. The effective thickness of equivalent water was estimated from the TMR curves, and the increase in surface dose was estimated. The buildup effect was measured to be equivalent to 2.2 mm to 0.6 mm for masks that have been stretched by different amounts. The surface dose was estimated to change from 16% and 12% for 6 MV and 15 MV, respectively, to 27% to 61% for 6 MV and 18% to 40% for 15 MV with the mask samples. PACS number: 87.53.Dq PMID:15770192
On the state of stress in the near-surface of the earth's crust
Savage, W.Z.; Swolfs, H.S.; Amadei, B.
1992-01-01
Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models-the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy-are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term. ?? 1992 Birkha??user Verlag.
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Theoretical Calculation of Viscous-Inviscid Transonic Flows.
1980-08-01
Taylor Naval Ship Research and Development Center Aviation and Surface Effects Department / (See reverse side) Bethesda, Maryland 20084 ! CONTROLLING...Interactions ... .......... ... 46 18 -ffect of Boundary Layer on Blade Surface Pressures in a Transonic Fan Rotor Tip Section Cascade...complicated by the viscous effect . The strong viscous-inviscid interaction caused by the shock wave thickens the boundary layer rapidly, and the flow eventually
Virtual Laboratory Environment for High Voltage Radiation Source Experiments
2005-05-01
Dielectric ," Phys. Rev. Lett. 80, 103 (1998). 26.A. Valfells, J. P. Verboncoeur and Y. Y. Lau, " Space charge effects on multipactor on a dielec... effects at the edges of the surface, or due to space charge effects if a plasma is formed at the surface. High density multipactor can result in... multipactors , which can cause significant reflection and absorption of microwave power as well as space charge effects . X-rays can also
The search for the cause of the low albedo of the moon
NASA Technical Reports Server (NTRS)
Gold, T.; Bilson, E.; Baron, R. L.
1975-01-01
Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind.
Computing Thermal Imbalance Forces On Satellites
NASA Technical Reports Server (NTRS)
Vigue, Yvonne; Schutz, Robert E.; Sewell, Granville; Abusali, Pothai A. M.
1994-01-01
HEAT.PRO computer program calculates imbalance force caused by heating of surfaces of satellite. Calculates thermal imbalance force and determines its effect on orbit of satellite, especially where shadow cast by Earth Causes periodic changes in thermal environment around satellite. Written in FORTRAN 77.
Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons
NASA Astrophysics Data System (ADS)
Butvinová, B.; Butvin, P.; Brzózka, K.; Kuzminski, M.; Maťko, I.; Švec, P., Sr.; Chromčíková, M.
2017-02-01
Si-poor Fe74Nb3Cu1Si8B14-xPx, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties.
NASA Astrophysics Data System (ADS)
Kaneko, D.
2016-12-01
Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.
Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min
2016-12-20
Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.
NASA Astrophysics Data System (ADS)
Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.
2018-04-01
Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.
Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi
2017-07-24
In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.
NASA Astrophysics Data System (ADS)
Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin
2018-05-01
The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.
Dry eyes: etiology and management.
Latkany, Robert
2008-07-01
Until recently, the cause of dry eye syndrome was uncertain and the treatment was palliative. Since discovering that dry eyes are caused by inflammation, there has been an abundance of research focusing on anti-inflammatory therapies, other contributing causes, and better diagnostic testing. This review summarizes some of the interesting published research on ocular surface disease over the past year. The definition of dry eye now highlights the omnipresent symptom of blurry vision. The re-evaluation of ocular surface staining, tear meniscus height, and visual change will allow for a better diagnosis and understanding of dry eyes. Punctal plugs, and oral and topical anti-inflammatory use will strengthen our arsenal against ocular surface disease. Major progress has occurred in the past few years in gaining a better understanding of the etiology of dry eye syndrome, which will inevitably lead to more effective therapeutic options.
The Peculiar Negative Greenhouse Effect Over Antarctica
NASA Astrophysics Data System (ADS)
Sejas, S.; Taylor, P. C.; Cai, M.
2017-12-01
Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
Capability evaluation of ultrasonic cavitation peening at different standoff distances.
Bai, Fushi; Saalbach, Kai-Alexander; Long, Yangyang; Twiefel, Jens; Wallaschek, Jörg
2018-03-01
Ultrasonic cavitation peening is a novel surface treatment technology which utilizes the effect of cavitation bubble collapses to improve the properties of metal surfaces. In order to obtain high impact during ultrasonic cavitation peening, a small standoff distance between a sound radiator and a rigid reflector (the surface of treated specimen) is necessary. However, the effects of different standoff distances on the capability of ultrasonic cavitation peening are not yet clear. In this paper, a simplified model was developed to evaluate the cavitation capability at different standoff distances. Meanwhile, to validate the theoretical model, the plastic deformation or erosion on the peening surface before and after treatment were compared. It was found that at a very small standoff distance the impact pressure generated by cavitation bubbles did not cause much deformation or erosion, as the dynamics of cavitation bubbles was limited. At a large standoff distance, due to much attenuation of sound propagation in the bubbly liquid, little impact pressure was generated by the collapse of cavitation bubbles and reached the treated surface. A fixed vibration amplitude, however, corresponded to a standoff distance which caused the largest deformation or erosion on the treated surface. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aydin, Ismail; Colakoglu, Gursel
2005-10-01
Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder ( Alnus glutinosa subsp. barbata) and beech ( Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (Δ E*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in Δ E* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile ( Ra) decreased slightly in Ra values after the natural inactivation process.
Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.
Mann, M; Parmar, D; Walmsley, A D; Lea, S C
2012-01-01
Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Wang, L.; Lin, G.; Feng, D.; Chen, S.; Schultz, N. M.; Fu, C.; Wei, Z.; Yin, C.; Wang, W.; Lee, X.
2017-12-01
To better design climate mitigation strategies, it is important to understand the response of regional climatic indicators and related biophysical forcings to large scale afforestation projects. The response of surface temperature (Ts) caused by afforestation activities in the Kubuqi Desert, Inner Mongolia, China is simulated by the weather research and forecasting (WRF) model and the temperature changes (ΔTs) are decomposed into contributions from changes in surface albedo, surface roughness, Bowen ratio and ground heat flux using the intrinsic biophysical mechanism (IBPM). The 30-m resolution land cover maps of the Kubuqi Desert corresponding to 2000 and 2010 conditions are analyzed and the major land use changes are found to be an increase in the area of grassland (6%) and shrubland (15%), but a decrease in the area of bare land (21%) owed to the aerial seeding afforestation activities organized by Elion Resources Group, Co. and local government agencies. Our WRF simulations show that during winter, the increased cover of vegetation mainly has a warming effect (0.38 K) in the daytime due to the changes in albedo (0.24 K) and Bowen ratio (0.15 K). In the nighttime, the vegetation has a slight warming effect (0.2 K) mainly caused by energy redistribution associated with roughness change (0.2 K) as a result of vegetation turbulence, which brought heat from aloft to the surface. Although both roughness change (-0.35 K) and Bowen ratio change (-0.35 K) have cooling effects during summer days, the warming effect caused by radiative forcing (0.93 K) dominates the ΔTs. During summer nights, the change in surface temperature is not significant. Our findings demonstrate that the large-scale afforestation project in the Kubuqi Desert during a decade alters the regional surface temperature and the analysis of biophysical forcings changes using WRF simulation provides useful information for developing climate change mitigation strategies in semi-arid and arid regions.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Natarajan, M.
1981-01-01
The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.
Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells.
Zhai, Yunfeng; Baturina, Olga; Ramaker, David E; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E
2016-09-20
The effects of bromomethane (BrCH 3 ), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm -2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br - , which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br - and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss.
Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells
Baturina, Olga; Ramaker, David E.; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E.
2016-01-01
The effects of bromomethane (BrCH3), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm−2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br−, which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br− and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss. PMID:27695133
Effects of turbulence on warm clouds and precipitation with various aerosol concentrations
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2015-02-01
This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.
Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam
2006-01-01
Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.
Contribution of dietary and loading changes to the effects of suspension on mouse femora
NASA Technical Reports Server (NTRS)
Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1994-01-01
The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.
Cellular Uptake of Aminoglycosides
ERIC Educational Resources Information Center
Steyger, Peter S.
2005-01-01
Aminoglycosides exert their cytotoxic effect at three different locations: at the cell surface, in the cytosol, or in the nucleus. At the cell surface, aminoglycoside binding can cause temporary hearing loss, motor paralysis at the neuromuscular junction, ion wasting in kidneys, or analgesia in mechano- and nocioreceptors (touch and pain sensory…
Plasma treatment of polymers for improved adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelber, J.A.
1988-01-01
A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less
How Tidal Forces Cause Ocean Tides in the Equilibrium Theory
ERIC Educational Resources Information Center
Ng, Chiu-king
2015-01-01
We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Plasma forces on microparticles on a surface: an experimental investigation
NASA Astrophysics Data System (ADS)
Heijmans, L. C. J.; Neelis, T. W. C.; van Leuken, D. P. J.; Bouchut, A.; Nijdam, S.
2017-07-01
A plasma causes a force on particles on a surface. We quantitatively measure this force by means of two different setups, which use different methods to balance the forces on these particles: one using vibrations, the other a centrifuge. From this, we deduce both the adhesion that sticks the particles to the surface, and how the application of a plasma affects the adhesion of the particles. We show that the plasma alters the force balance on 100 μ {{m}} diameter particles with a force in the order of micronewtons. We can conclude, from both additional experiments and comparison to theory, that the main plasma effect is not an electrostatic force on a charged particle; its magnitude is orders of magnitude larger than what would be expected from electrostatic theory. The plasma likely has an effect on the particle adhesion, possibly caused by evaporation of water.
Aspheric surface measurement using capacitive probes
NASA Astrophysics Data System (ADS)
Tao, Xin; Yuan, Daocheng; Li, Shaobo
2017-02-01
With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.
Effects of deterministic surface distortions on reflector antenna performance
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1985-01-01
Systematic distortions of reflector antenna surfaces can cause antenna radiation patterns to be undesirably different from those of perfectly smooth reflector surfaces. In this paper, a simulation model for systematic distortions is described which permits an efficient computation of the effects of distortions in the reflector pattern. The model uses a vector diffraction physical optics analysis for the determination of both the co-polar and cross-polar fields. An interpolation scheme is also presented for the description of reflector surfaces which are prescribed by discrete points. Representative numerical results are presented for reflectors with sinusoidally and thermally distorted surfaces. Finally, comparisons are made between the measured and calculated patterns of a slowly-varying distorted offset parabolic reflector.
Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping
2017-07-01
To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.
DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)
Nitrogen dry deposition causes pH modification of ecosystems, promotes
eutrophication in some water bodies, interferes with the nutrient geochemical
cycle on land, and has a deteriorating effect on buildings. In this study, a
water surface sampler (WSS) and knife-l...
Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts
NASA Technical Reports Server (NTRS)
Porter, W. A.; Parker, D. L.
1976-01-01
Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs.
The effect of short ground vegetation on terrestrial laser scans at a local scale
NASA Astrophysics Data System (ADS)
Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert
2014-09-01
Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.
Flash Rust & Waterjetting Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
DORSH, P.M..
Certain areas of the primary wall in the AY-101 tank annulus are being cleaned with a remotely operated waterjet. There is some concern on how it will effect the surface of the tank wall after cleaning and how to prevent rust and corrosion from developing on the wall in the future. This study addresses the cause and effects of flash rust, which typically develops on steel surfaces after the waterjetting process.
Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C
1994-03-01
Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.
2017-12-01
Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.
Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2017-01-01
This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213
Electrochromic projection and writing device
Branz, Howard M.; Benson, David K.
2002-01-01
A display and projection apparatus includes an electrochromic material and a photoconductive material deposited in tandem used in conjunction with a light filtering means for filtering light transmitted through the electrochromic material. When an electric field is applied across the electrochromic material and the photoconductive material, light that is incident onto the photoconductive material through the surface of the projection apparatus causes the photoconductive material to conduct current locally in proportion to the amount of light incident on the photoconductive material. The flow of current causes the underlying portions of the electrochromic material to switch from an opaque state to a clear or transmissive state, thereby allowing back-light to propagate through the electrochromic material to create a visible image on the surface of the projection apparatus. Reversal of the electric field causes the electrochromic material to revert back to its opaque state, thereby blocking the transmission of back-light and effectively erasing the image from the surface of the projection apparatus.
The determination of surface albedo from meteorological satellites
NASA Technical Reports Server (NTRS)
Johnson, W. T.
1977-01-01
A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.
Cooper, Rory A; Wolf, Erik; Fitzgerald, Shirley G; Kellerher, Annmarie; Ammer, William; Boninger, Michael L; Cooper, Rosemarie
2004-01-01
Obstacles such as bumps, curb descents, and uneven driving surfaces cause vibrations that affect the wheelchair, and in turn, the wheelchair user. Chronic exposure can cause low-back pain, disk degeneration, and other harmful effects. Little research has been conducted to assess the vibrations experienced by wheelchair users. The purpose of this study was to conduct an evaluation of the vibration exposure during electric-powered wheelchair driving and mechanical energy requirements for manual wheelchair propulsion over selected sidewalk surfaces. The goal was to determine the criteria for a wheelchair-pedestrian access route that does not require excessive propulsive work or expose wheelchair users to potentially harmful vibrations. Ten unimpaired individuals participated in this study. Six sidewalk surfaces were tested. Measured variables included power of the acceleration per octave, mechanical work to propel over surfaces, peak acceleration, and frequency at which peak acceleration occurs. For both the manual and electric-powered wheelchair, at 1 m/s, significant differences were found in peak accelerations between the seat and footrest (P < 0.0001) and between the sidewalk surfaces (P = 0.004). The greatest risk for injury caused by shock and vibration exposure occurs at frequencies near the natural frequency of seated humans (4-15 Hz). The values for work required to propel over the surfaces tested were not statistically significantly different. Besides appearance and construction, the only distinguishing characteristic was surface roughness caused by the joints. When treating the poured concrete sidewalk as the standard, surfaces 2, 3, 5, and 6 compared most favorably in terms of vibration exposure, whereas surface 4 produced mixed results. Surfaces 2, 3, 5, and 6 yielded results that were similar to the poured concrete sidewalk and could be considered acceptable for wheelchair users. In conclusion, surfaces other than the traditional poured concrete can be used for pedestrian access routes without adding vibration exposure or reducing propulsion efficiency.
The effect of contaminant on skid resistance of pavement surface
NASA Astrophysics Data System (ADS)
Lubis, A. S.; Muis, Z. A.; Gultom, E. M.
2018-03-01
Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.
Pfeiffer, Christian; Rehbock, Christoph; Hühn, Dominik; Carrillo-Carrion, Carolina; de Aberasturi, Dorleta Jimenez; Merk, Vivian; Barcikowski, Stephan; Parak, Wolfgang J.
2014-01-01
The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment. PMID:24759541
Observation and elimination of broken symmetry in L1{sub 0} FePt nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarterman, P.; Wang, Hao; Qiu, Jiao-Ming
2015-12-07
An unexplained surface anisotropy effect was observed and confirmed in the magnetization reversal process of both L1{sub 0} phase FePt nanoparticles with octahedral shape and (001) textured L1{sub 0} FePt thin films with island nanostructures. We suggest that the nature of the observed surface effect is caused by broken symmetry on the FePt surface, which results in weakened exchange coupling for surface atoms. Furthermore, we propose, and experimentally demonstrate, a method to repair the broken symmetry by capping the FePt islands with a Pt layer, which could prove invaluable in understanding fundamental limitations of magnetic nanostructures.
Biocompatibility and hemocompatibility of surface-modified NiTi alloys.
Armitage, David A; Parker, Terry L; Grant, David M
2003-07-01
Nickel titanium (NiTi) shape memory alloys have been investigated for several years with regard to biomedical applications. However, little is known about the influences of surface modifications on the biocompatibility of these alloys. The effects of a range of surface treatments were investigated. Cytotoxicity and cytocompatibility studies with both fibroblast and endothelial cells showed no differences in the biocompatibility of any of the NiTi surfaces. The cytotoxicity and cytocompatibility of all surfaces were favorable compared to the controls. The hemolysis caused by a range of NiTi surfaces was no different from that caused by polished 316L stainless steel or polished titanium surfaces. The spreading of platelets has been linked to the thrombogenicity of materials. Platelet studies here showed a significant increase in thrombogenicity on polished NiTi surfaces compared to 316L stainless steel and pure titanium surfaces. Heat treatment of NiTi was found to significantly reduce thrombogenicity, to the level of the control. The XPS results showed a significant decrease in the concentration of surface nickel with heat treatment and changes in the surface nickel itself from a metallic to an oxide state. This correlates with the observed reduction in thrombogenicity. Copyright 2003 Wiley Periodicals, Inc.
Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts
NASA Astrophysics Data System (ADS)
Haidiezul, AHM; Aiman, AF; Bakar, B.
2018-03-01
One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer
Holland, L.E.
1986-01-01
Short-term impacts of commercial barge traffic on fish eggs, larvae, young-of-the-year (age-0) fishes, and small adults in the main channel of the upper Mississippi River were examined. Barge passages caused significant changes in the distribution of eggs and larvae in the study area. The mean catch of ichthyoplankton was reduced in both surface and bottom waters for 90 min after passage of vessels downstream. The effects of upstream traffic on catch ranged from nil in surface or bottom samples to short-term increases in surface samples immediately after passage. No consistent effect on the catch of age-0 or small adult fishes in surface or bottom trawls was evident.
Can Aerosol Offset Urban Heat Island Effect?
NASA Astrophysics Data System (ADS)
Jin, M. S.; Shepherd, J. M.
2009-12-01
The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.
Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China
NASA Astrophysics Data System (ADS)
Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei
2018-05-01
As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline
model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online
model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC-BL interactions have on surface ozone by influencing the ozone contribution from physical process. This suggests that more attention should be paid to the mechanism of aerosol-BL interactions when controlling ozone pollution.
Zhang, Zhaoyan
2016-01-01
The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298
Field effect transistor with HfO2/Parylene-C bilayer hybrid gate insulator
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Kito, Ai; Inoue, Isao
2015-03-01
We have investigated the electric field control of the carrier density and the mobility at the surface of SrTiO3, a well known transition-metal oxide, in a field effect transistor (FET) geometry. We have used a Parylene-C (8 nm)/HfO2 (20 nm) double-layer gate insulator (GI), which can be a potential candidate for a solid state GI for the future Mott FETs. So far, only examples of the Mott FET used liquid electrolyte or ferroelectric oxides for the GI. However, possible electrochemical reaction at the interface causes damage to the surface of the Mott insulator. Thus, an alternative GI has been highly desired. We observed that even an ultra thin Parylene-C layer is effective for keeping the channel surface clean and free from oxygen vacancies. The 8 nm Parylene-C film has a relatively low resistance and consequentially its capacitance does not dominate the total capacitance of the Parylene-C/HfO2 GI. The breakdown gate voltage at 300 K is usually more than 10 V (~ 3.4 MV/cm). At gate voltage of 3 V the carrier density measured by the Hall effect is about 3 ×1013 cm-2, competent to cause the Mott transition. Moreover, the field effect mobility reaches in the range of 10 cm2/Vs indicating the Parylene-C passivated surface is actually very clean.
Microscopic effects of predator digestion on the surfaces of bones and teeth.
Rensberger, J M; Krentz, H B
1988-09-01
Concentrations of small fossil mammals are frequently encountered in Cenozoic deposits, but the causes for such accumulations have seldom been determined. In many cases the tooth, jaw, and limb fragments appear to be well-preserved under light microscopy, and it is difficult to differentiate damage due to predator digestion from breakage and abrasion due to physical agents. In order to find more specific evidence of predator digestion, we used a scanning electron microscope (SEM) to examine the surface microstructure of bones and teeth consumed by Bubo virginianus (great horned owl) and Canis latrans (coyote), which prey upon similar species. Effects of digestion were found on all the digested bones and teeth examined. The effects on bone include distinctive sets of pits and fissures, dissolution, and physical polishing. The pits and fissures are apparently caused by solution that commences in canals beneath the surface of the bone. The most conspicuous effects on teeth are island-like pillars of dentin surrounded by deep solution fissures. The effects of digestion by coyote and owl are fundamentally the same but differ in degree of development. Bone digested by the owl shows a greater degree of polishing and rounding of edges but has less extensive fissuring. Wide variation in the degree of surface damage occurs in bones digested by the coyote, even within a single fecal pellet.
Crater Formation Due to Lunar Plume Impingement
NASA Technical Reports Server (NTRS)
Marsell, Brandon
2011-01-01
Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.
Biocompatible, smooth, plasma-treated nickel-titanium surface--an adequate platform for cell growth.
Chrzanowski, W; Szade, J; Hart, A D; Knowles, J C; Dalby, M J
2012-02-01
High nickel content is believed to reduce the number of biomedical applications of nickel-titanium alloy due to the reported toxicity of nickel. The reduction in nickel release and minimized exposure of the cell to nickel can optimize the biocompatibility of the alloy and increase its use in the application where its shape memory effects and pseudoelasticity are particularly useful, e.g., spinal implants. Many treatments have been tried to improve the biocompatibility of Ni-Ti, and results suggest that a native, smooth surface could provide sufficient tolerance, biologically. We hypothesized that the native surface of nickel-titanium supports cell differentiation and insures good biocompatibility. Three types of surface modifications were investigated: thermal oxidation, alkali treatment, and plasma sputtering, and compared with smooth, ground surface. Thermal oxidation caused a drop in surface nickel content, while negligible chemistry changes were observed for plasma-modified samples when compared with control ground samples. In contrast, alkali treatment caused significant increase in surface nickel concentration and accelerated nickel release. Nickel release was also accelerated in thermally oxidized samples at 600 °C, while in other samples it remained at low level. Both thermal oxidation and alkali treatment increased the roughness of the surface, but mean roughness R(a) was significantly greater for the alkali-treated ones. Ground and plasma-modified samples had 'smooth' surfaces with R(a)=4 nm. Deformability tests showed that the adhesion of the surface layers on samples oxidized at 600 °C and alkali treatment samples was not sufficient; the layer delaminated upon deformation. It was observed that the cell cytoskeletons on the samples with a high nickel content or release were less developed, suggesting some negative effects of nickel on cell growth. These effects were observed primarily during initial cell contact with the surface. The most favorable cell responses were observed for ground and plasma-sputtered surfaces. These studies indicated that smooth, plasma-modified surfaces provide sufficient properties for cells to grow. © The Author(s), 2011.
NASA Astrophysics Data System (ADS)
Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.
2016-06-01
Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.
Laser irradiation effects on thin aluminum plates subjected to surface flow
NASA Astrophysics Data System (ADS)
Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin
2016-10-01
The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.
Scattered Atomic Oxygen Effects on Spacecraft Materials
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako
2003-01-01
Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.
Atomic Oxygen Effects on Spacecraft Materials
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako
2003-01-01
Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.
Effects of Cathode Surface Roughness on the Quality of Electron Beams
1986-09-12
ignored. Thus, magnetic field effects are ignored altogether in the present study and the beam tranverse velocities are caused only by the electrostatic...in experiments. This depends on the resolving power and on the competing effects such as nonlinear space charge and thermal effects. Based on the
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia
2018-06-01
Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Cloud characterization and clear-sky correction from Landsat-7
Cahalan, Robert F.; Oreopoulos, L.; Wen, G.; Marshak, S.; Tsay, S. -C.; DeFelice, Tom
2001-01-01
Landsat, with its wide swath and high resolution, fills an important mesoscale gap between atmospheric variations seen on a few kilometer scale by local surface instrumentation and the global view of coarser resolution satellites such as MODIS. In this important scale range, Landsat reveals radiative effects on the few hundred-meter scale of common photon mean-free-paths, typical of scattering in clouds at conservative (visible) wavelengths, and even shorter mean-free-paths of absorptive (near-infrared) wavelengths. Landsat also reveals shadowing effects caused by both cloud and vegetation that impact both cloudy and clear-sky radiances. As a result, Landsat has been useful in development of new cloud retrieval methods and new aerosol and surface retrievals that account for photon diffusion and shadowing effects. This paper discusses two new cloud retrieval methods: the nonlocal independent pixel approximation (NIPA) and the normalized difference nadir radiance method (NDNR). We illustrate the improvements in cloud property retrieval enabled by the new low gain settings of Landsat-7 and difficulties found at high gains. Then, we review the recently developed “path radiance” method of aerosol retrieval and clear-sky correction using data from the Department of Energy Atmospheric Radiation Measurement (ARM) site in Oklahoma. Nearby clouds change the solar radiation incident on the surface and atmosphere due to indirect illumination from cloud sides. As a result, if clouds are nearby, this extra side-illumination causes clear pixels to appear brighter, which can be mistaken for extra aerosol or higher surface albedo. Thus, cloud properties must be known in order to derive accurate aerosol and surface properties. A three-dimensional (3D) Monte Carlo (MC) radiative transfer simulation illustrates this point and suggests a method to subtract the cloud effect from aerosol and surface retrievals. The main conclusion is that cloud, aerosol, and surface retrievals are linked and must be treated as a combined system. Landsat provides the range of scales necessary to observe the 3D cloud radiative effects that influence joint surface-atmospheric retrievals.
Nuclear Weapon Yield Determination through Nano Indentation of Thermally Degraded Automobile Paint
2011-03-01
function of the layer. When less complicated paint systems were used, the primer filled the role of surfacer. As each layer of paint became more...majority of the property changes caused by the irradiation would be near the surface. Unfortunately, surface effects are complicated , difficult...are two values recorded in the bubble and whitening rows under the Highest Temperature not Observed because the experiment that yielded the
Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian
2018-05-01
Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of calcium oxalate on the photocatalytic degradation of Orange II on ZnO surface
NASA Astrophysics Data System (ADS)
Bassaid, S.; Ziane, B.; Badaoui, M.; Chaib, M.; Robert, D.
2013-06-01
The photocatalytic degradation of aqueous solution of Orange II, has been investigated in the presence of ZnO catalyst with calcium oxalate as sacrificial agent. This study demonstrated that the performance of ZnO photocatalyst can be improved by addition of calcium oxalate. Results show that adsorption is an important parameter controlling the degradation phenomena. Indeed, the added oxalate causes a drop in the pH medium, what causes a better adsorption of Orange II on the ZnO surface. The effect of calcium oxalate is to increase the concentration of superoxides (O{2/·-}) and hydroperoxides (HO2·) radicals, which are key intermediaries in the mechanism of photodegradation because of their powerful force of oxidation.
NASA Astrophysics Data System (ADS)
Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.
Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.
Strzemiecka, Beata; Kołodziejek, Joanna; Kasperkowiak, Małgorzata; Voelkel, Adam
2013-01-04
Inverse gas chromatography (IGC) at infinite dilution was applied to evaluate the surface properties of sorbents and the effect of different carrier gas humidity. They were stored in different environmental humidity - 29%, 40%, and 80%. The dispersive components of the surface free energy of the zeolites and perlite were determined by Schulz-Lavielle method, whereas their tendency to undergo specific interactions was estimated basing on the electron donor-acceptor approach presented by Flour and Papirer. Surface parameters were used to monitor the changes of the properties caused by the humidity of the storage environment as well as of RH of carrier gas. The increase of humidity of storage environment caused a decrease of sorbents surface activity and increase the ability to specific interaction. Copyright © 2012 Elsevier B.V. All rights reserved.
External insulation of electrified railway and energy saving analysis
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-04-01
Through the analysis of the formation process of insulator surface fouling and the cause of fouling of the insulator, the electrified railway was explored to utilize the coating material on the surface of the insulator to achieve the effect of flashover prevention. At the same time the purpose of energy conservation can be achieved.
Estimated nitrogen and phosphorus inputs to the Fish Creek watershed, Teton County, Wyoming, 2009–15
Eddy-Miller, Cheryl A.; Sando, Roy; MacDonald, Michael J.; Girard, Carlin E.
2016-12-15
Nutrients, such as nitrogen and phosphorus, are essential for plant and animal growth and nourishment, but the overabundance of bioavailable nitrogen and phosphorus in water can cause adverse health and ecological effects. It is generally accepted that increased primary production of surface-water bodies because of high inputs of nutrients is now the most important polluting effect in surface water in the developed world.
Modeling effect of cover condition and soil type on rotavirus transport in surface flow.
Bhattarai, Rabin; Davidson, Paul C; Kalita, Prasanta K; Kuhlenschmidt, Mark S
2017-08-01
Runoff from animal production facilities contains various microbial pathogens which pose a health hazard to both humans and animals. Rotavirus is a frequently detected pathogen in agricultural runoff and the leading cause of death among children around the world. Diarrheal infection caused by rotavirus causes more than two million hospitalizations and death of more than 500,000 children every year. Very little information is available on the environmental factors governing rotavirus transport in surface runoff. The objective of this study is to model rotavirus transport in overland flow and to compare the model results with experimental observations. A physically based model, which incorporates the transport of infective rotavirus particles in both liquid (suspension or free-floating) and solid phase (adsorbed to soil particles), has been used in this study. Comparison of the model results with experimental results showed that the model could reproduce the recovery kinetics satisfactorily but under-predicted the virus recovery in a few cases when multiple peaks were observed during experiments. Similarly, the calibrated model had a good agreement between observed and modeled total virus recovery. The model may prove to be a promising tool for developing effective management practices for controlling microbial pathogens in surface runoff.
NASA Astrophysics Data System (ADS)
Cao, Y.; Liang, S.
2017-12-01
Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.
Ramage, Andrew G; de Burgh Daly, M
1998-01-01
Experiments were carried out to determine the effects of the application of the selective 5-HT2 receptor agonist DOI intravenously (in the presence of the peripherally acting 5-HT2 receptor antagonist, BW501C67, 1 mg kg−1, i.v.) or to the `glycine sensitive area' of the ventral surface (30 μg each side) on the left ventricular inotropic (left ventricular dP/dt max) and vascularly isolated hindlimb responses in anaesthetized cats. For the ventral surface experiments, NMDA (10 μg each side) was applied to act as a positive control. In all experiments heart rate and mean arterial blood pressure were held constant to exclude any secondary effects caused by changes in these variables.DOI (n=6) i.v or on the ventral surface had no effect on left ventricular dP/dt max but caused a significant increase in hindlimb perfusion pressure of 40±9 and 50±14 mmHg, respectively. Respiration was unaffected. NMDA (n=6), applied to the ventral surface, caused significant increases in both left ventricular dP/dt max and hindlimb perfusion pressure of 1950±349 mmHg s−1 and 69±17 mmHg respectively, with no associated change in left ventricular end-diastolic pressure. The amplitude of respiratory movements increased.It is concluded that activation of 5-HT2 receptors at the level of the rostral ventrolateral medulla (RVLM) excites sympathetic premotor neurons and/or their antecedents controlling hindlimb vascular resistance but not those controlling the inotropic effects on the left ventricle. PMID:9863644
Park, Sang Rye; Lee, Hyun Wook; Hong, Jin Woo; Lee, Hae June; Kim, Ji Young; Choi, Byul Bo-Ra; Kim, Gyoo Cheon; Jeon, Young Chan
2014-08-08
Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, its bactericidal effect is negligible on the tooth surface. Therefore, we used 30-nm gNPs to enhance the killing effect of low-temperature plasma on human teeth. We tested the sterilizing effect of low-temperature plasma on Streptococcus mutans (S. mutans) strains. The survival rate was assessed by bacterial viability stains and colony-forming unit counts. Low-temperature plasma treatment alone was effective in killing S. mutans on slide glasses, as shown by the 5-log decrease in viability. However, plasma treatment of bacteria spotted onto tooth surface exhibited a 3-log reduction in viability. After gNPs were added to S. mutans, plasma treatment caused a 5-log reduction in viability, while gNPs alone did not show any bactericidal effect. The morphological changes in S. mutans caused by plasma treatment were examined by transmission electron microscopy, which showed that plasma treatment only perforated the cell walls, while the combination treatment with plasma and gold nanoparticles caused significant cell rupture, causing loss of intracellular components from many cells. This study demonstrates that low-temperature plasma treatment is effective in killing S. mutans and that its killing effect is further enhanced when used in combination with gNPs.
Effect of gaseous ammonia on nicotine sorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, A.M.; Singer, B.C.; Nazaroff, W.W.
2002-06-01
Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experimentsmore » was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.« less
Influence of virtual reality on postural stability during movements of quiet stance.
Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J
2009-02-27
Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi
2015-12-01
This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.
Field effect sensors for PCR applications
NASA Astrophysics Data System (ADS)
Taing, Meng-Houit; Sweatman, Denis R.
2004-03-01
The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors that share a common pseudo-reference electrode is used to cancel out this effect. This paper will look at a differential system for multi-arrayed biosensors fabricated on silicon.
Hirschfeld, Josefine; Akinoglu, Eser M; Wirtz, Dieter C; Hoerauf, Achim; Bekeredjian-Ding, Isabelle; Jepsen, Søren; Haddouti, El-Mustapha; Limmer, Andreas; Giersig, Michael
2017-05-01
Bacterial biofilms cause a considerable amount of prosthetic joint infections every year, resulting in morbidity and expensive revision surgery. To address this problem, surface modifications of implant materials such as carbon nanotube (CNT) coatings have been investigated in the past years. CNTs are biologically compatible and can be utilized as drug delivery systems. In this study, multi-walled carbon nanotube (MWCNT) coated TiAl6V4 titanium alloy discs were fabricated and impregnated with Rifampicin, and tested for their ability to prevent biofilm formation over a period of ten days. Agar plate-based assays were employed to assess the antimicrobial activity of these surfaces against Staphylococcus epidermidis. It was shown that vertically aligned MWCNTs were more stable against attrition on rough surfaces than on polished TiAl6V4 surfaces. Discs with coated surfaces caused a significant inhibition of biofilm formation for up to five days. Therefore, MWCNT-modified surfaces may be effective against pathogenic biofilm formation on endoprostheses. Copyright © 2017 Elsevier Inc. All rights reserved.
Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis.
Chang, Siyuan; Chen, Xiaodong; Jiang, Shuo; Chen, Jinchun; Shi, Lin
2017-07-01
Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1-100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm-surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in "killing" the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.
The calming effect of oil on water
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Cordray, Kimberly; Griffin, William; Behroozi, Feredoon
2007-05-01
The calming effect of oil on water has been known since ancient times. Benjamin Franklin was the first to investigate the effect, but the underlying mechanism for this striking phenomenon remains elusive. We used a miniature laser interferometer to measure the amplitude of surface waves to a resolution of ±5nm, making it possible to determine the effect of an oil monolayer on the attenuation of capillary waves and the surface dilational modulus of the monolayer. We present attenuation data on pure water, water covered by olive oil, water covered by a fatty acid, and a water-acetone mixture for comparison. From the attenuation data at frequencies between 251 and 551Hz, we conclude that the calming effect of oil on surface waves is principally due to the dissipation of wave energy caused by the Gibbs surface elasticity of the monolayer, with only a secondary contribution from the reduction in surface tension. Our data also indicate that the surface-dilational viscosity of the oil monolayer is negligible and plays an insignificant role in calming the waves.
NASA Astrophysics Data System (ADS)
Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.
2015-02-01
This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.
Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo
2018-04-01
To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.
[Examination of laser-treated tooth surfaces after exposure to acid].
Beeking, P O; Herrmann, C; Zuhrt, R
1990-12-01
In principle it is possible to homogenize the enamel surface by melting structural elements with the continuous wave CO2 laser. An experimental caries model was used for testing the acid resistance of the laser exposed tooth surfaces. Laser-treatment and measured exposure to acid produced zones of homogeneous smelting with microcracks and disintegration symptoms. Underneath the melted region the heat leakage obviously causes photo-thermic++ effects determined by increased resistance to acid.
Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes
NASA Astrophysics Data System (ADS)
Lyall, M. Eric
Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.
Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations
Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.
2015-10-08
Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. Lastly, we discuss the relevance of obtained results to recent measurements on Cd 3As 2.
Lopez-Romero, Julio Cesar; González-Ríos, Humberto; Borges, Anabela; Simões, Manuel
2015-01-01
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), may be used to surpass or reduce this problem. The objective of this study was to determine the antibacterial effect and mode of action of selected essential oils (EOs) components: carveol, carvone, citronellol, and citronellal, against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed for the selected EOs components. Moreover, physicochemical bacterial surface characterization, bacterial surface charge, membrane integrity, and K + leakage assays were carried out to investigate the antimicrobial mode of action of EOs components. Citronellol was the most effective molecule against both pathogens, followed by citronellal, carveol, and carvone. Changes in the hydrophobicity, surface charge, and membrane integrity with the subsequent K + leakage from E. coli and S. aureus were observed after exposure to EOs. This study demonstrates that the selected EOs have significant antimicrobial activity against the bacteria tested, acting on the cell surface and causing the disruption of the bacterial membrane. Moreover, these molecules are interesting alternatives to conventional antimicrobials for the control of microbial infections. PMID:26221178
Effects of hydraulic roughness on surface textures of gravel-bed rivers
John M. Buffington; David R. Montgomery
1999-01-01
Field studies of forest gravel-bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed-surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach-average median grain size (D50) to that predicted from the total bank-full boundary shear stress (...
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro
2013-01-01
The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.
Antibacterial effect of silver nanofilm modified stainless steel surface
NASA Astrophysics Data System (ADS)
Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.
2015-03-01
Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.
Interaction of nanoparticles with lipid layers
NASA Astrophysics Data System (ADS)
Park, Jonghyun; Lu, Wei
2009-08-01
Poly (amidoamine) dendrimer nanoparticles are used extensively in diverse biological and medical applications. Examples include gene and drug delivery, where nanoparticles disrupt cell membranes to allow the transport of material into cells. The size and surface chemistry of these particles have a strong effect on their interaction with membranes. This paper proposes a three-dimensional phase-field model to investigate how the interaction drives deformation and morphological evolution of the membrane. Attention is focused on the hole-formation process in the membrane. The simulations have demonstrated that a larger amine-terminated generation 7 dendrimer, which has positive charges, causes the formation of a hole in the membrane. The displaced membrane molecules enclose the particle and form a dendrimer-filled membrane vesicle. The effect is significantly reduced for a smaller dendrimer. An acetamide-terminated dendrimer, which has a neutral charge at the surface, does not cause hole formation. These results agree with experimental observations from atomic force microscopy. The study will provide insight into the design of appropriate nanoparticle surface properties for medical applications.
Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold
2011-03-01
Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.
Hurd-Brown, Tasia; Udoji, Felicia; Martin, Tamara; Whalen, Margaret M.
2012-01-01
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and triclosan (TCS) are organochlorine (OC) compounds that contaminate the environment, are found in human blood, and have been shown to decrease the tumor-cell killing (lytic) function of human natural killer (NK) cells. NK cells defend against tumor cells and virally infected cells. They bind to these targets, utilizing a variety of cell surface proteins. This study examined concentrations of DDT and TCS that decrease lytic function for alteration of NK binding to tumor targets. Levels of either compound that caused loss of binding function were then examined for effects on expression of cell-surface proteins needed for binding. NK cells exposed to 2.5 μM DDT for 24 h (which caused a greater than 55% loss of lytic function) showed a decrease in NK binding function of about 22%, and a decrease in CD16 cell-surface protein of 20%. NK cells exposed to 5 μM TCS for 24 h showed a decrease in ability to bind tumor cells of 37% and a decrease in expression of CD56 of about 34%. This same treatment caused a decrease in lytic function of greater than 87%. These results indicated that only a portion of the loss of NK lytic function seen with exposures to these compounds could be accounted for by loss of binding function. They also showed that loss of binding function is accompanied by a loss cell-surface proteins important in binding function. PMID:22729613
Harmon, Nicholas
2017-01-01
Abstract Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S‐to‐P and P‐to‐S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0–10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well‐resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0–60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations. PMID:29097907
Rychert, Catherine A; Harmon, Nicholas
2017-08-01
Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S-to-P and P-to-S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0-10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well-resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0-60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations.
Surface acoustic waves voltage controlled directional coupler
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.
1988-10-01
An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.
Environmental Assessment: Extend Parking Lot Building 807 at Grand Forks AFB, North Dakota
2003-07-17
Surface water quality could be degraded, both in the short-term, during actual construction, and over the long-term due to reduced storm water quality caused...over the long-term due to reduced storm water quality caused by the increase of paved area. The short-term effects come from possible erosion
Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.
2016-01-01
The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.
Self-buckled effect of cubic Cu3N film: Surface stoichiometry
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arun Kumar; Roy, Avishek; Das, Sadhan Chandra; Wulff, Harm; Hippler, Rainer; Majumdar, Abhijit
2018-05-01
We report the surface stoichiometry of cubic Cu3N films as function of nitrogen concentration (N/Cu). The film is deposited at 1Pa showing self-buckled (surface peels off) effect as it is exposed to ambient air at atmospheric pressure whereas at 5 Pa, the film shows no such effect. The spectroscopic (X-ray photoelectron spectroscopy (XPS)) analysis suggests that the presence of nitride layer is not the prime cause but the surface oxidation playing a major role for the self-buckling effect. Grazing incidence X-ray diffraction (GIXRD) confirms the formation of a crystalline Cu3N phase of the film. Atomic force microscopic (AFM) study reveals that the 1Pa film shows a lower roughness as compared to 5 Pa films and furthermore, Fast Fourier Transform (FFT) analysis shows a fourfold symmetric structure (both modes of pattern-orientation) in both the deposited films.
Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.
Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira
2018-03-24
Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films
NASA Astrophysics Data System (ADS)
Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia
2016-07-01
Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.
NASA Astrophysics Data System (ADS)
Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.
Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong
2014-02-01
The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.
Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.
Whitlock, B D; Smith, S W
2016-10-01
Antimicrobial surfaces are currently being studied as an aid to reduce transmission of pathogens leading to healthcare-associated infections (HAIs). Among the most harmful and costly pathogens that cause HAIs is meticillin-resistant Staphylococcus aureus (MRSA). Currently available and previously investigated antimicrobial surface technologies that are effective against MRSA (e.g. copper alloy surfaces) take 30min to several hours to achieve significant reduction. This article presents a new antimicrobial surface technology made of compressed sodium chloride that reduces MRSA 20-30 times faster than copper alloy surfaces. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Nonlinear surface elastic modes in crystals
NASA Astrophysics Data System (ADS)
Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.
1990-03-01
The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.
NASA Astrophysics Data System (ADS)
Xu, Yi; Li, Liuhe; Luo, Sida; Lu, Qiuyuan; Gu, Jiabin; Lei, Ning; Huo, Chunqin
2017-01-01
Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions
NASA Technical Reports Server (NTRS)
Favaregh, Noah M.
2010-01-01
The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.
Abnormal high surface heat flow caused by the Emeishan mantle plume
NASA Astrophysics Data System (ADS)
Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing
2016-04-01
It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.
Cowdery, Timothy K.
2005-01-01
Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.
NASA Astrophysics Data System (ADS)
Lu, Hailin; Zhang, Pengpeng; Ren, Shanshan; Guo, Junde; Li, Xing; Dong, Guangneng
2018-01-01
Contact mechanical seal is a normal technology applied on middle axis of liquid rocket turbo pump, and the kinetic and static seal rings contact low temperature rocket propellant. Copper-graphite (Cu/C) composite as an excellent self-lubrication material was widely used in aerospace industry, this study took Cu/C as ball and bearing steel as disk to investigate the tribology properties, and distilled water were used to simulate the lox tribology performances. This study prepared polytrifluorochloroethylene (PCTFE) micro-particles which were coated on the oxide surfaces of bearing steel disk at temperature of 150 °C. The tribology results showed that the oxide surfaces treated with micro PCTFE particles have lower fiction coefficient and lower wear rate than original disk in water, and the wear morphology revealed that the treated surfaces obviously had less Cu/C composite transfer film than original disk. Meanwhile SEM, EDS, XRD, XPS and light microscope etc revealed that PCTFE micro-particles could associate with the oxide surfaces and caused higher water contact angle, due to the properties of the fluorine-containing composite may cause the good lubrication effect in water. Thus this technology shows great potential to enhance tribological performances for aerospace industry on a large scale.
Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq; Beeler, George B.
2002-01-01
The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.
Horwell, Claire J; Fenoglio, Ivana; Vala Ragnarsdottir, K; Sparks, R Steve J; Fubini, Bice
2003-10-01
The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.
NASA Astrophysics Data System (ADS)
Liu, Huiqing; Xie, Lian
2009-06-01
The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-01-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.
Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R
2016-09-19
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
NASA Astrophysics Data System (ADS)
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-09-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
The effect of row structure on soil moisture retrieval accuracy from passive microwave data.
Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding
2014-01-01
Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.
NASA Technical Reports Server (NTRS)
Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.
1992-01-01
Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.
NASA Astrophysics Data System (ADS)
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.
Surface-Potential-Based Metal-Oxide-Silicon-Varactor Model for RF Applications
NASA Astrophysics Data System (ADS)
Miyake, Masataka; Sadachika, Norio; Navarro, Dondee; Mizukane, Yoshio; Matsumoto, Kenji; Ezaki, Tatsuya; Miura-Mattausch, Mitiko; Mattausch, Hans Juergen; Ohguro, Tatsuya; Iizuka, Takahiro; Taguchi, Masahiko; Kumashiro, Shigetaka; Miyamoto, Shunsuke
2007-04-01
We have developed a surface-potential-based metal-oxide-silicon (MOS)-varactor model valid for RF applications up to 200 GHz. The model enables the calculation of the MOS-varactor capacitance seamlessly from the depletion region to the accumulation region and explicitly considers the carrier-response delay causing a non-quasi-static (NQS) effect. It has been observed that capacitance reduction due to this non-quasi-static effect limits the MOS-varactor application to an RF regime.
Thermal Pollution Impact upon Aquatic Life.
ERIC Educational Resources Information Center
Shiomoto, Gail T.; Olson, Betty H.
1978-01-01
Conventional and nuclear power plants release waste heat to cooling water which then returns to receiving bodies of surface water. This thermal pollution causes a variety of effects in the aquatic ecosystem. More must be learned about these effects to ensure adequate regulation of thermal discharges. (RE)
Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi
2013-07-01
Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).
NASA Astrophysics Data System (ADS)
Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.
2013-10-01
Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.
Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions
NASA Astrophysics Data System (ADS)
Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena
2012-11-01
Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.
Effects of Small Oscillations on the Effective Area
NASA Astrophysics Data System (ADS)
Cotroneo, V.; Conconi, P.; Cusumano, G.; Pareschi, G.; Spiga, D.; Tagliaferri, G.
2009-05-01
We analyze the effective area of the Simbol-X mirrors as a function of the off-axis angle for small oscillations. A reduction is expected due to: 1) geometrical effects, because some of the photons miss the secondary mirror surface; 2) reflectivity effects, caused by the variation of the coating reflectivity with the incidence angle. The former are related to the length of the two mirror surfaces, and can be reduced by making the secondary mirror longer. The second ones are energy-dependent, and strongly related to the characteristics of the reflecting coating. These effects are analyzed by means of ray-tracing simulations in order to optimize the mirror and coating design, aiming to improve the effective area stability.
Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
Song, F; Koo, H; Ren, D
2015-08-01
Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.
On the effect of surface emissivity on temperature retrievals. [for meteorology
NASA Technical Reports Server (NTRS)
Kornfield, J.; Susskind, J.
1977-01-01
The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.
Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla
2012-08-24
Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Jialin; Ma, Tianbao; Zhang, Weiwei; Psofogiannakis, George; van Duin, Adri C. T.; Chen, Lei; Qian, Linmao; Hu, Yuanzhong; Lu, Xinchun
2016-12-01
In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO2 interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si-O-Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si-Si bonds in the stretched Si-Si-O-Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si-O-Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si-O-Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.
Using Radiative Signatures to Diagnose the Cause of Warming Associated with the Californian Drought
NASA Astrophysics Data System (ADS)
Wolf, S.; Yin, D.; Roderick, M. L.
2016-12-01
California recently experienced among the worst droughts of the last century, with unprecedented precipitation deficits and record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US, particularly in the Central Valley. It has been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that these drought conditions are a consequence of warmer temperatures from the enhanced greenhouse effect. Process studies suggest, however, that increased temperatures during droughts are mostly a consequence of reduced evaporative cooling resulting from the reduction in precipitation. Here we use surface radiation components from NASA's Clouds and Earth's Radiant Energy Systems (CERES), climatic data and direct flux tower measurements to investigate the cause of warming associated with the recent Californian Drought. Based on radiative signatures and surface energy balance we show that the warmer temperatures were not associated with an enhanced greenhouse effect by anthropogenic warming. The radiative signature showed decreased longwave downward radiation during the water years 2013-2014 compared to the decadal mean of 2001-2012. Instead, increased solar downward radiation in combination with reduced evaporative cooling from water deficits enhanced surface temperatures and sensible heat transfer to the atmosphere. We conclude that the drought was not directly associated with warming by increased longwave downward radiation, and that there is no simple relation between warmer surface temperatures and drought.
Charles W. McMillin
1969-01-01
Burst and tear strengths of handsheets made from 48 pulps disk-refined from chips of varying chemical composition decreased with incressing extractive content after the independent effects of fiber morphology were specified. This result was attributed to lessened bond strength caused by reduced surface tension forces and blocking of reactive sites on the fiber surfaces...
A Spacecraft Charging Capability for SXTF.
1979-01-17
surfaces can charge up. ’Iiiis differential charging of satellite surfaces can cause vacutum sparks , and dielectric breakdowns, and wi 11 effect the S...times required to reach steady charge state in the spacecraft internal dielectrics upon electron irradiation. In space , typical times (order of magni...WORDS (Continue on reverse side it necessary end Identify by block nunmber) Spacecraft charging Dielectric breakdown SGEMP Electron accelerators
Small Impacts on Mars: Atmospheric Effects
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Nemtchinov, Ivan V.
2002-01-01
The objectives of this investigation were to study the interaction of the atmosphere with the surface of Mars through the impact of small objects that would generate dust and set the dust into motion in the atmosphere. The approach involved numerical simulations of impacts and experiments under controlled conditions. Attachment: Atmospheric disturbances and radiation impulses caused by large-meteoroid impact in the surface of Mars.
Causes and solutions to surface facilities upsets following acid stimulation in the Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, D.K.; Stone, P.J.; Ali, S.A.
1997-02-01
This paper presents test data on the effects of acid and acid additives on emulsion and water treating in the Gulf of Mexico. This work also discusses the test methods developed to select acid additives and treating chemicals that will allow the producer to treat both oil and water more consistently and cost effectively while the acid flowback is in the system. It also presents system results that confirm the importance of the joint selection of acid and surface treating additives and show that significant cost savings can be gained by use of this process. Also discussed are the propermore » system application techniques for treating chemicals that can minimize surface treating problems caused by acid flowbacks. The results show that the proper selection and use of acid additives and surface treating products can eliminate or significantly reduce costly upsets in oil- and water-treating systems. Data on individual acid additives that impact water and oil treating are also presented. The results of this work are currently being used to solve produced-water- and oil-treating problems on offshore and onshore facilities in and around the Gulf of Mexico by reduction of production losses resulting from acid-flowback-related problems; reduction of the use and cost of tanks and barges used to segregate acid flowbacks; and development of effective methodology to select acid and surface treating additives that have resulted in lower overall treating costs.« less
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Surface texture measurement for additive manufacturing
NASA Astrophysics Data System (ADS)
Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.
2015-06-01
The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.
Perchlorates on Mars enhance the bacteriocidal effects of UV light.
Wadsworth, Jennifer; Cockell, Charles S
2017-07-06
Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.
Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces
NASA Astrophysics Data System (ADS)
Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Maurya, Sanjeev K.; Srinivasan, Vyas; Khare, Krishnacharya; Khandekar, Sameer
2017-06-01
We present the effect of 0.5 keV Ar+ beam irradiation on the wetting properties of metallic thin films. Observations reveal a transition from hydrophilic to hydrophobic nature at higher beam fluences which can be attributed to a reduction in net surface free energy. In this low-energy regime, ion beams do not induce significant surface roughness and chemical heterogeneity. However, they cause implantation of atomic impurities in the near surface region of the target and thus form a heterogeneous system at atomic length scales. Interestingly, the presence of implanted Ar atoms in the near surface region modifies the dispersive intermolecular interaction near the surface but induces no chemical modification due to their inert nature. On this basis, we have developed a theoretical model consistent with the experimental observations that reproduces the effective Hamaker constant with a reasonable accuracy.
Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice
NASA Astrophysics Data System (ADS)
Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki
2017-05-01
Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi
2018-04-23
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.
NASA Astrophysics Data System (ADS)
Wang, H. P.; Guan, Y. C.; Zheng, H. Y.
2017-12-01
Rough surface features induced by laser irradiation have been a challenging for the fabrication of micro/nano scale features. In this work, we propose hybrid ultrasonic vibration polishing method to improve surface quality of microcraters produced by femtosecond laser irradiation on cemented carbide. The laser caused rough surfaces are significantly smoothened after ultrasonic vibration polishing due to the strong collision effect of diamond particles on the surfaces. 3D morphology, SEM and AFM analysis has been conducted to characterize surface morphology and topography. Results indicate that the minimal surface roughness of Ra 7.60 nm has been achieved on the polished surfaces. The fabrication of microcraters with smooth surfaces is applicable to molding process for mass production of micro-optical components.
Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi
2018-01-01
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580
NASA Astrophysics Data System (ADS)
Imandi, Venkataramana; Jagannath, Mantha Sai Pavan; Chatterjee, Abhijit
2018-09-01
The effect of solvent on diffusion at metal surfaces is poorly understood despite its importance to morphological evolution during materials processing, corrosion and catalysis. In this article, we probe the metal-solvent interfacial structure, effective nature of interactions and dynamics when a solvent is in contact with a metal using a novel accelerated molecular dynamics simulation technique called temperature programmed molecular dynamics (TPMD). TPMD simulations reveal that surface diffusion of metal-on-metal can be made to vary over orders-of-magnitude by tuning the metal-solvent interaction. Ultimately, the solvent can have an indirect effect on diffusion. As the solvent tugs at the metal surface the separation between the adsorbed metal atom (adatom) and the surface layer can be modulated via metal-solvent interactions. The resulting adatom-surface separation can cause stronger/weaker binding of the adatom to the metal surface, which in turn results in the observed slower/enhanced diffusion in the presence of solvent. We believe this effect is ubiquitous in pure metal and metal alloys and in principle one could rationally select solvent to control the material structural evolution. Implications on materials synthesis are discussed in the context of formation of nanoporous materials.
Fungicide Sprays Can Injure the Stigmatic Surface During Receptivity in Almond Flowers
YI, WEIGUANG; LAW, S. EDWARD; WETZSTEIN, HAZEL Y.
2003-01-01
Fungicides can be detrimental to flower development, pollen function and fruit set in a number of crops. Almond is a self‐incompatible nut crop that has a fruit set of only approx. 30 % of the total number of flowers. Thus, interference of pollination and fertilization by fungicide sprays is of concern, and identification of chemicals having the least detrimental effects would be desirable. The objective of this study was to evaluate the effect of fungicide sprays on stigma morphology in almond using a laboratory spray apparatus that simulated field applications. Four fungicides (azoxystrobin, myclobutanil, iprodione and cyprodinil) were applied, and fresh, unfixed stigmatic surfaces were observed using a scanning electron microscope at 4 and 24 h after spraying. Increased exudate accumulation was induced by azoxystrobin at both time periods, and localized damage and collapse of stigmatic cells were observed after 24 h. Damaged stigmatic papillae exhibited wrinkling, surface distortion or collapse. Likewise, myclobutanil caused significant damage to and collapse of papillae; these were more extensive at later observations. Iprodione had no effect on exudate accumulation but caused marked and severe collapse of stigmatic papillae which was pronounced at 24 h. Cyprodinil promoted a copious increase in exudate secretion and caused the most severe collapse of stigmatic cells of all the fungicides evaluated. Damage was somewhat localized at 4 h but more global at 24 h. This study has verified that certain fungicide sprays have direct detrimental effects on stigma morphology and enhance exudate production in almond flowers. PMID:12547686
LDRD report: Smoke effects on electrical equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
TANAKA,TINA J.; BAYNES JR.,EDWARD E.; NOWLEN,STEVEN P.
2000-03-01
Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and weremore » monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.« less
2013-06-24
ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.
Magnetoplasmonic nanostructures based on nickel inverse opal slabs
NASA Astrophysics Data System (ADS)
Grunin, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Fedyanin, A. A.
2012-04-01
Nanostructured nickel surfaces representing periodically arranged spherical voids in a nickel film are obtained by electrochemical deposition through a self-assembled opaline template. Excitation of surface plasmon-polaritons (SPPs) on the surface of the sample is experimentally observed as the Wood's anomaly in the reflectance spectra. Transversal magneto-optical Kerr effect (TMOKE) spectra are measured at the different angles of incidence and azimuthal angles. The two- to-threefold enhancement of TMOKE caused by the excitation of mixed plasmons in two selected azimuthal configurations is observed.
Nonlinear-Free Surface Effects: Experiments and Theory
1983-09-01
easier approach is the semi-Lagrangian approach of John (1953) which has been applied to the jet region by Longuet-Higgins (1983) and also the entire...Chuang (1967) and Lewison and Maclean (1968) • all show that trapped air between the body and free surface is important because it causes a...deflection of the free surface before the body makes contact with it. Lewison and Maclean also show that 0 0 if the deadrise angle is small enough (ɚ or 3
Practical quality control tools for curves and surfaces
NASA Technical Reports Server (NTRS)
Small, Scott G.
1992-01-01
Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.
Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences
NASA Technical Reports Server (NTRS)
Craeye, C.; Sobieski, P. W.; Bliven, L. F.
1997-01-01
Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
The Effects of Core-Mantle Interactions on Earth Rotation, Surface Deformation, and Gravity Changes
NASA Astrophysics Data System (ADS)
Watkins, A.; Gross, R. S.; Fu, Y.
2017-12-01
The length-of-day (LOD) contains a 6-year signal, the cause of which is currently unknown. The signal remains after removing tidal and surface fluid effects, thus the cause is generally believed to be angular momentum exchange between the mantle and core. Previous work has established a theoretical relationship between pressure variations at the core-mantle boundary (CMB) and resulting deformation of the overlying mantle and crust. This study examines globally distributed GPS deformation data in search of this effect, and inverts the discovered global inter-annual component for the CMB pressure variations. The geostrophic assumption is then used to obtain fluid flow solutions at the edge of the core from the CMB pressure variations. Taylor's constraint is applied to obtain the flow deeper within the core, and the equivalent angular momentum and LOD changes are computed and compared to the known 6-year LOD signal. The amplitude of the modeled and measured LOD changes agree, but the degree of period and phase agreement is dependent upon the method of isolating the desired component in the GPS position data. Implications are discussed, and predictions are calculated for surface gravity field changes that would arise from the CMB pressure variations.
NASA Technical Reports Server (NTRS)
Ueda, Y.; Miyamoto, M.; Mikouchi, T.; Hiroi, T.
2003-01-01
Recent years, many researchers have been observing a lot of asteroid reflectance spectra in the UV, visible to NIR at wavelength region. Reflectance spectroscopy of asteroid at this range should bring us a lot of information about its surface materials. Pyroxene and olivine have characteristic absorption bands in this wavelength range. Low-Ca pyroxene has two absorption bands around 0.9 microns and 1.9 microns. The more Ca and Fe content, the longer both absorption band centers. On the other hand, reflectance spectrum of olivine has three complicated absorption bands around 1 m, and no absorption feature around 2 microns. In general, reflectance spectra of many asteroids that are considered to be silicate rich (i.e., S- and A type asteroids) show redder slope and more subdued absorption bands than those of terrestrial minerals and meteorites. These features are now believed to be caused by the space weathering effect, which is probably caused by micrometeorite bombardment and/or solar wind. This process causes nanophase reduced iron (npFe(sup 0)) particles near the surface of mineral grains, which leads the optical change. Therefore, the space weathering effect should be removed from asteroid reflectance spectra to compare with those of meteorite and terrestrial minerals. In this report, we will apply the expanded modified Gaussian model (MGM) to the reflectance spectra of S-type asteroids 7 Iris and 532 Herculina and compare them with those of meteorites.
Microgravity: Teacher's guide with activities for physical science
NASA Technical Reports Server (NTRS)
Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)
1995-01-01
This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.
Hatamleh, Muhanad M; Wu, Xiaohong; Alnazzawi, Ahmad; Watson, Jason; Watts, David
2018-04-01
Surface and mechanical properties of titanium alloys are integral for their use in restoring bone defects of skull and face regions. These properties are affected by the method of constructing and surface treatment of the titanium implant. This study aimed to investigate the effects of titanium finishing protocols on the surface morphology, hardness and biocompatibility of TiAl6V4. Square shaped TiAl6V4 specimens (ASTM F68) (10×10×0.5mm) were divided into seven groups of different surface treatments (n=10). The treatments included mechanical polishing, sandblasting with AL 2 O 3 (50μm), immersion in different acids, and/or electro-chemical anodization. Weight loss %; 3D micro-roughness; Knoop micro-hardness, and osteoblast cell attachment and proliferation (after 3 days) were determined for each specimen. Data was analysed using one way ANOVA and Dunett T3 post-hoc tests, and t-test (p<0.05). Weight loss % was in the range of 1.70-5.60 as mechanical polishing produced the highest weight loss, followed by sandblasting, and combined protocol of mechanical polishing and acid treatment (p<0.05). Micro-roughness values (μm) were in the range of 2.81-16.68. It was the highest for control specimens (p<0.05), and smoothest surfaces after combined mechanical polishing and acid treatment; or after electro-chemical treatment (p<0.05). Micro-hardness values (MPa) ranged 170.90-442.15 as sandblasting with/without acid treatment caused statically significantly the highest values (p<0.05) while control and mechanically polished specimens had the lowest values (p<0.05). All treatments produced equally biocompatible surfaces (p>0.05) after 1h or 3 days. Furthermore, osteoblast cell proliferation statistically significantly increased after 3days among each surface treatment (p<0.05). Different finishing treatments have variable effect on cranioplasty titanium surface loss, micro-roughness and micro-hardness but constant improved biocompatibility effect. Electro-chemical treatment caused less material loss and produced biocompatible smoothest surface of comparable hardness; hence it can be suitable for cranioplasty titanium surface finishing. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Hovsgol earthquake 5 December 2014, M W = 4.9: seismic and acoustic effects
NASA Astrophysics Data System (ADS)
Dobrynina, Anna A.; Sankov, Vladimir A.; Tcydypova, Larisa R.; German, Victor I.; Chechelnitsky, Vladimir V.; Ulzibat, Munkhuu
2018-03-01
A moderate shallow earthquake occurred on 5 December 2014 ( M W = 4.9) in the north of Lake Hovsgol (northern Mongolia). The infrasonic signal with duration 140 s was recorded for this earthquake by the "Tory" infrasound array (Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Science, Russia). Source parameters of the earthquake (seismic moment, geometrical sizes, displacement amplitudes in the focus) were determined using spectral analysis of direct body P and S waves. The spectral analysis of seismograms and amplitude variations of the surface waves allows to determine the effect of the propagation of the rupture in the earthquake focus, the azimuth of the rupture propagation direction and the velocity of displacement in the earthquake focus. The results of modelling of the surface displacements caused by the Hovsgol earthquake and high effective velocity of propagation of infrasound signal ( 625 m/s) indicate that its occurrence is not caused by the downward movement of the Earth's surface in the epicentral region but by the effect of the secondary source. The position of the secondary source of infrasound signal is defined on the northern slopes of the Khamar-Daban ridge according to the data on the azimuth and time of arrival of acoustic wave at the Tory station. The interaction of surface waves with the regional topography is proposed as the most probable mechanism of formation of the infrasound signal.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui
2012-01-01
A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.
Effect of surface fouling on the output of PV panels
NASA Astrophysics Data System (ADS)
Zhang, Zele
2018-04-01
Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.
NASA Astrophysics Data System (ADS)
He, Yulu; Hsiao, Jen-Hung; Yu, Jian-He; Tseng, Po-Hao; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi
2017-07-01
The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.
High-touch surfaces: microbial neighbours at hand.
Cobrado, L; Silva-Dias, A; Azevedo, M M; Rodrigues, A G
2017-11-01
Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.
Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.
1989-01-01
The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, andmore » increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.« less
Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min
2015-11-19
Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor internalization-induced changes in neuronal functions of the CNS.
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
How increasing CO2 leads to an increased negative greenhouse effect in Antarctica
NASA Astrophysics Data System (ADS)
Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas
2015-12-01
CO2 is the strongest anthropogenic forcing agent for climate change since preindustrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.
Flex Jr. Ponder
2007-01-01
Intensive harvesting, which removes a greater proportion of the forest biomass than conventional harvesting and the associated nutrients, may cause a decline in forest productivity. Planted seedling response to three biomass removal levels (1. removal of boles only=OM1, 2. all surface organic matter removed, forest floor not removed=OM2, and 3. removal of all surface...
Ying Ouyang; Theodor D. Leininger; Jeff Hatten
2013-01-01
Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering...
Perception and the art of depiction of cylindrical objects.
Deregowski, Jan B; McGeorge, Peter
2008-01-01
Many works of art, notably those in the Byzantine tradition, contain depictions of upright cylindrical objects such that the outline of their top surfaces is incompatible with that of their bottom surfaces. We endeavour to elucidate whether this is a consequence of a painterly usage or a perceptual effect and conclude, on the basis of empirical evidence, that the latter cause is more likely.
NASA Astrophysics Data System (ADS)
Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing
2018-03-01
It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.
NASA Astrophysics Data System (ADS)
Sekine, Katsuhisa
2017-12-01
In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.
Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-01-01
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained. PMID:24714391
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
2005-01-01
material and cause a bulging or “ trampoline effect.” When a thin specimen is used, the resultant bulge causes the coating to radially peel away outwards...most of the rusting occurring within the surface pores commonly found on 46100 steel. Surprisingly, despite the initial head start in flash rust
Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces
2017-01-01
A detailed understanding of the water–semiconductor interface is of major importance for elucidating the molecular interactions at the photocatalyst’s surface. Here, we studied the effect of vacancy defects on the adsorption of a water molecule on the (101̅0) and (112̅0) CdS surfaces, using spin-polarized density functional theory. We observed that the local spin polarization did not persist for most of the cationic vacancies on the surfaces, unlike in bulk, owing to surface reconstructions caused by displaced S atoms. This result suggests that cationic vacancies on these surfaces may not be the leading cause of the experimentally observed magnetism in CdS nanostructures. The surface vacancies are predominantly nonmagnetic except for one case, where a magnetic cationic vacancy is relatively stable due to constraints posed by the (101̅0) surface geometry. At this particular magnetic defect site, we found a very strong interaction with the H2O molecule leading to a case of chemisorption, where the local spin polarization vanishes concurrently. At the same defect site, adsorption of an O2 molecule was also simulated, and the results were found to be consistent with experimental electron paramagnetic resonance findings for powdered CdS. The anion vacancies on these surfaces were always found to be nonmagnetic and did not affect the water adsorption at these surfaces. PMID:28539988
Diffraction peak profiles of surface relaxed spherical nanocrystals
NASA Astrophysics Data System (ADS)
Perez-Demydenko, C.; Scardi, P.
2017-09-01
A model is proposed for surface relaxation of spherical nanocrystals. Besides reproducing the primary effect of changing the average unit cell parameter, the model accounts for the inhomogeneous atomic displacement caused by surface relaxation and its effect on the diffraction line profiles. Based on three parameters with clear physical meanings - extension of the sub-coordination effect, maximum radial displacement due to sub-coordination, and effective hydrostatic pressure - the model also considers elastic anisotropy and provides parametric expressions of the diffraction line profiles directly applicable in data analysis. The model was tested on spherical nanocrystals of several fcc metals, matching atomic positions with those provided by Molecular Dynamics (MD) simulations based on embedded atom potentials. Agreement was also verified between powder diffraction patterns generated by the Debye scattering equation, using atomic positions from MD and the proposed model.
Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan
2017-07-15
The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles
NASA Astrophysics Data System (ADS)
Zhang, J.; Shao, S.; Zhou, L.
2017-12-01
Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade leaves (photosynthetic active radiation, PAR) results in higher photosynthetic rates; Second, the radiation changes lead to changes in temperature and humidity, thereby changing the rates of the plant biophysical and chemical processes.
NASA Astrophysics Data System (ADS)
Zhang, Yanhui; Zhang, Haoran; Chen, Zhiying; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Deng, Rongxuan; Sui, Yan-ping; Yu, Guang-hui
2017-06-01
The morphology and distribution of the stripes caused by Cu surface reconstruction were measured, and the effects of stripes on graphene stability were studied by oxidation and corrosion. The results reveal that the stripes are determined by the crystal orientation of both the Cu surface and graphene, which can both change the stripe distribution, and the stripes can also be influenced by the graphene thickness. The stripes would not induce cracks or destruction to the graphene. The oxidation resistance of graphene can be improved by Cu surface reconstruction. The local nonuniform distortion of the stripe area may induce a bigger strain in the graphene which, in turn, may induce structure instability and result in local stability degeneration in the stripe area.
Borgatti, Francesco; Torelli, Piero; Brucale, Marco; Gentili, Denis; Panaccione, Giancarlo; Castan Guerrero, Celia; Schäfer, Bernhard; Ruben, Mario; Cavallini, Massimiliano
2018-03-27
We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.
Zhang, Zhen-yu; Zhang, Hui-sheng
2004-11-01
Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.
Iridescence of a shell of mollusk Haliotis Glabra
NASA Astrophysics Data System (ADS)
Tan, T. L.; Wong, D.; Lee, Paul
2004-10-01
Pearls and shells of some mollusks are attractive inorganic materials primarily owing to the beauty of their natural lustrous and iridescent surface. The iridescent colors can be explained by diffraction or interference or both, depending on the microstructure of the surface. Strong iridescent colors are very evident on the polished shell of the mollusk Haliotis Glabra, commonly known as abalone. It would be interesting to study how these colors are produced on the surface of the shell. By using a scanning electron microscope (SEM), the surface of the shell is found to have a fine-scale diffraction grating structure, and stacks of thin crystalline nacreous layers or platelets are found below the surface. These observations suggest that the iridescent colors are caused by both diffraction and interference. From measurements done on the diffraction patterns that were obtained using a He-Ne laser illuminating the shell, the groove width of the grating structure was derived. Good agreement was found between the derived groove density by diffraction and that measured directly using the SEM. The crystalline structure of the nacreous layers of the shell is studied using Fourier transform infrared spectroscopy and SEM observations. The infrared absorption peaks of 700, 713, 862 and 1083 cm-1 confirmed that the nacre of the shell is basically aragonite. The strong iridescent colors of the shell are the result of high groove density on the surface which causes diffraction. The uniform stacking of layers of nacre below the surface of the shell also causes interference effects that contribute to the iridescent colors.
Distinctive features of transport in topological insulators
NASA Astrophysics Data System (ADS)
Sacksteder, Vincent; Wu, Quansheng; Arnardottir, Kristin; Shelykh, Ivan; Kettemann, Stefan
2015-03-01
The surface states of a topological insulator in a fine-tuned magnetic field are ideal candidates for realizing a topological metal which is protected against disorder. Its signatures are (1) a conductance plateau in long wires and (2) a conductivity which always increases with sample size. We numerically show that the bulk substantially accelerates the conductance plateaus's decay in a magnetic field. It also reduces the effects of surface disorder and causes the magnitude of the surface conductivity and the magnetoconductivity to depend systematically on sample details such as doping and disorder strength. In addition, we predict a new signature of the topological state: at low temperatures the magnetoresistance will deviate strongly from the Hikami-Larkin-Nagaoka (HLN) formula. In this regime the magnetoresistance is dominated by scattering processes which wrap around the TI sample. The HLN formula's shoulder is replaced by a feature with a larger critical field magnetic strength that is caused by wrapping. Inside the wrapping regime the magnetoconductance will lose its dependence on temperature. This new topological signature should be visible in the same samples and temperatures where the Altshuler-Aronov-Spivak (AAS) effect has already been observed.
Ziegmann, Markus; Frimmel, Fritz H
2010-01-01
The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.
Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers
NASA Astrophysics Data System (ADS)
Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.
2014-06-01
Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.
Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers
NASA Astrophysics Data System (ADS)
Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.
2014-03-01
Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.
Candida innate immunity at the mucosa.
Richardson, Jonathan P; Moyes, David L; Ho, Jemima; Naglik, Julian R
2018-03-09
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces. Copyright © 2018. Published by Elsevier Ltd.
The Effect of Surface Irregularities on Wing Drag. 3; Roughness
NASA Technical Reports Server (NTRS)
Hood, Manley J.
1938-01-01
Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.
NASA Technical Reports Server (NTRS)
Kravitz, Ben; Robock, Alan; Shindell, Drew T.; Miller, Mark A.
2012-01-01
Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.
Computer vision syndrome: a review.
Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W
2005-01-01
As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.
RF atmospheric plasma jet surface treatment of paper
NASA Astrophysics Data System (ADS)
Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw
2016-09-01
A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.
Mechanical switching of ferroelectric domains beyond flexoelectricity
NASA Astrophysics Data System (ADS)
Chen, Weijin; Liu, Jianyi; Ma, Lele; Liu, Linjie; Jiang, G. L.; Zheng, Yue
2018-02-01
The resurgence of interest in flexoelectricity has prompted discussions on the feasibility of switching ferroelectric domains 'non-electrically'. In this work, we perform three-dimensional thermodynamic simulations in combination with ab initio calculations and effective Hamiltonian simulations to demonstrate the great effects of surface screening and surface bonding on ferroelectric domain switching triggered by local tip loading. A three-dimensional simulation scheme has been developed to capture the tip-induced domain switching behavior in ferroelectric thin films by adequately taking into account the surface screening effect and surface bonding effect of the ferroelectric film, as well as the finite elastic stiffness of the substrate and the electrode layers. The major findings are as follows. (i) Compared with flexoelectricity, surface effects can be overwhelming and lead to much more efficient mechanical switching caused by tip loading. (ii) The surface-assisted mechanical switching can be bi-directional without the necessity of reversing strain gradients. (iii) A mode transition from local to propagating domain switching occurs when the screening below a critical value. A ripple effect of domain switching appears with the formation of concentric loop domains. (iv) The ripple effect can lead to 'domain interference' and a deterministic writing of confined loop domain patterns by local excitations. Our study reveals the hidden switching mechanisms of ferroelectric domains and the possible roles of surface in mechanical switching. The ripple effect of domain switching, which is believed to be general in dipole systems, broadens our current knowledge of domain engineering.
NASA Astrophysics Data System (ADS)
Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.
2005-09-01
We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyazgin, Alexander, E-mail: lyazgin@list.ru; Shugurov, Artur, E-mail: shugurov@ispms.tsc.ru; Sergeev, Viktor, E-mail: retc@ispms.tsc.ru
The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.
Simulating regolith ejecta due to gas impingement
NASA Astrophysics Data System (ADS)
Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel
2016-10-01
Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.
Effect of grinding and fluoride-gel exposure on strength of ion-exchanged porcelain.
Anusavice, K J; Hojjatie, B; Chang, T C
1994-08-01
Strengthening of dental porcelain through a diffusion heat treatment at 450 degrees C of a potassium-enriched, ion-exchange surface coating has been demonstrated in several recent studies. However, little attention has been focused on the potential strength reduction of these materials when the treated surfaces are ground or etched under clinically simulated conditions. The objective of this study was to test the hypothesis that partial removal of the surface layers of ion-exchanged porcelains by grinding or exposure to acidulated fluoride gel will significantly reduce their flexure strength. Nine groups of body porcelain disks were ion-exchanged at 450 degrees C for 30 min. One of these groups was subjected to ion exchange and no further surface treatment. Eight specimen groups were subjected to the following procedures after ion exchange: grinding to depths of 50 microns, 100 microns, 150 microns, 200 microns, and 250 microns, and exposure to acidulated fluoride for 30 min, 60 min, and 300 min. A tenth group (FC) was fired at 960 degrees C and fast-cooled in air, but the disks were not subjected to the ion-exchange treatment. Surface stress was calculated from measured values of cracks induced in the treated surfaces. Fluoride exposure for up to 60 min resulted in a significant decrease in surface compression (P < or = 0.05), although this treatment had no effect on strength. Grinding to a depth of from 100 microns to 250 microns caused a significant decrease in strength, while removal of a 50-microns layer caused no significant change (P > 0.05).
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...
2018-02-28
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less
NASA Astrophysics Data System (ADS)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.
2018-04-01
Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser
NASA Astrophysics Data System (ADS)
Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan
2018-03-01
Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.
Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants
NASA Astrophysics Data System (ADS)
AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali
2018-05-01
Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia
2012-08-24
Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like proteinmore » (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.« less
Respiratory Health Effects of Volcanic Ash - a new Approach
NASA Astrophysics Data System (ADS)
Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.
2003-12-01
Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable particles. At the onset of new eruptions, the database will be used to aid the rapid assessment of health hazard from volcanic ash.
Uncovering glacier dynamics beneath a debris mantle
NASA Astrophysics Data System (ADS)
Lefeuvre, P.-M.; Ng, F. S. L.
2012-04-01
Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.
Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M
2011-11-01
The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the observed dependence of the extent of silicate oligomerization on I.
Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry
NASA Technical Reports Server (NTRS)
Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)
2002-01-01
While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).
Time variable eddy mixing in the global Sea Surface Salinity maxima
NASA Astrophysics Data System (ADS)
Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.
2016-12-01
Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.
The Effect of Surface Induced Flows on Bubble and Particle Aggregation
NASA Technical Reports Server (NTRS)
Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.
1999-01-01
Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.
2015-12-01
This study develops a novel methodology to resolve the cause of typhoon-induced precipitation using principle component analysis (PCA) and to develop a long lead-time precipitation prediction model. The discovered spatial and temporal features of rainfall are utilized to develop a state-of-the-art descriptive statistical model which can be used to predict long lead-time precipitation during typhoons. The time series of 12-hour precipitation from different types of invasive moving track of typhoons are respectively precede the signal analytical process to qualify the causes of rainfall and to quantify affected degree of each induced cause. The causes include: (1) interaction between typhoon rain band and terrain; (2) co-movement effect induced by typhoon wind field with monsoon; (3) pressure gradient; (4) wind velocity; (5) temperature environment; (6) characteristic distance between typhoon center and surface target station; (7) distance between grade 7 storm radius and surface target station; and (8) relative humidity. The results obtained from PCA can detect the hidden pattern of the eight causes in space and time and can understand the future trends and changes of precipitation. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse terrain formation and height. Results show that: (1) for the typhoon moving toward the direction of 245° to 330°, Causes (1), (2) and (6) are the primary ones to generate rainfall; and (2) for the direction of 330° to 380°, Causes (1), (4) and (6) are the primary ones. Besides, the developed precipitation prediction model by using PCA with the distributed moving track approach (PCA-DMT) is 32% more accurate by that of PCA without distributed moving track approach, and the former model can effectively achieve long lead-time precipitation prediction with an average predicted error of 13% within average 48 hours of forecasted lead-time.
The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints
NASA Technical Reports Server (NTRS)
Hood, Manley J.
1938-01-01
Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.
Jaggessar, Alka; Shahali, Hesam; Mathew, Asha; Yarlagadda, Prasad K D V
2017-10-02
Orthopaedic and dental implants have become a staple of the medical industry and with an ageing population and growing culture for active lifestyles, this trend is forecast to continue. In accordance with the increased demand for implants, failure rates, particularly those caused by bacterial infection, need to be reduced. The past two decades have led to developments in antibiotics and antibacterial coatings to reduce revision surgery and death rates caused by infection. The limited effectiveness of these approaches has spurred research into nano-textured surfaces, designed to mimic the bactericidal properties of some animal, plant and insect species, and their topographical features. This review discusses the surface structures of cicada, dragonfly and butterfly wings, shark skin, gecko feet, taro and lotus leaves, emphasising the relationship between nano-structures and high surface contact angles on self-cleaning and bactericidal properties. Comparison of these surfaces shows large variations in structure dimension and configuration, indicating that there is no one particular surface structure that exhibits bactericidal behaviour against all types of microorganisms. Recent bio-mimicking fabrication methods are explored, finding hydrothermal synthesis to be the most commonly used technique, due to its environmentally friendly nature and relative simplicity compared to other methods. In addition, current proposed bactericidal mechanisms between bacteria cells and nano-textured surfaces are presented and discussed. These models could be improved by including additional parameters such as biological cell membrane properties, adhesion forces, bacteria dynamics and nano-structure mechanical properties. This paper lastly reviews the mechanical stability and cytotoxicity of micro and nano-structures and materials. While the future of nano-biomaterials is promising, long-term effects of micro and nano-structures in the body must be established before nano-textures can be used on orthopaedic implant surfaces as way of inhibiting bacterial adhesion.
Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.
Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei
2013-12-01
This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.
Modeling elastic anisotropy in strained heteroepitaxy
NASA Astrophysics Data System (ADS)
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.
1996-01-01
Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.
Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel.
Selvam, Karthikeyan; Mandal, Priya; Grewal, Harpreet Singh; Arora, Harpreet Singh
2018-06-01
Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
The Role of Medications in Causing Dry Eye
Fraunfelder, Frederick T.; Sciubba, James J.; Mathers, William D.
2012-01-01
The purpose of this paper is to review the possible role of polypharmacy in causing dry eye disease (DED), reflecting the complex interactions and complications associated with the use of multiple systemic and topical ocular medications. The pharmacological, physiological, anatomical, and histological mechanisms causing dry mouth differ little from those causing dry eye. Oral polypharmacy is the most common cause of dry mouth, but has not been investigated as a cause of dry eye. Topical ocular polypharmacy has been shown to cause DED. Information on drugs that likely cause or aggravate DED and the controversial role of preservatives in topical ocular medications are examined. Systemic or topical ocular medications and preservatives used in topical ocular drugs may cause dry eye through the drug's therapeutic action, ocular surface effects, or preservatives, and the effects probably are additive. Long-term use of topical ocular medications, especially those containing preservatives such as BAK, may play an important role in DED and the role of polypharmacy needs further study. We review possible ways to decrease the risk of medication-related dry eye. PMID:23050121
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo
2015-03-01
Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue
2016-11-01
The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.
Cooling our communities: A guidebook on tree planting and light-colored surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, H.; Davis, S.; Huang, J.
1992-01-01
This book is a practical guide that presents the current state of knowledge on potential environmental and economic benefits of strategic landscaping and altering surface colors in our communities. The guidebook, reviews the causes, magnitude, and impacts of increased urban warming, then focuses on actions by citizens and communities that can be undertaken to improve the quality of our homes and towns in cost-effective ways.
Annual Cycle of Cloud Forcing of Surface Radiation Budget
NASA Technical Reports Server (NTRS)
Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.
2006-01-01
The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.
Embryotoxic effects of crude oil in mallard ducks and chicks
Hoffman, David J.
1978-01-01
Recent studies in this laboratory have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 10% of the egg surface reduce hatching considerably in different avian species. Applications of paraffin compounds that coat equal areas of the egg surface do not reduce hatching suggesting that toxicity is due to causes other than asphyxia. In the present study, 1–10 μl of South Louisiana crude oil, an API reference oil, were applied to the surface of fertile mallard (Anas platyrhynchos) and chicken (Gallus gallus) eggs. Early embryolethality was greater in mallard embryos than in chick embryos, but later embryolethality that coincided with the time of rapid outgrowth of the chorioallantoic membrane was more prevalent in chick embryos. The overall incidence of embryolethality was similar in both species. Retardation of growth as reflected by embryonic body weight, crown-rump length, beak length, and general appearance was more pronounced in chick than mallard embryos. Teratogenic defects were more frequent in chick embryos, and incomplete or abnormal ossification of the skull was the most common. External application of equivalent amounts of a mixture of paraffin compounds present in crude oil had virtually no embryotoxic effects in either species, suggesting that other components including aromatic hydrocarbons and organometallics may cause the embryotoxicity.
Guerra, C; Schwartz, C J
2012-02-01
Friction blisters occur when shear loading causes the separation of dermal layers. Consequences range from minor pain to life-threatening infection. Past research in blister formation has focused on in vivo experiments, which complicate a mechanics-based study of the phenomenon. A Synthetic Skin Simulant Platform (3SP) approach was developed to investigate the effect of textile fabrics (t-shirt knit and denim cottons) and surface treatments (dry and wet lubricants) on blister formation. 3SP samples consist of bonded elastomeric layers that are surrogates for various dermal layers. These layers display frictional and mechanical properties similar to their anatomical analogues. Blistering was assessed by the measurement of deboned area between layers. Denim caused greater blistering than did the t-shirt knit cotton, and both lubricants significantly reduced blister area and surface damage. A triglyceride-based lubricant had a more pronounced effect on blister reduction than corn starch. The triglyceride lubricant used with t-shirt knit cotton resulted in no blisters being formed. The performance of the 3SP approach follows previously reported frictional behavior of skin in vivo. The results of textile and surface treatment performance suggest that future 3SP iterations can be focused on specific anatomical sites based on application type. © 2011 John Wiley & Sons A/S.
Interacting effects of ozone and CO2 on growth and physiological processes in northern forest trees
J. G. Isebrands; D. F. Karnosky
1996-01-01
Globally, surface-level concentrations of both CO2 and ozone (O3) are increasing annually. Because many studies have shown beneficial effects of increasing CO2, predictions have been made that elevated levels of CO2 would compensate for growth decreases caused by O3...
Development of novel antibiofouling materials from natural phenol compounds
NASA Astrophysics Data System (ADS)
Chelikani, Rahul; Kim, Dong Shik
2007-03-01
Biofilms consist of a gelatinous matrix formed on a solid surface by microbial organisms.Biofilm is caused due to the adhesion of microbes to solid surfaces with production of extracellular polymers and the process of the biofilm formation is reffered to as biofouling.Biofouling causes serious problems in chemical, medical and pharmaceutical industries.Although there have been some antibiofouling materials developed over the years,no plausible results have been found yet.Natural polyphenolic compounds like flavanoids,cathechins have strong antioxidant and antimicrobial properties.Recently,apocynin,a phenol derivative,was polymerized to form oligomers,which can regulate intracellular pathways in cancer cells preventing cell proliferation and migration.These natural phenolic compounds have never been applied to solid surfaces to prevent biofouling.It is thought that probably because of the difficulty to crosslink them to form a stable coating.In this study,some novel polyphenolic compounds synthesized using enzymatic technique from cashew nut shell liquid,a cheap and renewable byproduct of the cashew industry are used as coating materials to prevent biofouling.The interaction of these materials with microbes preventing fouling on surfaces and the chemico-physical properties of the materials causing the antibiofouling effect will be discussed.It is critical to understand the antibiofouling mechanism of these materials for better design and application in various fields.
Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.
1990-01-01
Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
NASA Technical Reports Server (NTRS)
Warren, S. G.; Wiscombe, W. J.
1985-01-01
It is shown that smoke from fires started by nuclear explosions could continue to cause significant disruption even after it has fallen from the atmosphere, by lowering the reflectivity of snow and sea ice surfaces, with possible effects on climate in northern latitudes caused by enhanced absorption of sunlight. The reduced reflectivity could persist for several years on Arctic sea ice and on the ablation area of the Greenland ice sheet.
Guide for Visual Inspection of Structural Concrete Building Components.
1991-07-01
Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
NASA Astrophysics Data System (ADS)
Wang, X.; Hood, N.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2017-12-01
Electrostatic dust mobilization on the surfaces of airless bodies due to direct exposure to solar wind and solar ultraviolet (UV) radiation has been suggested from a number of unusual planetary observations and supported by our recent laboratory experiments. This electrostatic process may have a significant contribution in the evolution of these surfaces in addition to other surface processes, e.g., thermal fragmentation. The critical questions are how this process changes the surface physical characteristics and how efficient this process can be. We report new laboratory experiments that record dust activities as function of the incoming fluxes of photons or energetic electrons over a long exposure time under Earth gravity. Dust is observed to hop and move on the surface, causing the significant change in surface morphology and becoming smoother over time. Our results indicate that the dynamics of dust mobilization may be complicated by temporal charging effect as dust moves. Various sizes and types of dust are examined, showing large effects on dust mobilization. These laboratory data will help us to predict the electrostatic surface processes and estimate their timescales in space conditions.
Duplex stainless steel fracture surface analysis using X-ray fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajanna, K.; Pathiraj, B.; Kolster, B.H.
1997-02-01
The fatigue fracture surface of a duplex stainless steel was analyzed using x-ray fractography. A lower than average austenite content was observed at the fracture surface due to the transformation of austenite into deformation-induced martensite. The influence of fatigue cycling on the transformation was confined to a depth of about 30 {micro}m below the fracture surface. X-ray analyses of both the ferrite-martensite and the austenite phases indicated residual stresses ({sigma}{sub r}) increasing with depth from the fracture surface and reaching a maximum some tens of microns below the fracture surface. The lower {sigma}{sub r} observed at the fracture surface hasmore » been attributed to the stress relaxation effects caused by the new fracture surfaces created in the crack growth process. The observed decrease in full width at half maximum (FWHM) in the ferrite-martensite phase was presumed to be due to the dynamic recovery effect that was likely to occur within the material close to the crack tip as a consequence of fatigue cycling.« less
Remote sensing of ocean currents using ERTS imagery
NASA Technical Reports Server (NTRS)
Maul, G. A.
1973-01-01
Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.
Microwave and physical properties of sea ice in the winter marginal ice zone
NASA Technical Reports Server (NTRS)
Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.
1991-01-01
Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun
2014-01-01
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing
2016-08-01
In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.
Pulmonary toxicity of manufactured nanoparticles
NASA Astrophysics Data System (ADS)
Peebles, Brian Christopher
Manufactured nanomaterials have become ubiquitous in science, industry, and medicine. Although electron microscopy and surface probe techniques have improved understanding of the physicochemical properties of nanomaterials, much less is known about what makes nanomaterials toxic. Particulate matter less than 2.5 mum in effective aerodynamic diameter is easily inhaled and taken deep into the lungs. The toxicity of inhaled particulate matter is related to its size and surface chemistry; for instance, the smaller the size of particles, the greater their specific surface area. The chemistry and toxicity of insoluble particles depends on their surface area, since chemical reactions may happen with the environment on the surface. Oxidation and reduction may occur on the surfaces of particles after they are produced. For instance, it is known that carbonaceous particles from vehicle exhaust and industrial emission may interact with reactive species like ozone in their ambient environment, altering the surface chemistry of the particles. Reaction with species in the environment may cause changes in the chemical functionality of the surface and change the toxic properties of the particles when they are inhaled. Furthermore, metals on the surface of inhalable particles can contribute to their toxicity. Much attention has been given to the presence of iron on the surfaces of inhalable particles in the environment. After particle inhalation, particles are endocytosed by alveolar macrophages in the immune response to foreign matter. They are exposed to hydrogen peroxide in the oxidative burst, which can cause the iron-mediated production of hydroxyl free radicals via the Fenton reaction, causing oxidative stress that leads to inflammation and cell death. The toxicity of particles that contain metals depends on the redox activity and bioavailability of the metals, the causes of thich have not yet been adequately explored. In this thesis, electron paramagnetic spectroscopy showed that carbon blacks contain free radical and other surface functionality as manufactured, and that exposure to ozone further functionalizes the surface. Samples of carbon black that have been exposed to ozone react with their ambient environment so that acid anhydride and cyclic ether functionality hydrolyze to form carboxylic acid functionality, observable by transmission Fourier transform infrared spectroscopy. Persistent free radical content, but not free radical content from ozone exposure, may mediate the toxic response of cells to carbon blacks in vitro. Results showed that macrophages exposed to carbon blacks that had been exposed to ozone were not less viable in vitro than macrophages exposed to carbon blacks as manufactured because the free radical content that resulted from ozone exposure was not persistent in an aqueous medium. Furthermore, concurrent exposure to ozonated carbon blacks and ozone was less lethal to macrophages than carbon black exposure alone, possibly because the ozone oxidatively preconditioned the macrophages to resist oxidative stress. The nature of redox-active iron species on the surface of iron-loaded synthetic carbon particles was explored. The particles had been shown in previous studies to provoke an inflammatory response involving the release of tumor necrosis factor (TNF)-alpha, which was correlated with their production of hydroxyl free radicals via the Fenton reaction in the presence of hydrogen peroxide. It was found that the source of bioavailable Fenton-active iron on the surfaces of the particles was fluoride species that were byproducts of a step in the synthetic process. Fluoride ligated the iron already on the surface, forming a complex that resisted precipitation in the biological medium and thus made the iron more bioavailable. The results of this thesis aim to clarify whether the size and surface chemistry of nanoparticles should be considered more closely as criteria with which to develop better environmental controls for occupational health. Permissible exposure limits to micrometer-size particulate matter in the workplace are in place, but current limits do not specifically address the role of surface chemistry and the potentially higher toxicity of nanomaterials. The size, agglomeration characteristics, and surface chemistry of carbon nanoparticles are being studied and manipulated to explore the causes of their toxicity. Inflammatory response and cytotoxicity following exposure of human and murine macrophages to nanoparticles are being employed as indicators of the ability of particles to cause respiratory harm. The results are expected to lead to more effective standards for nanomaterial exposure in the workplace and pathways to toxicity mitigation.
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
Sabri, Firouzeh; Marchetta, Jeffrey G.; Sinden-Redding, M.; Habenicht, James J.; Chung, Thien Phung; Melton, Charles N.; Hatch, Chris J.; Lirette, Robert L.
2012-01-01
Background Dust accumulation on surfaces of critical instruments has been a major concern during lunar and Mars missions. Operation of instruments such as solar panels, chromatic calibration targets, as well as Extra Vehicular Activity (EVA) suits has been severely compromised in the past as a result of dust accumulation and adhesion. Wind storms with wind speeds of up to 70 mph have not been effective in removing significant amounts of the deposited dust. This is indeed an indication of the strength of the adhesion force(s) involved between the dust particles and the surface(s) that they have adhered to. Complications associated with dust accumulation are more severe for non-conducting surfaces and have been the focus of this work. Methodology Argon plasma treatment was investigated as a mechanism for lowering dust accumulation on non-conducting polymeric surfaces. Polymers chosen for this study include a popular variety of silicones routinely used for space and terrestrial applications namely RTV 655, RTV 615, and Sylgard 184. Surface properties including wettability, surface potential, and surface charge density were compared before and after plasma treatment and under different storage conditions. Effect of ultraviolet radiation on RTV 655 was also investigated and compared with the effect of Ar plasma treatment. Conclusion/Significance Gravimetric measurements proved Ar plasma treatment to be an effective method for eliminating dust adhesion to all three polymers after short periods of exposure. No physical damage was detected on any of the polymer surfaces after Ar plasma treatment. The surface potential of all three polymers remained zero up to three months post plasma exposure. Ultraviolet radiation however was not effective in reducing surface and caused damage and significant discoloration to RTV 655. Therefore, Ar plasma treatment can be an effective and non-destructive method for treating insulating polymeric surfaces in order to eliminate dust adhesion and accumulation. PMID:23077496
How Actuated Particles Effectively Capture Biomolecular Targets
2017-01-01
Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952
Effect of Mg doping on the Structure and Reflectivity of Alumina surfaces
NASA Astrophysics Data System (ADS)
Pennycook, Timothy; Idrobo, Juan C.; Varga, Kalman; Pantelides, Sokrates T.
2008-03-01
Mg is used in the fabrication of Al alloys to increase the strength of the material. In typical applications, a layer of alumina is present on the surface. The high diffusivity and chemical reactivity of Mg means that Mg can migrate from the bulk alloy to the alumina film and the surface, where it can affect the structural and optical properties of the material. The doping of Al alloys with Mg is known to cause ``darkening'' and affect the coloration of the material. We will report results of first principles density functional theory calculations that explore the segregation modes of Mg in the near-surface region of alumina and the corresponding effect on optical properties, i.e., reflectivity. This work is supported in part by NSF grant DMR-0513048 and ALCOA Inc.
Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions
NASA Astrophysics Data System (ADS)
Hess, M.; Koepke, P.
2008-02-01
A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. Thus the method allows calculating the impact of UV radiation on biological systems, such as for instance the human skin or eye, in any natural or artificial environment. The method, a combination of radiation models, is explained and the correctness of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection at snow by more than 10%. In contrast in a street canyon the irradiance on a horizontal surface is reduced down to 30% in shadow and to about 75% for a position in the sun.
Problems affecting the fidelity of pressure measuring instruments for planetary probes
NASA Technical Reports Server (NTRS)
Hudson, J. B.
1972-01-01
Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.
NASA Astrophysics Data System (ADS)
Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.
2015-08-01
When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.
Further evaluation of the constrained least squares electromagnetic compensation method
NASA Technical Reports Server (NTRS)
Smith, William T.
1991-01-01
Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights.
Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan
2008-05-01
Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).
Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants
NASA Astrophysics Data System (ADS)
Hou, Bao-feng; Wang, Ye-fei; Huang, Yong
2015-03-01
Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?
Greaver, Tara L.; Sullivan, Timothy J.; Herrick, Jeffrey D.; Barber, Mary C.; Baron, Jill S.; Cosby, Bernard J.; Deerhake, Marion E.; Dennis, Robin L.; Dubois, Jean-Jacque B.; Goodale, Christine L.; Herlihy, Alan T.; Lawrence, Gregory B.; Liu, Lingli; Lynch, Jason A.; Novak, Kristopher J.
2012-01-01
Four decades after the passage of the US Clean Air Act, air-quality standards are set to protect ecosystems from damage caused by gas-phase nitrogen (N) and sulfur (S) compounds, but not from the deposition of these air pollutants to land and water. Here, we synthesize recent scientific literature on the ecological effects of N and S air pollution in the US. Deposition of N and S is the main driver of ecosystem acidification and contributes to nutrient enrichment in many natural systems. Although surface-water acidification has decreased in the US since 1990, it remains a problem in many regions. Perturbations to ecosystems caused by the nutrient effects of N deposition continue to emerge, although gas-phase concentrations are generally not high enough to cause phytotoxicity. In all, there is overwhelming evidence of a broad range of damaging effects to ecosystems in the US under current air quality conditions.
Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I
2016-04-01
Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.
NASA Astrophysics Data System (ADS)
Matsumoto, Toru; Tsuchiyama, Akira; Uesugi, Kentaro; Nakano, Tsukasa; Uesugi, Masayuki; Matsuno, Junya; Nagano, Takashi; Shimada, Akira; Takeuchi, Akihisa; Suzuki, Yoshio; Nakamura, Tomoki; Nakamura, Michihiko; Gucsik, Arnold; Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi
2016-08-01
The morphological properties of 26 regolith particles from asteroid Itokawa were observed using scanning electron microscopes in combination with an investigation of their three-dimensional shapes obtained through X-ray microtomography. Surface observations of a cross section of the LL5 chondrite, and of crystals of olivine and pyroxene, were also performed for comparison. Some Itokawa particles have surfaces corresponding to walls of microdruses in the LL chondrite, where concentric polygonal steps develop and euhedral or subhedral grains exist. These formed through vapor growth owing to thermal annealing, which might have been caused by thermal metamorphism or shock-induced heating in Itokawa's parent body. Most of the Itokawa particles have more or less fractured surfaces, indicating that they were formed by disaggregation, probably caused by impacts. Itokawa particles with angular and rounded edges observed in computed tomography images are associated with surfaces exhibiting clear and faint structures, respectively. These surfaces can be interpreted by invoking different degrees of abrasion after regolith formation. A possible mechanism for the abrasion process is grain migration caused by impact-driven seismic waves. Space-weathered rims with blisters are distributed heterogeneously across the Itokawa regolith particles. This heterogeneous distribution can be explained by particle motion and fracturing, combined with solar-wind irradiation of the particle surfaces. The regolith activity-including grain motion, fracturing, and abrasion-might effectively act as refreshing process of Itokawa particles against space-weathered rim formation. The space-weathering processes affecting Itokawa would have developed simultaneously with space-weathered rim formation and regolith particle refreshment.
Surface effects on the red giant branch
NASA Astrophysics Data System (ADS)
Ball, W. H.; Themeßl, N.; Hekker, S.
2018-05-01
Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.
Effects of hydrogen treatment on ohmic contacts to p-type GaN films
NASA Astrophysics Data System (ADS)
Huang, Bohr-Ran; Chou, Chia-Hui; Ke, Wen-Cheng; Chou, Yi-Lun; Tsai, Chia-Lung; Wu, Meng-chyi
2011-06-01
This study investigated the effects of hydrogen (H 2) treatment on metal contacts to Mg-doped p-GaN films by Hall-effect measurement, current-voltage ( I- V) analyzer and X-ray photoemission spectra (XPS). The interfacial oxide layer on the p-GaN surface was found to be the main reason for causing the nonlinear I- V behavior of the untreated p-GaN films. The increased nitrogen vacancy (V N) density due to increased GaN decomposition rate at high-temperature hydrogen treatment is believed to form high density surface states on the surface of p-GaN films. Compared to untreated p-GaN films, the surface Fermi level determined by the Ga 2p core-level peak on 1000 °C H 2-treated p-GaN films lies about ˜2.1 eV closer to the conduction band edge (i.e., the surface inverted to n-type behavior). The reduction in barrier height due to the high surface state density pinned the surface Fermi level close to the conduction band edge, and allowed the electrons to easily flow over the barrier from the metal into the p-GaN films. Thus, a good ohmic contact was achieved on the p-GaN films by the surface inversion method.
Interaction of high voltage surfaces with the space plasma. [solar arrays
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Tests were conducted using plasma densities of approximately 10 to the 5th power - 10 to the 6th power/cu cm. Insulating materials tested were polyimide (Dapton), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several reduction of collected current was obtained with both surface scribing and a 2 x 2 cm conducting mesh. It appears possible that the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations, that the generation of vapor is a major factor in the enhancement of collected current.
The determination of Volta-potentials at the metal/solution interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, V.M.
1985-08-01
This paper discusses the effect of polar dielectric solvents on the Voltapotential component caused by the change in surface potential in sp-metals which are in contact with a solution at the point of zero charge. It is shown that this change depends relatively little on the metal and solvent. A change in potential drop occurs in the metal as a result of phase contact. This change is known to be responsible for the decrease in surface energy of the metal such as is revealed in the effect of enhanced metallic ductility during mechanical working in polar media. The conjugate effectmore » of improved wettability is seen during cathodic polarization of electrodes when the metal's surface potential also should decrease.« less
The influence of canopy shading of snow on effective albedo in forested environments
NASA Astrophysics Data System (ADS)
Webster, C.; Jonas, T.
2017-12-01
The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.
NASA Astrophysics Data System (ADS)
Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen
2014-12-01
The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.
NASA Technical Reports Server (NTRS)
Miller, Sharon K. R.
2014-01-01
Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.
Effects of coal mine subsidence in the Sheridan, Wyoming, area
Dunrud, C. Richard; Osterwald, Frank W.
1980-01-01
Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km north of Sheridan, Wyo., (2) a ground and aerial reconnaissance study of a 5-km^2 coal mining area 8-10 km west of Sheridan, and (31 some environmental consequences and problems caused by coal mining.
Uncertainty in multispectral lidar signals caused by incidence angle effects
Nevalainen, Olli; Hakala, Teemu; Kaasalainen, Mikko
2018-01-01
Multispectral terrestrial laser scanning (TLS) is an emerging technology. Several manufacturers already offer commercial dual or three wavelength airborne laser scanners, while multispectral TLS is still carried out mainly with research instruments. Many of these research efforts have focused on the study of vegetation. The aim of this paper is to study the uncertainty of the measurement of spectral indices of vegetation with multispectral lidar. Using two spectral indices as examples, we find that the uncertainty is due to systematic errors caused by the wavelength dependency of laser incidence angle effects. This finding is empirical, and the error cannot be removed by modelling or instrument modification. The discovery and study of these effects has been enabled by hyperspectral and multispectral TLS, and it has become a subject of active research within the past few years. We summarize the most recent studies on multi-wavelength incidence angle effects and present new results on the effect of specular reflection from the leaf surface, and the surface structure, which have been suggested to play a key role. We also discuss the consequences to the measurement of spectral indices with multispectral TLS, and a possible correction scheme using a synthetic laser footprint. PMID:29503718
NASA Astrophysics Data System (ADS)
He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.
2015-12-01
Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
NASA Astrophysics Data System (ADS)
Hsu, Jin-Chen; Lin, Fan-Shun
2018-07-01
In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.
Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio
2017-10-01
Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.
The effect of processing on the surface physical stability of amorphous solid dispersions.
Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng
2014-11-01
The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of an aggressive medium on discontinuous deformation of aluminum-magnesium alloy AlMg6
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zolotov, A. E.; Kochegarov, S. S.
2017-01-01
It is experimentally shown that the molecular (chemical) process of surface etching of deformed aluminum-magnesium alloy AlMg6 causes the development of a macroscopic plastic strain step with an amplitude of a few percent. Using numerical simulation of the polycrystalline solid etching process, it is shown that the corrosion front morphology varies during etching from Euclid (flat) to fractal (rough). The results obtained show the key role of the surface state on the development of macroscopic mechanical instability of a material exhibiting the Portevin-Le Chatelier effect.
USDA Forest Service national protocols for sampling air pollution-sensitive waters
T. J. Sullivan
2012-01-01
The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...
Influence of ground surface characteristics on the mean radiant temperature in urban areas.
Lindberg, Fredrik; Onomura, Shiho; Grimmond, C S B
2016-09-01
The effect of variations in land cover on mean radiant temperature (T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of ground surface materials on T mrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction in T mrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused T mrt to be underestimated. The implications of using high temporal resolution (e.g. 15 minutes) meteorological forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.
Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding
NASA Astrophysics Data System (ADS)
Mingxuan, Yang; Zhou, Yang; Bojin, Qi
2015-08-01
Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.
Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong
2016-01-01
Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.
NASA Technical Reports Server (NTRS)
Dong, D,; Gross, R.S.; Dickey, J.
1996-01-01
Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesic, B.; Oliver, D.J.
1990-12-31
The present investigation is a part of our studies on the electro chemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously (1,2) we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1. 5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation,more » which is found detrimental to bioleaching. In the present work we have focussed on the effect of the presence of vitamins on the redox chemistry of iron. Our examination of the effect of the presence of thiamine hydrochloride in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface has revealed that thiamine hydrochloride does not undergo chemical interaction with ferrous or ferric iron. However, it may adsorb onto the pyrite surface causing polarization of the pyrite electrode.« less
Effect of thiamine hydrochloride on the redox reactions of iron at pyrite surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesic, B.; Oliver, D.J.
1990-01-01
The present investigation is a part of our studies on the electro chemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously (1,2) we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe[sup 2+]/Fe[sup 3+] couple at the pyrite surface. Results obtained suggest that beyond 1. 5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation,more » which is found detrimental to bioleaching. In the present work we have focussed on the effect of the presence of vitamins on the redox chemistry of iron. Our examination of the effect of the presence of thiamine hydrochloride in the redox behavior of Fe[sup 2+]/Fe[sup 3+] at the pyrite surface has revealed that thiamine hydrochloride does not undergo chemical interaction with ferrous or ferric iron. However, it may adsorb onto the pyrite surface causing polarization of the pyrite electrode.« less
Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogard, David G.; Thole, Karen A.
2014-09-30
The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hencemore » a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on the endwall, and in some cases a slight increase in overall cooling effectiveness on the vane model. This was attributed to the insulating effects of the depositions which compensated for the negative factors.« less
Durable anti-fogging effect and adhesion improvement on polymer surfaces
NASA Astrophysics Data System (ADS)
Moser, E. M.; Gilliéron, D.; Henrion, G.
2010-01-01
The hydrophobic properties of polymeric surfaces may cause fogging in transparent packaging and poor adhesion to printing colours and coatings. Novel plasma processes for durable functionalization of polypropylene and polyethylene terephthalate substrates were developed and analysed using optical emission spectroscopy. A worm-like nano pattern was created on the polypropylene surface prior to the deposition of thin polar plasma polymerised layers. For both substrates, highly polar surfaces exhibiting a surface tension of up to 69 mN/m and a water contact angle of about 10° were produced - providing the anti-fogging effect. The deposition of thin plasma polymerised layers protects the increased surface areas and enables to tailoring the surface energy of the substrate in a wide range. Wetting characteristics were determined by dynamic contact angle measurements. Investigations of the chemical composition of several layers using X-ray photoelectron spectroscopy and FT-infrared spectroscopy were correlated with functional testing. The surface topography was investigated using atomic force microscopy. The weldability and peeling-off characteristics of the plasma treated polymer films could be adjusted by varying the process parameters. Global and specific migration analyses were undertaken in order to ensure the manufacturing of plasma treated polymer surfaces for direct food contact purposes.
Nielsen, C K; Subbiahdoss, G; Zeng, G; Salmi, Z; Kjems, J; Mygind, T; Snabe, T; Meyer, R L
2018-01-01
Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces. Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol. The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface. Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces. © 2017 The Society for Applied Microbiology.
Investigation of surface water behavior during glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Turnock, Stephen R.
1990-01-01
A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.
NASA Astrophysics Data System (ADS)
Al-Hamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal
2012-10-01
Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O2 gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kVRMS) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O2 plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.
Analyzing the causes of urban waterlogging and sponge city technology in China
NASA Astrophysics Data System (ADS)
Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian
2017-03-01
With the rapid development of social economy in China, increased urban population, and rapid urbanization cause serious problems, for example, a heavy rain in the city inevitably leads to waterlogging, which poses a great threat to the livelihood and property security. Disaster due to urban flood is a key problem that restricts the development of urban ecology in China. The reason is the sharp increase of impermeable surface ratio in urban areas, leading to a decrease in rainfall infiltration and increase in surface runoff. To effectively solve the urban waterlogging, China proposed the construction of sponge city. This paper analyzes and summarizes the reasons for the formation of urban waterlogging, and introduces the concept of the sponge city technology to prevent waterlogging.
Gravity-induced stresses in finite slopes
Savage, W.Z.
1994-01-01
An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.
Detection of reflector surface from near field phase measurements
NASA Technical Reports Server (NTRS)
Ida, Nathan
1991-01-01
The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.
NASA Astrophysics Data System (ADS)
Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.
2012-07-01
Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...
2014-05-01
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
Colour changes by laser irradiation of reddish building limestones
NASA Astrophysics Data System (ADS)
Grossi, C. M.; Benavente, D.
2016-10-01
We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.
[Effect of thermal cycling on surface microstructure of different light-curing composite resins].
Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong
2015-04-01
To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, P<0.001) and Z250 (from 0.169±0.035 µm to 0.144±0.033 µm, P<0.001), whose Ra approximated that of P60 (0.121±0.028 µm) with smoothly polished surface. SEM revealed scratches and shallower pits on the surface of all the 5 resins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.
Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.
2017-10-01
California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo
2009-03-01
Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.
Surface morphology of erbium silicide
NASA Technical Reports Server (NTRS)
Lau, S. S.; Pai, C. S.; Wu, C. S.; Kuech, T. F.; Liu, B. X.
1982-01-01
The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Shengyong; Chen, Xinhua; Xie, Haiyang
Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatinmore » for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.« less
NASA Astrophysics Data System (ADS)
Nishikawa, Hiroaki; Hasegawa, Tsukasa; Miyake, Akiko; Tashiro, Yuichiro; Komasa, Satoshi; Hashimoto, Yoshiya
2018-01-01
The dependence of the surface morphology and chemical composition of hydroxyapatite (HA) thin films on the laser fluence and ambient gas pressure during their formation by pulsed laser deposition was studied as the first step to investigate the effect of physical and chemical interactions between the ablated chemical species and ambient gas molecules on HA film formation. It was found that a higher fluence could decrease the number of large protrusions on the surface of HA thin films. However, too high a fluence caused a phosphorus deficiency from the stoichiometric value, particularly in the case of lower ambient gas pressure. It was also found that for lower fluences, the atomic species among the ablated chemical species were easily scattered by collision processes with ambient gas molecules. This was caused by the lower velocity of the ablated chemical species and higher ambient gas pressure, which induced a shorter mean free path. In addition, these collision processes played an important role in the adsorption, migration, and re-evaporation of the ablated chemical species on the substrate via chemical reactions.
Passive monitoring for near surface void detection using traffic as a seismic source
NASA Astrophysics Data System (ADS)
Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.
2009-12-01
In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.
Plasma Sterilization: New Epoch in Medical Textiles
NASA Astrophysics Data System (ADS)
Senthilkumar, P.; Arun, N.; Vigneswaran, C.
2015-04-01
Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.
Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing
2010-04-01
Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.
Erosion and abrasion on dental structures undergoing at-home bleaching
Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves
2011-01-01
This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914
Effect of shape and size of lung and chest wall on stresses in the lung
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Matthews, F. L.; West, J. B.
1975-01-01
To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).
Biocompatilibity-related surface characteristics of oxidized NiTi.
Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo
2007-09-15
In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible. Copyright 2007 Wiley Periodicals, Inc.
Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.
Khachikian, Crist S; Harmon, Thomas C
2002-01-01
This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.
The Effects of Some Surface Irregularities on Wing Drag
NASA Technical Reports Server (NTRS)
Drag, Manley
1939-01-01
The N.A.C.A. has conducted tests to provide more complete data than were previously available for estimating the effects of common surface irregularities on wing drag. The irregularities investigated included: brazier-head and countersunk rivets, spot welds, several types of sheet-metal joints, and surface roughness. Tests were also conducted to determine the over-all effect of manufacturing irregularities incidental to riveted aluminum alloy and to spot-welded stainless-steel construction. The tests were made in the 8-foot high speed wind tunnel at Reynolds Numbers up to 18,000,000. The results show that any of the surface irregularities investigated may increase wing drag enough to have important adverse effects on high-speed performance and economy. A method of estimating increases in wing drag caused by brazier-head rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints on a wing of 20-foot chord flying at 250 miles per hour are shown.
Balqis, Ummu; Hambal, Muhammad; Rinidar; Athaillah, Farida; Ismail; Azhar; Vanda, Henni; Darmawi
2017-07-01
The objective of this research was to in vitro evaluate the cuticular surface damage of Ascaridia galli adult worms treated with ethanolic extract of betel nuts Veitchia merrillii . Phytochemical screening was done using FeCl 3 , Wagner and Dragendorff reagents, NaOH, MgHCl, and Liebermann-Burchard reaction test. Amount of 16 worms were segregated into four groups with three replicates. Four worms of each group submerged into phosphate buffered saline, 25 mg/ml, and 75 mg/ml crude ethanolic extract of V. merrillii , and 15 mg/ml albendazole. The effect of these extract was observed 40 h after incubation as soon as worms death. The worms were sectioned transversally and were explored for any cuticular histopathological changes in their body surface under microscope. We found that the ethanolic extract of V. merrillii betel nuts contains tannins, alkaloids, flavonoids, triterpenoids, and saponins. The ethanolic extract of betel nuts V. merrillii induces surface alterations caused cuticular damage of A. galli adult worms. We concluded that ethanolic extract of betel nuts V. merrillii possess anthelmintic activity caused cuticular damage of A. galli adult worms.
Chemical etching of nitinol stents.
Katona, Bálint; Bognár, Eszter; Berta, Balázs; Nagy, Péter; Hirschberg, Kristóf
2013-01-01
At present the main cause of death originates from cardiovascular diseases. Primarily the most frequent cause is vessel closing thus resulting in tissue damage. The stent can help to avoid this. It expands the narrowed vessel section and allows free blood flow. The good surface quality of stents is important. It also must have adequate mechanical characteristics or else it can be damaged which can easily lead to the fracture of the implant. Thus, we have to consider the importance of the surface treatment of these implants. In our experiments the appropriate design was cut from a 1.041 mm inner diameter and 0.100 mm wall thickness nitinol tube by using Nd:YAG laser device. Then, the stent was subjected to chemical etching. By doing so, the burr created during the laser cutting process can be removed and the surface quality refined. In our research, we changed the time of chemical etching and monitored the effects of this parameter. The differently etched stents were subjected to microscopic analysis, mass measurement and in vivo environment tests. The etching times that gave suitable surface and mechanical features were identified.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
Al Kheraif, Abdulaziz Abdullah
2013-05-01
Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does not eliminate all disease-causing microorganisms and microwave sterilization leads to a rougher impression surface.
Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
Mishra, Himanshu; Schrader, Alex M; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N
2016-03-01
Wetting of rough surfaces involves time-dependent effects, such as surface deformations, nonuniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 1 × 10(-7) to 1 × 10(-4) m. Under saturated vapor conditions, we found that in the short term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θ(SDT) = 140 ± 3°, was accurately described by the Cassie-Baxter model (predicted θ(SDT) = 137°); however, after 90 min, θ(SDT) fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θ(SDT) to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θ(SDT) to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and development of long- and short-lived coatings.
Ultrasonic vibration double scratch morphology and scratching force of BK7 glass
NASA Astrophysics Data System (ADS)
Wang, Chu; Wang, Hongxiang; Liu, Junliang; Gao, Shi
2018-03-01
In this paper, the damage morphology and scratching force of BK7 glass components were analyzed by ultrasonic vibration double-scratch test. The results showed that there was surface damage caused by plastic flow and brittle fracture during the scratching process, and the scratching depth and the distance between the two scratches had effect on the propagation and overlapping of lateral cracks. When the scratching depth was small, the jagged scratch was produced on the surface, and accompanied by a small amount of tiny pieces of debris off. With the increase in scratching depth, the lateral cracks caused by scratching overlapped and expended to form a mesh sheet, and then fell off from the surface. When the scratching distance was small, the interaction of the cracks caused large slice of material to fall off. With the increase in scratching distance, the area between the two scratches was not easy to occur the overlapping of the lateral cracks. In addition, with the increase of the scratching depth, the scratching force showed a gradual increase trend, and the scratching force of the second scratch would increase with the scratching distance.
Zong, Shenghua; Hoffmann, Carolin; Mané-Damas, Marina; Molenaar, Peter; Losen, Mario; Martinez-Martinez, Pilar
2017-01-01
Autoimmune diseases are affecting around 7.6–9.4% of the general population. A number of central nervous system disorders, including encephalitis and severe psychiatric disorders, have been demonstrated to associate with specific neuronal surface autoantibodies (NSAbs). It has become clear that specific autoantibodies targeting neuronal surface antigens and ion channels could cause severe mental disturbances. A number of studies have focused or are currently investigating the presence of autoantibodies in specific mental conditions such as schizophrenia and bipolar disorders. However, less is known about other conditions such as depression. Depression is a psychiatric disorder with complex etiology and pathogenesis. The diagnosis criteria of depression are largely based on symptoms but not on the origin of the disease. The question which arises is whether in a subgroup of patients with depression, the symptoms might be caused by autoantibodies targeting membrane-associated antigens. Here, we describe how autoantibodies targeting membrane proteins and ion channels cause pathological effects. We discuss the physiology of these antigens and their role in relation to depression. Finally, we summarize a number of studies detecting NSAbs with a special focus on cohorts that include depression diagnosis and/or show depressive symptoms. PMID:28725222
Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones
NASA Astrophysics Data System (ADS)
Irimpan, Kiran Joy; Menezes, Viren
2018-03-01
Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.
NASA Astrophysics Data System (ADS)
Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.
2018-04-01
The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.
Mechanical Effects of the Surface Ectoderm on Optic Vesicle Morphogenesis in the Chick Embryo
Hosseini, Hadi S.; Beebe, David C.; Taber, Larry A.
2014-01-01
Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are suffcient to cause the global changes in OV shape observed during the earliest stages of eye development. PMID:25458577
Simulation of an active underwater imaging through a wavy sea surface
NASA Astrophysics Data System (ADS)
Gholami, Ali; Saghafifar, Hossein
2018-06-01
A numerical simulation for underwater imaging through a wavy sea surface has been done. We have used a common approach to model the sea surface elevation and its slopes as an important source of image disturbance. The simulation algorithm is based on a combination of ray tracing and optical propagation, which has taken to different approaches for downwelling and upwelling beams. The nature of randomly focusing and defocusing property of surface waves causes a fluctuated irradiance distribution as an illuminating source of immersed object, while it gives rise to a great disturbance on the image through a coordinate change of image pixels. We have also used a modulation transfer function based on Well's small angle approximations to consider the underwater optical properties effect on the transferring of the image. As expected, the absorption effect reduces the light intensity and scattering decreases image contrast by blurring the image.
Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions
NASA Astrophysics Data System (ADS)
Hess, M.; Koepke, P.
2008-07-01
A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.
NASA Astrophysics Data System (ADS)
Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen
2015-10-01
Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.
Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane
NASA Technical Reports Server (NTRS)
Defrance, S J
1934-01-01
In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.
This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R.L., E-mail: ruiliangliu@126.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn; Wu, Y.Q.
2010-01-15
The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surfacemore » layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.« less
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo
2016-10-01
Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.
Effects of surface diffusion on high temperature selective emitters
Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; ...
2015-01-01
Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure’s curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.
Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation.
Lan, Yung-Chiang; Chang, Che-Jung; Lee, Peng-Hsiao
2009-01-01
We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.
Filamentation of a surface plasma wave over a semiconductor-free space interface
NASA Astrophysics Data System (ADS)
Kumar, Gagan; Tripathi, V. K.
2007-12-01
A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.
Climate Change Effect on Thermal Power Cooling in the U.S.
Maintaining reasonable surface-water temperatures is paramount for aquatic ecosystem health. Thermal pollution from power plant effluent can result in unnatural river temperature spikes locally, as well as cause damaging breaches to river temperature. The threat of a nonstationar...
Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C
2011-05-01
Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
Bioinspired surfaces for turbulent drag reduction
Golovin, Kevin B.; Gose, James W.; Perlin, Marc; Ceccio, Steven L.; Tuteja, Anish
2016-01-01
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354731
NASA Astrophysics Data System (ADS)
Dongxue, Wu; Ping, Ma; Boting, Liu; Shuo, Zhang; Junxi, Wang; Jinmin, Li
2016-10-01
The effect of patterned sapphire substrate (PSS) on the top-surface (P-GaN-surface) and the bottom-surface (sapphire-surface) of the light output power (LOP) of GaN-based LEDs was investigated, in order to study the changes in reflection and transmission of the GaN-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of GaN-based LEDs, which are prepared on patterned sapphire substrates (PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates (CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-GaN interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency (LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design. Project supported by the National High Technology Program of China (No. Y48A040000) and the National High Technology Program of China (No. Y48A040000).
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-06
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Surface acoustic wave diffraction driven mechanisms in microfluidic systems.
Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian
2018-06-26
Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.
NASA Technical Reports Server (NTRS)
Olsen, W.; Walker, E.
1986-01-01
Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D'Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna
2013-08-01
Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O2, He/O2/H2O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O2+, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.
Melt layer formation in stainless steel under transient thermal loads
NASA Astrophysics Data System (ADS)
Steudel, I.; Klimov, N. S.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Pitts, R. A.; Wirtz, M.
2015-08-01
To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100-3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji
2005-12-01
The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.
Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia
NASA Technical Reports Server (NTRS)
Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg
2016-01-01
The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.
The Effect of Sensitization on the Stress Corrosion Cracking of Aluminum Alloy 5456
2012-06-01
ship movement in the form of hogging and sagging, machinery vibration, or payload; or residual, caused by welds , bolts, or rivets. A material’s...tensile stress results in crack formation. Common surface flaws found on ships are weld joints, surface scratches, and sharp fillets. In addition...with the crack. The anodic reaction for the anodic oxidation of aluminum to form trivalent aluminum cations is described by Equation (4). Al Al3
NASA Astrophysics Data System (ADS)
Landgraf, J.; Kanitz, C.
2017-05-01
When a water drop falls on an oscillating soapy water surface it is observed that coalescence of the drop is inhibited because the drops are bouncing on the surface like on a trampoline. In our research we made experimental and theoretical investigations to an undeformable drop on a deformable bath. We described the vertical movement, predicted the critical bouncing threshold and also made experiments to the effects of an increased Weber number and the horizontal movement of the drop caused by a vertical movement.
A critical review of the measurement of ice adhesion to solid substrates
NASA Astrophysics Data System (ADS)
Work, Andrew; Lian, Yongsheng
2018-04-01
Ice adhesion is an issue spanning a wide range of technical fields. In the aerospace industry, ice accretion has led to a large number of casualties and costs the industry billions of dollars every year. To design effective anti-/de-icing systems, the adhesion of ice to surfaces must be understood. In this review paper, the authors surveyed for papers providing methods for the measurement of ice adhesion. 113 papers were identified for comparison, with data being extracted from 58 papers with common test surfaces (aluminum, steel, Teflon® (Chemours), and polyurethane). The methods used were categorized and data were compared based on their precision and the trends they demonstrated. Conceptual problems were identified with the tests used in the literature and discussed, and open questions relevant to testing the adhesion of ice were identified. Several key parameters affecting ice adhesion identified from the literature were temperature, surface roughness, strain rate, and impact velocity. Their effects on adhesion strength were discussed. While researching this topic, it was discovered that many papers did not report the strain rate in their tests, and the vast majority of papers did not correct their data for stress concentrations on the surface, either of which has been shown to cause variation in the data by one order of magnitude. Data compared from the literature typically spanned one to three orders of magnitude. The causes of these variations were discussed.
NASA Astrophysics Data System (ADS)
Krieg, Anne K.; Hess, Stefan; Gauglitz, Günter
2013-05-01
Therapeutic drug monitoring provides the attending physicians with detailed information on a patient's individual serum level especially during long-term medication. Due to the fact that each patient tolerates drugs or their metabolites differently a medication adjustment can reduce the number and intensity of noticeable side-effects. In particular, psychotropic drugs can cause unpleasant side-effects that affect a patient's life almost as much as the mental disease itself. The tricyclic antidepressants amitriptyline is commonly used for treatment of depressions and was selected for the development of an immunoassay using the direct optical sensor technique Reflectometric Interference Spectroscopy (RIfS). RIfS is a simple, robust and label-free method for direct monitoring of binding events on glass surfaces. Binding to the surface causes a shift of the interference spectrum by a change of the refractive index or physical thickness. This technique can be used for time-resolved observation of association and dissociation of amitriptyline (antigen) and a specific antibody using the binding inhibition test format. An amitriptyline derivative is immobilized on the sensor surface and a specific amount of antibodies can bind to the surface unless the binding is inhibited by free amitriptyline in a sample. No fluorescent label is needed making the whole assay less expensive than label-based methods. With this recently developed immunoassay amitriptyline concentrations in buffer (PBS) can easily be detected down to 500 ng/L.
Trench infiltration for managed aquifer recharge to permeable bedrock
Heilweil, V.M.; Watt, D.E.
2011-01-01
Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.
Detecting and monitoring UCG subsidence with InSAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellors, R J; Foxall, W; Yang, X
2012-03-23
The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidencemore » related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.« less
Atomic Oxygen Textured Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget
1995-01-01
Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.
Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet
2013-11-01
A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.
Stability analysis for capillary channel flow: 1d and 3d computations
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.
Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano
2014-01-01
This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301
Development of a satellite microwave radiometer to sense the surface temperature of the world oceans
NASA Technical Reports Server (NTRS)
Hidy, G. M.; Hall, W. F.; Hardy, W. N.; Ho, W. W.; Jones, A. C.; Love, A. W.; Vannmell, M. J.; Wang, H. H.; Wheeler, A. E.
1972-01-01
A proposed S-band radiometer for determining the ocean surface temperature with an absolute accuracy of + or - 1 Kelvin and a resolution of + or - .1 Kelvin was placed under the Advanced Applications Flight Experiment for further development into Nimbus readiness state. The results of assessing the following are described: effects due to the state of the sea surface, effects caused by the intervening atmosphere, and effects associated with imperfections in the instrument itself. An extensive sea truth program is also described for correlation of aircraft test flight measurements or of satellite remote measurement to in-situ data. An improved radiometer design is a modified Dicke-switch type with temperature stabilized, microwave integrated circuit, front-end and with a pulsed injection-noise nulling system. The radiometer has a multimode rectangular horn antenna with very low ohmic losses and a beam efficiency of 98% or better.
Application of nonlocal models to nano beams. Part II: Thickness length scale effect.
Kim, Jun-Sik
2014-10-01
Applicability of nonlocal models to nano-beams is discussed in terms of the Eringen's nonlocal Euler-Bernoulli (EB) beam model. In literature, most work has taken the axial coordinate derivative in the Laplacian operator presented in nonlocal elasticity. This causes that the non-locality always makes the beam soften as compared to the local counterpart. In this paper, the thickness scale effect is solely considered to investigate if the nonlocal model can simulate stiffening effect. Taking the thickness derivative in the Laplacian operator leads to the presence of a surface stress state. The governing equation derived is compared to that of the EB model with the surface stress. The results obtained reveal that the nonlocality tends to decrease the bending moment stiffness whereas to increase the bending rigidity in the governing equation. This tendency also depends on the surface conditions.
Segregation effects during solidification in weightless melts
NASA Technical Reports Server (NTRS)
Li, C.
1973-01-01
Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.
Effect of Alkali-Treated Lipopolysaccharide on Erythrocyte Membrane Stability
Čižnár, I.; Shands, J. W.
1971-01-01
The interaction of various lipopolysaccharides (LPS) with sheep erythrocytes was studied. When subjected to mild alkaline hydrolysis, the affinity of LPS for the red cell surface was greatly increased, as others have reported. In addition, excessive quantities of alkali-treated LPS (but not parent or heated products) were found to cause hemolysis of red cells. Experiments indicated that the hemolysis was caused by the LPS particles themselves and not by liberated free fatty acids. PMID:4949496
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
NASA Astrophysics Data System (ADS)
Targino, Admir Créso; Coraiola, Guilherme Conor; Krecl, Patricia
2018-06-01
We measured air temperature at 14 sites with different land cover composition within the urban canopy layer of a mid-sized Brazilian city. The intensity (ΔT) of the urban heat island (UHI) was calculated using data collected above a lake and at an urban park as references. We investigated the spatio-temporal variability of ΔT during four contiguous days with varying weather. The first day was overcast and rainy, giving rise to a moderate UHI. The second day was sunny, which caused the diurnal ΔT fields to become heterogeneous, due to larger heating rates at sites with more man-made surfaces compared to natural surfaces. A high-pressure system observed on the last days brought cloudless skies, causing smaller ΔT during the day and greater at night. We hypothesise that the effect was due to the reduction of cooling via evapotranspiration caused by closing of the stomata as the soil dried out, which reduced the daytime temperature differences among the sites. The night-time effect was caused by stronger radiative cooling due to clear skies. The temperature within the park was always lower than over the lake, confirming that urban forestry is a more effective mechanism to combat the UHI. Introducing a park would be about sevenfold cheaper than building a city pond. Hence, green spaces are not only more efficient to combat the UHI but it is also a cheaper strategy compared to blue spaces. Moreover, vegetation delivers other benefits, such as removal of air pollutants, attenuation of urban noise, improvement of city aesthetic and their use as recreational spaces.
Lützenkirchen, J; Franks, G V; Plaschke, M; Zimmermann, R; Heberling, F; Abdelmonem, A; Darbha, G K; Schild, D; Filby, A; Eng, P; Catalano, J G; Rosenqvist, J; Preocanin, T; Aytug, T; Zhang, D; Gan, Y; Braunschweig, B
2018-01-01
A wide range of isoelectric points (IEPs) has been reported in the literature for sapphire-c (α-alumina), also referred to as basal plane, (001) or (0001), single crystals. Interestingly, the available data suggest that the variation of IEPs is comparable to the range of IEPs encountered for particles, although single crystals should be much better defined in terms of surface structure. One explanation for the range of IEPs might be the obvious danger of contaminating the small surface areas of single crystal samples while exposing them to comparatively large solution reservoirs. Literature suggests that factors like origin of the sample, sample treatment or the method of investigation all have an influence on the surfaces and it is difficult to clearly separate the respective, individual effects. In the present study, we investigate cause-effect relationships to better understand the individual effects. The reference IEP of our samples is between 4 and 4.5. High temperature treatment tends to decrease the IEP of sapphire-c as does UV treatment. Increasing the initial miscut (i.e. the divergence from the expected orientation of the crystal) tends to increase the IEP as does plasma cleaning, which can be understood assuming that the surfaces have become less hydrophobic due to the presence of more and/or larger steps with increasing miscut or due to amorphisation of the surface caused by plasma cleaning. Pre-treatment at very high pH caused an increase in the IEP. Surface treatments that led to IEPs different from the stable value of reference samples typically resulted in surfaces that were strongly affected by subsequent exposure to water. The streaming potential data appear to relax to the reference sample behavior after a period of time of water exposure. Combination of the zeta-potential measurements with AFM investigations support the idea that atomically smooth surfaces exhibit lower IEPs, while rougher surfaces (roughness on the order of nanometers) result in higher IEPs compared to reference samples. Two supplementary investigations resulted in either surprising or ambiguous results. On very rough surfaces (roughness on the order of micrometers) the IEP lowered compared to the reference sample with nanometer-scale roughness and transient behavior of the rough surfaces was observed. Furthermore, differences in the IEP as obtained from streaming potential and static colloid adhesion measurements may suggest that hydrodynamics play a role in streaming potential experiments. We finally relate surface diffraction data from previous studies to possible interpretations of our electrokinetic data to corroborate the presence of a water film that can explain the low IEP. Calculations show that the surface diffraction data are in line with the presence of a water film, however, they do not allow to unambiguously resolve critical features of this film which might explain the observed surface chemical characteristics like the dangling OH-bond reported in sum frequency generation studies. A broad literature review on properties of related surfaces shows that the presence of such water films could in many cases affect the interfacial properties. Persistence or not of the water film can be crucial. The presence of the water film can in principle affect important processes like ice-nucleation, wetting behavior, electric charging, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Randy B. Foltz; Peter Robichaud
2013-01-01
Wildland fires often cause extreme changes in the landscape that drastically influence surface runoff and soil erosion, which can impact forest resources, aquatic habitats, water supplies, public safety, and forest access infrastructure such as forest roads. Little information is available on the effectiveness of various post-fire road treatments, thus this study was...
Simulation of multipactor on the rectangular grooved dielectric surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024
2015-11-15
Multipactor discharge on the rectangular grooved dielectric surface is simulated self-consistently by using a two-and-a-half dimensional (2.5 D) electrostatic particle-in-cell (PIC) code. Compared with the electromagnetic PIC code, the former can give much more accurate solution for the space charge field caused by the multipactor electrons and the deposited surface charge. According to the rectangular groove width and height, the multipactor can be divided into four models, the spatial distributions of the multipactor electrons and the space charge fields are presented for these models. It shows that the rectangular groove in different models gives very different suppression effect on themore » multipactor, effective and efficient suppression on the multipactor can only be reached with a proper groove size.« less
NASA Astrophysics Data System (ADS)
Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.
2017-08-01
Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.
Occhipinti, Rossana; Boron, Walter F.
2014-01-01
Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3− hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3−/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi) and pHS relaxations (τpHS). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3− buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS, indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane. PMID:24965590
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.
Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan
2016-12-01
Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
The effects of fruit smoothies on enamel erosion.
Tahmassebi, J F; Kandiah, P; Sukeri, S
2014-06-01
This prospective, randomised in vitro study was to investigate the pH and titratable acidity of fruit smoothie drinks and to assess the effect of these drinks on enamel erosion. Fifty enamel slabs were divided into five groups which were allocated to the sample solutions groups: Innocent(®) smoothie strawberries and bananas (SB), Innocent(®) smoothie mangoes and passion fruit (MP) and Diet Coke. Distilled deionised water (DD) was used as negative control and citric acid 0.3% as positive control. All the slabs were subjected to a 21-day pH cycling regime involving 2 min of immersions, five times a day with appropriate remineralization periods in between. Measurement of surface loss was assessed using profilometry. Independent sample t tests were used to compare mean. The titratable acidity for both test smoothies were 3.5-4 times more than that needed to neutralise Diet Coke and citric acid 0.3%. The pH of SB, MP smoothie and Diet Coke was found to be 3.73, 3.59 and 2.95, respectively. MP smoothie caused the greatest amount of surface loss followed by Diet Coke. Both smoothies were found to cause significant surface loss. MP smoothie resulted in significantly higher surface loss compared with MB smoothie and citric acid 3 %. The smoothies tested were acidic and had high titratable acidity. They produced a significant erosion of enamel in vitro. The results of this study suggest that there should be increased awareness of the erosive effects of smoothies especially as their consumption seems to be on the increase.
Phononic band gaps and phase singularities in the ultrasonic response from toughened composites
NASA Astrophysics Data System (ADS)
Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.
2018-04-01
Ultrasonic 3D characterization of ply-level features in layered composites, such as out-of-plane wrinkles and ply drops, is now possible with carefully applied analytic-signal analysis. Study of instantaneous amplitude, phase and frequency in the ultrasonic response has revealed some interesting effects, which become more problematic for 3D characterization as the inter-ply resin-layer thicknesses increase. In modern particle-toughened laminates, the thicker resin layers cause phase singularities to be observed; these are locations where the instantaneous amplitude is zero, so the instantaneous phase is undefined. The depth at which these occur has been observed experimentally to vary with resin- layer thickness, such that a phase-singularity surface is formed; beyond this surface, the ultrasonic response is reduced and significantly more difficult to interpret, so a method for removing the effect would be advantageous. The underlying physics has been studied using an analytical one-dimensional multi-layer model. This has been sufficient to determine that the cause is linked to a phononic band gap in the ultrasound transmitted through multiple equally-spaced partial reflectors. As a result, the phase singularity also depends on input-pulse center frequency and bandwidth. Various methods for overcoming the confusing effects in the data have been proposed and subsequently investigated using the analytical model. This paper will show experimental and modelled evidence of phase-singularities and phase-singularity surfaces, as well as the success of methods for reducing their effects.
NASA Astrophysics Data System (ADS)
Gero Schmidt, Wolf
2002-03-01
Optical spectroscopies are emerging as powerful tools to probe surfaces, since they allow for the real-time monitoring under challenging conditions as may be encountered, e.g., during material growth. However, their full potential can only be realised if it becomes possible to calculate surface optical spectra accurately and with true predictive power. Such calculations have been difficult, however, due to the large numerical expense involved. Based on a massively parallel, real-space multigrid implementation of DFT-LDA we have calculated reflectance anisotropy spectra for a wide range of group-IV materials and III-V compounds. Transitions between surface states give rise to specific, fingerprint-like spectral features. In addition, the anisotropic surface potential, the electric field at the surface of the sample and, to some extent, surface induced strain and relaxation may cause optical anisotropies in the layers underneath the surface. Surface defects have to be taken into account in order to explain some experimental results. Our DFT-LDA results explain very well the stoichiometric trends and qualitative features of the measured spectra. Quantitative agreement with the measured data is achieved by taking many-body effects into account. We include electronic self-energy corrections in the GW approximation using a model dielectric function to describe the screening. An efficient algorithm for solving the Bethe-Salpeter equation allows us to study the influence of electron-hole attraction and local-field effects on the surface optical properties.
Direct quantitative identification of the “surface trans-effect”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin
The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less
Direct quantitative identification of the “surface trans-effect”
Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin; ...
2016-06-09
The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less
USDA-ARS?s Scientific Manuscript database
Understanding of plant-bacterial interactions is of critical importance for developing effective control measures against infectious diseases caused by foodborne human pathogens. However, limitations of existing scientific tools to access and evaluate natural plant tissues, and the large variations ...
Formation of highly planarized Ni-W electrodeposits for glass imprinting mold
NASA Astrophysics Data System (ADS)
Yasui, Manabu; Kaneko, Satoru; Kurouchi, Masahito; Ito, Hiroaki; Ozawa, Takeshi; Arai, Masahiro
2017-01-01
We confirmed that increasing the total metal concentration is effective for the planarization of Ni-W films and Ni-W nanopatterns formed with a uniform height and a 480 nm pitch. At the same time, the W content in Ni-W films decreased. We investigated the relationship between the planarization of Ni-W films and the W content in Ni-W films, and confirmed that increasing the total metal concentration is effective for the inhibition of hydrogen generation. We pointed to the inhibition of hydrogen gas generation as a cause of the planarization of Ni-W films, and the reduction in the hydrogen generation amount necessary for the deposition of W as a cause of the reduction in the W content in Ni-W films. In order to obtain a flat plating film with a high W content, it is necessary to generate an adequate amount of hydrogen on the surface of the cathode and to remove hydrogen gas from the cathode surface immediately.
The effect of monomolecular surface films on the microwave brightness temperature of the sea surface
NASA Technical Reports Server (NTRS)
Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.
1982-01-01
It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.
Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS
NASA Astrophysics Data System (ADS)
Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly
2013-03-01
Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.
Effect on water resources from upstream water diversion in the Ganges basin.
Adel, M M
2001-01-01
Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.
Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes
NASA Technical Reports Server (NTRS)
Risin, Diana; Pellis, Neal R.
1999-01-01
Impairment of the immunity in astronauts and cosmonauts even in short term flights is a recognized risk. Long term orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Impairment of the immunity in space may be due tonumerous physiological changes caused by space-related factors, which in turn affect the immune system, or alternatively, it may be due to direct effects of different factors encountered in space on lymphoid cells and their interactions. Indeed, in modeled microgravity (MMG) experiments on Earth we and others showed that microgravity directly affects multiple lymphocyte functions. It interferes with expression of cell surface molecules, causes inhibition of lymphocyte locomotion, suppresses polyclopal and antigen-specific lymphocyte activation, selectively inhibits protein kinase C (PKC) isoforms. Some of these effects were also confirmed in cell culture experiments in real space conditions during Spacelab, Biokosmos and Shuttle Missions. The results of these studies, taken together, strongly indicated that microgravity interferes with fundamental biological processes associated with functional and structural changes in cell surface membranes, cell surface molecules and in their interaction. Based on the data and on their interpretation, we hypothesized that microgravity in addition to observed functional changes affects programmed cell death (PCD) in lymphocyte populations and that this mechanism could contribute to the impairment of the immunity.
Li, Shuai; Liang, Wei; Fu, Bojie; Lü, Yihe; Fu, Shuyi; Wang, Shuai; Su, Huimin
2016-11-01
Recently, relationship between vegetation activity and temperature variability has received much attention in China. However, vegetation-induced changes in water resources through changing land surface energy balance (e.g. albedo), has not been well documented. This study investigates the underlying causes of vegetation change and subsequent impacts on runoff for the Northern Shaanxi Loess Plateau. Results show that satellite-derived vegetation index has experienced a significantly increasing trend during the past three decades, especially during 2000-2012. Large-scale ecological restorations, i.e., the Natural Forest Conservation project and the Grain for Green project, are found to be the primary driving factors for vegetation increase. The increased vegetation coverage induces decrease in surface albedo and results in an increase in temperature. This positive effect can be counteracted by higher evapotranspiration and the net effect is a decrease in daytime land surface temperature. A higher evapotranspiration rate from restored vegetation is the primary reason for the reduced runoff coefficient. Other factors including less heavy precipitation, increased water consumption from town, industry and agriculture also appear to be the important causes for the reduction of runoff. These two ecological restoration projects produce both positive and negative effects on the overall ecosystem services. Thus, long-term continuous monitoring is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ordered roughness effects on NACA 0026 airfoil
NASA Astrophysics Data System (ADS)
Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.
2016-10-01
The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.
Estimation of ozone dry deposition over Europe for the period 2071-2100
NASA Astrophysics Data System (ADS)
Komjáthy, Eszter; Gelybó, Györgyi; László Lagzi, István.; Mészáros, Róbert
2010-05-01
Ozone in the lower troposphere is a phytotoxic air pollutant which can cause injury to plant tissues, causing reduction in plant growth and productivity. In the last decades, several investigations have been carried out for the purpose to estimate ozone load over different surface types. At the same time, the changes of atmospheric variables as well as surface/vegetation parameters due to the global climate change could also strongly modify both temporal and spatial variations of ozone load over Europe. In this study, the possible effects of climate change on ozone deposition are analyzed. Using a sophisticated deposition model, ozone deposition was estimated on a regular grid over Europe for the period 2071-2100. Our aim is to determine the uncertainties and the possible degree of change in ozone deposition velocity as an important predictor of total ozone load using climate data from multiple climate models and runs. For these model calculations, results of the PRUDENCE (Predicting of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) climate prediction project were used. As a first step, seasonal variations of ozone deposition over different vegetation types in case of different climate scenarios are presented in this study. Besides model calculations, in the frame of a sensitivity analyses, the effects of surface/vegetation parameters (e.g. leaf area index or stomatal resistance) on ozone deposition under a modified climate regime have also been analyzed.
NASA Astrophysics Data System (ADS)
Zadorozhny, Alexander; Dyominov, Igor
It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone changes. The enhanced evaporation from the ocean increases noticeably a water vapour abundance in the stratosphere that decreases global total ozone and retards the expected recovery of the ozone layer. In polar latitudes, additional stratospheric water vapour increase due to greenhouse effect noticeably strengthens the impact of anthropogenic greenhouse gases on ozone through modification of polar stratospheric clouds and retards the expected recovery of the ozone, too. In the Northern hemisphere, the delay of the ozone recovery is about 5 years, in the Southern hemisphere the delay is about 2 years.
NASA Astrophysics Data System (ADS)
Hou, X. D.; Jennett, N. M.
2017-11-01
Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.
A review of surface heat-flow data of the northern Middle Atlas (Morocco)
NASA Astrophysics Data System (ADS)
Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine
2017-12-01
We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
Salazar, Félix; Barrientos, Alberto
2013-01-01
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488
Surface roughness measurement on a wing aircraft by speckle correlation.
Salazar, Félix; Barrientos, Alberto
2013-09-05
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.
NASA Astrophysics Data System (ADS)
Salin, M. B.; Dosaev, A. S.; Konkov, A. I.; Salin, B. M.
2014-07-01
Numerical simulation methods are described for the spectral characteristics of an acoustic signal scattered by multiscale surface waves. The methods include the algorithms for calculating the scattered field by the Kirchhoff method and with the use of an integral equation, as well as the algorithms of surface waves generation with allowance for nonlinear hydrodynamic effects. The paper focuses on studying the spectrum of Bragg scattering caused by surface waves whose frequency exceeds the fundamental low-frequency component of the surface waves by several octaves. The spectrum broadening of the backscattered signal is estimated. The possibility of extending the range of applicability of the computing method developed under small perturbation conditions to cases characterized by a Rayleigh parameter of ≥1 is estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karabeshkin, K. V., E-mail: yanikolaus@yandex.ru; Karaseov, P. A.; Titov, A. I.
2016-08-15
The depth distributions of structural damage induced in Si at room temperature by the implantation of P and PF{sub 4} with energies from 0.6 to 3.2 keV/amu are experimentally studied in a wide range of doses. It is found that, in all cases, the implantation of molecular PF{sub 4} ions forms practically single-mode defect distributions, with maximum at the target surface. This effect is caused by an increase in the generation of primary defects at the surface of the target. Individual cascades formed by atoms comprising molecule effectively overlap in the surface vicinity; this overlap gives rise to nonlinear processesmore » in combined cascades due to a high density of displacements in such cascades. Quantitative estimation of increase of effectiveness of point defect generation by PF{sub 4} ions in respect to P ions is done on the base of experimental data.« less
SAR Image Simulation of Ship Targets Based on Multi-Path Scattering
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.
2018-04-01
Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.
Hydrodynamic effects in laser cutting of biological tissue phantoms
NASA Astrophysics Data System (ADS)
Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.
2017-11-01
We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.
McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith
2015-11-06
The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Anomalous hydrodynamics of Weyl materials
NASA Astrophysics Data System (ADS)
Monteiro, Gustavo; Abanov, Alexander
Kinetic theory is a useful tool to study transport in Weyl materials when the band-touching points are hidden inside a Fermi surface. It accounts, for example, for the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations (SdH effect) in the magnetoresistance together within the same framework. As an alternative approach to kinetic theory we also consider the regime of strong interactions where hydrodynamics can be applicable. A variational principle of these hydrodynamic equations can be found in and provide a natural framework to study hydrodynamic surface modes which correspond to the strongly-interacting physics signature of Fermi arcs. G.M. acknowledges the financial support from FAPESP.
Water level fluctuations in an urban pond: Climatic or anthropogenic impact?
Benton, S.E.
2002-01-01
In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements.
Kharat, Arun S.; Tomasz, Alexander
2003-01-01
Inactivation of sortase gene srtA in Streptococcus pneumoniae strain R6 caused the release of β-galactosidase and neuraminidase A (NanA) from the cell wall into the surrounding medium. Both of these surface proteins contain the LPXTG motif in the C-terminal domain. Complementation with plasmid-borne srtA reversed protein release. Deletion of murM, a gene involved in the branching of pneumococcal peptidoglycan, also caused partial release of β-galactosidase, suggesting preferential attachment of the protein to branched muropeptides in the cell wall. Inactivation of srtA caused decreased adherence to human pharyngeal cells in vitro but had no effect on the virulence of a capsular type III strain of S. pneumoniae in the mouse intraperitoneal model. The observations suggest that—as in other gram-positive bacteria—sortase-dependent display of proteins occurs in S. pneumoniae and that some of these proteins may be involved in colonization of the human host. PMID:12704150
NASA Technical Reports Server (NTRS)
Hark, Frank; Britton, Paul; Ring, Rob; Novack, Steven D.
2016-01-01
Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFS are a set of dependent type of failures that can be caused by: system environments; manufacturing; transportation; storage; maintenance; and assembly, as examples. Since there are many factors that contribute to CCFs, the effects can be reduced, but they are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and CCF (dependent) failure and data is limited, especially for launch vehicles. The Probabilistic Risk Assessment (PRA) of NASA's Safety and Mission Assurance Directorate at Marshal Space Flight Center (MFSC) is using generic data from the Nuclear Regulatory Commission's database of common cause failures at nuclear power plants to estimate CCF due to the lack of a more appropriate data source. There remains uncertainty in the actual magnitude of the common cause risk estimates for different systems at this stage of the design. Given the limited data about launch vehicle CCF and that launch vehicles are a highly redundant system by design, it is important to make design decisions to account for a range of values for independent and CCFs. When investigating the design of the one-out-of-two component redundant system for launch vehicles, a response surface was constructed to represent the impact of the independent failure rate versus a common cause beta factor effect on a system's failure probability. This presentation will define a CCF and review estimation calculations. It gives a summary of reduction methodologies and a review of examples of historical CCFs. Finally, it presents the response surface and discusses the results of the different CCFs on the reliability of a one-out-of-two system.
NASA Technical Reports Server (NTRS)
Hark, Frank; Britton, Paul; Ring, Rob; Novack, Steven D.
2015-01-01
Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFS are a set of dependent type of failures that can be caused by: system environments; manufacturing; transportation; storage; maintenance; and assembly, as examples. Since there are many factors that contribute to CCFs, the effects can be reduced, but they are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and CCF (dependent) failure and data is limited, especially for launch vehicles. The Probabilistic Risk Assessment (PRA) of NASA's Safety and Mission Assurance Directorate at Marshall Space Flight Center (MFSC) is using generic data from the Nuclear Regulatory Commission's database of common cause failures at nuclear power plants to estimate CCF due to the lack of a more appropriate data source. There remains uncertainty in the actual magnitude of the common cause risk estimates for different systems at this stage of the design. Given the limited data about launch vehicle CCF and that launch vehicles are a highly redundant system by design, it is important to make design decisions to account for a range of values for independent and CCFs. When investigating the design of the one-out-of-two component redundant system for launch vehicles, a response surface was constructed to represent the impact of the independent failure rate versus a common cause beta factor effect on a system's failure probability. This presentation will define a CCF and review estimation calculations. It gives a summary of reduction methodologies and a review of examples of historical CCFs. Finally, it presents the response surface and discusses the results of the different CCFs on the reliability of a one-out-of-two system.
The Effect of Surface Pressure on the Langmuir-Blodgett Polymerization of 2-Pentadecyl Aniline
1992-05-19
the mean molecular area was decreasing during the polymerization of 2-pentadecyl aniline . Also no polymer was found when the reaction was run at low...and polymer, we suppose, is the cause of Mma decrease during the polymerization of 2-pentadecyl aniline . Compared with the area of a long alkyl ...is put into changing its conformation at the surface. In the case of 2-pentadecyl aniline , the work done upon compressing the monolayer, we suppose, is
Numerical Validation of a Near-Field Fugitive Dust Model for Vehicles Moving on Unpaved Surfaces
2013-09-25
turbulent dissipation rate 1 Introduction Particles suspended in air by vehicular movement on paved and unpaved roads are a major contributor to fugitive...own “ Brownian Motion” type of trajectory, but a group of particles in the same region of space do not follow the same “eddy” and the overall effects...fugitive dust caused by vehicle movement , especially when traveling on unpaved surfaces. Given the needs for particle emission models, there are very
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
NASA Astrophysics Data System (ADS)
Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.
2012-12-01
The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the ability of the newly coupled model by two runs: one without and one with the urban canopy module. The coupled model is integrated from March through September, covering a summer monsoon season. The preliminary results show more significant urban heat island (UHI) effect over urban areas with the urban canopy model. The existence of the UHIs enhances the convection in lower atmosphere, affects the water vapor transportation and precipitation of the surrounding area, consistent with the phenomena that occur in urban areas. We further test the effect of urbanization on the monsoon by introducing two maps, one with and one without urbanization and the effect of the urbanization on the monsoon evolution and low level circulation will be discussed in the presentation.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1981-01-01
The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.
DOT National Transportation Integrated Search
2010-09-01
Most of the damage to concrete pavement results from poor drainage, which can lead to increased freeze-thaw damage, and when combined with heavy loading can contribute to cracking, spalling and surface damage that causes driver discomfort from increa...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
USDA-ARS?s Scientific Manuscript database
Changes in land use are likely to cause a non-linear response in watershed hydrology. Specifically, small increases in urban expansion may greatly increase surface runoff while decreasing infiltration, impacting aquifer recharge and changing streamflow regimes. Quantifying the effects of urbanizatio...
NASA Technical Reports Server (NTRS)
Zhang, Y.-C.; Rossow, W. B.; Lacis, A. A.
1995-01-01
The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.
Liu, X M; Wu, S L; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, C L; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2007-08-01
NiTi shape memory alloy is one of the promising orthopedic materials due to the unique shape memory effect and superelasticity. However, the large amount of Ni in the alloy may cause allergic reactions and toxic effects thereby limiting its applications. In this work, the surface of NiTi alloy was modified by nitrogen plasma immersion ion implantation (N-PIII) at various voltages. The materials were characterized by X-ray photoelectron spectroscopy (XPS). The topography and roughness before and after N-PIII were measured by atomic force microscope. The effects of the modified surfaces on nickel release and cytotoxicity were assessed by immersion tests and cell cultures. The XPS results reveal that near-surface Ni concentration is significantly reduced by PIII and the surface TiN layer suppresses nickel release and favors osteoblast proliferation, especially for samples implanted at higher voltages. The surfaces produced at higher voltages of 30 and 40 kV show better adhesion ability to osteoblasts compared to the unimplanted and 20 kV PIII samples. The effects of heating during PIII on the phase transformation behavior and cyclic deformation response of the materials were investigated by differential scanning calorimetry and three-point bending tests. Our results show that N-PIII conducted using the proper conditions improves the biocompatibility and mechanical properties of the NiTi alloy significantly.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
Krasowska, Anna; Murzyn, Anna; Dyjankiewicz, Agnieszka; Łukaszewicz, Marcin; Dziadkowiec, Dorota
2009-12-01
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.
NASA Astrophysics Data System (ADS)
Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.
2014-12-01
Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1985-01-01
High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.
Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology
2012-10-01
to be an effective media for PSA capture. For SERS-based immunoassays, nitrocellulose offers comparable results to those obtained using gold-coated...glass substrates while offering a more cost- effective and time-saving method of detecting minute amounts of PSA; (ii) Micro-Raman imaging...technology was found to be effective in chemical mapping of arteries in the tissues of a post mortem individual whose cause of death was a cardiac event
The effect of long-term use of tooth bleaching products on the human enamel surface.
Polydorou, Olga; Scheitza, Sophia; Spraul, Mathias; Vach, Kirstin; Hellwig, Elmar
2018-01-01
The aim of this in vitro study was to evaluate the long-term effect of bleaching on human enamel. Four groups of enamel specimens were prepared (n = 20): group 1: bleaching with Opalescence Boost [40% hydrogen peroxide (H 2 O 2 ), 3 × 20 min/week]; group 2: control group (the specimens were stored in human saliva); group 3: beaching with Vivastyle Paint on Plus (6% H 2 O 2 , 2 × 10 min/day), and group 4: bleaching with Opalescence PF 16% [16% carbamide peroxide (CP), 6 h/day]. After each bleaching session the specimens were stored in human saliva. Knoop microhardness and surface roughness were measured: before bleaching, after 2-week and after 8-week bleaching. After 2-week treatment, surface roughness was significantly increased in all experimental groups (p < 0.05), while among them no significant difference was found (p > 0.05). The roughness changes exerted after 8-week bleaching were not significantly higher than the ones after 2 weeks (p > 0.05). After 8-week treatment, the increase in roughness caused by 16% CP was significantly higher (p < 0.05) than the one caused by 40% H 2 O 2 . Microhardness increased in all groups including control; however, only 40% H 2 O 2 increased the microhardness significantly (p < 0.05). The effect of bleaching on enamel was not shown to be dependent on the method or the H 2 O 2 concentration. Bleaching with CP 16% resulted in higher roughness than bleaching with H 2 O 2 , while 40% H 2 O 2 caused the higher microhardness increase. The present study showed that in-office bleaching with 40% H 2 O 2 seems to be at least as safe as home bleaching as far as their effects on human enamel are concerned.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
NASA Astrophysics Data System (ADS)
Que, Like
Wear is one of the major causes of artificial total knee arthroplasty (TKA) failure. Wear debris can cause adverse reactions to the surrounding tissue which can ultimately lead to loosening of the prosthesis. The wear behavior of UHMWPE tibial components have been studied extensively, but relatively little attention has been paid to the CoCrMo femoral component. The goal of the present study was to investigate the wear mechanisms of CoCrMo femoral components, to study the effect of CoCrMo alloy surface roughness on the wear of UHMWPE, and to determine the effect of heat treatments on the wear resistance of the CoCrMo implant alloys. The surface roughness of twenty-seven retrieved CoCrMo femoral components was analyzed. A multiple station wear testing machine and a wear fixture attached to an MTS 858 bionix system were built and used for in vitro wear studies of the CoCrMo/UHMWPE bearing couple. Solution and aging treatments were applied to the CoCrMo alloys. A white light interference surface profilometer (WLISP) and a scanning electron microscope (SEM) were used to measure the surface roughness and to study wear mechanisms of CoCrMo alloy. An optical microscope was used for alloy microstructure study. X-ray diffraction tests were performed to identify alloy phase transformation after aging. The micro-structure, hardness, and wear resistance of the alloys were studied. Surface roughness was used to quantify alloy wear, and the minimum number of surface roughness measurements required to obtain a reliable and repeatable characterization of surface roughness for a worn alloy surface was determined. The surfaces of the retrieved CoCrMo femoral components appeared to be damaged by metal particles embedded in the UHMWPE tibial component and metal-on-metal wear due to UHMWPE tibial component through-wear. Surface roughness of the femoral components was not correlated with patient age, weight, sex, or length of implantation. In vitro wear tests showed that when the CoCrMo alloy surface roughness was higher than 0.022 mum Ra (surface roughness average), UHMWPE wear increased with increasing CoCrMo alloy surface roughness. Bone and poly(methyl methacrylate) (PMMA) bone cement abrasive particles created scratches on the alloy via a ploughing mechanism, and resulted in significantly rougher surfaces than controls without particles (P < 0.01). Solution treatments at 1230sp°C and 1245sp°C reduced the hardness and wear resistance of the as-cast F75 CoCrMo alloy. Aging at 700sp°C caused recrystallization of the forged F799 alloy and improved wear resistance. Thermo-mechanical treatments have the potential to increase the lifetime of artificial joints by increasing the wear resistance of CoCrMo components.
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1994-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis
Anderson, Donald D.; Brown, Thomas D.; Tochigi, Yuki; Martin, James A.
2013-01-01
Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the past 50 years. Cumulative excessive articular surface contact stress that leads to OA results from posttraumatic joint incongruity and instability, and joint dysplasia, but may also cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain, and improve joint function in patients with end-stage posttraumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995
Torabi, Kianoosh; Rasaeipour, Sasan; Khaledi, Amir Alireza; Vojdani, Mahroo; Ghodsi, Safoura
2014-05-01
Pressing esthetic demands of good looking make people undergo bleaching procedures. However, the effect of bleaching agents on esthetic restorative materials with different surface preparations has been poorly studied. The aim of this study was to examine the effect of a homebleaching agent (carbamide peroxide: CP 38%) on the surface roughness of the polished fiber reinforced composite (FRC), overglazed, autoglazed, or polished ceramic samples. Twenty standardized cylindrical specimens were made of each of the following groups: over-glazed, autoglazed, polished porcelain and also FRC. The test specimens exposed to the CP 38%, 15 minutes, twice a day for 2 weeks according to the manufacturer's recommendation. Six samples from each group were selected randomly to form negative controls. Surface roughness measurements (Ra, micrometer) for baseline, test and control specimens were performed by use of a profilometer. Paired t-test, Mann-Whitney test, and Kruskal-Wallis test were used for statistical analyses. The data showed that bleaching with CP 38% significantly increased the surface roughness of all the test samples (p < 0.05). The type of surface preparation caused significant differences between the susceptibility of porcelain subgroups to bleaching (p < 0.05). The polished porcelain specimens showed the highest changes after bleaching. CP 38% significantly increases the surface roughness of the porcelains and FRC. The type of surface condition affects the amenability of the porcelain surface to the bleaching agent. Glazed porcelains were more resistant to roughness than the polished porcelains and also the composite. Roughening of porcelain and FRC occur following bleaching procedure. No special surface preparation of indirect esthetic restorative materials can completely preserve these materials from adverse effects of bleaching agents.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Using insurance data to learn more about damages to buildings caused by surface runoff
NASA Astrophysics Data System (ADS)
Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf
2015-04-01
In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the analysis of the data, especially the crucial identification of damages caused by surface runoff opposed to damages caused by other processes such as riverine flooding, drainage system surcharges etc. are discussed.
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf; Brakhage, Axel A
2012-05-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypA(C)). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited "easily wettable" mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA.
Heddergott, Christoph; Bruns, Sandra; Nietzsche, Sandor; Leonhardt, Ines; Kurzai, Oliver; Kniemeyer, Olaf
2012-01-01
Dermatophytes are the most common cause of superficial mycoses in humans and animals. They can coexist with their hosts for many years without causing significant symptoms but also cause highly inflammatory diseases. To identify mechanisms involved in the modulation of the host response during infection caused by the zoophilic dermatophyte Arthroderma benhamiae, cell wall-associated surface proteins were studied. By two-dimensional gel electrophoresis, we found that a hydrophobin protein designated HypA was the dominant cell surface protein. HypA was also detected in the supernatant during the growth and conidiation of the fungus. The A. benhamiae genome harbors only a single hydrophobin gene, designated hypA. A hypA deletion mutant was generated, as was a complemented hypA mutant strain (hypAC). In contrast to the wild type and the complemented strain, the hypA deletion mutant exhibited “easily wettable” mycelia and conidia, indicating the loss of surface hydrophobicity of both morphotypes. Compared with the wild type, the hypA deletion mutant triggered an increased activation of human neutrophil granulocytes and dendritic cells, characterized by an increased release of the immune mediators interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis factor alpha (TNF-α). For the first time, we observed the formation of neutrophil extracellular traps against dermatophytes, whose level of formation was increased by the ΔhypA mutant compared with the wild type. Furthermore, conidia of the ΔhypA strain were killed more effectively by neutrophils. Our data suggest that the recognition of A. benhamiae by the cellular immune defense system is notably influenced by the presence of the surface rodlet layer formed by the hydrophobin HypA. PMID:22408226
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube
NASA Astrophysics Data System (ADS)
Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.
2015-02-01
Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.
Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice
2016-01-01
The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru
Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were alsomore » examined.« less
NASA Astrophysics Data System (ADS)
Iadlovska, Olena S.; Maxwell, Graham R.; Babakhanova, Greta; Mehl, Georg H.; Welch, Christopher; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2018-04-01
Selective reflection of light by oblique helicoidal cholesteric (ChOH) can be tuned in a very broad spectral range by an applied electric field. In this work, we demonstrate that the peak wavelength of the selective reflection can be controlled by surface alignment of the director in sandwich cells. The peak wavelength is blue-shifted when the surface alignment is perpendicular to the bounding plates and red-shifted when it is planar. The effect is explained by the electric field redistribution within the cell caused by spatially varying heliconical ChOH structure. The observed phenomenon can be used in sensing applications.
A modified integrated NDVI for improving estimates of terrestrial net primary production
NASA Technical Reports Server (NTRS)
Running, Steven W.
1990-01-01
Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozialeck, W.C.; Niewenhuis, R.J.
1991-03-11
Recent findings from the authors laboratories have shown that Cd{sup 2+} has relatively specific damaging effects on adhering and occluding junctions in the established porcine renal epithelial cell line, LLC-PK{sub 1}. The present studies were undertaken in order to further characterize the junction-perturbing effects of Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cells were grown to confluency on Millicell HA chambers and exposed to Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cellsmore » were grown to confluency on Millicell HA chambers an exposed to Cd{sup 2+} by adding CdCl{sub 2} to the solutions on either side of the cell monolayer. The integrity of cell-cell junctions was assessed by monitoring the transepithelial electrical resistance. The results showed that exposure to Cd{sup 2+} caused a pronounced decrease in transepithelial resistance without causing the cells to detach from the Millicell membrane. This decrease in resistance occurred more quickly and was much more pronounced when Cd{sup 2+} was added to the basolateral surface rather than the apical surface. Furthermore, the effects of Cd{sup 2+} were greatly reduced when excess Ca{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} may disrupt cell-cell junctions by interacting with Ca{sup 2+} binding sites or Ca{sup 2+} channels that are oriented toward the basolateral cell surface.« less
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films
NASA Astrophysics Data System (ADS)
Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.
2012-12-01
A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.
A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy
Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A.M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C.A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F.R.; Cirillo, D.; Comerci, V.; Cucci, L.; De Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; Di Manna, P.; Di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J.P.; Ferrarini, F.; Ferrario, M.F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L.C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J.P.; Mariucci, M.T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K.J.W.; Michetti, A.M.; Mildon, Z.K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P.P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G.P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; Van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L.N.J.; Wilkinson, M.; Zambrano, M.
2018-01-01
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting. PMID:29583143
NASA Astrophysics Data System (ADS)
Francisco Sánchez-Royo, Juan
2012-12-01
The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.
Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco
2018-03-27
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2 . The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
NASA Astrophysics Data System (ADS)
Holman, Timothy D.; Boyd, Iain D.
2011-02-01
This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.