Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
Gao, X-L; Zhang, G Y
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
Zhang, G. Y.
2016-01-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler–Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived. PMID:27493578
Definition and effect of chemical properties of surfaces in friction, wear, and lubrication
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Chemical properties relative to their role in adhesion, friction, wear and lubrication discussed in this paper will include: (1) adsorption, both physical and chemical; (2) orientation of the solid as well as the lubricant; (3) surface energy; (4) surface segregation; (5) surface versus bulk metallurgical effects; (6) electronic nature of the surface; and (7) bonding mechanisms.
Viger, Roland J.; Hay, Lauren E.; Jones, John W.; Buell, Gary R.
2010-01-01
This report documents an extension of the Precipitation Runoff Modeling System that accounts for the effect of a large number of water-holding depressions in the land surface on the hydrologic response of a basin. Several techniques for developing the inputs needed by this extension also are presented. These techniques include the delineation of the surface depressions, the generation of volume estimates for the surface depressions, and the derivation of model parameters required to describe these surface depressions. This extension is valuable for applications in basins where surface depressions are too small or numerous to conveniently model as discrete spatial units, but where the aggregated storage capacity of these units is large enough to have a substantial effect on streamflow. In addition, this report documents several new model concepts that were evaluated in conjunction with the depression storage functionality, including: ?hydrologically effective? imperviousness, rates of hydraulic conductivity, and daily streamflow routing. All of these techniques are demonstrated as part of an application in the Upper Flint River Basin, Georgia. Simulated solar radiation, potential evapotranspiration, and water balances match observations well, with small errors for the first two simulated data in June and August because of differences in temperatures from the calibration and evaluation periods for those months. Daily runoff simulations show increasing accuracy with streamflow and a good fit overall. Including surface depression storage in the model has the effect of decreasing daily streamflow for all but the lowest flow values. The report discusses the choices and resultant effects involved in delineating and parameterizing these features. The remaining enhancements to the model and its application provide a more realistic description of basin geography and hydrology that serve to constrain the calibration process to more physically realistic parameter values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...
2017-10-06
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
DOT National Transportation Integrated Search
2017-07-01
This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...
Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing
NASA Technical Reports Server (NTRS)
Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)
1985-01-01
The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Effectiveness of asphalt penetrating sealers in extending new asphalt pavement life.
DOT National Transportation Integrated Search
2017-01-01
Numerous methods are being employed for asphalt pavement preservation, including rejuvenator emulsions, asphalt emulsion fog seals, and a variety of non-structural surface treatments (including slurry and micro surfacing technologies). To make the mo...
LADAR Range Image Interpolation Exploiting Pulse Width Expansion
2012-03-22
normal to each other. The LADAR model needs to include the complete BRDF model covered in Section 2.1.3, which includes speckle reflection as well as...the gradient of a surface. This study estimates the gradi- ent of the surface of an object from a modeled LADAR return pulse that includes accurate...probabilistic noise models . The range and surface gradient estimations are incorporated into a novel interpolator that facilitates an effective three
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2012-01-01
Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
NASA Astrophysics Data System (ADS)
Bétrémieux, Yan; Swain, Mark R.
2017-05-01
Although the formalism of Lecavelier des Etangs et al. is extremely useful to understand what shapes transmission spectra of exoplanets, it does not include the effects of a sharp change in flux with altitude generally associated with surfaces and optically thick clouds. Recent advances in understanding the effects of refraction in exoplanet transmission spectra have, however, demonstrated that even clear thick atmospheres have such a sharp change in flux due to a refractive boundary. We derive a more widely applicable analytical formalism by including first-order effects from all these 'surfaces' to compute an exoplanet's effective radius, effective atmospheric thickness and spectral modulation for an atmosphere with a constant scaleheight. We show that the effective radius cannot be located below these 'surfaces' and that our formalism matches the formalism of Lecavelier des Etangs et al. in the case of a clear atmosphere. Our formalism explains why clouds and refraction reduce the contrast of spectral features, and why refraction decreases the Rayleigh scattering slope as wavelength increases, but also shows that these are common effects of all 'surfaces'. We introduce the concept of a 'surface' cross-section, the minimum mean cross-section that can be observed, as an index to characterize the location of 'surfaces' and provide a simple method to estimate their effects on the spectral modulation of homogeneous atmospheres. We finally devise a numerical recipe that extends our formalism to atmospheres with a non-constant scaleheight and arbitrary sources of opacity, a potentially necessary step to interpret observations.
Sabri, Firouzeh; Marchetta, Jeffrey G.; Sinden-Redding, M.; Habenicht, James J.; Chung, Thien Phung; Melton, Charles N.; Hatch, Chris J.; Lirette, Robert L.
2012-01-01
Background Dust accumulation on surfaces of critical instruments has been a major concern during lunar and Mars missions. Operation of instruments such as solar panels, chromatic calibration targets, as well as Extra Vehicular Activity (EVA) suits has been severely compromised in the past as a result of dust accumulation and adhesion. Wind storms with wind speeds of up to 70 mph have not been effective in removing significant amounts of the deposited dust. This is indeed an indication of the strength of the adhesion force(s) involved between the dust particles and the surface(s) that they have adhered to. Complications associated with dust accumulation are more severe for non-conducting surfaces and have been the focus of this work. Methodology Argon plasma treatment was investigated as a mechanism for lowering dust accumulation on non-conducting polymeric surfaces. Polymers chosen for this study include a popular variety of silicones routinely used for space and terrestrial applications namely RTV 655, RTV 615, and Sylgard 184. Surface properties including wettability, surface potential, and surface charge density were compared before and after plasma treatment and under different storage conditions. Effect of ultraviolet radiation on RTV 655 was also investigated and compared with the effect of Ar plasma treatment. Conclusion/Significance Gravimetric measurements proved Ar plasma treatment to be an effective method for eliminating dust adhesion to all three polymers after short periods of exposure. No physical damage was detected on any of the polymer surfaces after Ar plasma treatment. The surface potential of all three polymers remained zero up to three months post plasma exposure. Ultraviolet radiation however was not effective in reducing surface and caused damage and significant discoloration to RTV 655. Therefore, Ar plasma treatment can be an effective and non-destructive method for treating insulating polymeric surfaces in order to eliminate dust adhesion and accumulation. PMID:23077496
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Downward-deployed tethered satellite systems, measurement techniques, and instrumentation - A review
NASA Technical Reports Server (NTRS)
Brown, Kenneth G.; Melfi, Leonard T., Jr.; Upchurch, Billy T.; Wood, George M., Jr.
1992-01-01
This paper describes a number of scheduled and proposed Shuttle-based downward-deployed tethered satellite systems (TSSs) the purpose of which is to determine the structure of the lower thermosphere and to measure the atmospheric and aerodynamic effects in the vicinity of the satellite, the aerothermodynamic effects on the satellite's surface, and the dynamics of the tether and its endmass, the satellite. The instruments for the downward-deployed tethered missions will include mass spectrometers and other density sensors, plasma instrumentation, optical spectrophotometers, magnetometers, and instrumentation to measure the effects on satellite surface (such as the surface temperature, heat transfer, and pressure; gas adsorption on surfaces, chemistry with other gas molecules and surface material, and desorption from the surface; and surface charging).
30 CFR 48.26 - Experienced miner training.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRAINING AND RETRAINING OF MINERS Training and Retraining of Miners Working at Surface Mines and Surface... must include the following instruction: (1) Introduction to work environment. The course shall include... firewarning signals and firefighting procedures in effect at the mine. (6) Ground controls; working in areas...
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2015-10-01
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less
Electrostatic thin film chemical and biological sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.
A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less
Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities
NASA Technical Reports Server (NTRS)
Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.
2007-01-01
The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator. We review EPIC S overall capabilities and recent modifications, and discuss directions for future enhancements.
Development of an engineering model atmosphere for Mars
NASA Technical Reports Server (NTRS)
Justus, C. G.
1988-01-01
An engineering model atmosphere for Mars is being developed with many of the same features and capabilities for the highly successful Global Reference Atmospheric Model (GRAM) program for Earth's atmosphere. As an initial approach, the model is being built around the Martian atmosphere model computer subroutine (ATMOS) of Culp and Stewart (1984). In a longer-term program of research, additional refinements and modifications will be included. ATMOS includes parameterizations to stimulate the effects of solar activity, seasonal variation, diurnal variation magnitude, dust storm effects, and effects due to the orbital position of Mars. One of the current shortcomings of ATMOS is the neglect of surface variation effects. The longer-term period of research and model building is to address some of these problem areas and provide further improvements in the model (including improved representation of near-surface variations, improved latitude-longitude gradient representation, effects of the large annual variation in surface pressure because of differential condensation/sublimation of the CO2 atmosphere in the polar caps, and effects of Martian atmospheric wave perturbations on the magnitude of the expected density perturbation.
Dislocation mechanisms in stressed crystals with surface effects
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team
2014-03-01
Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.
USDA-ARS?s Scientific Manuscript database
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Engineered Surfaces for Mitigation of Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.
2013-01-01
Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.
Method of making low work function component
Robinson, Vance [Niskayuna, NY; Weaver, Stanton Earl [Northville, NY; Michael, Joseph Darryl [Delmar, NY
2011-11-15
A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.
Spherical bearing. [to reduce vibration effects
NASA Technical Reports Server (NTRS)
Myers, W. N.; Hein, L. A. (Inventor)
1978-01-01
A spherical bearing including an inner ball with an opening for receiving a shaft and a spherical outer surface is described. Features of the bearing include: (1) a circular outer race including a plurality of circumferentially spaced sections extending around the inner ball for snugly receiving the inner ball; and (2) a groove extending circumferentially around the race producing a thin wall portion which permits the opposed side portions to flex relative to the ball for maximizing the physical contact between the inner surface of the race and the spherical outer surface of the ball.
Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants
NASA Astrophysics Data System (ADS)
Hou, Bao-feng; Wang, Ye-fei; Huang, Yong
2015-03-01
Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.
Land Surface Process and Air Quality Research and Applications at MSFC
NASA Technical Reports Server (NTRS)
Quattrochi, Dale; Khan, Maudood
2007-01-01
This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.
The Effect of Multiple Surface Treatments on Biological Properties of Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Parsikia, Farhang; Amini, Pupak; Asgari, Sirous
2014-09-01
In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface conditions. Based on the data obtained in this study, low-energy laser processing generally yields a better biological response. The maximum bioactivity was attained in those samples exposed to a three step treatment including low-energy laser treatment followed by grit blasting and anodizing.
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
NASA Technical Reports Server (NTRS)
Dong, D,; Gross, R.S.; Dickey, J.
1996-01-01
Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery
2011-01-01
Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.
Effect of surface hydroxyl groups on heat capacity of mesoporous silica
NASA Astrophysics Data System (ADS)
Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent
2018-05-01
This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.
Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.
Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan
2016-12-01
Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
Predicting stability of alpha-helical, orthogonal-bundle proteins on surfaces
NASA Astrophysics Data System (ADS)
Wei, Shuai; Knotts, Thomas A.
2010-09-01
The interaction of proteins with surfaces is a key phenomenon in many applications, but current understanding of the biophysics involved is lacking. At present, rational design of such emerging technologies is difficult as no methods or theories exist that correctly predict how surfaces influence protein behavior. Using molecular simulation and a coarse-grain model, this study illustrates for the first time that stability of proteins on surfaces can be correlated with tertiary structural elements for alpha-helical, orthogonal-bundle proteins. Results show that several factors contribute to stability on surfaces including the nature of the loop region where the tether is placed and the ability of the protein to freely rotate on the surface. A thermodynamic analysis demonstrates that surfaces stabilize proteins entropically and that any destabilization is an enthalpic effect. Moreover, the entropic effects are concentrated on the unfolded state of the protein while the ethalpic effects are focused on the folded state.
Haines, Sara; Gautheron, Sylviane; Nasser, William; Renauld-Mongénie, Geneviève
2015-01-01
Colonization factors (CFs) mediate early adhesion of Enterotoxigenic Escherichia coli (ETEC) in the small intestine. Environmental signals including bile, glucose, and contact with epithelial cells have previously been shown to modulate CF expression in a strain dependent manner. To identify novel components modulating CF surface expression, 20 components relevant to the intestinal environment were selected for evaluation. These included mucin, bicarbonate, norepinephrine, lincomycin, carbon sources, and cations. Effects of individual components on surface expression of the archetype CF, CFA/I, were screened using a fractional factorial Hadamard matrix incorporating 24 growth conditions. As most CFs agglutinate erythrocytes, surface expression was evaluated by mannose resistant hemagglutination. Seven components, including porcine gastric mucin, lincomycin, glutamine, and glucose were found to induce CFA/I surface expression in vitro in a minimal media while five others were inhibitory, including leucine and 1,10-phenanthroline. To further explore the effect of components positively influencing CFA/I surface expression, a response surface methodology (RSM) was designed incorporating 36 growth conditions. The optimum concentration for each component was identified, thereby generating a novel culture media, SP1, for CFA/I expression. CFs closely related to CFA/I, including CS4 and CS14 were similarly induced in SP1 media. Other epidemiologically relevant CFs were also induced when compared to the level obtained in minimal media. These results indicate that although CF surface expression is complex and highly variable among strains, the CF response can be predicted for closely related strains. A novel culture media inducing CFs in the CF5a group was successfully identified. In addition, mucin was found to positively influence CF expression in strains expressing either CFA/I or CS1 and CS3, and may function as a common environmental cue. PMID:26517723
Haines, Sara; Gautheron, Sylviane; Nasser, William; Renauld-Mongénie, Geneviève
2015-01-01
Colonization factors (CFs) mediate early adhesion of Enterotoxigenic Escherichia coli (ETEC) in the small intestine. Environmental signals including bile, glucose, and contact with epithelial cells have previously been shown to modulate CF expression in a strain dependent manner. To identify novel components modulating CF surface expression, 20 components relevant to the intestinal environment were selected for evaluation. These included mucin, bicarbonate, norepinephrine, lincomycin, carbon sources, and cations. Effects of individual components on surface expression of the archetype CF, CFA/I, were screened using a fractional factorial Hadamard matrix incorporating 24 growth conditions. As most CFs agglutinate erythrocytes, surface expression was evaluated by mannose resistant hemagglutination. Seven components, including porcine gastric mucin, lincomycin, glutamine, and glucose were found to induce CFA/I surface expression in vitro in a minimal media while five others were inhibitory, including leucine and 1,10-phenanthroline. To further explore the effect of components positively influencing CFA/I surface expression, a response surface methodology (RSM) was designed incorporating 36 growth conditions. The optimum concentration for each component was identified, thereby generating a novel culture media, SP1, for CFA/I expression. CFs closely related to CFA/I, including CS4 and CS14 were similarly induced in SP1 media. Other epidemiologically relevant CFs were also induced when compared to the level obtained in minimal media. These results indicate that although CF surface expression is complex and highly variable among strains, the CF response can be predicted for closely related strains. A novel culture media inducing CFs in the CF5a group was successfully identified. In addition, mucin was found to positively influence CF expression in strains expressing either CFA/I or CS1 and CS3, and may function as a common environmental cue.
Multilayer Relaxation and Surface Energies of Metallic Surfaces
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John
1994-01-01
The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Sitz
2011-08-12
The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Storch, J.
1978-01-01
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
Modeling electron emission and surface effects from diamond cathodes
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.
2015-02-01
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.
Contamination and Surface Preparation Effects on Composite Bonding
NASA Technical Reports Server (NTRS)
Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.
2017-01-01
Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.
Technical product bulletin: this surface washing agent is most effective on hydrocarbon and bio-organic soiling on hard surfaces including beaches, shorelines, and rocks; specifically to aid in the removal of oil and oil saturated soiling.
Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.
2012-12-01
Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.
Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds
2012-09-30
almost complete decoupling of the wind field from the sea surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent Air-Sea Surface Fluxes
Specification for a surface-search radar-detection-range model
NASA Astrophysics Data System (ADS)
Hattan, Claude P.
1990-09-01
A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.
A review on the effects of different parameters on contact heat transfer
NASA Astrophysics Data System (ADS)
Abdollahi, H.; Shahraki, S.; Motahari-Nezhad, M.
2017-07-01
In this paper, a complete literature review for thermal contact between fixed and periodic contacting surfaces and also thermal contact between exhaust valve and its seat in internal combustion engines is presented. Furthermore, the effects of some parameters such as contact pressure, contact frequency, the contacting surfaces topography and roughness, curvature radius of surfaces, loading-unloading cycles, gas gap conductance and properties, interface interstitial material properties, surfaces coatings and surfaces temperature on thermal contact conductance are investigated according to the papers presented in this field. The reviewed papers and studies included theoretical/ analytical/experimental and numerical studies on thermal contact conductance. In studying the thermal contact between exhaust valve and its seat, most of the experimental studies include two axial rods as the exhaust valve, and seat and the one ends of both rods are considered at constant and different temperatures. In the experimental methods, the temperatures of multi-points on rods are measured in different conditions, and thermal contact conductance is estimated using them.
WNDCOM: estimating surface winds in mountainous terrain
Bill C. Ryan
1983-01-01
WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...
Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures
NASA Technical Reports Server (NTRS)
Bertram, Mitchel H.; Blackstock, Thomas A.
1961-01-01
Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors.
Surface analysis of graphite fiber reinforced polyimide composites
NASA Technical Reports Server (NTRS)
Messick, D. L.; Progar, D. J.; Wightman, J. P.
1983-01-01
Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.
NASA Astrophysics Data System (ADS)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold
NASA Technical Reports Server (NTRS)
Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.
2005-01-01
Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.
Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Labukas, Joseph P.; Roberts, Anthony J.; Darling, Kristopher A.
2017-07-01
Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...
2017-12-04
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
Liouville master equation for multi-electron dynamics during ion-surface interactions
NASA Astrophysics Data System (ADS)
Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.
2003-05-01
We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.
Pump station for radioactive waste water
Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.
2003-11-18
A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.
NASA Astrophysics Data System (ADS)
Covarrubias, Ernesto E.; Eshraghi, Mohsen
2018-03-01
Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Revisiting the pole tide for and from satellite altimetry
NASA Astrophysics Data System (ADS)
Desai, Shailen; Wahr, John; Beckley, Brian
2015-12-01
Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
Model dielectric function for 2D semiconductors including substrate screening
NASA Astrophysics Data System (ADS)
Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie
2017-01-01
Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN.
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.
2016-10-01
A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.
Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.
2016-01-01
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875
Whole surface image reconstruction for machine vision inspection of fruit
NASA Astrophysics Data System (ADS)
Reese, D. Y.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M.
2007-09-01
Automated imaging systems offer the potential to inspect the quality and safety of fruits and vegetables consumed by the public. Current automated inspection systems allow fruit such as apples to be sorted for quality issues including color and size by looking at a portion of the surface of each fruit. However, to inspect for defects and contamination, the whole surface of each fruit must be imaged. The goal of this project was to develop an effective and economical method for whole surface imaging of apples using mirrors and a single camera. Challenges include mapping the concave stem and calyx regions. To allow the entire surface of an apple to be imaged, apples were suspended or rolled above the mirrors using two parallel music wires. A camera above the apples captured 90 images per sec (640 by 480 pixels). Single or multiple flat or concave mirrors were mounted around the apple in various configurations to maximize surface imaging. Data suggest that the use of two flat mirrors provides inadequate coverage of a fruit but using two parabolic concave mirrors allows the entire surface to be mapped. Parabolic concave mirrors magnify images, which results in greater pixel resolution and reduced distortion. This result suggests that a single camera with two parabolic concave mirrors can be a cost-effective method for whole surface imaging.
Amplification Factors for Spectral Acceleration Using Borehole Seismic Array in Taiwan
NASA Astrophysics Data System (ADS)
Lai, T. S.; Yih-Min, W.; Chao, W. A.; Chang, C. H.
2017-12-01
In order to reduce the noise from surface to get the high-quality seismic recordings, there are 54 borehole seismic arrays have been installed in Taiwan deployed by Central Weather Bureau (CWB) until the end of 2016. Each array includes two force balance accelerometers, one at the surface and other inside the borehole, as well as one broadband seismometer inside the borehole. The downhole instruments are placed at a depth between 120 and 400 m. The background noise level are lower at the borehole stations, but the amplitudes recorded by borehole stations are smaller than surface stations for the same earthquake due to the different geology conditions. Therefore, the earthquake magnitude estimated by borehole station is smaller than surface station. So far, CWB only use the surface stations in the magnitude determination due to this situation. In this study, we investigate the site effects between surface and downhole for borehole seismic arrays. Using the spectral ratio derived by the two-station spectral method as the transfer function, simulated the waveform recorded by borehole stations to the surface stations. In the future, through the transfer function, the borehole stations will be included in the estimation of earthquake magnitude and the results of amplification factors can provide the information of near-surface site effects for the ground motion simulation applications.
Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise
NASA Technical Reports Server (NTRS)
Zorumski, W. E. (Editor); Weir, D. S. (Editor)
1986-01-01
The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
Surface atmospheric extremes (Launch and transportation areas)
NASA Technical Reports Server (NTRS)
1972-01-01
The effects of extreme values of surface and low altitude atmospheric parameters on space vehicle design, tests, and operations are discussed. Atmospheric extremes from the surface to 150 meters for geographic locations of interest to NASA are given. Thermal parameters (temperature and solar radiation), humidity, pressure, and atmospheric electricity (lighting and static) are presented. Weather charts and tables are included.
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989
NASA Astrophysics Data System (ADS)
Stover, John C.
Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.
Modeling electron emission and surface effects from diamond cathodes
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...
2015-02-05
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less
Nanoengineered field induced charge separation membranes manufacture thereof
O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary
2016-08-02
A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.
Collins, Dannie L.; Flynn, Kathleen M.
1979-01-01
This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)
On predicting receptivity to surface roughness in a compressible infinite swept wing boundary layer
NASA Astrophysics Data System (ADS)
Thomas, Christian; Mughal, Shahid; Ashworth, Richard
2017-03-01
The receptivity of crossflow disturbances on an infinite swept wing is investigated using solutions of the adjoint linearised Navier-Stokes equations. The adjoint based method for predicting the magnitude of stationary disturbances generated by randomly distributed surface roughness is described, with the analysis extended to include both surface curvature and compressible flow effects. Receptivity is predicted for a broad spectrum of spanwise wavenumbers, variable freestream Reynolds numbers, and subsonic Mach numbers. Curvature is found to play a significant role in the receptivity calculations, while compressible flow effects are only found to marginally affect the initial size of the crossflow instability. A Monte Carlo type analysis is undertaken to establish the mean amplitude and variance of crossflow disturbances generated by the randomly distributed surface roughness. Mean amplitudes are determined for a range of flow parameters that are maximised for roughness distributions containing a broad spectrum of roughness wavelengths, including those that are most effective in generating stationary crossflow disturbances. A control mechanism is then developed where the short scale roughness wavelengths are damped, leading to significant reductions in the receptivity amplitude.
Cell-based Metabolomics for Monitoring Ecological Impacts of Environmental Surface Waters
Numerous surface waters are adversely impacted by contaminants released from sources such as WWfPs, CAFOs, mining activities, and agricultural operations. Ideally, an assessment strategy for these applications would include both chemical identification and effects-based monitorin...
Effect of gaseous ammonia on nicotine sorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, A.M.; Singer, B.C.; Nazaroff, W.W.
2002-06-01
Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experimentsmore » was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.« less
Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei
2014-01-01
Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
The effect of row structure on soil moisture retrieval accuracy from passive microwave data.
Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding
2014-01-01
Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.
Flap noise measurements for STOL configurations using external upper surface blowing
NASA Technical Reports Server (NTRS)
Dorsch, R. G.; Reshotko, M.; Olsen, W. A.
1972-01-01
Screening tests of upper surface blowing on externally blown flaps configurations were conducted. Noise and turning effectiveness data were obtained with small-scale, engine-over-the-wing models. One large model was tested to determine scale effects. Nozzle types included circular, slot, D-shaped, and multilobed. Tests were made with and without flow attachment devices. For STOL applications the particular multilobed mixer and the D-shaped nozzles tested were found to offer little or no noise advantage over the round convergent nozzle. High aspect ratio slot nozzles provided the quietest configurations. In general, upper surface blowing was quieter than lower surface blowing for equivalent EBF models.
An evaluation of Orbital Workshop passive thermal control surfaces
NASA Technical Reports Server (NTRS)
Daniels, D. J.; Kawano, P. I.; Sieker, W. D.; Walters, D. E.; Witherspoon, G. F.; Grunditz, D. W.
1974-01-01
The optical properties of selected Orbital Workshop thermal control surfaces are discussed from the time of their installation through the end of the Skylab missions. The surfaces considered are the goldized Kapton tape on the habitation area sidewall, the S-13G white paint on the Workshop aft skirt, and the multilayer insulation system on the forward dome of the habitation area. A quantitative assessment of the effects of exposure to the ascent and orbital environments is made including the effects of rocket exhaust plume contamination. Although optical property degradation of the external surfaces was noted, satisfactory thermal performance was maintained throughout the Skylab missions.
A noncoherent model for microwave emissions and backscattering from the sea surface
NASA Technical Reports Server (NTRS)
Wu, S. T.; Fung, A. K.
1973-01-01
The two-scale (small irregularities superimposed upon large undulations) scattering theory proposed by Semyonov was extended and used to compute microwave apparent temperature and the backscattering cross section from ocean surfaces. The effect of the small irregularities upon the scattering characteristics of the large undulations is included by modifying the Fresnel reflection coefficients; whereas the effect of the large undulations upon those of the small irregularities is taken into account by averaging over the surface normals of the large undulations. The same set of surface parameters is employed for a given wind speed to predict both the scattering and the emission characteristics at both polarizations.
Metal catalyst technique for texturing silicon solar cells
Ruby, Douglas S.; Zaidi, Saleem H.
2001-01-01
Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afrin, Samia; Dagdelen, John; Ma, Zhiwen
Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less
Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief.
Han, Jennifer H; Sullivan, Nancy; Leas, Brian F; Pegues, David A; Kaczmarek, Janice L; Umscheid, Craig A
2015-10-20
The cleaning of hard surfaces in hospital rooms is critical for reducing health care-associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycin-resistant enterococci were included. Eighty studies were identified-76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods.
Cleaning Hospital Room Surfaces to Prevent Health Care–Associated Infections
Han, Jennifer H.; Sullivan, Nancy; Leas, Brian F.; Pegues, David A.; Kaczmarek, Janice L.; Umscheid, Craig A.
2015-01-01
The cleaning of hard surfaces in hospital rooms is critical for reducing health care–associated infections. This review describes the evidence examining current methods of cleaning, disinfecting, and monitoring cleanliness of patient rooms, as well as contextual factors that may affect implementation and effectiveness. Key informants were interviewed, and a systematic search for publications since 1990 was done with the use of several bibliographic and gray literature resources. Studies examining surface contamination, colonization, or infection with Clostridium difficile, methicillin-resistant Staphylococcus aureus, or vancomycinresistant enterococci were included. Eighty studies were identified—76 primary studies and 4 systematic reviews. Forty-nine studies examined cleaning methods, 14 evaluated monitoring strategies, and 17 addressed challenges or facilitators to implementation. Only 5 studies were randomized, controlled trials, and surface contamination was the most commonly assessed outcome. Comparative effectiveness studies of disinfecting methods and monitoring strategies were uncommon. Future research should evaluate and compare newly emerging strategies, such as self-disinfecting coatings for disinfecting and adenosine triphosphate and ultraviolet/fluorescent surface markers for monitoring. Studies should also assess patient-centered outcomes, such as infection, when possible. Other challenges include identifying high-touch surfaces that confer the greatest risk for pathogen transmission; developing standard thresholds for defining cleanliness; and using methods to adjust for confounders, such as hand hygiene, when examining the effect of disinfecting methods. PMID:26258903
NASA Astrophysics Data System (ADS)
Mahalov, M. S.; Blumenstein, V. Yu
2017-10-01
The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.
Triplex molecular layers with nonlinear nanomechanical response
NASA Astrophysics Data System (ADS)
Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.
2002-06-01
The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.
High frequency acoustic propagation under variable sea surfaces
NASA Astrophysics Data System (ADS)
Senne, Joseph
This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.
40 CFR 270.4 - Effect of a permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regarding leak detection systems for new and replacement surface impoundment, waste pile, and landfill units, and lateral expansions of surface impoundment, waste pile, and landfill units. The leak detection system requirements include double liners, CQA programs, monitoring, action leakage rates, and response...
Susca, Tiziana
2012-04-01
Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
Latent fingermark visualisation using reduced-pressure sublimation of copper phthalocyanine.
Williams, Geraint; ap Llwyd Dafydd, Hefin; Watts, Alun; McMurray, Neil
2011-01-30
The sublimation of copper phthalocyanine (CuPc) at a temperature of 400°C under conditions of reduced pressure is shown to be an effective method of developing latent fingermarks on certain types of surface. Preliminary experiments on a limited selection of surfaces including paper, plastic and ceramic tiles were carried out using a simple apparatus consisting of a vacuum desiccator and a resistive heater. CuPc from the gas phase condenses preferentially on fingermark deposits, revealing deep blue patterns with excellent ridge detail clarity on light coloured surfaces. The technique is shown to be most effective on porous surfaces such as paper, but relatively ineffective on non-porous ceramic and plastic surfaces. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Surface texture measurement for additive manufacturing
NASA Astrophysics Data System (ADS)
Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.
2015-06-01
The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.
Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.
Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min
2017-12-01
The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Swanson, Stephen Mark
1990-01-01
The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.
Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin
2014-01-01
The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369
NASA Astrophysics Data System (ADS)
Schailey, Ronald
1999-11-01
Chemisorption properties of cesium and hydrogen atoms on the Ga-rich GaAs (100) (2 x 1), (2 x 2), and β(4 x 2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree-Fock (ROHF) total energy calculations with Hay- Wadt effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order, with the exception of β(4 x 2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface relaxation and reconstruction have been investigated in detail. Results are given for the energetics of chemisorption, charge population analysis, HOMO-LUMO gaps, and consequent possibilities of metallization for atomic cesium adsorption. For the chemisorption of atomic hydrogen, the experimentally verified mechanism of surface dimer bond breaking is investigated in detail.
The tunable wettability in multistimuli-responsive smart graphene surfaces
NASA Astrophysics Data System (ADS)
Wan, Shanhong; Pu, Jibin; Zhang, Xiaoqian; Wang, Liping; Xue, Qunji
2013-01-01
The tunable wettability of smart graphene films onto stainless steel substrates with a multi-response to different environmental stimuli has been investigated including light irradiation, pH, electric field, and annealing temperature. Conductive graphene film exhibited the controllable transition from water-repellent to water-loving characteristic in response to different environment fields, which primarily resulted from the morpho-chemically synergistic effect as well as the restoration of electronic stucture. Based on the fundamental theories of wettability, mechanisms in switching from hydrophobicity to hydrophilicity for smart graphene surface including thermal chemistry, electrostatic, photo-induced surface chemistry, solvent, and pH methods were presented.
Tranquille, C A; Walker, V A; Hernlund, E; Egenvall, A; Roepstorff, L; Peterson, M L; Murray, R C
2015-01-01
A recent epidemiological study identified various aspects of arena surfaces and arena surface maintenance that were related to risk of injury in horses and that arena maintenance is important in reducing injury risk. However, there has been little research into how properties of arena surfaces change with harrowing. This study aimed to compare the properties of different arena surface types pre- and post-harrowing. The Orono Biomechanical Surface Tester fitted with accelerometers and a single- and a three-axis load cell was used to test 11 arenas with two different surfaces types, sand with rubber (SR) and waxed-sand with fibre (WSF). Three drop tests were carried out at 10 standardised locations on each arena. Mixed models were created to assess the effect of surface type, pre- or post-harrowing, and drop number on the properties of the surface, including maximum horizontal deceleration, maximum vertical deceleration, maximum vertical load and maximum horizontal load. Post-harrowing, none of the parameters were altered significantly on SR. On WSF, maximum vertical deceleration and maximum vertical load significantly decreased post-harrowing. The differences in the effects of superficial harrowing on SR and WSF could be attributed to the different compositions and sizes of the surface material. The results suggest that different maintenance techniques may be more suitable for different surface types and that the effects of superficial harrowing are short-lived due to the rapid re-compaction of the surface with repeated drops on WSF. Further work is required to determine the effects of other maintenance techniques, and on other surface types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening
NASA Astrophysics Data System (ADS)
Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.
2018-02-01
45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.
Cho, Eun Chul; Au, Leslie; Zhang, Qiang; Xia, Younan
2010-01-01
In this study, we examined the effects of size, shape, and surface chemistry of gold nanostructures on their uptake (including both adsorption and internalization) by SK-BR-3 breast cancer cells. We used both spherical and cubic Au nanostructures (nanospheres and nanocages, respectively) of two different sizes, and their surface was modified with poly(ethylene glycol) (PEG), antibody anti-HER2, or poly(allyamine hydrochloride) (PAA). Our results showed that the size of the Au nanostructures influenced their uptake by the cells in a similar way regardless of the surface chemistry, while the shape dependency could vary depending on the surface functional group. In addition, the cells preferred to take up the Au nanostructures covered by different surface groups in the following order: PAA>> anti-HER2> PEG. The fraction of Au nanostructures attached to the cell surface was also dependent on the aforementioned parameters. PMID:20029850
Xian, George
2008-01-01
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.
NASA Astrophysics Data System (ADS)
Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Zhao, Jing
2018-04-01
In this paper, the surface energy effect on the nonlinear buckling and postbuckling behavior of functionally graded piezoelectric (FGP) cylindrical nanoshells subjected to lateral pressure is studied based on the electro-elastic surface/interface theory together with von-Kármán-Donnell-type kinematics of nonlinearity. The total strain energy of the FGP nanoshell, including surface energy, is derived by considering the constitutive formulations of surface phase. The principle of minimum potential energy is utilized to establish the nonlinear governing differential equations, and the singular perturbation technique is employed to obtain the asymptotic solutions. Then, two sets of comparison are conducted to validate the present work, and some numerical examples are given to study the effects of surface parameters, power law index and aspect ratio on the buckling and postbuckling behavior of FGP nanoshells. The results show that the critical buckling load and postbuckling path of FGP nanoshell are significantly size-dependent.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions
NASA Technical Reports Server (NTRS)
Favaregh, Noah M.
2010-01-01
The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.
Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts
2013-09-30
proof-of-concept results comparing a BHM surface wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional...Surface Momentum Flux Ensembles from Summaries of BHM Winds (Mediterranean) include ocean current effect Td...Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of interest : squares indicate spatial locations where
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Tweed, M; Tweed, C; Perkins, G D
2001-11-01
External chest compression (ECC) efficacy is influenced by factors including the surface supporting the patient. Air-filled support surfaces are deflated for cardiopulmonary resuscitation, with little evidence to substantiate this. We investigated the effect that differing support surfaces had on ECC efficacy using a CPR manikin model. Four participants carried out four cycles of ECC with an assistant ventilating. The subjects were blinded to the seven support surfaces and the order was randomised. For each participant/surface combination, ECC variables and the participants' perceptions were measured. Participants produced effective ECC with the manikin on the floor (mean proportion correct, 94.5%; mean depth, 42.5 mm). Compared with the floor: the proportion of correct ECC was less for the overlay inflated (P<0.05); the depth of ECC was less effective (30-37 mm) for the overlay inflated/deflated and low-air-loss inflated and foam mattresses (P<0.05). The foam mattress, overlay inflated/deflated, and low-air-loss inflated were perceived as being less stable and as having reduced ECC efficacy compared with the floor. There was no difference or agreement, regarding subjects' perceptions or ECC variables, between the support surfaces or between inflated/deflated air-filled support surfaces. The efficacy of ECC is affected by the support surfaces. There seems little evidence to substantiate deflating all air-filled support surfaces for CPR.
NASA Technical Reports Server (NTRS)
Smith, J. R.
1969-01-01
Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.
Effects of visual feedback with a mirror on balance ability in patients with stroke.
In, Tae-Sung; Cha, Yu-Ri; Jung, Jin-Hwa; Jung, Kyoung-Sim
2016-01-01
[Purpose] This study aimed to examine the effects of a visual feedback obtained from a mirror on balance ability during quiet standing in patients with stroke. [Subjects] Fifteen patients with stroke (9 males, 6 females) enrolled in the study. [Methods] Experimental trials (duration, 20s) included three visual conditions (eyes closed, eyes open, and mirror feedback) and two support surface conditions (stable, and unstable). Center of pressure (COP) displacements in the mediolateral and anteroposterior directions were recorded using a force platform. [Results] No effect of condition was observed along all directions on the stable surface. An effect of condition was observed on the unstable surface, with a smaller mediolateral COP distance in the mirror feedback as compared to the other two conditions. Similar results were observed for the COP speed. [Conclusion] Visual feedback from a mirror is beneficial for improving balance ability during quiet standing on an unstable surface in patients with stroke.
Climatology (communication arising): rural land-use change and climate.
Trenberth, Kevin E
2004-01-15
Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.
Climatology (communication arising): Rural land-use change and climate
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2004-01-01
Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.
Microgravity: Teacher's guide with activities for physical science
NASA Technical Reports Server (NTRS)
Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)
1995-01-01
This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.
The effect of finite field size on classification and atmospheric correction
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1981-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.
SW radiative effect of aerosol in GRAPES_GFS
NASA Astrophysics Data System (ADS)
Chen, Qiying
2017-04-01
The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.
Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2009-01-01
This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.
Hydrodynamic skin-friction reduction
NASA Technical Reports Server (NTRS)
Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)
1989-01-01
A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body; a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid; water, with the surface of the body; and the hull of the marine vehicle.
NASA Technical Reports Server (NTRS)
Maskew, B.
1976-01-01
A discrete singularity method has been developed for calculating the potential flow around two-dimensional airfoils. The objective was to calculate velocities at any arbitrary point in the flow field, including points that approach the airfoil surface. That objective was achieved and is demonstrated here on a Joukowski airfoil. The method used combined vortices and sources ''submerged'' a small distance below the airfoil surface and incorporated a near-field subvortex technique developed earlier. When a velocity calculation point approached the airfoil surface, the number of discrete singularities effectively increased (but only locally) to keep the point just outside the error region of the submerged singularity discretization. The method could be extended to three dimensions, and should improve nonlinear methods, which calculate interference effects between multiple wings, and which include the effects of force-free trailing vortex sheets. The capability demonstrated here would extend the scope of such calculations to allow the close approach of wings and vortex sheets (or vortices).
Turbulent Flow past High Temperature Surfaces
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
Borodkina, I.; Borodin, D.; Brezinsek, S.; ...
2017-04-12
For simulation of plasma-facing component erosion in fusion experiments, an analytical expression for the ion velocity just before the surface impact including the local electric field and an optional surface biasing effect is suggested. Energy and angular impact distributions and the resulting effective sputtering yields were produced for several experimental scenarios at JET ILW mostly involving PFCs exposed to an oblique magnetic field. The analytic solution has been applied as an improvement to earlier ERO modelling of localized, Be outer limiter, RF-enhanced erosion, modulated by toggling of a remote, however magnetically connected ICRH antenna. The effective W sputtering yields duemore » to D and Be ion impact in Type-I and Type-III ELMs and inter-ELM conditions were also estimated using the analytical approach and benchmarked by spectroscopy. The intra-ELM W sputtering flux increases almost 10 times in comparison to the inter-ELM flux.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Composite materials are discussed with emphasis on the identification of the characteristics of those materials that make them attractive for use in surface transportation. Potential uses of graphite composites are given including automotive applications and the effects of materials substitution on vehicle characteristics and performance. Preliminary estimates of the economic effects of the use of graphite composite materials on vehicle manufacturers and consumers are included. The combined impact on the national economy of vehicle design changes to meet mandated fuel efficiency requirements and the extensive use of graphite composite materials in the automotive industry is considered.
Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin.
Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A
2014-01-01
Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet-visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA's AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs' total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA's glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia.
Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin
Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A
2014-01-01
Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. PMID:25473284
Heterogeneous catalysis with lasers
NASA Astrophysics Data System (ADS)
George, T. F.
1986-06-01
Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.
1993-01-01
Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.
Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo
NASA Technical Reports Server (NTRS)
Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.
1994-01-01
The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.
Viscous theory of surface noise interaction phenomena
NASA Technical Reports Server (NTRS)
Yates, J. E.
1980-01-01
A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.
Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces
Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.
2013-01-01
Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997
Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2017-11-01
One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.
On the reduction of splash-back
NASA Astrophysics Data System (ADS)
Dickerson, Andrew; Stephen, Jeremy
2017-11-01
The reduction of splash height following the impact of a solid body on a liquid surface is relevant to multiple sectors including military missile entry, industrial processing, and visits to public restrooms. While most studies have viewed splashes in the context of control of impactor shape and surface properties, we here consider the effects of splash height following modification of a liquid surface by surfactants and thin fabrics. Smooth, hydrophilic, free-falling spheres are allowed to impact a quiescent liquid surface of modified surface conditions while filmed with a high-speed camera. We measure splash heights and cavity depths formed by impacting spheres across Froude numbers 3 - 6.5. As expected, lowering the surface tension of the liquid increased splash height with respect to pure water. The introduction of fabric to the surface has an more unpredictable effect. With respect to unaltered impact conditions, ample inclusion of fabric on the surface reduces splash height, while a meager amount of fabric amplifies splashing due to the augmentation of cavity formation preceding a Worthington jet.
Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung
2014-06-01
Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling moieties. Copyright © 2014 Elsevier B.V. All rights reserved.
Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...
2015-10-19
Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
40 CFR 270.14 - Contents of part B: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... strata, surface water, or air, which may include the installation of wells, where the Director ascertains... water supplies; (iv) Mitigate effects of equipment failure and power outages; (v) Prevent undue exposure... contour interval must be sufficient to clearly show the pattern of surface water flow in the vicinity of...
NASA Astrophysics Data System (ADS)
Chung, Juyeon; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun
2015-11-01
We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area {C}_{E wet} for an underlying wet street surface of dry block arrays show a convex trend against the block density λ _p. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of {C}_{E wet} with increasing λ _p is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas {C}_{E lot} for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of {C}_{E wet} for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar {B}^{-1} were calculated from observational data. The result implies that {B}^{-1} possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.
Spradley, Jackson P; Pampush, James D; Morse, Paul E; Kay, Richard F
2017-05-01
Dirichlet normal energy (DNE) is a metric of surface topography that has been used to evaluate the relationship between the surface complexity of primate cheek teeth and dietary categories. This study examines the effects of different 3D mesh retriangulation protocols on DNE. We examine how different protocols influence the DNE of a simple geometric shape-a hemisphere-to gain a more thorough understanding than can be achieved by investigating a complex biological surface such as a tooth crown. We calculate DNE on 3D surface meshes of hemispheres and on primate molars subjected to various retriangulation protocols, including smoothing algorithms, smoothing amounts, target face counts, and criteria for boundary face exclusion. Software used includes R, MorphoTester, Avizo, and MeshLab. DNE was calculated using the R package "molaR." In all cases, smoothing as performed in Avizo sharply decreases DNE initially, after which DNE becomes stable. Using a broader boundary exclusion criterion or performing additional smoothing (using "mesh fairing" methods) further decreases DNE. Increasing the mesh face count also results in increased DNE on tooth surfaces. Different retriangulation protocols yield different DNE values for the same surfaces, and should not be combined in meta-analyses. Increasing face count will capture surface microfeatures, but at the expense of computational speed. More aggressive smoothing is more likely to alter the essential geometry of the surface. A protocol is proposed that limits potential artifacts created during surface production while preserving pertinent features on the occlusal surface. © 2017 Wiley Periodicals, Inc.
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
Ground Motion Synthetics For Spontaneous Versus Prescribed Rupture On A 45(o) Thrust Fault
NASA Astrophysics Data System (ADS)
Gottschämmer, E.; Olsen, K. B.
We have compared prescribed (kinematic) and spontaneous dynamic rupture propaga- tion on a 45(o) dipping thrust fault buried up to 5 km in a half-space model, as well as ground motions on the free surface for frequencies less than 1 Hz. The computa- tions are carried out using a 3D finite-difference method with rate-and-state friction on a planar, 20 km by 20 km fault. We use a slip-weakening distance of 15 cm and a slip- velocity weakening distance of 9.2 cm/s, similar to those for the dynamic study for the 1994 M6.7 Northridge earthquake by Nielsen and Olsen (2000) which generated satis- factory fits to selected strong motion data in the San Fernando Valley. The prescribed rupture propagation was designed to mimic that of the dynamic simulation at depth in order to isolate the dynamic free-surface effects. In this way, the results reflect the dy- namic (normal-stress) interaction with the free surface for various depths of burial of the fault. We find that the moment, peak slip and peak sliprate for the rupture breaking the surface are increased by up to 60%, 80%, and 10%, respectively, compared to the values for the scenario buried 5 km. The inclusion of these effects increases the peak displacements and velocities above the fault by factors up 3.4 and 2.9 including the increase in moment due to normal-stress effects at the free surface, and up to 2.1 and 2.0 when scaled to a Northridge-size event with surface rupture. Similar differences were found by Aagaard et al. (2001). Significant dynamic effects on the ground mo- tions include earlier arrival times caused by super-shear rupture velocities (break-out phases), in agreement with the dynamic finite-element simulations by Oglesby et al. (1998, 2000). The presence of shallow low-velocity layers tend to increase the rup- ture time and the sliprate. In particular, they promote earlier transitions to super-shear velocities and decrease the rupture velocity within the layers. Our results suggest that dynamic interaction with the free surface can significantly affect the ground motion for faults buried less than 1-3 km. We therefore recommend that strong ground motion for these scenarios be computed including such dynamic rupture effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio
2002-05-01
This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Cline, Jason; Braunstein, Matthew; Minton, Timothy
2003-01-01
Contents include the following: 1. SS calculations show multi-collision effect can affect both downstream measurements and flux at surface. 2. Pulsed calculations at nominal source fluxes show that the flux to the surface is close to that expected from theory, but more information is needed. 3. Pulsed calculations needed more resolution to determine whether downstream flux correction is necessary. 4. Higher pulsed fluxes should show multi-collision effects more clearly.
Heterogenous Material Integration and Band Engineering With Type II Superlattice
2015-10-26
tunneling or surface effects. A careful variable area diode study is needed to investigate the effect of surfaces in this low temperature regime. In the mid...theoretically predicted advantages of T2SL over bulk MCT detectors, including lower tunneling currents [1] and suppressed Auger recombination rates [2...The tunneling currents are also reduced due to significant reduction in field drop. Thus the device can be made diffusion limited over wide range of
Quality-control design for surface-water sampling in the National Water-Quality Network
Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.
2018-04-10
The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.
Space Environment Effects on Materials : An Overview
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
2006-01-01
A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.
Phase transition detection by surface photo charge effect in liquid crystals
NASA Astrophysics Data System (ADS)
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
Morphology of meteoroid and space debris craters on LDEF metal targets
NASA Technical Reports Server (NTRS)
Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.
1994-01-01
We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.
The salinity effect in a mixed layer ocean model
NASA Technical Reports Server (NTRS)
Miller, J. R.
1976-01-01
A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.
Surface Adsorption in Nonpolarizable Atomic Models.
Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J
2014-12-09
Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.
Lee, Wen-Hsi; Wang, Chun-Chieh
2010-02-01
In this study, the effect of surface energy and roughness of the nanocomposite gate dielectric on pentacene morphology and electrical properties of pentacene OTFT are reported. Nanoparticles TiO2 were added in the polyimide matrix to form a nanocomposite which has a significantly different surface characteristic from polyimide, leading to a discrepancy in the structural properties of pentacene growth. A growth mode of pentacene deposited on the nanocomposite is proposed to explain successfully the effect of surface properties of nanocomposite gate dielectric such as surface energy and roughness on the pentacene morphology and electrical properties of OTFT. To obtain the lower surface energy and smoother surface of nanocomposite gate dielectric that is responsible for the desired crystalline, microstructure of pentacene and electrical properties of device, a bottom contact OTFT-pentacene deposited on the double-layer nanocomposite gate dielectric consisting of top smoothing layer of the neat polyimide and bottom layer of (PI+ nano-TiO2 particles) nanocomposite has been successfully demonstrated to exhibit very promising performance including high current on to off ratio of about 6 x 10(5), threshold voltage of -10 V and moderately high filed mobility of 0.15 cm2V(-1)s(-1).
Confirmation of saturation equilibrium conditions in crater populations
NASA Technical Reports Server (NTRS)
Hartmann, William K.; Gaskell, Robert W.
1993-01-01
We have continued work on realistic numerical models of cratered surfaces, as first reported at last year's LPSC. We confirm the saturation equilibrium level with a new, independent test. One of us has developed a realistic computer simulation of a cratered surface. The model starts with a smooth surface or fractal topography, and adds primary craters according to the cumulative power law with exponent -1.83, as observed on lunar maria and Martian plains. Each crater has an ejecta blanket with the volume of the crater, feathering out to a distance of 4 crater radii. We use the model to test the levels of saturation equilibrium reached in naturally occurring systems, by increasing crater density and observing its dependence on various parameters. In particular, we have tested to see if these artificial systems reach the level found by Hartmann on heavily cratered planetary surfaces, hypothesized to be the natural saturation equilibrium level. This year's work gives the first results of a crater population that includes secondaries. Our model 'Gaskell-4' (September, 1992) includes primaries as described above, but also includes a secondary population, defined by exponent -4. We allowed the largest secondary from each primary to be 0.10 times the size of the primary. These parameters will be changed to test their effects in future models. The model gives realistic images of a cratered surface although it appears richer in secondaries than real surfaces are. The effect of running the model toward saturation gives interesting results for the diameter distribution. Our most heavily cratered surface had the input number of primary craters reach about 0.65 times the hypothesized saturation equilibrium, but the input number rises to more than 100 times that level for secondaries below 1.4 km in size.
A CCIR aeronautical mobile satellite report
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.
1989-01-01
Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.
Optical microtopographic inspection of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.
2017-08-01
Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.
Solid rocket booster thermal radiation model, volume 1
NASA Technical Reports Server (NTRS)
Watson, G. H.; Lee, A. L.
1976-01-01
A solid rocket booster (SRB) thermal radiation model, capable of defining the influence of the plume flowfield structure on the magnitude and distribution of thermal radiation leaving the plume, was prepared and documented. Radiant heating rates may be calculated for a single SRB plume or for the dual SRB plumes astride the space shuttle. The plumes may be gimbaled in the yaw and pitch planes. Space shuttle surface geometries are simulated with combinations of quadric surfaces. The effect of surface shading is included. The computer program also has the capability to calculate view factors between the SRB plumes and space shuttle surfaces as well as surface-to-surface view factors.
NASA Astrophysics Data System (ADS)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
NASA Astrophysics Data System (ADS)
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces
NASA Technical Reports Server (NTRS)
Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.
1992-01-01
Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.
NASA Astrophysics Data System (ADS)
Wang, Wenjun; Li, Peng; Jin, Feng
2018-04-01
Based on Hamilton’s principle and Mindlin plate theory, a series of 2D equations to describe the mechanical behaviors of magneto-electro-elastic (MEE) laminated nanoplates, is established for the first time with consideration of flexoelectricity and surface effect. The equations derived are general, which not only can be reduced to the corresponding piezoelectric, piezomagnetic, and elastic cases, but can also be degenerated to the classical higher-order plate theory of conventional macroscopic MEE laminates if flexoelectricity and surface effect are neglected. As the typical application, a flexoelectric magnetic energy nanoharvester array with surface effect, consisting of a giant magnetostrictive material Terfenol-D with a nonlinear magneto-thermo-mechanical coupling constitutive relation and a linear piezoelectric layer PZT-4, is investigated systematically under coupled extensional and flexural deformations. After the correctness is confirmed, an important performance index (i.e. output current) of the harvester is discussed for different conditions, including flexoelectricity, surface effect, and nonlinear magneto-mechanical coupling. It has been revealed that flexoelectricity, surface effect, external magnetic field, and pre-stress can dramatically improve the performance of characteristics such as resonant frequencies, bandwidth, and output current of the nanoharvester. Especially, a critical thickness corresponding to the flexoelectricity or surface effect is proposed, below which the size-dependent effect is obvious and must be considered. The current work can be viewed as an innovative theoretical tool for evaluating the size-dependent and nonlinear characteristics qualitatively and quantitatively, which is essential and crucial to understanding the physical and mechanical properties of MEE nanostructures.
Surface tension propellant control for Viking 75 Orbiter
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.
1976-01-01
The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.
Characterization of technical surfaces by structure function analysis
NASA Astrophysics Data System (ADS)
Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.
2018-03-01
The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.
Applications of HCMM satellite data to the study of urban heating patterns
NASA Technical Reports Server (NTRS)
Carlson, T. N. (Principal Investigator)
1980-01-01
A research summary is presented and is divided into two major areas, one developmental and the other basic science. In the first three sub-categories are discussed: image processing techniques, especially the method whereby surface temperature image are converted to images of surface energy budget, moisture availability and thermal inertia; model development; and model verification. Basic science includes the use of a method to further the understanding of the urban heat island and anthropogenic modification of the surface heating, evaporation over vegetated surfaces, and the effect of surface heat flux on plume spread.
Investigation into the effects of surface stripping ZnO nanosheets.
Barnett, Chris J; Jackson, Georgina; Jones, Daniel R; Lewis, Aled R; Welsby, Kathryn; Evans, Jon E; McGettrick, James D; Watson, Trystan; Maffeis, Thierry G G; Dunstan, Peter R; Barron, Andrew R; Cobley, Richard J
2018-04-20
ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.
Hydrodynamic skin-friction reduction
NASA Technical Reports Server (NTRS)
Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)
1991-01-01
A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body, e.g., a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid, e.g., water, with the surface of the body, e.g., the hull of the marine vehicle.
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
Investigation into the effects of surface stripping ZnO nanosheets
NASA Astrophysics Data System (ADS)
Barnett, Chris J.; Jackson, Georgina; Jones, Daniel R.; Lewis, Aled R.; Welsby, Kathryn; Evans, Jon E.; McGettrick, James D.; Watson, Trystan; Maffeis, Thierry G. G.; Dunstan, Peter R.; Barron, Andrew R.; Cobley, Richard J.
2018-04-01
ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.
Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface
NASA Astrophysics Data System (ADS)
Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.
2007-03-01
Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.
Sagripanti, J L; Bonifacino, A
2000-01-01
A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged.
NASA Astrophysics Data System (ADS)
Bixler, Gregory D.; Bhushan, Bharat
2013-08-01
Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.
Atomistic investigation on the detachment of oil molecules from defective alumina surface
NASA Astrophysics Data System (ADS)
Xie, W. K.; Sun, Y. Z.; Liu, H. T.
2017-12-01
The mechanism of oil detachment from defective alumina surface in aqueous solution was investigated via atomistic molecular dynamics (MD) simulations. Special attention was focused on the effect of surface defect on the oil detachment. Our simulation results suggest that compared with perfect Al2O3 surface, defective substrate surface provides much more sites for the adsorption of oil molecules, thus it has higher oil adsorption energy. However, higher oil-solid adsorption energy does not mean that oil contaminants are much more difficult to be detached. It is found that surface defect could induce the spontaneous imbibition of water molecules, effectively promoting the detachment of oil molecules. Thus, compared with perfect alumina surface, the detachment of oil molecules from defective alumina surface tends to be much easier. Moreover, surface defect could lead to the oil residues inside surface defect. In water solution, the entire detachment process of oil molecules on defective surface consists of following stages, including the early detachment of oil molecules inside surface defect induced by capillary-driven spontaneous imbibition of water molecules, the following conformational change of oil molecules on topmost surface and the final migration of detached oil molecules from solid surface. These findings may help to sufficiently enrich the removal mechanism of oil molecules adhered onto defective solid surface.
Aerosol Absorption Effects in the TOMS UV Algorithm
NASA Technical Reports Server (NTRS)
Torres, O.; Krotkov, N.; Bhartia, P. K.
2004-01-01
The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Jakosky, B. M.
1979-01-01
The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.
NASA Technical Reports Server (NTRS)
Creager, Marcus O.
1959-01-01
An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.
50 CFR 218.180 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Mission Activities in the Naval Surface Warfare Center Panama City Division § 218.180 Specified activity... operations) W-151 (includes Panama City Operating Area), W-155 (includes Pensacola Operating Area), and W-470...
50 CFR 218.180 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Mission Activities in the Naval Surface Warfare Center Panama City Division § 218.180 Specified activity... operations) W-151 (includes Panama City Operating Area), W-155 (includes Pensacola Operating Area), and W-470...
Deep and surface learning in problem-based learning: a review of the literature.
Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David
2016-12-01
In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Neville R.
Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less
NASA Technical Reports Server (NTRS)
Celic, Alan; Zilliac, Gregory G.
1998-01-01
The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.
The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu
2010-10-15
The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less
NASA Technical Reports Server (NTRS)
Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.
2003-01-01
Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.
Effects of Topography-based Subgrid Structures on Land Surface Modeling
NASA Astrophysics Data System (ADS)
Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.
2017-12-01
Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.
Correlation study of sodium-atom chemisorption on the GaAs(110) surface
NASA Astrophysics Data System (ADS)
Song, K. M.; Khan, D. C.; Ray, A. K.
1994-01-01
Different possible adsorption sites of sodium atoms on a gallium arsenide surface have been investigated using ab initio self-consistent unrestricted Hartree-Fock total-energy cluster calculations with Hay-Wadt effective core potentials. The effects of electron correlation have been included by invoking the concepts of many-body perturbation theory and are found to be highly significant. We find that the Na-atom adsorption at a site modeled with an NaGa5As4H12 cluster is most favored energetically followed by Na adsorption at the site modeled with the NaGa4As5H12 cluster. The effects of charge transfer from Na to the GaAs surface as also possibilities of metallization are also analyzed and discussed.
NASA Astrophysics Data System (ADS)
Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an
2018-06-01
In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.
Understanding Surface Adhesion in Nature: A Peeling Model.
Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao
2016-07-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.
1989-01-01
FEB 2 2 1990 Stephen Walter Andrews, D.M.D. The University of North Carolina at Chapel Hill Department of Orthodontics School of Dentistry 1989 Robert...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) SURFACE MODIFICATION OF ORTHODONTIC ...Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" SURFACE MODIFICATION OF ORTHODONTIC BRACKET MODELS VIA ION
Microclimatic modeling of the desert in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.
1996-10-01
The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less
Gold coatings for cube-corner retro-reflectors
NASA Technical Reports Server (NTRS)
Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan
2005-01-01
We report on a comparative study of optical performance of gold films deposited by resistive and e-beam evaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.
Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China
NASA Astrophysics Data System (ADS)
Chen, Youjun; Yu, Shixiao
2017-02-01
One of the key impacts of rapid urbanization on the environment is the effect of surface urban thermal variations (SUTV). Understanding the effects of urban landscape features on SUTV is crucial for improving the ecology and sustainability of cities. In this study, an investigation was conducted to detect urban landscape patterns and assess their impact on surface temperature. Landsat images: Thematic Mapper was used to calculate land surface temperature (LST) in Guangzhou, the capital city of Guangdong Province in southern China. SUTV zones, including surface urban heat islands (SUHI) and surface urban heat sinks (SUHS), were then empirically identified. The composition and configuration of landscape patterns were measured by a series of spatial metrics at the class and landscape levels in the SUHI and SUHS zones. How both landscape composition and configuration influence urban thermal characteristics was then analysed. It was found that landscape composition has the strongest effect on SUTV, but that urban landscape configuration also influences SUTV. These findings are helpful for achieving a comprehensive understanding of how urban landscape patterns impact SUTV and can help in the design of effective urban landscape patterns to minimize the effects of SUHI.
NASA Astrophysics Data System (ADS)
Soltani, E.; Shahali, H.; Zarepour, H.
2011-01-01
In this paper, the effect of machining parameters, namely, lubricant emulsion percentage and tool material on surface roughness has been studied in machining process of EN-AC 48000 aluminum alloy. EN-AC 48000 aluminum alloy is an important alloy in industries. Machining of this alloy is of vital importance due to built-up edge and tool wear. A L9 Taguchi standard orthogonal array has been applied as experimental design to investigate the effect of the factors and their interaction. Nine machining tests have been carried out with three random replications resulting in 27 experiments. Three type of cutting tools including coated carbide (CD1810), uncoated carbide (H10), and polycrystalline diamond (CD10) have been used in this research. Emulsion percentage of lubricant is selected at three levels including 3%, 5% and 10%. Statistical analysis has been employed to study the effect of factors and their interactions using ANOVA method. Moreover, the optimal factors level has been achieved through signal to noise ratio (S/N) analysis. Also, a regression model has been provided to predict the surface roughness. Finally, the results of the confirmation tests have been presented to verify the adequacy of the predictive model. In this research, surface quality was improved by 9% using lubricant and statistical optimization method.
Support surfaces for pressure ulcer prevention: A network meta-analysis
Dumville, Jo C.; Cullum, Nicky
2018-01-01
Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359
Support surfaces for pressure ulcer prevention: A network meta-analysis.
Shi, Chunhu; Dumville, Jo C; Cullum, Nicky
2018-01-01
Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.
Integration and Utilization of Nuclear Systems on the Moon and Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon
2006-01-20
Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less
Effect of Surface Properties on Liposomal siRNA Delivery
Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan
2015-01-01
Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117
Gas turbine engine exhaust diffuser including circumferential vane
Orosa, John A.; Matys, Pawel
2015-05-19
A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.
Size effects and strain localization in atomic-scale cleavage modeling
NASA Astrophysics Data System (ADS)
Elsner, B. A. M.; Müller, S.
2015-09-01
In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.
Size effects and strain localization in atomic-scale cleavage modeling.
Elsner, B A M; Müller, S
2015-09-04
In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.
The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.
2017-12-01
Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.
Thermal elastohydrodynamic lubrication of spur gears
NASA Technical Reports Server (NTRS)
Wang, K. L.; Cheng, H. S.
1980-01-01
An analysis and computer program called TELSGE were developed to predict the variations of dynamic load, surface temperature, and lubricant film thickness along the contacting path during the engagement of a pair of involute spur gears. The analysis of dynamic load includes the effect of gear inertia, the effect of load sharing of adjacent teeth, and the effect of variable tooth stiffness which are obtained by a finite-element method. Results obtained from TELSGE for the dynamic load distributions along the contacting path for various speeds of a pair of test gears show patterns similar to that observed experimentally. Effects of damping ratio, contact ratio, tip relief, and tooth error on the dynamic load were examined. In addition, two dimensionless charts are included for predicting the maximum equilibrium surface temperature, which can be used to estimate directly the lubricant film thickness based on well established EHD analysis.
Atmospheric effect on classification of finite fields. [satellite-imaged agricultural areas
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1984-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. In this paper, the radiances above finite fields are computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) is used to test the effect of field size, background reflectance, and optical thickness of the atmosphere on the classification accuracy. For a given atmospheric turbidity, the atmospheric effect on classification of surface features may be much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface elements to be classified and their contrasts. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, are needed.
Shock wave-free interface interaction
NASA Astrophysics Data System (ADS)
Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan
2016-11-01
The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Kern, R. G.
2003-01-01
In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.
On the State of Stress and Failure Prediction Near Planetary Surface Loads
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1996-03-01
The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Kern, Roger G.
2004-01-01
In order to minimize the forward contamination of Mars, spacecraft are assembled under cleanroom conditions that require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival on the surface of Mars by protecting spores from sterilizing agents, including UV irradiation. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.
NASA Technical Reports Server (NTRS)
Shuford, Charles L , Jr
1958-01-01
A summary is given of the background and present status of the pure-planing theory for rectangular flat plates and v-bottom surfaces. The equations reviewed are compared with experiment. In order to extend the range of available planing data, the principal planing characteristics for models having sharp bottom surfaces having constant angles of dead rise of 20 degrees and 40 degrees. Planing data were also obtained for flat-plate surfaces with very slightly rounded chines for which decreased lift and drag coefficients are obtained.
NASA Astrophysics Data System (ADS)
Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern
2018-07-01
Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L
2012-06-15
Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluation of current techniques for isolation of chars as natural adsorbents
Chun, Y.; Sheng, G.; Chiou, C.T.
2004-01-01
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
Environmental assessment model for shallow land disposal of low-level radioactive wastes
NASA Astrophysics Data System (ADS)
Little, C. A.; Fields, D. E.; Emerson, C. J.; Hiromoto, G.
1981-09-01
The PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) computer code developed to evaluate health effects from shallow land burial trenches is described. This generic model assesses radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000 y period following the end of burial operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population includes ground water transport overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the 1000 y period using a life table approach. Data bases for three shallow land burial sites (Barnwell, South Carolina, Beatty, Nevada, and West Valley, New York) are under development. The interim model, includes coding for environmental transport through air, surface water, and ground water.
Pourmohammadbagher, Amin; Shaw, John M
2015-09-15
Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.
NASA Astrophysics Data System (ADS)
Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.
2015-04-01
Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.
Rajbhandari, Rinita; Shrestha, Lok Kumar; Pradhananga, Raja Ram
2012-09-01
Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2). The properties of these activated carbons (ACs), including effective surface areas, pore volumes, and pore size distributions were characterized from N2 adsorption-desorption isotherms. The ACs obtained were essentially nanoporous (including both micro- and mesoporous) with effective surface area ranging from 1167 to 1328 m2/g. Fourier-transform infrared (FTIR) spectroscopy showed the presence of functional groups on the surface of ACs. Scanning electron microscopy (SEM) images showed a high pore development in the ACs. X-ray diffraction (XRD) patterns showed that, in addition to the amorphous structure, ACs contains crystalline ZnO formed during the carbonization. Presence of amorphous carbon is further confirmed by Raman scattering, where we observed only D and G bands. Iron impregnated nanoporous AC has been found to be very effective for arsenic removal from ground water; amount of arsenic is decreased from ca. 200 ppb to 10 ppb. These experimental results indicate the potential use of Lapsi seed as a precursor material for the preparation of high surface area nanoporous activated carbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thongyothee, Chawis, E-mail: chawist@hotmail.com; Chucheepsakul, Somchai
2013-12-28
This paper is concerned with postbuckling behaviors of nanorods subjected to an end concentrated load. One end of the nanorod is clamped while the other end is fixed to a support that can slide in the slot. The governing equation is developed from static equilibrium and geometrical conditions by using the exact curvature corresponding to the elastica theory. The nonlocal elasticity, the effect of surface stress, and their combined effects are taken into account in Euler–Bernoulli beam theory. Differential equations in this problem can be solved numerically by using the shooting-optimization technique for the postbuckling loads and the buckled configurations.more » The results show that nanorods with the nonlocal elasticity effect undergo increasingly large deformation while the effect of surface stress in combination with nonlocal elasticity decreases the deflection of nanorods under the same postbuckling load.« less
RF verification tasks underway at the Harris Corporation for multiple aperture reflector system
NASA Technical Reports Server (NTRS)
Gutwein, T. A.
1982-01-01
Mesh effects on gain and patterns and adjacent aperture coupling effects for "pie" and circular apertures are discussed. Wire effects for Harris model with Langley scale model results included for assessing D/lamda effects, and wire effects with adjacent aperture coupling were determined. Reflector surface distortion effects (pillows and manufacturing roughness) were studied.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; White, J.; Doherty, J.
2011-12-01
Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.
Wan, Quan; Galli, Giulia
2015-12-11
We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.
NASA Astrophysics Data System (ADS)
Hull, Tony; Hartmann, Peter; Clarkson, Andrew R.; Barentine, John M.; Jedamzik, Ralf; Westerhoff, Thomas
2010-07-01
Pending critical spaceborne requirements, including coronagraphic detection of exoplanets, require exceptionally smooth mirror surfaces, aggressive lightweighting, and low-risk cost-effective optical manufacturing methods. Simultaneous development at Schott for production of aggressively lightweighted (>90%) Zerodur® mirror blanks, and at L-3 Brashear for producing ultra-smooth surfaces on Zerodur®, will be described. New L-3 techniques for large-mirror optical fabrication include Computer Controlled Optical Surfacing (CCOS) pioneered at L-3 Tinsley, and the world's largest MRF machine in place at L-3 Brashear. We propose that exceptional mirrors for the most critical spaceborne applications can now be produced with the technologies described.
Global linear gyrokinetic simulations for LHD including collisions
NASA Astrophysics Data System (ADS)
Kauffmann, K.; Kleiber, R.; Hatzky, R.; Borchardt, M.
2010-11-01
The code EUTERPE uses a Particle-In-Cell (PIC) method to solve the gyrokinetic equation globally (full radius, full flux surface) for three-dimensional equilibria calculated with VMEC. Recently this code has been extended to include multiple kinetic species and electromagnetic effects. Additionally, a pitch-angle scattering operator has been implemented in order to include collisional effects in the simulation of instabilities and to be able to simulate neoclassical transport. As a first application of this extended code we study the effects of collisions on electrostatic ion-temperature-gradient (ITG) instabilities in LHD.
Solvent effects on adsorption of CO over CuCl(1 1 1) surface: A density functional theory study
NASA Astrophysics Data System (ADS)
Zhang, Riguang; Ling, Lixia; Wang, Baojun; Huang, Wei
2010-09-01
DFT calculations have been performed to investigate the effect of dielectric responses of the solvent environment on the CO adsorption over CuCl(1 1 1) surface by using COSMO (conductor-like solvent model) model in Dmol 3. Different dielectric constants, including vacuum, liquid paraffin, methylene chloride, methanol and water solution, are considered. The effects of solvent model on the structural parameters, adsorption energies and vibrational frequency of CO adsorption over CuCl(1 1 1) surface have been investigated. The calculation results suggest that solvent effects can improve the stability of CO adsorption and reduce the intensity of C-O bond, which might mean that solvent is in favor of C-O bond activation and improve the reaction activity of oxidative carbonylation in a slurry reactor.
Antimicrobial-Coated Granules for Disinfecting Water
NASA Technical Reports Server (NTRS)
Akse, James R.; Holtsnider, John T.; Kliestik, Helen
2011-01-01
Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.
2015-10-28
Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitancemore » voltage indicated the (001) surface with no buffered oxide etch had a higher C{sub max} hypothesized to be a result of poor nucleation of HfO{sub 2} on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D{sub it} high C{sub ox} MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.« less
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T
2018-06-01
The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (<100 nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Advanced turbo-prop airplane interior noise reduction-source definition
NASA Technical Reports Server (NTRS)
Magliozzi, B.; Brooks, B. M.
1979-01-01
Acoustic pressure amplitudes and phases were measured in model scale on the surface of a rigid semicylinder mounted in an acoustically treated wind tunnel near a prop-fan (an advanced turboprop with many swept blades) model. Operating conditions during the test simulated those of a prop-fan at 0.8 Mach number cruise. Acoustic pressure amplitude and phase contours were defined on the semicylinder surface. Measurements obtained without the semi-cylinder in place were used to establish the magnitude of pressure doubling for an aircraft fuselage located near a prop-fan. Pressure doubling effects were found to be 6dB at 90 deg incidence decreasing to no effect at grazing incidence. Comparisons of measurements with predictions made using a recently developed prop-fan noise prediction theory which includes linear and non-linear source terms showed good agreement in phase and in peak noise amplitude. Predictions of noise amplitude and phase contours, including pressure doubling effects derived from test, are included for a full scale prop-fan installation.
Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pöschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten
2015-06-21
The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Lu, Fang; Liu, Shizhong
Four-electron oxygen reduction reaction (4e-ORR) pathway, as a key high-performance reaction pathway in energy conversion, has been sought after in numerous investigations on metal surfaces over the last decades. Although the surfaces of the most noble metals, including platinum and palladium, demonstrate the fullpotential- range 4e-ORR, this is not the case, for gold (Au) surfaces. The 4e-ORR is only operative on Au surfaces with {100} subfacets, e.g. Au(100), in alkaline solution, however restricted to a certain potential region at low overpotentials, while reverting to a 2e-ORR at high overpotentials. This ORR on Au(100) has been a long-standing puzzle of electrocatalysis.more » Hereby we review the ORR studies on Au, along with the studies of water effects on Au catalysts, and present our electrochemical results with monofacet Au nanocrystals. Finally, combining with theoretical calculations we demonstrate that surface proton transfer from co-adsorbed water plays the key role in determining the ORR mechanism on Au surfaces in base.« less
Zhang, Yu; Lu, Fang; Liu, Shizhong; ...
2018-04-01
Four-electron oxygen reduction reaction (4e-ORR) pathway, as a key high-performance reaction pathway in energy conversion, has been sought after in numerous investigations on metal surfaces over the last decades. Although the surfaces of the most noble metals, including platinum and palladium, demonstrate the fullpotential- range 4e-ORR, this is not the case, for gold (Au) surfaces. The 4e-ORR is only operative on Au surfaces with {100} subfacets, e.g. Au(100), in alkaline solution, however restricted to a certain potential region at low overpotentials, while reverting to a 2e-ORR at high overpotentials. This ORR on Au(100) has been a long-standing puzzle of electrocatalysis.more » Hereby we review the ORR studies on Au, along with the studies of water effects on Au catalysts, and present our electrochemical results with monofacet Au nanocrystals. Finally, combining with theoretical calculations we demonstrate that surface proton transfer from co-adsorbed water plays the key role in determining the ORR mechanism on Au surfaces in base.« less
Review of dust transport and mitigation technologies in lunar and Martian atmospheres
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.
2015-09-01
Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.
NASA Technical Reports Server (NTRS)
Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.
2009-01-01
Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data
NASA Astrophysics Data System (ADS)
Stenseng, Lars; Andersen, Ole B.; Knudsen, Per
2014-05-01
A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.
A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.
Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B
2018-06-15
Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.
An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data
NASA Technical Reports Server (NTRS)
Miller, L. S.; Priester, R. W.
1978-01-01
The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.
Absence of molecular slip on ultraclean and SAM-coated surfaces
NASA Astrophysics Data System (ADS)
Pye, Justin; Wood, Clay; Burton, Justin
2016-11-01
The liquid/solid boundary condition is a complex problem that is becoming increasingly important for the development of nanoscale fluidic devices. Many groups have now measured slip near an interface at nanoscale dimensions using a variety of experimental techniques. In simple systems, large slip lengths are generally measured for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel pseudo-differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various surfaces. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. We have isolated any anomalous boundary effects such as interfacial slip by choosing two liquids which have identical bulk effects on the QCM frequency and dissipation in the presence of no-slip. Slip lengths are -less than 2 nm- for water (relative to undecane) on all surfaces measured, including plasma cleaned gold, SiO2, and two different self assembled monolayers (SAMs), regardless of contact angle. We also find that surface cleanliness is crucial to accurately measure slip lengths. Additionally, clean glass substrates appear to have a significant adsorbed water layer and SAM surfaces show excess dissipation, possibly associated with contact line motion. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Varela Kellesarian, Sergio; Abduljabbar, Tariq; Vohra, Fahim; Malmstrom, Hans; Yunker, Michael; Varela Kellesarian, Tammy; Romanos, Georgios E; Javed, Fawad
2017-03-01
The aim of the present systematic review was to assess the efficacy of antimicrobial photodynamic therapy (aPDT) in the disinfection of acrylic denture surfaces. IN order to address the focused question: "Is aPDT more effective in decontaminating denture surfaces compared with traditional denture-disinfection techniques?" an electronic search without time or language restrictions was conducted up to November 2016 in indexed databases using different key words. The exclusion criteria included qualitative and/or quantitative reviews, case reports, case series, commentaries, letters to the editor, interviews, and updates. A total of 14 studies were included and processed for data extraction, out of which 1 study was a randomized clinical trial and 13 studies were performed in vitro. Results from 12 experimental studies reported that aPDT was effective in reducing bacteria and/or yeast cultured in single or multispecies biofilm growth on acrylic resin specimens. One experimental study reported selective microorganism reduction on acrylic resin after aPDT. One clinical randomized control trial reported that aPDT presented similar microorganism reduction compared with oral antifungal medication for the disinfection of denture surfaces. The role of aPDT in the disinfection of acrylic resin surfaces is unclear. From a clinical perspective further randomized control trials are needed to assess the efficacy of aPDT in the disinfection of acrylic resin surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
NASA Astrophysics Data System (ADS)
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Thermal control surfaces experiment flight system performance
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.
1991-01-01
The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.
Formation of stable submicron peptide or protein particles by thin film freezing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Keith P.; Engstrom, Joshua; Williams, III, Robert O.
The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm.sup.-1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30.degree. C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less thanmore » 500 micrometers and a surface area to volume between 25 to 500 cm.sup.-1.« less
Subwavelength structured surfaces and their applications
NASA Technical Reports Server (NTRS)
Raguin, Daniel H.; Morris, G. Michael
1993-01-01
The term subwavelength structured (SWS) surface describes any surface that contains a subwavelength-period grating or gratings. The grating may be of any type provided the period is sufficiently fine so that, unlike conventional gratings, no diffraction orders propagate other than the zeroth orders. Because of the fine periods involved, the fabrication of such surfaces for applications in the visible and infrared portions of the spectral regime have only recently been considered. With refinements in holographic procedures and the push of the semiconductor industry for submicron lithography, production of SWS surfaces is becoming increasingly viable. The topics covered include the following: analytic approaches to analyze SWS surfaces, 1D periodic stratification and effective medium theory, design of waveplates using form birefringence, and 2D binary antireflection structured surfaces.
Application of surface analysis to solve problems of wear
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1981-01-01
Results are presented for the use of surface analytical tools including field ion microscopy, Auger emission spectroscopy analysis (AES), cylindrical mirror Auger analysis and X-ray photoelectron spectroscopy (XPS). Data from the field ion microscope reveal adhesive transfer (wear) at the atomic level with the formation of surface compounds not found in the bulk, and AES reveals that this transfer will occur even in the presence of surface oxides. Both AES and XPS reveal that in abrasive wear with silicon carbide and diamond contacting the transition metals, the surface and the abrasive undergo a chemical or structural change which effects wear. With silicon carbide, silicon volatilizes leaving behind a pseudo-graphitic surface and the surface of diamond is observed to graphitize.
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers
ERIC Educational Resources Information Center
Liu, Bin; Luo, Jiong
2015-01-01
Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
Controlled droplet transport to target on a high adhesion surface with multi-gradients
Deng, Siyan; Shang, Weifeng; Feng, Shile; Zhu, Shiping; Xing, Yan; Li, Dan; Hou, Yongping; Zheng, Yongmei
2017-01-01
We introduce multi-gradients including Laplace pressure gradient, wettable gradient and wettable different gradient on a high adhesion surface via special wedge-pattern and improved anodic oxidation method. As a result of the cooperative effect mentioned above, controlled directional motion of a droplet on a high adhesion surface is realized, even when the surface is turned upside down. The droplet motion can be predicted and the movement distances can be controlled by simply adjusting the wedge angle and droplet volume. More interestingly, when Laplace pressure gradient is introduced on a V-shaped wettable gradient surface, two droplets can move toward one another as designed. PMID:28368020
High-touch surfaces: microbial neighbours at hand.
Cobrado, L; Silva-Dias, A; Azevedo, M M; Rodrigues, A G
2017-11-01
Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.
Effect of Exposure on the Mechanical Properties of Gamma MET PX
NASA Technical Reports Server (NTRS)
Draper, S. L.; Lerch, B. A.; Locci, I. E.; Shazly, M.; Prakash, V.
2004-01-01
The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Minton, T. K.; Cline, J. A.; Braunstein, M.
2002-01-01
Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam obtained from separate measurements. These computations use basic engineering models for the gas-gas and gas-surface scattering and focus on the influence of multi-collision effects. These simulations characterize many important quantities of interest including the actual flux of atoms that reach the surface, the energy distribution of this flux, as well as the direction of the velocity of the flux that strikes the surface. These quantities are important in characterizing the conditions which give rise to measured surface erosion. The calculations also yield time- snapshots of the pulse as it impacts and flows around the surface. These snapshots reveal the local environment of gas near the surface for the duration of the pulse. We are also able to compute the flux of molecules that travel downstream and reach the spectrometer, and we characterize their velocity distribution. The number of atoms that reach the spectrometer can in fact be influenced by the presence of the surface due to gas-gas collisions from atoms scattered h m the surface, and it will generally be less than that with the surface absent. This amounts to an overall normalization factor in computing erosion yields. We discuss these quantities and their relationship to the gas-surf$ce interaction parameters. We have also performed similar calculations corresponding to conditions (number densities, temperatures, and velocities) of low-earth orbit. The steady-state nature and lower overall flux of the actual space environment give rise to differences in the nature of the gas-impacts on the surface from those of the ground-based measurements using a pulsed source.
Understanding Surface Adhesion in Nature: A Peeling Model
Gu, Zhen; Li, Siheng; Zhang, Feilong
2016-01-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on. PMID:27812476
Packaging system with cleaning channel and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Lu
A packaging structure and method for surface mount integrated circuits reduces electrochemical migration (ECM) problems by including one or more cleaning channels to effectively and efficiently remove flux residue that may otherwise remain lodged in gaps between the surface mount package and the printed circuit board. A cleaning channel may be formed along a bottom surface of the surface mount package (i.e., the surface facing the printed circuit board), or along a portion of a top surface of the printed circuit board. In either case, the inclusion of a cleaning channel enlarges the gap between the bottom surface of themore » surface mount package and the printed circuit board and creates a path for contaminants to be flushed out during a cleaning process.« less
Correcting Satellite Image Derived Surface Model for Atmospheric Effects
NASA Technical Reports Server (NTRS)
Emery, William; Baldwin, Daniel
1998-01-01
This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model was a successor to the 5S and slightly more advanced, the 5S was selected because outputs from the individual components comprising the short-wave radiation budget were more easily separated. The separation was necessary since both the 5S and 6S did not include geometrical corrections for terrain, a fundamental constituent of the BMPE algorithm. The 5S correction code was incorporated into the BMPE algorithm and many sensitivity studies were performed.
Saghiri, M-A; Asatourian, A; Garcia-Godoy, F; Sheibani, N
2016-07-01
Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging.
Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.
Xu, H; Clarke, A; Rothstein, J P; Poole, R J
2018-03-01
So-called "superhydrophobic" surfaces are strongly non-wetting such that fluid droplets very easily roll off when the surface is tilted. Our interest here is in understanding if this is also true, all else held equal, for viscoelastic fluid drops. We study the movement of Newtonian and well-characterised constant-viscosity elastic liquids when various surfaces, including hydrophilic (smooth glass), weakly hydrophobic (embossed polycarbonate) and superhydrophobic surfaces (embossed PTFE), are impulsively tilted. Digital imaging is used to record the motion and extract drop velocity. Optical and SEM imaging is used to probe the surfaces. In comparison with "equivalent" Newtonian fluids (same viscosity, density surface tension and contact angles), profound differences for the elastic fluids are only observed on the superhydrophobic surfaces: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string-like phenomena. The strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of order ∼30 µm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
Bubble Dynamics on a Heated Surface
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Rashidnia, Nasser
1996-01-01
In this work, we study the combined thermocapillary and natural convective flow generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. On earth, the volumetric forces are dominant, especially, in apparatuses with large volume to surface ratio. But in the reduced gravity environment of orbiting spacecraft, surface forces become more important and the effects of Marangoni convection are easily unmasked. In order to delineate the roles of the various interacting phenomena, a combined numerical-experimental approach is adopted. The temperature field is visualized using Mach-Zehnder interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the two-dimensional momentum and energy equations and includes the effects of bubble surface deformation. Steady state temperature and velocity fields predicted by the finite element model are in excellent qualitative agreement with the experimental results. A parametric study of the interaction between Marangoni and natural convective flows including conditions pertinent to microgravity space experiments is presented. Numerical simulations clearly indicate that there is a considerable difference between 1-g and low-g temperature and flow fields induced by the bubble.
NASA Astrophysics Data System (ADS)
Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping
2018-05-01
To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.
NASA Astrophysics Data System (ADS)
Biswas, Rajib; Bagchi, Biman
2018-01-01
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabauy, P.; Darici, Y.; Furton, K.G.
1995-12-01
In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less
Influence of Agricultural Practice on Surface Temperature
NASA Astrophysics Data System (ADS)
Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.
2006-12-01
Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.
ODC-Free Solvent Implementation for Phenolics Cleaning
NASA Technical Reports Server (NTRS)
Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)
2001-01-01
During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.
Effects of space environment on structural materials
NASA Technical Reports Server (NTRS)
Miglionico, C.; Stein, C.; Roybal, R.; Robertson, R.; Murr, L. E.; Quinones, S.; Rivas, J.; Marquez, B.; Advani, A. H.; Fisher, W. W.
1992-01-01
A preliminary study of materials exposed in space in a low Earth orbit for nearly six years has revealed a wide range of micrometeorite or microparticle impact craters ranging in size from 1 to 1000 micron in diameter, debris particles from adjacent and distant materials systems, reaction products, and other growth features on the specimen surfaces, and related phenomena. The exposed surface features included fine grained and nearly amorphous materials as well as a large array of single crystal particles. A replication type, lift off technique was developed to remove reaction products and debris from the specimen surfaces in order to isolate them from the background substrate without creating microchemical or microstructural artifacts or alterations. This resulted in surface features resting on a carbon support film which was virtually invisible to observation by electron microscopy and nondispersive x ray analysis. Some evidence for blisters on leading edge aluminum alloy surfaces and a high surface region concentration of oxygen determined by Auger electron spectrometry suggests oxygen effects where fluences exceed 10(exp 21) atoms/sq cm.
Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.
Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla
2016-01-15
Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalin, M.; Simič, R.
2013-04-01
Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.
Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark
2013-01-01
This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens–related discomfort. While there is limited evidence for the mechanisms involved in contact lens–related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea. PMID:24058137
Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments
NASA Astrophysics Data System (ADS)
Simič, R.; Kalin, M.
2013-10-01
Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.
Some physicochemical aspects of water-soluble mineral flotation.
Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D
2016-09-01
Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.
The evolving science of hydrogeomorphology encompasses the interaction of water with landforms in time and space. This includes the processes of surface and mass erosion as well as the effects of land management. These hydrogeomorphic processes and management effects are examined...
Material research in microgravity
NASA Technical Reports Server (NTRS)
Langbein, D.
1984-01-01
A popular discussion is given of microgravity effects in engineering and medicine gained from Skylab experience. Areas covered include crystal growing, liquid surface properties, diffusion, ferromagnetism, and emulsions.
Rossi-Fedele, G; Prichard, J W; Steier, L; de Figueiredo, J A P
2013-06-01
Sodium hypochlorite (NaOCl) is recommended as an endodontic irrigant in view of its broad antimicrobial and tissue dissolution capacities. To enhance its penetration into inaccessible areas of root canals and to improve its overall effect, the addition of surface-active agents has been suggested. The aim of this investigation was to review the effect of the reduction of the surface tension on the performance of NaOCl in endodontics. A search was performed in the Medline electronic database (articles published up to 28 July 2012, in English) with the search terms and combinations as follows: 'sodium hypochlorite AND surface tension or interfacial force or interfacial tension or surface-active agent or amphiphilic agent or surface active agent or surfactant or tenside or detergent'. The purpose of this search was to identify publications that compared NaOCl alone and NaOCl modified with the addition of a surface-active agent in endodontics. A hand search of articles published online ('in-press' and 'early view'), and appearing in the reference list of the articles included, was further performed, using the same search criteria as the electronic search. The search identified 302 publications, of which 11 fulfilled the inclusion/exclusion criteria of the review. The evidence available suggests that surface-active agents improve the penetration of NaOCl in the main canal and have no effect on its pulp tissue dissolution ability. There are, however, insufficient data to enable a sound conclusion to be drawn regarding the effect of modifying NaOCl's surface tension on lubrication, antimicrobial and smear layer or debris removal abilities. © 2012 International Endodontic Journal.
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution
USDA-ARS?s Scientific Manuscript database
Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...
Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C
2011-05-01
Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.
Technical geothermal potential of urban subsurface influenced by land surface effects
NASA Astrophysics Data System (ADS)
Rivera, Jaime A.; Blum, Philipp; Bayer, Peter
2016-04-01
Changes in land use are probably one of the most notorious anthropogenic perturbations in urban environments. They significantly change the coupled thermal regime at the ground surface leading in most cases to increased ground surface temperatures (GST). The associated elevated vertical heat fluxes act at different scales and can influence the thermal conditions in several tens of meters in the subsurface. Urban subsurface thus often stores a higher amount of heat than less affected rural surroundings. The stored heat is regarded as a potential source of low-enthalpy geothermal energy to supply the heating energy demands in urban areas. In this work, we explore the technical geothermal potential of urban subsurface via ground coupled heat pumps with borehole heat exchangers (BHE). This is tackled by semi-analytical line-source equations. The commonly used response factors or g-functions are modified to include transient land surface effects. By including this additional source of heat, the new formulation allows to analyse the effect of pre-existing urban warming as well as different exploitation schemes fulfilling standard renewable and sustainable criteria. In our generalized reference scenario, it is demonstrated that energy gains for a single BHE may be up to 40 % when compared to non-urbanized conditions. For a scenario including the interaction of multiple BHEs, results indicate that it would be possible to supply between 6 % and 27 % of the heating demands in Central European urban settlements in a renewable way. The methodology is also applied to a study case of the city of Zurich, Switzerland, where the detailed evolution of land use is available.
Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee
2015-08-15
Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Method and system for measurement of mechanical properties of molecules and cells
NASA Technical Reports Server (NTRS)
Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)
1996-01-01
Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...
2017-01-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
NASA Astrophysics Data System (ADS)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.
2017-10-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.
Investigation of surface water behavior during glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Turnock, Stephen R.
1990-01-01
A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.
Cost-Effective NEO Characterization Using Solar Electric Propulsion (SEP)
NASA Astrophysics Data System (ADS)
Dissly, R. W.; Reinert, R.; Mitchell, S.
2003-05-01
We present a cost-effective multiple NEO rendezvous mission design optimized around the capabilities of Ball's 200-kg NEOX Solar Electric Propelled microsatellite. The NEOX spacecraft is 3-axis stabilized with better-than 1 milliradian pointing accuracy to serve as an excellent imaging platform; its DSN compatible telecommunications subsystem can support a 6.4-kbps downlink rate at 3 AU earth range. The spacecraft mass is <200kg at launch to allow launch as a cost-effective secondary payload. It uses proven SEP technology to provide 12km/s of Delta-V, which enables multiple rendezvous' in a single mission. Cost-effectiveness is optimized by launch as a secondary payload (e.g., Ariane-5 ASAP) or as a multiple manifest on a single dedicated launch vehicle (e.g., 4 on a Delta-II 2925). Following separation from the LV, we describe a candidate mission profile that minimizes cost by using the spacecraft's 12km/s of SEP Delta-V to allow orbiting up to 4 separate NEO's. Orbiting as opposed to flying by augments the mission's science return by providing the NEO mass and by allowing multiple phase angle imaging. The NEOX Spacecraft has the capability to support a 20kg payload drawing 100W average during SEP cruise, with >1kW available during the NEO orbital phase when the SEP thrusters are not powered. We will present a candidate payload suite that includes a visible/NIR imager, a laser altimeter, and a set of small, self-righting surface probes that can be used to assess the geophysical state of the object surface and near-surface environments. The surface probe payload notionally includes a set of cameras for imaging the body surface at mm-scale resolution, an accelerometer package to measure surface mechanical properties upon probe impact, a Langmuir probe to measure the electrostatic gradient immediately above the object surface, and an explosive charge that can be remotely detonated at the end of the surface mission to excavate an artificial crater that can be remotely observed from the orbiting spacecraft.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Qian, I.; Lau, W.; Shie, C.-L.; Starr, David (Technical Monitor)
2002-01-01
A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/ South China Sea (SCS)/China, N. America and S. America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-C loud Exchange (PLACE) land surface model. PLACE allows for the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1997 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lau, W.; Jia, Y.; Johnson, D.; Shie, C.-L.; Einaudi, Franco (Technical Monitor)
2001-01-01
A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/South China Sea (SCS)/China, North America and South America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, PLACE allows for the effect A vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1991 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the South China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric
2016-01-25
This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resultingmore » effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).« less
Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.
2016-07-01
We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.
Analysis of an electrohydraulic aircraft control surface servo and comparison with test results
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1972-01-01
An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.
Biomimetic design in microparticulate vaccines.
Keegan, Mark E; Whittum-Hudson, Judith A; Mark Saltzman, W
2003-11-01
Current efforts to improve the effectiveness of microparticle vaccines include incorporating biomimetic features into the particles. Many pathogens use surface molecules to target specific cell types in the gut for host invasion. This observation has inspired efforts to chemically conjugate cell-type targeting ligands to the surfaces of microparticles in order to increase the efficiency of uptake, and therefore the effectiveness, of orally administered microparticles. Bio-mimicry is not limited to the exterior surface of the microparticles. Anti-idiotypic antibodies, cytokines or other biological modifiers can be encapsulated for delivery to sites of interest as vaccines or other therapeutics. Direct mucosal delivery of microparticle vaccines or immunomodulatory agents may profoundly enhance mucosal and systemic immune responses compared to other delivery routes.
NASA Astrophysics Data System (ADS)
Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.
2005-09-01
We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.
Surface effects in the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Salasnich, L.; Ancilotto, F.; Toigo, F.
2010-01-01
We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.
An energy balance climate model with cloud feedbacks
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.
1984-01-01
The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.
A generalized vortex lattice method for subsonic and supersonic flow applications
NASA Technical Reports Server (NTRS)
Miranda, L. R.; Elliot, R. D.; Baker, W. M.
1977-01-01
If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.
Nature of the fossil evidence - Moon and meteorites. [solar activity effects
NASA Technical Reports Server (NTRS)
Walker, R. M.
1980-01-01
The nature of the fossil evidence to be found in extraterrestrial materials concerning the history of solar activity is reviewed. The various types of lunar rocks and meteorites containing evidence of exposure to solar radiations are distinguished, including igneous rocks, breccias, glassy agglutinates, single mineral crystals, carbonaceous meteorites, and the Antarctic meteorites, some of which fell to earth as much as a million years ago. The characteristic effects of energetic particles from space in materials are then examined, including ion implantation and surface radiation damage to a depth of several hundred A by the solar wind, radioactivity, electron trapping and track production induced by solar flares to depths from millimeters to centimeters, and spallation due to galactic cosmic rays at depths from centimeters to meters. Complications in the interpretation of radiation exposure histories represented by dynamic surface processes, the nonsolar origin of some trapped elements, and difficulties in determining the duration and epoch of surface exposure of individual crystals are also noted.
Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption
NASA Astrophysics Data System (ADS)
Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi
2016-08-01
We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N‧-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6‧-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.
Evaluation of the Effects of Conjunctivochalasis Excision on Tear Stability and Contrast Sensitivity
Qiu, Weiqiang; Zhang, Mingzhou; Xu, Ting; Liu, Ziyuan; Lv, Huibin; Wang, Wei; Li, Xuemin
2016-01-01
Conjunctivochalasis (CCh) disrupts tear flow and damages tear film stability. This study sought to evaluate the tear stability and contrast sensitivity of patients with CCh on whom CCh excision was performed. The study included 39 eyes from 39 patients; all patients had eyes with grade 2 or 3 CCh, underwent CCh excision, and were evaluated before and three months after the surgery. The evaluated variables included the ocular surface disease index (OSDI), the tear break-up time (TBUT), corneal fluorescein staining, corneal surface irregularity, Schirmer’s I test, the tear meniscus area (TMA), and contrast sensitivity. A follow-up of three months was achieved in 36 eyes for 36 patients. All parameters improved significantly after surgery (p < 0.05), except Schirmer’s I test, thus suggesting that CCh excision is an effective method for reconstructing the lower tear meniscus and improving both tear film stability and corneal surface irregularity. The results further demonstrated a simultaneous increase in contrast sensitivity after surgery. PMID:27892479
Possible rainfall reduction through reduced surface temperatures due to overgrazing
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.
NASA Technical Reports Server (NTRS)
1974-01-01
Photographs of the surface of the planet Mars which were obtained by the Mariner 9 space probe are presented. Areas of investigation during the Mariner 9 flight involved television coverage, ultraviolet spectroscopy, infrared spectroscopy, infrared radiometry, S-band occultation, and celestial mechanics. Descriptions of the photographs are provided to further identify the surface features and the coordinates of the area photographed are included. Emphasis is placed on the visual evidence of the effects of wind in shaping the Martian surface. Photographs of cloud formations and dust storms are analyzed.
Robot and Human Surface Operations on Solar System Bodies
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Easter, R.; Rodriguez, G.
2001-01-01
This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.
Lunar surface engineering properties experiment definition
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.
1971-01-01
Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.
Practical quality control tools for curves and surfaces
NASA Technical Reports Server (NTRS)
Small, Scott G.
1992-01-01
Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.
Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid
NASA Astrophysics Data System (ADS)
Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam
2018-01-01
In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.
Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei
2012-01-02
The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.
Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio
2017-10-01
Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less
NASA Astrophysics Data System (ADS)
Gero Schmidt, Wolf
2002-03-01
Optical spectroscopies are emerging as powerful tools to probe surfaces, since they allow for the real-time monitoring under challenging conditions as may be encountered, e.g., during material growth. However, their full potential can only be realised if it becomes possible to calculate surface optical spectra accurately and with true predictive power. Such calculations have been difficult, however, due to the large numerical expense involved. Based on a massively parallel, real-space multigrid implementation of DFT-LDA we have calculated reflectance anisotropy spectra for a wide range of group-IV materials and III-V compounds. Transitions between surface states give rise to specific, fingerprint-like spectral features. In addition, the anisotropic surface potential, the electric field at the surface of the sample and, to some extent, surface induced strain and relaxation may cause optical anisotropies in the layers underneath the surface. Surface defects have to be taken into account in order to explain some experimental results. Our DFT-LDA results explain very well the stoichiometric trends and qualitative features of the measured spectra. Quantitative agreement with the measured data is achieved by taking many-body effects into account. We include electronic self-energy corrections in the GW approximation using a model dielectric function to describe the screening. An efficient algorithm for solving the Bethe-Salpeter equation allows us to study the influence of electron-hole attraction and local-field effects on the surface optical properties.
Thermal Characteristics of Urban Landscapes
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1998-01-01
Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.
Effects of surface wave breaking on the oceanic boundary layer
NASA Astrophysics Data System (ADS)
He, Hailun; Chen, Dake
2011-04-01
Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.
Surface plasmon resonance-enabled antibacterial digital versatile discs
NASA Astrophysics Data System (ADS)
Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli
2012-02-01
We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.
Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.
Zhang, Yong-Lai; Wang, Jian-Nan; He, Yan; He, Yinyan; Xu, Bin-Bin; Wei, Shu; Xiao, Feng-Shou
2011-10-18
Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates. © 2011 American Chemical Society
Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.
1989-01-01
The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.
Depletion region surface effects in electron beam induced current measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less
NASA Technical Reports Server (NTRS)
Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.
1995-01-01
Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal blankets.
Plasma Actuators for Turbomachinery Flow Control
NASA Technical Reports Server (NTRS)
Miles, Richard, B; Shneider, Mikhail, N.
2012-01-01
This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet properties.
Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing
2018-06-01
To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-11-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.
Microwave remote sensing and radar polarization signatures of natural fields
NASA Technical Reports Server (NTRS)
Mo, Tsan
1989-01-01
Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.
Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes—including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH—in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media. PMID:27834380
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L
2015-03-26
Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.
Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.
Giannelli, Marco; Lasagni, Massimo; Bani, Daniele
2015-12-01
Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.
Busscher, Henk J; White, Don J; Atema-Smit, Jelly; van der Mei, Henny C
2007-04-01
The provision of antiplaque benefits to dentifrices assists patients in improving hygiene and reducing susceptibility to gingivitis and caries. Chemical plaque control involves different mechanisms and is mostly associated with antibacterial effects, but also includes effects on pellicle surface chemistry to improve cleansing or discourage renewed plaque formation. It is the aim of this paper to analyze in vitro detachment of co-aggregating oral actinomyces and streptococci from pellicle surfaces by dentifrice supernates and to study subsequent de novo streptococcal deposition. Detachment by dentifrices of a co-adhering bacterial pair was studied in the parallel plate flow chamber on a 16 h pellicle coated surface. After detachment by perfusing the chamber with a dentifrice, re-deposition was initiated by flowing with a fresh streptococcal suspension. The dentifrices included both a regular, SLS-fluoride based formulation as well a pyrophosphate, anticalculus and antimicrobial formulations. All dentifrice supernates containing SLS were effective in detaching co-adhering bacteria from pellicles surfaces, except in combination with SnF(2). When hexametaphosphate was added immediate detachment was relatively low, but continued even during re-deposition. The re-deposition of streptococci after detachment by other, NaF containing dentifrices involved relatively few large aggregates, presumably because fluoride was able to block bi-dentate calcium binding sites on the bacterial cell surfaces, mediating co-adhesion. When pyrophosphate was present in addition to NaF, re-deposition involved significantly more large aggregates, likely because pyrophosphate served as a bi-dentate bridge between calcium bound on the bacterial cell surfaces. Commercially available dentifrice formulations differ in their ability to stimulate bacterial detachment from pellicles and dependent on their composition yield the formation of large co-adhering aggregates of actinomyces and streptococci in de novo deposition.
Getting the temperature right: Understanding thermal emission from airless bodies
NASA Astrophysics Data System (ADS)
Bandfield, J.; Greenhagen, B. T.; Hayne, P. O.; Williams, J. P.; Paige, D. A.
2016-12-01
Thermal infrared measurements are crucial for understanding a wide variety of processes present on airless bodies throughout the solar system. Although these data can be complex, they also contain an enormous amount of useful information. By building a framework for understanding thermal infrared datasets, significant advances are possible in the understanding of regolith development, detection of H2O and OH-, characterizing the nature and magnitude of Yarkovsky and YORP effects, and determination of the properties of newly identified asteroids via telescopic measurements. Airless bodies can have both extremely rough and insulating surfaces. For example, these two properties allow for sunlit and shaded or buried lunar materials separated by just a few centimeters to vary by 200K. In this sense, there is no "correct" temperature interpretable from orbital, or even in-situ, measurements. The surface contains a wide mixture of temperatures in the field of view, and rougher surfaces greatly enhance this anisothermality. We have used the Lunar Reconnaissance Orbiter Diviner Radiometer to characterize these effects by developing new targeting and analysis methods, including extended off-nadir observations and combined surface roughness and thermal modeling (Fig. 1). These measurements and models have shown up to 100K brightness temperature differences from measurements that differ only in the viewing angle of the observation. In addition, the thermal emission near 3 μm can be highly dependent on the surface roughness, resulting in more extensive and prominent lunar 3 μm H2O and OH-absorptions than indicated in data corrected by isothermal models. The datasets serve as a foundation for the derivation and understanding of surface spectral and thermophysical properties. Roughness and anisothermality effects are likely to dominate infrared measurements from many spacecraft, including LRO, Dawn, BepiColombo, OSIRIS-REx, Hayabusa-2, and Europa Clipper.
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
NASA Astrophysics Data System (ADS)
Reddy, Vijeth V.; Vedantha Krishna, Amogh; Schultheiss, Fredrik; Rosén, B.-G.
2017-06-01
Manufactured surfaces usually consist of topographical features which include both those put forth by the manufacturing process, and micro-features caused by disturbances during this process. Surface characterization basically involves study of these features which influence the functionality of the surface. This article focuses on characterization of the surface topography of machined lead brass and lead free brass. The adverse effect of lead on human health and the environment has led the manufacturing sector to focus on sustainable manufacturing of lead free brass, as well as how to maintain control of the surface integrity when substituting the lead content in the brass with silicon. The investigation includes defined areal surface parameters measured on the turned samples of lead- and lead free brass using an optical coherence scanning interferometer, CSI. This paper deals with the study of surface topography of turned samples of lead- and lead free brass. It is important to study the topographical characteristics of the brass samples which are the intermediate link between the manufacturing process variables and the functional behaviour of the surface. To numerically evaluate the sample’s surface topography and to validate the measurements for a significant study, a general statistical methodology is implemented. The results indicate higher surface roughness in turned samples of lead brass compared to lead free brass.
NASA Astrophysics Data System (ADS)
Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.
2018-01-01
In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.
Measuring the wetting angle and perimeter of single wood pulp fibers : a modified method
John H. Klungness
1981-01-01
In pulp processing development it is often necessary to measure the effect of a process variable on individual pulp fiber wettability. Such processes would include drying of market pulps, recycling of secondary fibers, and surface modification of fibers as in sizing. However, if wettability is measured on a fiber sheet surface, the results are confounded by...
Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.
1983-01-01
1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.
NASA Technical Reports Server (NTRS)
deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.
2006-01-01
A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.
Calcium Phosphate Growth at Electropolished Titanium Surfaces
Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois
2012-01-01
This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Various gases were adsorbed to copper, aluminum, and chromium surfaces. The gases included oxygen, hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Chemisorption was conducted on static surfaces and during dynamic friction experiments. An Auger cyclindrical mirror analyzer was used to monitor surface films. The sulfur containing gases adsorbed readily to all surfaces. Exposures of as little as 0.000001 (torr)(sec) (1 langmuir) were sufficient to reduce friction. Sliding contact did not affect chemisorption of copper or aluminum but did affect chemisorption to chromium surfaces. Oxygen removed sulfur films from all surfaces at room temperature (23 C). Gaseous exposures were from 0.000001 to 0.01 (torr)(sec) (1 to 10,000 langmuirs).
NASA Astrophysics Data System (ADS)
Güven, O.; Melville, J. G.; Molz, F. J.
1983-06-01
Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.
Technology development of fabrication techniques for advanced solar dynamic concentrators
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1991-01-01
The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.
An experimental investigation of the subcritical and supercritical flow about a swept semispan wing
NASA Technical Reports Server (NTRS)
Lockman, W. K.; Seegmiller, H. L.
1983-01-01
An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.
Physics of greenhouse effect and convection in warm oceans
NASA Technical Reports Server (NTRS)
Inamdar, A. K.; Ramanathan, V.
1994-01-01
Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective regions. The positive coupling between SST and the radiative warming of the surface by the water vapor greenhouse effect is also shown to exist on interannual time scales.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
NASA Astrophysics Data System (ADS)
Aoyagi, Toshinori; Takahashi, Shunji
2012-02-01
To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.
Climate effects of reducing black carbon emissions: Dependence on location of emission
NASA Astrophysics Data System (ADS)
Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rive, N. A.; Rypdal, K.; Gerland, S.; Pedersen, C.; Strøm, J.
2006-12-01
The role played by emissions of black carbon aerosols (BC) on the Earth's climate is diverse and the overall effect is still quite uncertain: Black carbon not only absorbs sunlight (direct effect), but it also has a semi- direct effect on clouds, and when deposited on snow and ice it changes the reflectivity (albedo) of the ground surface. These mechanisms generally have a warming effect on the climate. This poster presents a Norwegian project that focus on the net effect of current BC emissions and future possible reductions in emissions of BC aerosols, taking into account scientific, economic, and political perspectives on the inclusion of BC in climate policies. Thus, the scope of the project is interdisciplinary and includes observations in the Arctic, model simulations of dispersion of BC aerosols, its radiative forcing and climate effects. Some initial results from measurements of BC content in snow from the Norwegian Arctic and corresponding measurements for surface reflectance will be presented. The radiative forcing of BC emissions from different geographical regions differs due to differences in the removal processes (i.e. the lifetime) and the amount of solar radiation available for absorption (depends on latitude, clouds, and surface albedo). The atmospheric burdens and RF (of the direct effect) of regional BC emissions from fossil fuel sources have been calculated by the global chemical transport model Oslo-CTM2 and a radiative transfer model, and first results of time-integrated RF per unit of emission (equivalent to absolute GWPs) are presented. Future plans including i) analysis of cost effective emission reduction strategies, taking into account regional differences the forcing efficiencies, but also cost estimates for BC reductions in the different regions, and ii) an evaluation of the climate effects of the emission reductions through model simulations, including climatic, economic and political perspectives exploring obstacles and opportunities will also be presented.
Effect of Surface Traffic Count on Taxi Time at Dallas-Fort Worth (DFW) International Airport
NASA Technical Reports Server (NTRS)
Kistler, Matthew Stephen; Gupta, Gautam
2008-01-01
As the amount of air traffic increases over the years, most airports simply do not have the means of expanding to handle the intensified traffic on the surface that will ensue. Precise surveillance equipment and automation concepts, as well as advanced surface traffic algorithms are being developed to improve airport efficiency. These surface algorithms require inputs unique to each airport to ensure maximum efficiency, and minimal taxi delay. This study analyzes surface traffic at Dallas-Fort Worth International Airport (DFW) to determine the effect of the number of aircraft on the surface and the amount of stop and go situations they experience to the amount of additional taxi time encountered. If the surface capacity of an airport is known, minimal delay can be accomplished by limiting the number of taxiing aircraft to that capacity. This concept is related to highways, where traffic flow drastically decreases as more cars occupy the road. An attempt to minimize this effect on highways is seen with the use of metering lights at freeway on-ramps. Since the surface traffic at airports is highly regulated, and aircraft are less mobile on the ground, limiting the surface count to a certain number can greatly reduce the amount of additional taxi time encountered, as well as reduce hazardous emissions. This study will also find the regions of an airport that encounter the most additional taxi time when the number of aircraft in that area is increased. This could help surface traffic algorithms avoid congesting that area, or re-route aircraft to different runways when that area reaches its capacity. The relationship between the amount of stop and go situations an aircraft encounters and their effect on the taxi time of that aircraft will also be investigated. This will help to determine the effect of holding an aircraft on the taxiway as opposed to re-routing it. The lesser of the two should be used when developing surface traffic algorithms to further minimize the delay encountered. The fields investigated in this study include taxi time, the number of aircraft on the surface, the number of stop and go situations, and the time stopped for each aircraft. Taxi time is defined as spot to runway for departures, and runway to spot for arrivals. It does not include ramp area taxi time because the ramp area is controlled differently, and surface traffic schedulers do not currently incorporate them. Taxi time is found by finding the difference between take-off time (OFF) and spot crossing time for departures, and spot crossing time and landing time (ON) for arrivals. All surface data was either found directly using the Surface Operations Data Analysis and Adaptation (SODAA), a tool to analyze the Surface Management System (SMS) generated log files, or indirectly from SODAA using Matlab to derive values from SODAA data. The number of aircraft on the surface is found by looping through the ON times, OFF times, and spot times for each aircraft during a particular day. For each departure aircraft, surface counts are taken at its spot crossing and OFF time. The average of these two is used as the surface count for that aircraft. For arrivals, surface counts are taken at its ON time and its spot crossing time. The average of these two is used.
Atmospheric and Science Complexity Effects on Surface Bidirectional Reflectance
NASA Technical Reports Server (NTRS)
Diner, D. J. (Principal Investigator); Martonchik, J. V.; Sythe, W. D.; Hessom, C.
1985-01-01
Among the tools used in passive remote sensing of Earth resources in the visible and near-infrared spectral regions are measurements of spectral signature and bidirectional reflectance functions (BDRFs). Determination of surface properties using these observables is complicated by a number of factors, including: (1) mixing of surface components, such as soil and vegetation, (2) multiple reflections of radiation due to complex geometry, such as in crop canopies, and (3) atmospheric effects. In order to bridge the diversity in these different approaches, there is a need for a fundamental physical understanding of the influence of the various effects and a quantiative measure of their relative importance. In particular, we consider scene complexity effects using the example of reflection by vegetative surfaces. The interaction of sunlight with a crop canopy and interpretation of the spectral and angular dependence of the emergent radiation is basically a multidimensional radiative transfer problem. The complex canopy geometry, underlying soil cover, and presence of diffuse as well as collimated illumination will modify the reflectance characteristics of the canopy relative to those of the individual elements.
The Effects of Some Surface Irregularities on Wing Drag
NASA Technical Reports Server (NTRS)
Drag, Manley
1939-01-01
The N.A.C.A. has conducted tests to provide more complete data than were previously available for estimating the effects of common surface irregularities on wing drag. The irregularities investigated included: brazier-head and countersunk rivets, spot welds, several types of sheet-metal joints, and surface roughness. Tests were also conducted to determine the over-all effect of manufacturing irregularities incidental to riveted aluminum alloy and to spot-welded stainless-steel construction. The tests were made in the 8-foot high speed wind tunnel at Reynolds Numbers up to 18,000,000. The results show that any of the surface irregularities investigated may increase wing drag enough to have important adverse effects on high-speed performance and economy. A method of estimating increases in wing drag caused by brazier-head rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints under conditions outside the range of the tests is suggested. Estimated drag increases due to rivets and lapped joints on a wing of 20-foot chord flying at 250 miles per hour are shown.
NASA Astrophysics Data System (ADS)
Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.
2014-12-01
Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.
Surfactants in the management of rhinopathologies
Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.
2013-01-01
Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951
Surface segregation and surface tension of polydisperse polymer melts.
Minnikanti, Venkatachala S; Qian, Zhenyu; Archer, Lynden A
2007-04-14
The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.
Zhi-Qing, Deng; Xiao-Dong, Tan; Shi-Bo, Kong; Kai, Wu; Ming-Xing, Xu; Hua-Tang, Luo
2017-01-06
To investigate the Oncomelania hupensis snail control effect of schistosomiasis control engineering in marshland within Wuhan City. The engineering measures including surface barrier removal, molluscicide, flatting surface, topsoil stripping, topsoil covering and ditch renovation were applied to transform Hankou marshland. Then the corresponding technical parameters of engineering measures were put forward. The situation of snails was analyzed before and after the transform project. The total length and area of the project were 6 015 m and 87.21 hm 2 , respectively, including 17.44 hm 2 of topsoil landfill, 52.08 hm 2 of topsoil covering and 23 new ditches. After the transformation, the average length of the new groove, the groove top width, groove depth, height difference, and the average values of slopes and ditch bottom slope were all increased, while the average values of the width and height of the ditch were decreased. At the same time, the marshland beach surface had a new slope that the embankment was higher than the river and no living O. hupensis snails were found then. The snail breeding environment in Hankou marshland has been effectively changed by the project. However, the constant monitoring and engineering management are still needed to consolidate the effect.
NASA Astrophysics Data System (ADS)
Petrick, Lauren; Dubowski, Yael
2010-05-01
Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.
Maisel, Katharina; Ensign, Laura; Reddy, Mihika; Cone, Richard; Hanes, Justin
2015-01-10
It is believed that mucoadhesive surface properties on particles delivered to the gastrointestinal (GI) tract improve oral absorption or local targeting of various difficult-to-deliver drug classes. To test the effect of nanoparticle mucoadhesion on distribution of nanoparticles in the GI tract, we orally and rectally administered nano- and microparticles that we confirmed possessed surfaces that were either strongly mucoadhesive or non-mucoadhesive. We found that mucoadhesive particles (MAP) aggregated in mucus in the center of the GI lumen, far away from the absorptive epithelium, both in healthy mice and in a mouse model of ulcerative colitis (UC). In striking contrast, water absorption by the GI tract rapidly and uniformly transported non-mucoadhesive mucus-penetrating particles (MPP) to epithelial surfaces, including reaching the surfaces between villi in the small intestine. When using high gavage fluid volumes or injection into ligated intestinal loops, common methods for assessing oral drug and nanoparticle absorption, we found that both MAP and MPP became well-distributed throughout the intestine, indicating that the barrier properties of GI mucus were compromised. In the mouse colorectum, MPP penetrated into mucus in the deeply in-folded surfaces to evenly coat the entire epithelial surface. Moreover, in a mouse model of UC, MPP were transported preferentially into the disrupted, ulcerated tissue. Our results suggest that delivering drugs in non-mucoadhesive MPP is likely to provide enhanced particle distribution, and thus drug delivery, in the GI tract, including to ulcerated tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Coupled land surface/hydrologic/atmospheric models
NASA Technical Reports Server (NTRS)
Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers
1993-01-01
The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.
Analyses of Diamond Wire Sawn Wafers: Effect of Various Cutting Parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas
We have evaluated surface characteristics of diamond wire cut (DWC) wafers sawn under a variety of cutting parameters. These characteristics include surface roughness, spatial frequencies of surface profiles, phase changes, damage depth, and lateral non-uniformities in the surface damage. Various cutting parameters investigated are: wire size, diamond grit size, reciprocating frequency, feed rate, and wire usage. Spatial frequency components of surface topography/roughness are influenced by individual cutting parameters as manifested by distinct peaks in the Fourier transforms of the Dektak profiles. The depth of damage is strongly controlled by diamond grit size and wire usage and to a smaller degreemore » by the wire size.« less
The seasonal cycle of snow cover, sea ice and surface albedo
NASA Technical Reports Server (NTRS)
Robock, A.
1980-01-01
The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.
Variational Methods For Sloshing Problems With Surface Tension
NASA Astrophysics Data System (ADS)
Tan, Chee Han; Carlson, Max; Hohenegger, Christel; Osting, Braxton
2016-11-01
We consider the sloshing problem for an incompressible, inviscid, irrotational fluid in a container, including effects due to surface tension on the free surface. We restrict ourselves to a constant contact angle and we seek time-harmonic solutions of the linearized problem, which describes the time-evolution of the fluid due to a small initial disturbance of the surface at rest. As opposed to the zero surface tension case, where the problem reduces to a partial differential equation for the velocity potential, we obtain a coupled system for the velocity potential and the free surface displacement. We derive a new variational formulation of the coupled problem and establish the existence of solutions using the direct method from the Calculus of Variations. In the limit of zero surface tension, we recover the variational formulation of the classical Steklov eigenvalue problem, as derived by B. A. Troesch. For the particular case of an axially symmetric container, we propose a finite element numerical method for computing the sloshing modes of the coupled system. The scheme is implemented in FEniCS and we obtain a qualitative description of the effect of surface tension on the sloshing modes.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie
2017-06-01
Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.
de Jong, B; Meeder, A M; Koekkoek, K W A C; Schouten, M A; Westers, P; van Zanten, A R H
2018-07-01
Among patients admitted to European hospitals or intensive care units (ICUs), 5.7% and 19.5% will encounter healthcare-associated infections (HAIs), respectively, and antimicrobial resistance is emerging. As hospital surfaces are contaminated with potentially pathogenic bacteria, environmental cleanliness is an essential aspect to reduce HAIs. To address the efficacy of a titanium dioxide coating in reducing the microbial colonization of environmental surfaces in an ICU. A prospective, controlled, single-centre pilot study was conducted to examine the effect of a titanium dioxide coating on the microbial colonization of surfaces in an ICU. During the pre- and post-intervention periods, surfaces were cultured with agar contact plates (BBL RODAC plates). Factors that were potentially influencing the bacterial colonization of surfaces were recorded. A repeated measurements analysis within a hierarchic multi-level framework was used to analyse the effect of the intervention, controlling for the explanatory variables. The mean ratio for the total number of colony-forming units (cfus) in a room between the pre- and post-intervention periods was 0.86 (standard deviation 0.57). The optimal model included the following explanatory variables: intervention (P=0.065), week (P=0.002), culture surfaces (P<0.001), ICU room (P=0.039), and interaction between intervention and week (P=0.002) and between week and culture surfaces (P=0.031). The effect of the intervention on the number of cfus from all culture plates in Week 4 between the pre- and post-intervention periods was -0.47 (95% confidence interval -0.24 to - 0.70). This study found that a titanium dioxide coating had no effect on the microbial colonization of surfaces in an ICU. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Polymer/riblet combination for hydrodynamic skin friction reduction
NASA Technical Reports Server (NTRS)
Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor)
1995-01-01
A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g. a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.
Polymer/riblet combination for hydrodynamic skin friction reduction
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Inventor); Reed, Jason C. (Inventor)
1990-01-01
A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g., a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.
1998-01-01
When a jet STOVL aircraft is hovering, or in a crossflow, while close to the ground wall jets flowing radially outward from the impingement points of the jets are generated. An upflow, or fountain, is generated where the wall jets from adjacent jets meet on the ground surface. The induced lift and suckdown generated by the impingement of the fountain on the lower surface of the configuration has been the subject of previous studies. This study analyzes the limited available pressure and force data on the effect of crossflow on the fountain induced lift and suckdown. The analysis includes the effects of jet spacing, height and operating conditions. However, it is limited to twin jet configurations of circular, vertical jets operating at subcritical nozzle pressure ratios over a fixed ground surface.
Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas
2013-09-01
The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.
NASA Technical Reports Server (NTRS)
Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.
1991-01-01
Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.
[Effect of anti-inflammatory therapy on the treatment of dry eye syndrome].
Mrukwa-Kominek, Ewa; Rogowska-Godela, Anna; Gierek-Ciaciura, Stanisława
2007-01-01
Dry eye syndrome is a common chronic disease; agents and strategies for its effective management are still lacking. The syndrome tends to be accompanied by ocular surface inflammation; therefore, the use of anti-inflammatory agents might prove beneficial. The authors present up-to-date guidelines, strategies, and efficacy of dry eye syndrome management, including anti-inflammatory treatment. As no diagnostic tests are now available to assess ocular surface inflammation severity, the right timing to launch an anti-inflammatory agent is difficult to determine. Patients with mild intermittent bouts of symptoms which can be alleviated with ophthalmic lubricants do not typically require anti-inflammatory therapy. The latter should be considered in those who do not respond to lubricating drops, obtain poor results on clinical tests, and show symptoms of ocular surface irritation (eg. conjunctivae redness). Anti-inflammatory treatment of dry eye syndrome may include short-term corticosteroids, cyclosporine A emulsion, oral tetracycline therapy, oral omega-3 fatty acid supplements, and autologous serum eye drops. Anti-inflammatory treatment should be safe and effective; potential benefits should be evaluated for each individual patient. The authors have reviewed the advantages of anti-inflammatory treatment in dry eye syndrome, presented in literature.
X-33 Hypersonic Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.
Did Irving Langmuir Observe Langmuir Circulations?
NASA Astrophysics Data System (ADS)
D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.
2012-12-01
Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.
Box, W. Donald
1998-01-01
A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.
Box, W. Donald
1997-01-01
A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.
Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas
NASA Astrophysics Data System (ADS)
Hao, D.; Wen, J.; Xiao, Q.
2017-12-01
Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Scott, Andrea Michalkova; Burns, Elizabeth A; Hill, Frances C
2014-08-01
The adsorption of nitrogen-containing compounds (NCCs) including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazol-5-one (NTO) on kaolinite surfaces was investigated. The M06-2X and M06-2X-D3 density functionals were applied with the cluster approximation. Several different positions of NCCs relative to the adsorption sites of kaolinite were examined, including NCCs in perpendicular and parallel orientation toward both surface models of kaolinite. The binding between the target molecules and kaolinite surfaces was analyzed and bond energies were calculated applying the atoms in molecules (AIM) method. All NCCs were found to prefer a parallel orientation toward both kaolinite surfaces, and were bound more strongly to the octahedral than to the tetrahedral site. TNT exhibited the strongest interaction with the octahedral surface and DNAN with the tetrahedral surface of kaolinite. Hydrogen bonding was shown to be the dominant non-covalent interaction for NCCs interacting with the octahedral surface of kaolinite with a small stabilizing effect of dispersion interactions. In the case of adsorption on the tetrahedral surface, kaolonite-NCC binding was shown to be governed by the balance between hydrogen bonds and dispersion forces. The presence of water as a solvent leads to a significant decrease in the adsorption strength for all studied NCCs interacting with both kaolinite surfaces.
NASA Technical Reports Server (NTRS)
Maskew, B.
1983-01-01
A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
The non-static effect of near-surface inhomogeneity on CSAMT data
NASA Astrophysics Data System (ADS)
Lei, Da; Fayemi, Busayo; Yang, Liangyong; Meng, Xiaohong
2017-04-01
Controlled source audio-frequency magnetotelluric (CSAMT) method has several advantages over magnetotelluric (MT) method, which includes the recording of lower noise signal and higher resolution data. However, CSAMT field data can still be distorted by the effect of near surface inhomogeneous body. It may be confused with static effect just like in MT, if three-dimensional subsurface geological body is buried under the receiver. Traditionally, the method used in static correction is adopted similar to that used in MT method for many years. In comparison, MT are the natural electric and magnetic fields in the frequency range of 0.0001 Hz to 500 Hz, while CSAMT fields are applied at frequencies ranging from 0.1 to 10 kHz. Hence, in this paper, the non-static effect of near-surface inhomogeneity in CSAMT was simulated through theoretical modeling and we summarized its characteristics. If the skin depth is much larger than the size of the near-surface inhomogeneous body that is close to the measurement point, the anomalous body causes a static effect which is represented by vertical shift in apparent resistivity curves for all frequencies from their expected values, but when the skin depth is much smaller than the size of the near-surface inhomogeneous body in the vicinity of the measurement point, the apparent resistivity curve at high frequencies remains unchanged, while at lower frequencies shift in value is observed. The near-surface effect may be confused with static effect in data processing; however, it cannot be corrected using previous static correction methods, but by using the two-dimensional inversion method. Hence, for such CSAMT data, both effective processing technique and inversion process is of great significance.
External Surface Changes Observed on the International Space Station (ISS) Through 2012
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
2012-01-01
As the International Space Station (ISS) surpasses 13 years of on-orbit operation, 11 of those years continuously inhabited, external surfaces of the vehicle have shown a wide variety of visible environmental effects. Throughout, the ISS program has maintained a significant effort to routinely document the vehicle external surface condition and to monitor those changes with time. The impacts of micrometeoroids and orbital debris, surface changes from molecular contamination of various sources, and the effects of ultraviolet radiation and atomic oxygen have all been noted. The tremendous size and complexity of the ISS vehicle has yielded a wide variety of observations of interest to the spacecraft materials engineer concerning long-term, low earth orbit (LEO) space environmental effects (SEE). In addition, inadvertent materials substitutions have been identified because of these environmental effects, as well as inadequate contamination control practices likely occurring during hardware manufacture and assembly. Some of the observations from our photography are purely artifacts of the unusual lighting conditions and environments that exist in space. A compilation of ISS on-orbit photography representing all of these aspects is presented, demonstrating the various SEE and their impacts as a function of time in LEO, including interpretations of those effects.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
NASA Astrophysics Data System (ADS)
Reyes, B.; Vahmani, P.; Hogue, T. S.; Maxwell, R. M.
2013-05-01
Irrigation can significantly alter land surface properties including increases in evapotranspiration (ET) and latent heat flux and a decrease in land surface temperatures that have a wide range of effects on the hydrologic cycle. However, most irrigation in land surface modeling studies has generally been limited to large-scale cropland applications while ignoring the, relatively, much smaller use of irrigation in urban areas. Although this assumption may be valid in global studies, as we seek to apply models at higher resolutions and at more local scales, irrigation in urban areas can become a key factor in land-atmosphere interactions. Landscape irrigation can account for large portions of residential urban water use, especially in semi-arid environments (e.g. ~50% in Los Angeles, CA). Previous modeling efforts in urbanized semi-arid regions have shown that disregarding irrigation leads to inaccurate representation of the energy budget. The current research models a 49.5-km2 (19.11-mi2) domain near downtown Los Angeles in the Ballona Creek watershed at a high spatial and temporal resolution using a coupled hydrologic (ParFlow) and land surface model (CLM). Our goals are to (1) provide a sensitivity analysis for urban irrigation parameters including sensitivity to total volume and timing of irrigation, (2) assess the effects of irrigation on varying land cover types on the energy budget, and (3) evaluate if residential water use data is useful in providing estimates for irrigation in land surface modeling. Observed values of land surface parameters from remote sensing products (Land Surface Temperature and ET), water use data from the Los Angeles Department of Water and Power (LADWP), and modeling results from an irrigated version of the NOAH-Urban Canopy Model are being used for comparison and evaluation. Our analysis provides critical information on the degree to which urban irrigation should be represented in high-resolution, semi-arid urban land surface modeling of the region. This research also yields robust upper-boundary conditions for further analysis and modeling in Los Angeles.
Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H
2018-05-01
Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A., E-mail: annag@fnal.gov; Melnychuk, O.
We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.
Effect of polymer coating on the osseointegration of CP-Ti dental implant
NASA Astrophysics Data System (ADS)
Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar
2018-05-01
Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.
Modeling of nanostructured porous thermoelastic composites with surface effects
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.
2017-01-01
The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.
The effects of diffusion in hot subdwarf progenitors from the common envelope channel
NASA Astrophysics Data System (ADS)
Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili
2018-04-01
Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven
2015-01-01
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.
Application of spatially gridded temperature and land cover data sets for urban heat island analysis
Gallo, Kevin; Xian, George Z.
2014-01-01
Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.
Effect of surface wave propagation in a four-layered oceanic crust model
NASA Astrophysics Data System (ADS)
Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu
2017-12-01
Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.
Aeroelastic Considerations For Rotorcraft Primary Control with On-Blade Elevons
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Rutkowski, Michael (Technical Monitor)
2001-01-01
Replacing the helicopter rotor swashplate and blade pitch control system with on-blade elevon control surfaces for primary flight control may significantly reduce weight and drag to improve mission performance. Simplified analyses are used to examine the basic aeroelastic characteristics of such rotor blades, including pitch and flap dynamic response, elevon reversal, and elevon control effectiveness. The profile power penalty associated with deflections of elevon control surfaces buried within the blade planform is also evaluated. Results suggest that with aeroelastic design for pitch frequencies in the neighborhood of 2/rev, reasonable elevon control effectiveness may be achieved and that, together with collective pitch indexing, the aerodynamic profile power penalty of on-blade control surface deflections may be minimized.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Investigating the dynamics of surface-immobilized DNA nanomachines
Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.
2016-01-01
Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors. PMID:27387252
Importance and Definition of Materials in Tribology. Status of Understanding
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1984-01-01
In general, tribological systems consist of three basic components: the material surfaces in contact, the lubricant, and the environment. The materials in contact and the influence of both bulk and surface properties, indicating the importance of material characterization, on tribological behavior are addressed. Since metals and metallic alloys are the most widely used class of materials in practical devices, attention is focused principally on them. With respect to surface behavior, the effect of contaminants both from within the material and from the environment on adhesive behavior is addressed. The various surface events that alter adhesion, friction, and wear are discussed. These include surface reconstruction, segregation, chemisorption, and compound formation. Examples of these events are presented. Minor nuances in the structure of the outermost layers of solids have a pronounced effect on tribological properties. The importance of characterizing the materials of solids in contact in order to achieve a fundamental understanding of adhesion, friction, and wear and accordingly of methods for their control are addressed.
Investigating the dynamics of surface-immobilized DNA nanomachines
NASA Astrophysics Data System (ADS)
Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.
2016-07-01
Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors.
NASA Technical Reports Server (NTRS)
Dreher, R. C.; Tanner, J. A.
1974-01-01
The characteristics, which include the cornering-force and drag-force friction coefficients and self-alining torque, were obtained on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 12 deg and at ground speeds from approximately 5 to 90 knots. The results indicate that a tread pattern with pinholes in the ribs reduces the tire cornering capability at high yaw angles on a damp surface but improves cornering on a dry surface. A tread pattern which has transverse grooves across the entire width of the tread improves the tire cornering performance slightly at high speeds on the flooded runway surface. The cornering capability of all the tires is degraded at high ground speeds by thin film lubrication and/or tire hydroplaning effects. Alterations to the conventional tread pattern provide only marginal improvements in the tire cornering capability which suggests that runway surface treatments may be a more effective way of improving aircraft ground performance during wet operations.
Fiber-Reinforced Reactive Nano-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zhong, Wei-Hong
2011-01-01
An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide
NASA Astrophysics Data System (ADS)
Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano
2016-04-01
Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI) available: Representative structures for the most populated conformational structures of Aβ16-22 on bulk and on the metal surface. Normalized distribution of the variable s defined as the sum of internal dihedral angles of the peptide in solution and at the gold/water interface. See DOI: 10.1039/C6NR01539E
Morozov, Andrey K; Colosi, John A
2017-09-01
Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.
Utility of Lava Tubes on Other Worlds
NASA Technical Reports Server (NTRS)
Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.
1998-01-01
On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.
The effects of padded surfaces on the risk for cervical spine injury.
Nightingale, R W; Richardson, W J; Myers, B S
1997-10-15
This is an in vitro study comparing cervical spine injuries produced in rigid head impacts and in padded head impacts. To test the hypothesis that deformable impact surfaces pose a greater risk for cervical spine injury than rigid surfaces using a cadaver-based model that includes the effects of the head and torso masses. It is widely assumed that energy-absorbing devices that protect the head from injury also reduce the risk for neck injury. However, this has not been demonstrated in any experimental or epidemiologic study. On the contrary, some studies have shown that padded surfaces have no effect on neck injury risk, and others have suggested that they can increase risk. Experiments were performed on 18 cadaveric cervical spines to test 6 combinations of impact angle and impact surface padding. The impact surface was oriented at -15 degrees (posterior impact), 0 degree (vertex impact), or +15 degrees (anterior impact). The impact surface was either a 3-mm sheet of lubricated Teflon or 5 cm of polyurethane foam. Impacts onto padded surfaces produced significantly larger neck impulses (P = 0.00023) and a significantly greater frequency of cervical spine injuries than rigid impacts (P = 0.0375). The impact angle was also correlated with injury risk (P < 0.00001). These experiments suggest that highly deformable, padded contact surfaces should be used carefully in environments where there is the risk for cervical spine injury. The results also suggest that the orientation of the head, neck, and torso relative to the impact surface is of equal if not greater importance in neck injury risk.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Doug; Quattroch, Dale; Estes. Maury
2007-01-01
Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., < 15m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number)(Luvall and Holbo 1989) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for several cities in the United States.
Richard D Bergman
2012-01-01
Greenhouse gases (GHGs) trap infrared radiation emitting from the Earthâs surface to generate the âgreenhouse effectâ thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...
Recent advances in engineering topography mediated antibacterial surfaces
Hasan, Jafar
2015-01-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264
Recent advances in engineering topography mediated antibacterial surfaces
NASA Astrophysics Data System (ADS)
Hasan, Jafar; Chatterjee, Kaushik
2015-09-01
The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.
Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen
NASA Technical Reports Server (NTRS)
Raack, Taylor
2004-01-01
Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Multiscale Simulations of ALD in Cross Flow Reactors
Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
2014-08-13
In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less
O'Brien, C; Charman, W N
2006-05-01
After a preliminary investigation of the effects of tool feed rate and spindle speed on the surface roughness of unhydrated, lathe-cut polymacon surfaces, a laboratory and clinical comparison was made between lenses with identical parameters except that the lathe-cut posterior surface was left unpolished in the "test" lenses and was polished in the "control" lenses. The lenses had moulded anterior surfaces. Laboratory comparisons included surface roughness, lens power and its uniformity across the surface. Double-blind clinical trials over 4-hour (27 subjects) and 1-month (10 subjects) periods, involved one eye of each subject wearing a "test" lens and the other, a "control" lens. No clinically significant differences were found between the results for the test and control lenses. It is concluded that today's lathing technology makes a final polishing stage unnecessary.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-05
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.
Lunar mission safety and rescue: Escape/rescue analysis and plan
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.
NASA Astrophysics Data System (ADS)
Braunbeck, G.; Mandal, S.; Touge, M.; Williams, O. A.; Reinhard, F.
2018-05-01
We investigate the correlation between surface roughness and corresponding $T_2$ times of nearsurface nitrogen-vacancy centers (~7 nm/ 5 keV implantation energy) in diamond. For this purpose we compare five different polishing techniques, including both purely mechanical as well as chemical mechanical approaches, two different substrate sources (Diam2tec and Element Six) and two different surface terminations (O- and H-termination) during nitrogen-vacancy forming. All coherence times are measured and compared before and after an oxygen surface treatment at 520 {\\deg}C. We find that the coherence times of shallow nitrogen-vacancy centers are surprisingly independent of surface roughness.
Turbine blade damping device with controlled loading
Marra, John J
2013-09-24
A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.
Turbine blade damping device with controlled loading
Marra, John J.
2015-09-29
A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.
Pipette-surface interaction: current enhancement and intrinsic force.
Clarke, Richard W; Zhukov, Alexander; Richards, Owen; Johnson, Nicholas; Ostanin, Victor; Klenerman, David
2013-01-09
There is an intrinsic repulsion between glass and cell surfaces that allows noninvasive scanning ion conductance microscopy (SICM) of cells and which must be overcome in order to form the gigaseals used for patch clamping investigations of ion channels. However, the interactions of surfaces in physiological solutions of electrolytes, including the presence of this repulsion, for example, do not obviously agree with the standard Derjaguin-Landau-Verwey-Overbeek (DLVO) colloid theory accurate at much lower salt concentrations. In this paper we investigate the interactions of glass nanopipettes in this high-salt regime with a variety of surfaces and propose a way to resolve DLVO theory with the results. We demonstrate the utility of this understanding to SICM by topographically mapping a live cell's cytoskeleton. We also report an interesting effect whereby the ion current though a nanopipette can increase under certain conditions upon approaching an insulating surface, rather than decreasing as would be expected. We propose that this is due to electroosmotic flow separation, a high-salt electrokinetic effect. Overall these experiments yield key insights into the fundamental interactions that take place between surfaces in strong solutions of electrolytes.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces
Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.
2015-01-01
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940
NASA Astrophysics Data System (ADS)
Ma, C.-G.; Krasnenko, V.; Brik, M. G.
2018-04-01
Three cubic bromide perovskites CsMBr3 (M = Ca, Ge, Sn) with two different surface terminations (CsBr and MBr2) were studied in this work using the first principles method. A wide range of physical properties, including electronic band structures, atom-projected density of states for each layer, surface relaxation effects, and surface energy, were evaluated for each considered surface termination. Differences between the properties of the bulk and slab models were highlighted. It was shown that surfaces with the CsBr termination have a lower energy and a more pronounced surface rumpling than those with the MBr2 termination. As a main result of this study, it was demonstrated that the CsBr-terminated surfaces appear to be energetically more stable in each of these three considered perovskites.
NASA Technical Reports Server (NTRS)
Beck, B.; Widyani, E.; Wightman, J. P.
1983-01-01
Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.
NASA Astrophysics Data System (ADS)
Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam
2018-04-01
In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.
The influence of surface finishing methods on touch-sensitive reactions
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Sokolov, A. P.; Krauinsh, P. Y.; Kozlova, A. D.; Bouchard, C.
2017-02-01
This paper describes the modern technological development trends in jewelry design. In the jewelry industry, new trends, associated with the introduction of updated non-traditional materials and finishing techniques, are appearing. The existing information-oriented society enhances the visual aesthetics of new jewelry forms, decoration techniques (depth and surface), synthesis of different materials, which, all in all, reveal a bias towards positive effects of visual design. Today, the jewelry industry includes not only traditional techniques, but also such improved techniques as computer-assisted design, 3D-prototyping and other alternatives to produce an updated level of jewelry material processing. The authors present the specific features of ornamental pattern designing, decoration types (depth and surface) and comparative analysis of different approaches in surface finishing. Identifying the appearance or the effect of jewelry is based on proposed evaluation criteria, providing an advanced visual aesthetics basis is predicated on touch-sensitive responses.
Relationship between landscape characteristics and surface water quality.
Chang, C L; Kuan, W H; Lui, P S; Hu, C Y
2008-12-01
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.
Robotic end gripper with a band member to engage object
Pollard, Roy E.; Robinson, Samuel C.; Thompson, William F.; Couture, Scott A.; Sutton, Bill J.
1994-01-01
An end effector for use with robotic arms and like devices that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator.
Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M
2008-03-04
A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.
Colling Wipe Samples for VX Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, C; Hoppes, W G
2010-02-11
This standard operating procedure (SOP) provides uniform procedures for the collection of wipe samples of VX residues from surfaces. Personnel may use this procedure to collect and handle wipe samples in the field. Various surfaces, including building materials (wood, metal, tile, vinyl, etc.) and equipment, may be sampled based on this procedure. The purpose of such sampling is to determine whether or not the relevant surfaces are contaminated, to determine the extent of their contamination, to evaluate the effectiveness of decontamination procedures, and to determine the amount of contaminant that might present as a contact hazard.
Modeling of scattering from ice surfaces
NASA Astrophysics Data System (ADS)
Dahlberg, Michael Ross
Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
Wetlands inform how climate extremes influence surface water expansion and contraction
NASA Astrophysics Data System (ADS)
Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.
2018-03-01
Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage. From these findings, we can expect that shifts in precipitation and evaporative demand will have uneven effects on surface water quantity. Accurate predictions regarding the effect of climate change on surface water quantity will require consideration of hydrology-related landscape characteristics including wetland storage and arrangement.
NASA Astrophysics Data System (ADS)
Gu, Y.; Wu, L.; Jiang, J. H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K. N.; Choi, Y. S.
2017-12-01
A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside of California are studied. We differentiate three pathways of aerosol effects including aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42°N, 117-124°W, not including ocean points) are reduced when aerosols are included, therefore reducing the high model biases of these variables when aerosol effects are not considered. Aerosols affect California water resources through the warming of mountain tops and anomalously low precipitation, however, different aerosol sources play different roles in changing surface temperature, precipitation and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountain tops through ASI, in which the reduced snow albedo associated with dirty snow leads to more surface absorption of solar radiation and reduced SWE. Transported and local anthropogenic aerosols play a dominant role in increasing cloud water amount but reducing precipitation through ACI, leading to reduced SWE and runoff over the Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October to June are about -0.19 K and 0.22 K for the whole domain and over mountain tops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for SWE, and 7% for surface runoff for the whole domain, while the corresponding numbers are 12%, 10%, and 10% for mountain tops. The reduction in SWE is more significant in a dry year, with 9% for the whole domain and 16% for mountain tops.
Real-time single-molecule observations of proteins at the solid-liquid interface
NASA Astrophysics Data System (ADS)
Langdon, Blake Brianna
Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-10-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-01-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094
Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water
Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...
2014-11-17
By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less
Yousefzadeh, Behrooz; Hodgson, Murray
2012-09-01
A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.
Effect of wakes on land-atmosphere fluxes
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porte-Agel, F.; Stefan, H. G.
2011-12-01
Wakes affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases. Canopies and bluff bodies, including forests, buildings and topography, cause boundary layer flow separation, significantly extend flow recovery, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances affecting a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere modeling, and little is known about how heterogeneity of wake-generating features effect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous requirements for the standard eddy correlation (EC) method. This phenomenon often referred to as sheltering has been shown to affect momentum and kinetic energy fluxes into lakes from the atmosphere (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using PIV and custom x-wire/cold-wire anemometry, designed to understand how the physical structure of upstream bluff bodies or porous canopies and thermal stability affect the separation zone, boundary layer recovery and surface fluxes. We also compare these results to field measurements taken with a Doppler LiDAR in the wake of a canopy and a building. We have found that there is a nonlinear relationship between porosity and flow separation behind a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for EC measurements over open fields, lakes, and wetlands.
Affected Gulf Resources | NOAA Gulf Spill Restoration
effects from the oil. Trillions of larval fish and invertebrates were killed in offshore surface, deep have reached a year old. Fish suffered many negative effects from the oil, including impaired cascading adverse effects on all of the organisms that use the reefs. âMarine Mammals Manatee There are
NASA Technical Reports Server (NTRS)
Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.
1993-01-01
The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Hollingsworth, Jeffery
2012-01-01
The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.
Effective medium model for a granular monolayer on an elastic substrate
NASA Astrophysics Data System (ADS)
Maznev, Alexei
Effective medium models have been shown to work well in describing experimental observations of the interaction of surface Rayleigh waves with contact vibrations of a monolayer of microspheres . However, these models contain intrinsic conceptual problems: for example, the local displacement of the substrate at the contact point is equated to the effective medium average value of the surface displacement. I will present a rigorous derivation of the effective medium model for a random arrangement of mass-spring oscillators on an elastic half-space using elastodynamic surface Green's function formalism. We will see that the model equating the local surface displacement to the effective medium displacement is indeed valid if the spring constant of the oscillators is modified to include the stiffness of the contact calculated in the quasistatic approximation. In the case of contact vibrations of microspheres, this means using the spring constant calculated using the Hertzian contact model. Thus the results obtained in the prior work were correct despite the apparent inconsistencies in the model. The presented analysis will provide a solid foundation for effective medium models used to describe dynamics of microparticle arrays adhered to a solid substrate. This work was supported by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies under Grant W911NF-13-D-0001.
NASA Astrophysics Data System (ADS)
Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf
2017-10-01
For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.
Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.
Quantum size effects on the (0001) surface of double hexagonal close packed americium
NASA Astrophysics Data System (ADS)
Gao, D.; Ray, A. K.
2007-01-01
Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.
Connor, Thomas H; Smith, Jerome P
2016-09-01
At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.
Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.
2013-01-01
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1994-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
Surface effect investigation on multipactor in microwave components using the EM-PIC method
NASA Astrophysics Data System (ADS)
Li, Yun; Ye, Ming; He, Yong-Ning; Cui, Wan-Zhao; Wang, Dan
2017-11-01
Multipactor poses a great risk to microwave components in space and its accurate controllable suppression is still lacking. To evaluate the secondary electron emission (SEE) of arbitrary surface states on multipactor, metal samples fabricated with ideal smoothness, random roughness, and micro-structures on the surface are investigated through SEE experiments and multipactor simulations. An accurate quantitative relationship between the SEE parameters and the multipactor discharge threshold in practical components has been established through Electromagnetic Particle-In-Cell (EM-PIC) simulation. Simulation results of microwave components, including the impedance transformer and the coaxial filter, exhibit an intuitive correlation between the critical SEE parameters, varied due to different surface states, and multipactor thresholds. It is demonstrated that it is the surface micro-structures with certain depth and morphology that determine the average yield of secondaries, other than the random surface relieves. Both the random surface relieves and micro-structures have a scattering effect on SEE, and the yield is prone to be identical upon different elevation angles of incident electrons. It possesses a great potential in the optimization and improvement of suppression technology without the exhaustion of the technological parameter.
Iron aluminide alloy coatings and joints, and methods of forming
Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.
1994-01-01
A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.
Nanostructured magnesium has fewer detrimental effects on osteoblast function.
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.
Nanostructured magnesium has fewer detrimental effects on osteoblast function
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891
Iron aluminide alloy coatings and joints, and methods of forming
Wright, R.N.; Wright, J.K.; Moore, G.A.
1994-09-27
Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.
NASA Astrophysics Data System (ADS)
Long, C. N.; Augustine, J. A.; McComiskey, A. C.
2017-12-01
The NOAA Earth Systems Research Laboratory (ESRL) Global Monitoring Division (GMD) operates a network of seven surface radiation budget sites (SURFRAD) across the continental United States. The SURFRAD network was established in 1993 with the primary objective to support climate research with accurate, continuous, long-term measurements of the surface radiation budget over the United States and is a major contributor to the WMO international Baseline Surface Radiation Network. The data from the SURFRAD sites have been used in many studies including trend analyses of surface solar brightening (Long et al, 2009; Augustine and Dutton, 2013; Gan et al., 2015). These studies have focused mostly on long term aggregate trends. Here we will present results of studies that take a closer look across the years of the cloud influence on the surface radiation budget components partitioned by seasonal and diurnal analyses, and using derived quantities now available from the SURFRAD data archive produced by the Radiative Flux Analysis value added processing. The results show distinct differences between the sites surface radiative energy budgets and cloud radiative effects due to their differing climates and latitudinal locations.
Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D
2015-01-01
Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
30 CFR 874.13 - Reclamation objectives and priorities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 874.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE..., safety, and property from extreme danger of adverse effects of coal mining practices, including the... effects of coal mining practices; and (ii) Are adjacent to a site that has been or will be addressed to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
Method for using magnetic particles in droplet microfluidics
NASA Technical Reports Server (NTRS)
Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)
2012-01-01
Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
On the performance of infrared sensors in earth observations
NASA Technical Reports Server (NTRS)
Johnson, L. F.
1972-01-01
The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.
The Effect of Surface Chemical Functionality Upon Ice Adhesion
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Wohl, Christopher J.; Doss, Jereme; Spence, Destiny; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin R.; McDougal, Nicholas D.
2015-01-01
In nature, anti-freeze proteins present in fish utilize specific organic functionalities to disrupt ice crystal formation and propagation. Based on these structures, surfaces with controlled chemical functionality and chain length were evaluated both experimentally and computationally to assess the effect of both parameters in mitigating ice formation. Linear aliphatic dimethylethoxysilanes terminated with methyl or hydroxyl groups were prepared, characterized, and used to coat aluminum. The effect upon icing using a microdroplet freezing apparatus and the Adverse Environment Rotor Test Stand found hydroxyl-terminated materials exhibited a greater propensity for ice formation and adhesion. Molecular dynamics simulations of a silica substrate bearing functionalized species of similar composition were brought into contact with a pre-equilibrated ice crystal. Several parameters including chain mobility were monitored to ascertain the size of a quasi-liquid layer. The studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Rational modification of protein stability by targeting surface sites leads to complicated results
Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.
2013-01-01
The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426
NASA Astrophysics Data System (ADS)
Lee, W. L.; Liou, K. N.; Gu, Y.; Wang, C. C.; Wu, C. H.; Hsu, H. H.
2017-12-01
We have develop a parameterization to quantify the effect of 3-D topography on surface solar radiation, including multiple reflection and heating difference at sunward and shaded slopes of mountains. A series of sensitivity tests using NCAR CCSM4 with and without this parameterization have been carried out to investigate this effect in climate simulations. The result indicates that missing the 3-D radiation-topography interaction could be a key factor leading to cold biases over the Tibetan Plateau in winter in all of the CMIP5 models. Consequently, the snowmelt rate in the Tibetan Plateau could be underestimated in most future projections. In addition, the topographic effect can also increase the net surface solar radiation at the southern slope of the Himalayas in summer. The temporal and spatial distribution of monsoon precipitation and circulation could also be influenced.
An observational philosophy for GEOS-C satellite altimetry
NASA Technical Reports Server (NTRS)
Weiffenbach, G. C.
1972-01-01
The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.
Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian
2015-11-01
We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.
Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G
2009-01-01
Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.
Leading edge film cooling effects on turbine blade heat transfer
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1995-01-01
An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.
Different Effects of Roughness (Granularity) and Hydrophobicity
NASA Astrophysics Data System (ADS)
Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael
2010-05-01
With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most superhydrophobic surfaces. There are some, however, that defeat even the snail's complex slime. Looking at these surfaces in more detail reveals that some superhydrophobic surfaces are much more resistant to the effects of surfactants than others. As mentioned above, overhanging structures, such as those found in granular materials are particularly effective at suspending liquids. This does not, however, always translate to them being more effective against surfactants, unfortunately, however, surfactants are not always as effective as we would like them to be, although drops do not skate across superhydrophobic surfaces they often do not penetrate into them fully either.
Chyderiotis, S; Legeay, C; Verjat-Trannoy, D; Le Gallou, F; Astagneau, P; Lepelletier, D
2018-03-29
Hospital-acquired infections (HAIs) are a major public health issue. The potential of antimicrobial copper surfaces in reducing HAIs' rates is of interest but remains unclear. We conducted a systematic review of studies assessing the activity of copper surfaces (colony-forming unit (CFU)/surface, both in vitro and in situ) as well as clinical studies. In vitro study protocols were analysed through a tailored checklist developed specifically for this review, in situ studies and non-randomized clinical studies were assessed using the ORION (Outbreak Reports and Intervention studies Of Nosocomial infection) checklist and randomized clinical studies using the CONSORT guidelines. The search was conducted using PubMed database with the keywords 'copper' and 'surfaces' and 'healthcare associated infections' or 'antimicrobial'. References from relevant articles, including reviews, were assessed and added when appropriate. Articles were added until 30 August 2016. Overall, 20 articles were selected for review including 10 in vitro, eight in situ and two clinical studies. Copper surfaces were found to have variable antimicrobial activity both in vitro and in situ, although the heterogeneity in the designs and the reporting of the results prevented conclusions from being drawn regarding their spectrum and activity/time compared to controls. Copper effect on HAIs incidence remains unclear because of the limited published data and the lack of robust designs. Most studies have potential conflicts of interest with copper industries. Copper surfaces have demonstrated an antimicrobial activity but the implications of this activity in healthcare settings are still unclear. No clear effect on healthcare associated infections has been demonstrated yet. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.
2016-12-01
This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.
NASA Astrophysics Data System (ADS)
Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing
2018-05-01
Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.
Effectiveness of electrocardiographic guidance in CVAD tip placement.
Walker, Graham; Chan, Raymond J; Alexandrou, Evan; Webster, Joan; Rickard, Claire
International standard practice for the correct confirmation of the central venous access device is the chest X-ray. The intracavitary electrocardiogram-based insertion method is radiation-free, and allows real-time placement verification, providing immediate treatment and reduced requirement for post-procedural repositioning. Relevant databases were searched for prospective randomised controlled trials (RCTs) or quasi RCTs that compared the effectiveness of electrocardiogram-guided catheter tip positioning with placement using surface-anatomy-guided insertion plus chest X-ray confirmation. The primary outcome was accurate catheter tip placement. Secondary outcomes included complications, patient satisfaction and costs. Five studies involving 729 participants were included. Electrocardiogram-guided insertion was more accurate than surface anatomy guided insertion (odds ratio: 8.3; 95% confidence interval (CI) 1.38; 50.07; p=0.02). There was a lack of reporting on complications, patient satisfaction and costs. The evidence suggests that intracavitary electrocardiogram-based positioning is superior to surface-anatomy-guided positioning of central venous access devices, leading to significantly more successful placements. This technique could potentially remove the requirement for post-procedural chest X-ray, especially during peripherally inserted central catheter (PICC) line insertion.
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.
Zaki, Mohamed F; Tawfik, Salah M
2014-01-01
Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.
Comparison of HF radar measurements with Eulerian and Lagrangian surface currents
NASA Astrophysics Data System (ADS)
Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind
2015-05-01
High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1995-01-01
During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).
The Giant Planet Satellite Exospheres
NASA Technical Reports Server (NTRS)
McGrath, Melissa A.
2014-01-01
Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1983-01-01
Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1980-01-01
A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.
Antifouling membranes for sustainable water purification: strategies and mechanisms.
Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi
2016-10-24
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Design Concepts for Hardened Communications Structures
1990-03-01
air . Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from...Ground Surface Air Overpressure with Range, 1-MT Weapon, HOB - 0 and 500 ft ........................................... 25 5 Positive Phase Duration...design included the crater size, the e*eca field, airblast, and ground shock for ground surface air overpressure levels ranging from :5,000 to 500 psi. As