Sample records for surface electromyographic emg

  1. Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders.

    PubMed

    Costa, Marcus V C; Carvalho, Joao L A; Berger, Pedro A; Zaghetto, Alexandre; da Rocha, Adson F; Nascimento, Francisco A O

    2009-01-01

    We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.

  2. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    PubMed

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  3. Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles.

    PubMed

    Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario

    2018-04-01

    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.

  4. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    PubMed

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  5. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    ERIC Educational Resources Information Center

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  6. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-04-01

    The purpose of the study was to compare 6-repetition maximum (6RM) loads and muscle activity in bench press on 3 surfaces, namely, stable bench, balance cushion, and Swiss ball. Sixteen healthy, resistance-trained men (age 22.5 ± 2.0 years, stature 1.82 ± 6.6 m, and body mass 82.0 ± 7.8 kg) volunteered for 3 habituation/strength testing sessions and 1 experimental session. In randomized order on the 3 surfaces, 6RM strength and electromyographic activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were assessed. Relative to stable bench, the 6RM strength was approximately 93% for balance cushion (p ≤ 0.001) and approximately 92% for Swiss ball (p = 0.008); the pectoralis major electromyographic (EMG) activity was approximately 90% using the balance cushion (p = 0.080) and approximately 81% using Swiss ball (p = 0.006); the triceps EMG was approximately 79% using the balance cushion (p = 0.028) and approximately 69% using the Swiss ball (p = 0.002). Relative to balance cushion, the EMG activity in pectoralis, triceps, and erector spinae using Swiss ball was approximately 89% (p = 0.016), approximately 88% (p = 0.014) and approximately 80% (p = 0.020), respectively. In rectus abdominis, the EMG activity relative to Swiss ball was approximately 69% using stable bench (p = 0.042) and approximately 65% using the balance cushion (p = 0.046). Similar EMG activities between stable and unstable surfaces were observed for deltoid anterior, biceps brachii, and oblique external. In conclusion, stable bench press had greater 6RM strength and triceps and pectoralis EMG activity compared with the unstable surfaces. These findings have implications for athletic training and rehabilitation, because they demonstrate an inferior effect of unstable surfaces on muscle activation of prime movers and strength in bench press. If an unstable surface in bench press is desirable, a balance cushion should be chosen instead of a Swiss ball.

  7. Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land.

    PubMed

    Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins

    2010-11-01

    This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.

  8. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  9. Electromyographic analysis of the serratus anterior and trapezius muscles during push-ups on stable and unstable bases in subjects with scapular dyskinesis.

    PubMed

    Pirauá, André Luiz Torres; Pitangui, Ana Carolina Rodarti; Silva, Juliana Pereira; Pereira dos Passos, Muana Hiandra; Alves de Oliveira, Valéria Mayaly; Batista, Laísla da Silva Paixão; Cappato de Araújo, Rodrigo

    2014-10-01

    The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p=0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p=0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Surface Electromyographic Activity of the Upper Trapezius Before and After a Single Dry Needling Session in Female Office Workers With Trapezius Myalgia.

    PubMed

    De Meulemeester, Kayleigh; Calders, Patrick; Dewitte, Vincent; Barbe, Tom; Danneels, Lieven; Cagnie, Barbara

    2017-12-01

    Myofascial pain can be accompanied by a disturbed surface electromyographic (sEMG) activity. Nevertheless, the effect of myofascial treatment techniques, such as dry needling (DN), on the sEMG activity is poorly investigated. Several DN studies also emphasize the importance of eliciting local twitch responses (LTRs) during treatment. However, studies investigating the added value of LTRs are scarce. Therefore, the aims of this study were first to evaluate the effect of DN on the sEMG activity of myalgic muscle tissue, compared with no intervention (rest), and secondly to identify whether this effect is dependent of eliciting LTRs during DN. Twenty-four female office workers with work-related trapezius myalgia were included. After completion of a typing task, changes in sEMG activity were evaluated after a DN treatment of the upper trapezius, compared with rest. The sEMG activity increased after rest and after DN, but this increase was significantly smaller 10 minutes after DN, compared with rest. These differences were independent whether LTRs were elicited or not. Dry needling leads to a significantly lower increase in sEMG activity of the upper trapezius, compared with no intervention, after a typing task. This difference was independent of eliciting LTRs.

  11. Improving EMG based classification of basic hand movements using EMD.

    PubMed

    Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios

    2013-01-01

    This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.

  12. Changes in muscle activity determine progression of clinical symptoms in patients with chronic spine-related muscle pain. A complex clinical and neurophysiological approach

    PubMed Central

    Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław

    Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435

  13. Comparison of joint angles and electromyographic activity of the lower extremities during standing with wearing standard and revised high-heeled shoes: A pilot study.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min

    2016-04-29

    Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.

  14. Electromyographic Analysis of the Lower Limb Muscles in Low- and High-Handicap Golfers

    ERIC Educational Resources Information Center

    Marta, Sérgio; Silva, Luís; Vaz, João R.; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    Purpose: The aim of this study was to compare the electromyographic patterns of the lower limb muscles during a golf swing performed by low- and high-handicap golfers. Method: Ten golfers (5 low- and 5 high-handicap) performed 8 swings using a 7-iron. Surface electromyography (EMG) was recorded for the following lower limb muscles on both sides:…

  15. Effects of Shoulder Flexion Loaded by an Elastic Tubing Band on EMG Activity of the Gluteal Muscles during Squat Exercises

    PubMed Central

    Kang, Min-Hyeok; Jang, Jun-Hyeok; Kim, Tae-Hoon; Oh, Jae-Seop

    2014-01-01

    [Purpose] We investigated the effects of shoulder flexion loaded by an elastic tubing band during squat exercises, by assessing electromyographic activities of the gluteus maximus and gluteus medius. [Subjects] In total, 17 healthy males were recruited. [Methods] Participants performed squat exercises with and without shoulder flexion loaded by a tubing band. Gluteal muscle activities during the downward and upward phases of the squat exercises were recorded using a surface electromyography (EMG) system. The mean electromyographic activities of the gluteal muscles during squat exercises with and without loaded shoulder flexion were compared using the paired t-test. [Results] Electromyographic activities of the gluteus maximus and gluteus medius were greater in both the upward and downward phases of the squat with loaded shoulder flexion. [Conclusions] The combination of squat and loaded shoulder flexion can be an effective exercise for increasing gluteal muscle activity. PMID:25435701

  16. Effects of the innervation zone on the time and frequency domain parameters of the surface electromyographic signal.

    PubMed

    Smith, Cory M; Housh, Terry J; Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Hill, Ethan C; Cochrane, Kristen C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O

    2015-08-01

    The purposes of the present study were to examine the effects of electrode placements over, proximal, and distal to the innervation zone (IZ) on electromyographic (EMG) amplitude (RMS) and frequency (MPF) responses during: (1) a maximal voluntary isometric contraction (MVIC), and; (2) a sustained, submaximal isometric muscle action. A linear array was used to record EMG signals from the vastus lateralis over the IZ, 30mm proximal, and 30mm distal to the IZ during an MVIC and a sustained isometric muscle action of the leg extensors at 50% MVIC. During the MVIC, lower EMG RMS (p>0.05) and greater EMG MPF (p<0.05) values were recorded over the IZ compared to away from the IZ, however, no differences in slope coefficients for the EMG RMS and MPF versus time relationships over, proximal, and distal to the IZ occurred. Thus, the results of the present study indicated that during an MVIC, EMG RMS and MPF values recorded over the IZ are not comparable to those away from the IZ. However, the rates of fatigue-induced changes in EMG RMS and MPF during sustained, submaximal isometric muscle actions of the leg extensors were the same regardless of the electrode placement locations relative to the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biomechanical Correlates of Surface Electromyography Signals Obtained during Swallowing by Healthy Adults

    ERIC Educational Resources Information Center

    Crary, Michael A.; Carnaby (Mann), Giselle D.; Groher, Michael E.

    2006-01-01

    Purpose: The purpose of this study was to describe biomechanical correlates of the surface electromyographic signal obtained during swallowing by healthy adult volunteers. Method: Seventeen healthy adults were evaluated with simultaneous videofluoroscopy and surface electromyography (sEMG) while swallowing 5 mL of liquid barium sulfate. Three…

  18. Assessment of electromyographic activity in patients with temporomandibular disorders and natural mediotrusive occlusal contact during chewing and tooth grinding.

    PubMed

    Fuentes, Aler D; Sforza, Chiarella; Miralles, Rodolfo; Ferreira, Cláudia L; Mapelli, Andrea; Lodetti, Gianluigi; Martin, Conchita

    2017-05-01

    The aim of this study was to investigate whether the presence of a natural mediotrusive contact influences electromyographic (EMG) pattern activity in patients with temporomandibular disorders (TMDs). Bilateral surface EMG activity of the anterior temporalis (AT), masseter (MM), and sternocleidomastoid (SCM) muscles was recorded in 43 subjects during unilateral chewing and tooth grinding. Thirteen patients had TMD and a natural mediotrusive contact (Group 1), 15 had TMD without a natural mediotrusive contact (Group 2), and 15 were healthy subjects without mediotrusive contacts (Group 3). All subjects were examined according to the Research Diagnostic Criteria for TMD (RDC/TMD). All EMG values were standardized as the percentage of EMG activity recorded during maximum isometric contraction on cotton rolls. EMG activity from all muscles measured showed no significant differences between groups during chewing and grinding. Overall, in all groups, the EMG activity during chewing was higher in the working side than the non-working side in AT and MM muscles. During grinding, these differences were only found in masseter muscles (mainly in eccentric grinding). SCM EMG activity did not show significant differences during chewing and grinding tasks. Symmetry, muscular balance, and absence of lateral jaw displacement were common findings in all groups. EMG results suggest that the contribution of a natural mediotrusive occlusal contact to EMG patterns in TMD patients is minor. Therefore, the elimination of this occlusal feature for therapeutic purposes could be not indicated.

  19. Surface electromyographic electrode pair with built-in buffer-amplifiers.

    PubMed

    Fujisawa, M; Uchida, K; Yamada, Y; Ishibashi, K

    1990-03-01

    By means of a surface electrode with an operational amplifier, a new electrode unit suitable for an electromyographic-biofeedback apparatus and for portable electromyography used outside a Faraday cage was developed. The operational amplifier, which has an output impedance lower than 10 ohms, functions as an efficient buffer amplifier and is able to protect the EMG signals from background noises. This new electrode unit is small (32 x 12 x 5 mm), waterproof, and inexpensive. Because its structure is simple, it can be built in any laboratory.

  20. Acute electromyographic responses of deep thoracic paraspinal muscles to spinal manual therapy interventions. An experimental, randomized cross-over study.

    PubMed

    Fryer, Gary; Bird, Michael; Robbins, Barry; Johnson, Jane C

    2017-07-01

    This single group, randomized, cross-over study explored whether manual therapy alters motor tone of deep thoracic back muscles by examining resting electromyographic activity (EMG) after 2 types of manual therapy and a sham control intervention. Twenty-two participants with thoracic spinal pain (15 females, 7 males, mean age 28.1 ± 6.4 years) had dual fine-wire, intramuscular electrodes inserted into deep transversospinalis muscles at a thoracic level where tissues appeared abnormal to palpation (AbP) and at 2 sites above and below normal and non-tender to palpation (NT). A surface electrode was on the contralateral paraspinal mass at the level of AbP. EMG signals were recorded for resting prone, two 3-s free neck extension efforts, two 3-s resisted maximal voluntary isometric contractions (MVIC), and resting prone before the intervention. Randomized spinal manipulation, counterstrain, or sham manipulation was delivered and EMG re-measured. Participants returned 1 and 2 weeks later for the remaining 2 treatments. Reductions in resting EMG followed counterstrain in AbP (median decrease 3.3%, P = 0.01) and NT sites (median decrease 1.0%, P = 0.05) and for the surface electrode site (median decrease 2.0%, P = 0.009). Reduction in EMG following counterstrain during free neck extension was found for the surface electrode site (median decrease 2.7%, P < 0.01). Spinal manipulation produced no change in EMG, whereas counterstrain technique produced small significant reductions in paraspinal muscle activity during prone resting and free neck extension conditions. The clinical relevance of these changes is unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a single-limb squat on both a stable and labile surface.

    PubMed

    Youdas, James W; Hollman, John H; Hitchcock, James R; Hoyme, Gregory J; Johnsen, Jeremiah J

    2007-02-01

    The purpose of this study was to determine if women are quadriceps dominant and men are hamstring dominant during the performance of a partial single-leg squat (SLS) on both a stable and labile ground surface against body weight resistance. Thirty healthy participants (15 men and 15 women) performed an SLS on both a stable surface and a 6.4-cm-thick vinyl pad. Surface electromyographic (EMG) recordings were obtained from the quadriceps femoris and hamstring muscles during the extension phase of the SLS. Statistical analysis revealed that women produced 14% more EMG activity (p = 0.04) in their quadriceps than the men during the SLS on a stable surface, whereas the men generated 18% more EMG activity (p = 0.04) in their hamstrings than the women during the SLS on a labile surface. Additionally, we found a statistically significant sex effect (p = 0.048) for the hamstring/quadriceps (H/Q) EMG ratio, which was 2.25 and 0.62, respectively, for men and women on the stable surface and 2.52 and 0.71, respectively, on the labile surface. We concluded that women are quadriceps dominant and men are hamstring dominant during the performance of SLS against body weight resistance on either a stable or labile surface condition. During an SLS, men showed an H/Q ratio approximately 3.5 times larger than their female counterparts, suggesting that men activate their hamstrings more effectively than women during an SLS. According to our data, the SLS may not be an ideal exercise for activating the hamstring muscles in women without additional neuromuscular training techniques, because women are quadriceps dominant during the SLS.

  2. Analysis of High-Frequency Electroencephalographic-Electromyographic Coherence Elicited by Speech and Oral Nonspeech Tasks in Parkinson's Disease

    ERIC Educational Resources Information Center

    Caviness, John N.; Liss, Julie M.; Adler, Charles; Evidente, Virgilio

    2006-01-01

    Purpose: Corticomuscular electroencephalographic-electromyographic (EEG-EMG) coherence elicited by speech and nonspeech oromotor tasks in healthy participants and those with Parkinson's disease (PD) was examined. Hypotheses were the following: (a) corticomuscular coherence is demonstrable between orbicularis oris (OO) muscles' EMG and scalp EEG…

  3. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  4. Case study involving suctioning of an electromyographic endotracheal tube.

    PubMed

    Evanina, Eileen Youshock; Hanisak, Jill L

    2005-04-01

    The electromyographic endotracheal tube (EMG-ETT) is a relatively new tool used to measure integrity of the vocal cord structures during surgery. We describe a case in which an EMG-ETT was inserted for the operative period but not replaced with an ETT during the immediate postoperative period. Intensive care unit nurses had difficulty suctioning the EMG-ETT. The patient was not provided the pulmonary toilet necessary until the EMG-ETT was removed and replaced with a regular ETT. The purpose of this article is to make anesthesia providers aware that when mechanical ventilation is required during the postoperative period, the EMG-ETT should be removed and replaced with a regular ETT to facilitate pulmonary toilet.

  5. Decreased torque and electromyographic activity in the extensor thigh muscles in chondromalacia patellae.

    PubMed

    Väätäinen, U; Airaksinen, O; Jaroma, H; Kiviranta, I

    1995-01-01

    The alterations in thigh muscle properties of chondromalacia patellae patients during isometric and dynamic endurance tests were studied using a variokinetic knee testing system linked to surface EMG. A total of 41 patients (chondromalacia group) with arthroscopically certified chondromalacia of the patella were studied. The control group consisted of 31 healthy adult volunteers with no history of knee pain or trauma. Peak torque values were 21% (p < 0.01) and force output values 25% (p < 0.05) lower on the symptomatic side of the chondromalacia group than in the control group. The decrease in the ratio between integrated EMG (IEMG) and measured force were found in all parts of the quadriceps femoris muscle in patients with chondromalacia of the patella in isometric extension. No change in the normalized IEMG levels of the thigh muscles were found between chondromalacia patients and controls in dynamic endurance test. The severity of the chondromalacia of the patella did not affect the level of electromyographic activation in thigh muscles. The ratio of normalized EMG levels of vastus medialis and vastus lateralis did not differ between the groups. The present study showed that chondromalacia patellae patients have reduced force and electromyographic activation levels of quadriceps femoris muscle. Especially, the explosive strength of the quadriceps femoris muscle is reduced.

  6. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  7. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A comparative study of the electromyographic activities of lower extremity muscles during level walking and Pedalo riding

    PubMed Central

    Lee, DongGeon; Kim, YouJeong; Yun, JiHyeon; Jung, MiHye; Lee, GyuChang

    2016-01-01

    [Purpose] To analyze the electromyographic (EMG) activities of several lower extremity muscles during ground walking and pedaling using the Pedalo Reha-Bar device. [Subjects and Methods] Fifteen healthy adults aged 20–29 year participated in this study. The subjects’ surface EMG signals while walking and Pedalo Reha-Bar riding were recorded. The subjects performed 20 steps on flat ground and 20 cycles on the Pedalo Reha-Bar. During the tasks, EMG signals of the rectus femoris, biceps femoris, tibialis anterior, soleus, and gastrocnemius within a 20-second period were recorded. The mean EMG signals within the 10 seconds from 6 to 15 seconds were used for the data analysis. [Results] There was a significant increase in the bilateral use of the rectus femoris and a significant decrease in the use of the left tibialis anterior and left soleus in pedaling using the Pedalo Reha-Bar device compared to ground walking. [Conclusion] Level walking and the Pedalo Reha-Bar riding utilize different types of muscles activities. These results suggest that Pedalo Reha-Bar riding may be used for neuromuscular activation, especially of the rectus femoris. PMID:27313354

  9. Hybrid soft computing systems for electromyographic signals analysis: a review.

    PubMed

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  10. Hybrid soft computing systems for electromyographic signals analysis: a review

    PubMed Central

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  11. The Electromyographic Threshold in Girls and Women.

    PubMed

    Long, Devon; Dotan, Raffy; Pitt, Brynlynn; McKinlay, Brandon; O'Brien, Thomas D; Tokuno, Craig; Falk, Bareket

    2017-02-01

    The electromyographic threshold (EMG Th ) is thought to reflect increased high-threshold/type-II motor-unit (MU) recruitment and was shown higher in boys than in men. Women differ from men in muscular function. Establish whether females' EMG Th and girls-women differences are different than males'. Nineteen women (22.9 ± 3.3yrs) and 20 girls (10.3 ± 1.1yrs) had surface EMG recorded from the right and left vastus lateralis muscles during ramped cycle-ergometry to exhaustion. EMG root-mean-squares were averaged per pedal revolution. EMG Th was determined as the least residual sum of squares for any two regression-line data divisions, if the trace rose ≥ 3SD above its regression line. EMG Th was expressed as % final power-output (%Pmax) and %VO 2 pk power (%P VO2pk ). EMG Th was detected in 13 (68%) of women, but only 9 (45%) of girls (p < .005) and tended to be higher in the girls (%Pmax= 88.6 ± 7.0 vs. 83.0 ± 6.9%, p = .080; %P VO2pk = (101.6 ± 17.6 vs. 90.6 ± 7.8%, p = .063). When EMG Th was undetected it was assumed to occur at 100%Pmax or beyond. Consequently, EMG Th values turned significantly higher in girls than in women (94.8 ± 7.4 vs. 88.4 ± 9.9%Pmax, p = .026; and 103.2 ± 11.7 vs. 95.2 ± 9.9%P VO2pk , p = .028). During progressive exercise, girls appear to rely less on higher-threshold/type-II MUs than do women, suggesting differential muscle activation strategy.

  12. Characterization of Volitional Electromyographic Signals in the Lower Extremity After Motor Complete Spinal Cord Injury.

    PubMed

    Heald, Elizabeth; Hart, Ronald; Kilgore, Kevin; Peckham, P Hunter

    2017-06-01

    Previous studies have demonstrated the presence of intact axons across a spinal cord lesion, even in those clinically diagnosed with complete spinal cord injury (SCI). These axons may allow volitional motor signals to be transmitted through the injury, even in the absence of visible muscle contraction. To demonstrate the presence of volitional electromyographic (EMG) activity below the lesion in motor complete SCI and to characterize this activity to determine its value for potential use as a neuroprosthetic command source. Twenty-four subjects with complete (AIS A or B), chronic, cervical SCI were tested for the presence of volitional below-injury EMG activity. Surface electrodes recorded from 8 to 12 locations of each lower limb, while participants were asked to attempt specific movements of the lower extremity in response to visual and audio cues. EMG trials were ranked through visual inspection, and were scored using an amplitude threshold algorithm to identify channels of interest with volitional motor unit activity. Significant below-injury muscle activity was identified through visual inspection in 16 of 24 participants, and visual inspection rankings were well correlated to the algorithm scoring. The surface EMG protocol utilized here is relatively simple and noninvasive, ideal for a clinical screening tool. The majority of subjects tested were able to produce a volitional EMG signal below their injury level, and the algorithm developed allows automatic identification of signals of interest. The presence of this volitional activity in the lower extremity could provide an innovative new command signal source for implanted neuroprostheses or other assistive technology.

  13. An Electromyograph Comparison of an Isokenetic Bench Press at Three Speeds.

    ERIC Educational Resources Information Center

    Ridgeway, M.; And Others

    The muscle action potentials (MAP) of the anterior deltoid, pectoralis major, biceps brachii, and the triceps muscle were studied by quantitative electromyography (emg) during a bench press exercise at three controlled speeds. Bipolar surface electrodes with standard placement were employed throughout the study. Eleven volunteer college women…

  14. Electromyographic analysis of trunk and hip muscles during resisted lateral band walking.

    PubMed

    Youdas, James W; Foley, Brooke M; Kruger, BreAnna L; Mangus, Jessica M; Tortorelli, Alis M; Madson, Timothy J; Hollman, John H

    2013-02-01

    The purpose of this study was to simultaneously quantify bilateral activation/recruitment levels (% maximum voluntary isometric contraction [MVIC]) for trunk and hip musculature on both moving and stance lower limbs during resisted lateral band walking. Differential electromyographic (EMG) activity was recorded in neutral, internal, and external hip rotation in 21 healthy participants. EMG signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz during three consecutive lateral steps. Gluteus medius average EMG activation was greater (p = 0.001) for the stance limb (52 SD 18% MVIC) than moving limb (35 SD 16% MVIC). Gluteus maximus EMG activation was greater (p = 0.002) for the stance limb (19 SD 13% MVIC) than moving limb (13 SD 9% MVIC). Erector spinae activation was greater (p = 0.007) in hip internal rotation (30 SD 13% MVIC) than neutral rotation (26 SD 10% MVIC) and the moving limb (31 SD 15% MVIC) was greater (p = 0.039) than the stance limb (23 SD 11% MVIC). Gluteus medius and maximus muscle activation were greater on the stance limb than moving limb during resisted lateral band walking. Therefore, clinicians may wish to consider using the involved limb as the stance limb during resisted lateral band walking exercise.

  15. Critically re-evaluating a common technique: Accuracy, reliability, and confirmation bias of EMG.

    PubMed

    Narayanaswami, Pushpa; Geisbush, Thomas; Jones, Lyell; Weiss, Michael; Mozaffar, Tahseen; Gronseth, Gary; Rutkove, Seward B

    2016-01-19

    (1) To assess the diagnostic accuracy of EMG in radiculopathy. (2) To evaluate the intrarater reliability and interrater reliability of EMG in radiculopathy. (3) To assess the presence of confirmation bias in EMG. Three experienced academic electromyographers interpreted 3 compact discs with 20 EMG videos (10 normal, 10 radiculopathy) in a blinded, standardized fashion without information regarding the nature of the study. The EMGs were interpreted 3 times (discs A, B, C) 1 month apart. Clinical information was provided only with disc C. Intrarater reliability was calculated by comparing interpretations in discs A and B, interrater reliability by comparing interpretation between reviewers. Confirmation bias was estimated by the difference in correct interpretations when clinical information was provided. Sensitivity was similar to previous reports (77%, confidence interval [CI] 63%-90%); specificity was 71%, CI 56%-85%. Intrarater reliability was good (κ 0.61, 95% CI 0.41-0.81); interrater reliability was lower (κ 0.53, CI 0.35-0.71). There was no substantial confirmation bias when clinical information was provided (absolute difference in correct responses 2.2%, CI -13.3% to 17.7%); the study lacked precision to exclude moderate confirmation bias. This study supports that (1) serial EMG studies should be performed by the same electromyographer since intrarater reliability is better than interrater reliability; (2) knowledge of clinical information does not bias EMG interpretation substantially; (3) EMG has moderate diagnostic accuracy for radiculopathy with modest specificity and electromyographers should exercise caution interpreting mild abnormalities. This study provides Class III evidence that EMG has moderate diagnostic accuracy and specificity for radiculopathy. © 2015 American Academy of Neurology.

  16. Surface electromyographic patterns of masticatory, neck, and trunk muscles in temporomandibular joint dysfunction patients undergoing anterior repositioning splint therapy.

    PubMed

    Tecco, Simona; Tetè, Stefano; D'Attilio, Michele; Perillo, Letizia; Festa, Felice

    2008-12-01

    The aim of this study was to investigate the surface electromyographic (sEMG) activity of neck, trunk, and masticatory muscles in subjects with temporomandibular joint (TMJ) internal derangement treated with anterior mandibular repositioning splints. sEMG activities of the muscles in 34 adult subjects (22 females and 12 males; mean age 30.4 years) with TMJ internal derangement were compared with a control group of 34 untreated adults (20 females and 14 males; mean age 31.8 years). sEMG activities of seven muscles (anterior and posterior temporalis, masseter, posterior cervicals, sternocleidomastoid, and upper and lower trapezius) were studied bilaterally, with the mandible in the rest position and during maximal voluntary clenching (MVC), at the beginning of therapy (T0) and after 10 weeks of treatment (T1). Paired and Student's t-tests were undertaken to determine differences between the T0 and T1 data and in sEMG activity between the study and control groups. At T0, paired masseter, sternocleidomastoid, and cervical muscles, in addition to the left anterior temporal and right lower trapezius, showed significantly greater sEMG activity (P = 0.0001; P = 0.0001; for left cervical, P = 0.03; for right cervical, P = 0.0001; P = 0.006 and P = 0.007 muscles, respectively) compared with the control group. This decreased over the remaining study period, such that after treatment, sEMG activity revealed no statistically significant difference when compared with the control group. During MVC at T0, paired masseter and anterior and posterior temporalis muscles showed significantly lower sEMG activity (P = 0.03; P = 0.005 and P = 0.04, respectively) compared with the control group. In contrast, at T1 sEMG activity significantly increased (P = 0.02; P = 0.004 and P = 0.04, respectively), but no difference was observed in relation to the control group. Splint therapy in subjects with internal disk derangement seems to affect sEMG activity of the masticatory, neck, and trunk muscles.

  17. Compression of electromyographic signals using image compression techniques.

    PubMed

    Costa, Marcus Vinícius Chaffim; Berger, Pedro de Azevedo; da Rocha, Adson Ferreira; de Carvalho, João Luiz Azevedo; Nascimento, Francisco Assis de Oliveira

    2008-01-01

    Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, few studies have addressed the compression of such signals. In this article we present an algorithm for compression of electromyographic signals based on the JPEG2000 coding system. Although the JPEG2000 codec was originally designed for compression of still images, we show that it can also be used to compress EMG signals for both isotonic and isometric contractions. For EMG signals acquired during isometric contractions, the proposed algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.75% to 13.7%. For isotonic EMG signals, the algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.4% to 7%. The compression results using the JPEG2000 algorithm were compared to those using other algorithms based on the wavelet transform.

  18. Critically re-evaluating a common technique

    PubMed Central

    Geisbush, Thomas; Jones, Lyell; Weiss, Michael; Mozaffar, Tahseen; Gronseth, Gary; Rutkove, Seward B.

    2016-01-01

    Objectives: (1) To assess the diagnostic accuracy of EMG in radiculopathy. (2) To evaluate the intrarater reliability and interrater reliability of EMG in radiculopathy. (3) To assess the presence of confirmation bias in EMG. Methods: Three experienced academic electromyographers interpreted 3 compact discs with 20 EMG videos (10 normal, 10 radiculopathy) in a blinded, standardized fashion without information regarding the nature of the study. The EMGs were interpreted 3 times (discs A, B, C) 1 month apart. Clinical information was provided only with disc C. Intrarater reliability was calculated by comparing interpretations in discs A and B, interrater reliability by comparing interpretation between reviewers. Confirmation bias was estimated by the difference in correct interpretations when clinical information was provided. Results: Sensitivity was similar to previous reports (77%, confidence interval [CI] 63%–90%); specificity was 71%, CI 56%–85%. Intrarater reliability was good (κ 0.61, 95% CI 0.41–0.81); interrater reliability was lower (κ 0.53, CI 0.35–0.71). There was no substantial confirmation bias when clinical information was provided (absolute difference in correct responses 2.2%, CI −13.3% to 17.7%); the study lacked precision to exclude moderate confirmation bias. Conclusions: This study supports that (1) serial EMG studies should be performed by the same electromyographer since intrarater reliability is better than interrater reliability; (2) knowledge of clinical information does not bias EMG interpretation substantially; (3) EMG has moderate diagnostic accuracy for radiculopathy with modest specificity and electromyographers should exercise caution interpreting mild abnormalities. Classification of evidence: This study provides Class III evidence that EMG has moderate diagnostic accuracy and specificity for radiculopathy. PMID:26701380

  19. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  20. Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs.

    PubMed

    Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A

    2014-01-01

    Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  2. Relationship between grasping force and features of single-channel intramuscular EMG signals.

    PubMed

    Kamavuako, Ernest Nlandu; Farina, Dario; Yoshida, Ken; Jensen, Winnie

    2009-12-15

    The surface electromyographic (sEMG) signal can be used for force prediction and control in prosthetic devices. Because of technological advances on implantable sensors, the use of intramuscular EMG (iEMG) is becoming a potential alternative to sEMG for the control of multiple degrees-of-freedom (DOF). An invasive system is not affected by crosstalk, typical of sEMG, and provides more stable and independent control sites. However, intramuscular recordings provide more local information because of their high selectivity, and may thus be less representative of the global muscle activity with respect to sEMG. This study investigates the capacity of selective single-channel iEMG recordings to represent the grasping force with respect to the use of sEMG with the aim of assessing if iEMG can be an effective method for proportional myoelectric control. sEMG and iEMG were recorded concurrently from 10 subjects who exerted six grasping force profiles from 0 to 25/50N. The linear correlation coefficient between features extracted from iEMG and force was approximately 0.9 and was not significantly different from the degree of correlation between sEMG and force. This result indicates that a selective iEMG recording is representative of the applied grasping force and can be used for proportional control.

  3. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  4. Kinematic and EMG data during underwater dolphin kick change while synchronizing with or without synchronization of kick frequency with the beat of a metronome.

    PubMed

    Yamakawa, Keisuke Kobayashi; Shimojo, Hirofumi; Takagi, Hideki; Tsubakimoto, Shozo; Sengoku, Yasuo

    2017-10-01

    We investigated the effects of synchronizing kick frequency with the beat of a metronome on kinematic and electromyographic (EMG) parameters during the underwater dolphin kick as a pilot study related to the research that entitled " Effect of increased kick frequency on propelling efficiency and muscular co-activation during underwater dolphin kick" (Yamakawa et al., 2017) [1]. Seven collegiate female swimmers participated in this experiment. The participants conducted two underwater dolphin kick trials: swimming freely at maximum effort, and swimming while synchronizing the kick frequency of maximum effort with the beat of a metronome. The kinematic parameters during the underwater dolphin kick were calculated by 2-D motion analysis, and surface electromyographic measurements were taken from six muscles (rectus abdominis, erector spinae, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius). The results revealed no significant differences in the kinematic and EMG parameters between trials of the two swimming techniques. Therefore, the action of synchronizing the kick frequency with the beat of a metronome did not affect movement or muscle activity during the underwater dolphin kick in this experiment.

  5. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  6. Modeling Nonlinear Errors in Surface Electromyography Due To Baseline Noise: A New Methodology

    PubMed Central

    Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith

    2010-01-01

    The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, “true” EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2 – 40 % maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low. PMID:20869716

  7. Neck surface electromyography as a measure of vocal hyperfunction before and after injection laryngoplasty

    PubMed Central

    Stepp, Cara E.; Heaton, James T.; Jetté, Marie E.; Burns, James A.; Hillman, Robert E.

    2012-01-01

    Objectives The goal of this preliminary study was to determine if neck surface electromyography (sEMG) is sensitive to possible changes in vocal hyperfunction associated with injection laryngoplasty, particularly with respect to alterations in the degree of vocal hyperfunction. Methods Thirteen individuals undergoing office-based injection laryngoplasty for glottal phonatory insufficiency were prospectively studied using a battery of acoustic, aerodynamic, endoscopic, and anterior neck surface electromyographic (sEMG) assessments before the procedure and approximately one week after. Results Anterior neck sEMG was not significantly reduced (p < 0.05) post-procedure; however, perceptual ratings of strain and false vocal fold (FVF) compression were both significantly reduced, reflecting a decrease in vocal hyperfunction. Conclusions The results do not support the use of anterior neck sEMG measures to assess vocal hyperfunction, and place into question the use of some other measures (estimates of anterior-posterior (AP) supraglottal compression, quantitative measures of AP and FVF supraglottal compression, and acoustic vowel rise times) that have been considered reflective of vocal hyperfunction. PMID:21033026

  8. EMGAN: A computer program for time and frequency domain reduction of electromyographic data

    NASA Technical Reports Server (NTRS)

    Hursta, W. N.

    1975-01-01

    An experiment in electromyography utilizing surface electrode techniques was developed for the Apollo-Soyuz test project. This report describes the computer program, EMGAN, which was written to provide first order data reduction for the experiment. EMG signals are produced by the membrane depolarization of muscle fibers during a muscle contraction. Surface electrodes detect a spatially summated signal from a large number of muscle fibers commonly called an interference pattern. An interference pattern is usually so complex that analysis through signal morphology is extremely difficult if not impossible. It has become common to process EMG interference patterns in the frequency domain. Muscle fatigue and certain myopathic conditions are recognized through changes in muscle frequency spectra.

  9. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  10. Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists.

    PubMed

    Hug, François; Drouet, Jean Marc; Champoux, Yvan; Couturier, Antoine; Dorel, Sylvain

    2008-11-01

    The aim of this study was to determine whether high inter-individual variability of the electromyographic (EMG) patterns during pedaling is accompanied by variability in the pedal force application patterns. Eleven male experienced cyclists were tested at two submaximal power outputs (150 and 250 W). Pedal force components (effective and total forces) and index of mechanical effectiveness were measured continuously using instrumented pedals and were synchronized with surface electromyography signals measured in ten lower limb muscles. The intersubject variability of EMG and mechanical patterns was assessed using standard deviation, mean deviation, variance ratio and coefficient of cross-correlation (_R(0), with lag time = 0). The results demonstrated a high intersubject variability of EMG patterns at both exercise intensities for biarticular muscles as a whole (and especially for Gastrocnemius lateralis and Rectus femoris) and for one monoarticular muscle (Tibialis anterior). However, this heterogeneity of EMG patterns is not accompanied by a so high intersubject variability in pedal force application patterns. A very low variability in the three mechanical profiles (effective force, total force and index of mechanical effectiveness) was obtained in the propulsive downstroke phase, although a greater variability in these mechanical patterns was found during upstroke and around the top dead center, and at 250 W when compared to 150 W. Overall, these results provide additional evidence for redundancy in the neuromuscular system.

  11. Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model.

    PubMed

    Mordhorst, Mylena; Heidlauf, Thomas; Röhrle, Oliver

    2015-04-06

    This paper presents a novel multiscale finite element-based framework for modelling electromyographic (EMG) signals. The framework combines (i) a biophysical description of the excitation-contraction coupling at the half-sarcomere level, (ii) a model of the action potential (AP) propagation along muscle fibres, (iii) a continuum-mechanical formulation of force generation and deformation of the muscle, and (iv) a model for predicting the intramuscular and surface EMG. Owing to the biophysical description of the half-sarcomere, the model inherently accounts for physiological properties of skeletal muscle. To demonstrate this, the influence of membrane fatigue on the EMG signal during sustained contractions is investigated. During a stimulation period of 500 ms at 100 Hz, the predicted EMG amplitude decreases by 40% and the AP propagation velocity decreases by 15%. Further, the model can take into account contraction-induced deformations of the muscle. This is demonstrated by simulating fixed-length contractions of an idealized geometry and a model of the human tibialis anterior muscle (TA). The model of the TA furthermore demonstrates that the proposed finite element model is capable of simulating realistic geometries, complex fibre architectures, and can include different types of heterogeneities. In addition, the TA model accounts for a distributed innervation zone, different fibre types and appeals to motor unit discharge times that are based on a biophysical description of the α motor neurons.

  12. Predicting electromyographic signals under realistic conditions using a multiscale chemo–electro–mechanical finite element model

    PubMed Central

    Mordhorst, Mylena; Heidlauf, Thomas; Röhrle, Oliver

    2015-01-01

    This paper presents a novel multiscale finite element-based framework for modelling electromyographic (EMG) signals. The framework combines (i) a biophysical description of the excitation–contraction coupling at the half-sarcomere level, (ii) a model of the action potential (AP) propagation along muscle fibres, (iii) a continuum-mechanical formulation of force generation and deformation of the muscle, and (iv) a model for predicting the intramuscular and surface EMG. Owing to the biophysical description of the half-sarcomere, the model inherently accounts for physiological properties of skeletal muscle. To demonstrate this, the influence of membrane fatigue on the EMG signal during sustained contractions is investigated. During a stimulation period of 500 ms at 100 Hz, the predicted EMG amplitude decreases by 40% and the AP propagation velocity decreases by 15%. Further, the model can take into account contraction-induced deformations of the muscle. This is demonstrated by simulating fixed-length contractions of an idealized geometry and a model of the human tibialis anterior muscle (TA). The model of the TA furthermore demonstrates that the proposed finite element model is capable of simulating realistic geometries, complex fibre architectures, and can include different types of heterogeneities. In addition, the TA model accounts for a distributed innervation zone, different fibre types and appeals to motor unit discharge times that are based on a biophysical description of the α motor neurons. PMID:25844148

  13. Comparison of electromyographic activity and range of neck motion in violin students with and without neck pain during playing.

    PubMed

    Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck

    2012-12-01

    Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.

  14. Electromyographic analysis of repeated bouts of eccentric exercise.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W

    2001-03-01

    The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.

  15. Power independent EMG based gesture recognition for robotics.

    PubMed

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  16. Electromyographic analysis of standing posture and demi-plié in ballet and modern dancers.

    PubMed

    Trepman, E; Gellman, R E; Solomon, R; Murthy, K R; Micheli, L J; De Luca, C J

    1994-06-01

    Surface electromyography was used to analyze lower extremity muscle activity during standing posture and demi-plié in first position with lower extremities turned out, in five ballet and seven modern female professional dancers. In standing posture, increased electromyographic (EMG) activity above baseline was detected most frequently at the medial gastrocnemius (54% standing repetitions) and tibialis anterior (29%) electrodes (all dancers); in ballet dancers, increased EMG activity during standing was significantly less frequent at the medial gastrocnemius, but more frequent at the tibialis anterior, than in modern dancers. In demi-plié, the tibialis anterior had a discrete peak of EMG activity at midcycle in all dancers (97% demi-pliés). All dancers also had midcycle EMG activity in both vastus lateralis and medialis (100% demi-pliés). At the end of rising phase of demi-plié, ballet dancers had greater EMG activity than at midcycle in vastus lateralis (100% demi-pliés) and medialis (92%); in modern dancers, end-rising phase voltage was lower than at midcycle for vastus lateralis (71% demi-pliés) and medialis (83%). Genu recurvatum > or = 10 degrees was observed at the beginning and end of demi-plié in all ballet dancers, but not in modern dancers. There was marked variation of EMG activity during demi-plié in the lateral gastrocnemius, medial gastrocnemius, gluteus maximus, hamstrings, and adductors. The results support the hypothesis that ballet and modern dancers have different patterns of muscle use in standing posture and demi-plié, which in part may be a result of differences in genu recurvatum and turnout between the two groups.

  17. Relationship between electromyographic activity of the vastus lateralis while standing and the extent of bilateral simulated knee-flexion contractures.

    PubMed

    Potter, P J; Kirby, R L

    1991-12-01

    The effect of simulated bilateral knee-flexion contractures (KFC) on the electromyographic (EMG) activity of the vastus lateralis was studied by testing 10 normal subjects using surface EMG to test the hypothesis that the activity of the knee extensors would increase as a function of the severity of the contracture. The root mean square of the EMG activity was determined from four 4-s samples taken at 30-s intervals, during 2 min of standing in each of five positions of simulated KFC (0 degree, 10 degrees, 20 degrees, 30 degrees and 40 degrees). A randomly balanced order of conditions was used. KFC were simulated in each subject by means of an adjustable line from the subject's waist to the sole of each foot. An analysis of variance was used to contrast EMG activity, and a significant difference was found between each of the positions (P less than 0.05). The mean (+/- 1 SD) EMG activity, expressed as a percentage of the maximum voluntary contraction, was 0.3% (+/- 0.2) at 0 degree, 7.6% (+/- 5.6) at 10 degrees, 10.9% (+/- 7.6) at 20 degrees, 16.6% (+/- 12.4) at 30 degrees and 24.0% (+/- 14.0) at 40 degrees. A linear relationship was found (r2 = 0.986), expressed by the equation y = 0.62 + 0.56 x, where y represents EMG activity and x represents the extent of simulated KFC (P = 0.0007). The results provide insight into the increased knee extensor activity necessary to stand with KFC and underline the importance of treating this common disorder.

  18. An EMG-based robot control scheme robust to time-varying EMG signal features.

    PubMed

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  19. Muscular activity of lower limb muscles associated with working on inclined surfaces

    PubMed Central

    Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit

    2015-01-01

    This study investigated effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces—0°, 14° and 26°. Normalized electromyographic (NEMG) data were collected on 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior, and gastrocnemii medial muscle groups. The 50th and 95th percentile normalized EMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude. PMID:25331562

  20. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  1. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    PubMed

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  2. Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.

    PubMed

    Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram

    2012-01-01

    In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.

  3. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises

    PubMed Central

    Drysdale, Cheri L.; Earl, Jennifer E.

    2004-01-01

    Objective: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. Design and Setting: 2 × 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. Subjects: Twenty-six healthy, active young adult females. Measurements: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90° and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90° without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. Results: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. Conclusions: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles. PMID:15085209

  4. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises.

    PubMed

    Drysdale, Cheri L.; Earl, Jennifer E.; Hertel, Jay

    2004-03-01

    OBJECTIVE: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. DESIGN AND SETTING: 2 x 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. SUBJECTS: Twenty-six healthy, active young adult females. MEASUREMENTS: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90 degrees and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90 degrees without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. RESULTS: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. CONCLUSIONS: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles.

  5. Electromyographic and kinetic analysis of two abdominal muscle performance tests.

    PubMed

    Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John

    2015-01-01

    In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.

  6. Electromyographical Comparison of Four Common Shoulder Exercises in Unstable and Stable Shoulders

    PubMed Central

    Sciascia, Aaron; Kuschinsky, Nina; Nitz, Arthur J.; Mair, Scott D.; Uhl, Tim L.

    2012-01-01

    This study examines if electromyographic (EMG) amplitude differences exist between patients with shoulder instability and healthy controls performing scaption, prone horizontal abduction, prone external rotation, and push-up plus shoulder rehabilitation exercises. Thirty nine subjects were categorized by a single orthopedic surgeon as having multidirectional instability (n = 10), anterior instability (n = 9), generalized laxity (n = 10), or a healthy shoulder (n = 10). Indwelling and surface electrodes were utilized to measure EMG activity (reported as a % of maximum voluntary isometric contraction (MVIC)) in various shoulder muscles during 4 common shoulder exercises. The exercises studied effectively activated the primary musculature targeted in each exercise equally among all groups. The serratus anterior generated high activity (50–80% MVIC) during a push-up plus, while the infraspinatus and teres major generated moderate-to-high activity (30–80% MVIC) during both the prone horizontal and prone external rotation exercises. Scaption exercise generated moderate activity (20–50% MVIC) in both rotator cuff and scapular musculature. Clinicians should feel confident in prescribing these shoulder-strengthening exercises in patients with shoulder instability as the activation levels are comparable to previous findings regarding EMG amplitudes and should improve the dynamic stabilization capability of both rotator cuff and scapular muscles using exercises designed to address glenohumeral joint instability. PMID:22919499

  7. Control of movement distance in Parkinson's disease.

    PubMed

    Pfann, K D; Buchman, A S; Comella, C L; Corcos, D M

    2001-11-01

    Studies of electromyographic (EMG) patterns during movements in Parkinson's disease (PD) have often yielded contradictory results, making it impossible to derive a set of rules to explain how muscles are activated to perform different movement tasks. We sought to clarify the changes in modulation of EMG parameters associated with control of movement distance during fast movements in patients with PD. Specifically, we studied surface EMG activity during rapid elbow flexion movements over a wide range of distances (5-72 degrees) in 14 patients with relatively mild symptoms of PD and 14 control subjects of similar age, sex, height, and weight. The PD group exhibited several changes in EMG modulation including impaired modulation of agonist burst duration; increased number of agonist bursts; reduced scaling of agonist EMG magnitude in the more severely impaired subjects; and increased temporal overlap of the antagonist and agonist signals in the most severely impaired subjects. These findings suggest that progressive motor dysfunction in PD is accompanied by increasing deficits in modulating muscle activation. These results help clarify previous disparate and sometimes contradictory results of EMG patterns in subjects with PD. Copyright 2001 Movement Disorder Society.

  8. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    PubMed

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  9. Body position effects on sternocleidomastoid and masseter EMG pattern activity in patients undergoing occlusal splint therapy.

    PubMed

    Ormeño, G; Miralles, R; Santander, H; Casassus, R; Ferrer, P; Palazzi, C; Moya, H

    1997-10-01

    This study was conducted in order to determine the effects of body position on electromyographic (EMG) activity of sternocleidomastoid and masseter muscles, in 15 patients with myogenic cranio-cervical-mandibular dysfunction undergoing occlusal splint therapy. EMG activity was recorded by placing surface electrodes on the sternocleidomastoid and masseter muscles (contralateral to the habitual sleeping side of each patient). EMG activity at rest and during swallowing of saliva and maximal voluntary clenching was recorded in the following body positions: standing, supine and lateral decubitus. In the sternocleidomastoid muscle significant higher EMG activities at rest and during swallowing were recorded in the lateral decubitus position, whereas during maximal voluntary clenching EMG activity did not change. In the masseter muscle significant higher EMG activity during maximal voluntary clenching in a standing position was observed, whereas EMG activity at rest and during swallowing did not change. The opposite pattern of EMG activity supports the idea that there may exist a differential modulation of the motor neuron pools of the sternocleidomastoid and masseter muscles, of peripheral and/or central origin. This suggests that the presence of parafunctional habits and body position could be closely correlated with the clinical symptomatology in these muscles in patients with myogenic craniomandibular dysfunction.

  10. Kinesiology Taping does not Modify Electromyographic Activity or Muscle Flexibility of Quadriceps Femoris Muscle: A Randomized, Placebo-Controlled Pilot Study in Healthy Volleyball Players

    PubMed Central

    Halski, Tomasz; Dymarek, Robert; Ptaszkowski, Kuba; Słupska, Lucyna; Rajfur, Katarzyna; Rajfur, Joanna; Pasternok, Małgorzata; Smykla, Agnieszka; Taradaj, Jakub

    2015-01-01

    Background Kinesiology taping (KT) is a popular method of supporting professional athletes during sports activities, traumatic injury prevention, and physiotherapeutic procedures after a wide range of musculoskeletal injuries. The effectiveness of KT in muscle strength and motor units recruitment is still uncertain. The objective of this study was to assess the effect of KT on surface electromyographic (sEMG) activity and muscle flexibility of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles in healthy volleyball players. Material/Methods Twenty-two healthy volleyball players (8 men and 14 women) were included in the study and randomly assigned to 2 comparative groups: “kinesiology taping” (KT; n=12; age: 22.30±1.88 years; BMI: 22.19±4.00 kg/m2) in which KT application over the RF muscle was used, and “placebo taping” (PT; n=10; age: 21.50±2.07 years; BMI: 22.74±2.67 kg/m2) in which adhesive nonelastic tape over the same muscle was used. All subjects were analyzed for resting sEMG activity of the VL and VM muscles, resting and functional sEMG activity of RF muscle, and muscle flexibility of RF muscle. Results No significant differences in muscle flexibility of the RF muscle and sEMG activity of the RF, VL, and VM muscles were registered before and after interventions in both groups, and between the KT and PT groups (p>0.05). Conclusions The results show that application of the KT to the RF muscle is not useful to improve sEMG activity. PMID:26232122

  11. Electromyographic evaluation of masseter and anterior temporalis muscles in rest position of edentulous patients with temporomandibular disorders, before and after using complete dentures with sliding plates.

    PubMed

    Zuccolotto, Maria Cristina Candelas; Vitti, Mathias; Nóbilo, Krunislave Antônio; Regalo, Simone Cecílio Hallak; Siéssere, Selma; Bataglion, César

    2007-06-01

    This study was performed with the purpose of investigating electromyographic (EMG) activity of the anterior temporalis and masseter muscles in edentulous individuals with temporomandibular disorder (TMD), before and after using sliding plates on complete dentures in the mandibular rest position. Edentulous patients may present TMD, which is characterised by pain in temporomandibular joints, masticatory and neck muscles, uncoordinated and limited mandible movements, joint sounds and an altered occlusal relationship. It is imperative to offer treatment in order to re-establish stomatognathic system structures before submitting the individual to any definitive restorative treatment. The patients were edentulous for at least 10 years. EMG recordings were made before the insertion of the dentures (0 months) and also after using the sliding plates at the fourth month, 9th month and 12th month, using computerised electromyography K6-I/ EMG Light Channel Surface. EMG evaluations of the muscles were performed under the following clinical conditions: rest position with dentures (R1), rest position without dentures (R2), rest position with dentures post-activity (chewing) (R3), rest position without dentures post-activity (chewing) (R4). All patients obtained remission of muscular fatigue and reduced pain in stomatognathic system structures. Temporalis muscle showed significant increase in EMG activity compared with initial values (p < 0.01). Masseter muscles showed significantly lower mean values (p < 0.01) compared with initial values. The sliding plates allowed the process of neuromuscular deprogramming, contributing to muscular balance of the masticatory system, and are therefore indicated to be used before the fabrication of definitive complete dentures in patients with TMD.

  12. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients.

    PubMed

    Rayegani, S M; Raeissadat, S A; Sedighipour, L; Rezazadeh, I Mohammad; Bahrami, M H; Eliaspour, D; Khosrawi, S

    2014-01-01

    The aim of the present study was to evaluate the effect of applying electroencephalogram (EEG) biofeedback (neurobiofeedback) or electromyographic (EMG) biofeedback to conventional occupational therapy (OT) on improving hand function in stroke patients. This study was designed as a preliminary clinical trial. Thirty patients with stroke were entered the study. Hand function was evaluated by Jebsen Hand Function Test pre and post intervention. Patients were allocated to 3 intervention cohorts: (1) OT, (2) OT plus EMG-biofeedback therapy, and (3) OT plus neurofeedback therapy. All patients received 10 sessions of conventional OT. Patients in cohorts 2 and 3 also received EMG-biofeedback and neurofeedback therapy, respectively. EMG-biofeedback therapy was performed to strengthen the abductor pollicis brevis (APB) muscle. Neurofeedback training was aimed at enhancing sensorimotor rhythm after mental motor imagery. Hand function was improved significantly in the 3 groups. The spectral power density of the sensorimotor rhythm band in the neurofeedback group increased after mental motor imagery. Maximum and mean contraction values of electrical activities of the APB muscle during voluntary contraction increased significantly after EMG-biofeedback training. Patients in the neurofeedback and EMG-biofeedback groups showed hand improvement similar to conventional OT. Further studies are suggested to assign the best protocol for neurofeedback and EMG-biofeedback therapy.

  13. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  14. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-01-01

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  15. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    PubMed

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p<0.001; OR 36.58; 95% CI 15.85-84.43). If the median CMAP amplitude was ≤ 2.1 mV, the rate of occurrence of spontaneous EMG activity was >95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of spontaneous activity in those CTS patients whose NCS reveals CMAP amplitudes between 2.1 mV and the lower normal limit (4.9mV in the present study). Using NCS, electromyographers can predict the presence of spontaneous EMG activity in CTS patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Processing Electromyographic Signals to Recognize Words

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  17. Electromyographic and neuromuscular analysis in patients with post-polio syndrome.

    PubMed

    Corrêa, J C F; Rocco, C Chiusoli de Miranda; de Andrade, D Ventura; Peres, J Augusto; Corrêa, F Ishida

    2008-01-01

    Proceed to a comparative analysis of the electromyographic (EMG) activity of the muscles rectus femoris, vastus medialis and vastus lateralis, and to assess muscle strength and fatigue after maximal isometric contraction during knee extension. Eighteen patients with post-polio syndrome, age and weight matched, were utilized in this study. The signal acquisition system utilized consisted of three pairs of surface electrodes positioned on the motor point of the analyzed muscles. It was possible to observe with the results of this study a decreased endurance on initial muscle contraction and during contraction after 15 minutes of the initial maximal voluntary contraction, along with a muscle fatigue that was assessed through linear regression executed with Pearson's test. There were significant differences among the comparative analysis of EMG activity of the muscles rectus femoris, vastus medialis and vastus lateralis after maximal isometric contraction during knee extension. Initial muscle contraction and contraction after a 15 minute-rest from initial contraction decreased considerably, indicating a decreased endurance on muscle contraction, concluding that a lower limb muscle fatigue was present on the analyzed PPS patients.

  18. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    PubMed

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  19. Anomaly Detection of Electromyographic Signals.

    PubMed

    Ijaz, Ahsan; Choi, Jongeun

    2018-04-01

    In this paper, we provide a robust framework to detect anomalous electromyographic (EMG) signals and identify contamination types. As a first step for feature selection, optimally selected Lawton wavelets transform is applied. Robust principal component analysis (rPCA) is then performed on these wavelet coefficients to obtain features in a lower dimension. The rPCA based features are used for constructing a self-organizing map (SOM). Finally, hierarchical clustering is applied on the SOM that separates anomalous signals residing in the smaller clusters and breaks them into logical units for contamination identification. The proposed methodology is tested using synthetic and real world EMG signals. The synthetic EMG signals are generated using a heteroscedastic process mimicking desired experimental setups. A sub-part of these synthetic signals is introduced with anomalies. These results are followed with real EMG signals introduced with synthetic anomalies. Finally, a heterogeneous real world data set is used with known quality issues under an unsupervised setting. The framework provides recall of 90% (± 3.3) and precision of 99%(±0.4).

  20. Diaphragmatic and intercostal electromyographic activity during neostigmine, sugammadex and neostigmine-sugammadex-enhanced recovery after neuromuscular blockade: A randomised controlled volunteer study.

    PubMed

    Cammu, Guy; Schepens, Tom; De Neve, Nikolaas; Wildemeersch, Davina; Foubert, Luc; Jorens, Philippe G

    2017-01-01

    Electromyographic activity of the diaphragm (EMGdi) during weaning from mechanical ventilation is increased after sugammadex compared with neostigmine. To determine the effect of neostigmine on EMGdi and surface EMG (sEMG) of the intercostal muscles during antagonism of rocuronium block with neostigmine, sugammadex and neostigmine followed by sugammadex. Randomised, controlled, double-blind study. Intensive care research unit. Eighteen male volunteers. A transoesophageal EMGdi recorder was inserted into three groups of six anaesthetised study participants, and sEMG was recorded on their intercostal muscles. To reverse rocuronium, volunteers received 50 μg kg neostigmine, 2 mg kg sugammadex or 50 μg kg neostigmine, followed 3 min later by 2 mg kg sugammadex. We examined the EMGdi and sEMG at the intercostal muscles during recovery enhanced by neostigmine or sugammadex or neostigmine-sugammadex as primary outcomes. Secondary objectives were the tidal volume, PaO2 recorded between the onset of spontaneous breathing and extubation of the trachea and SpO2 during and after anaesthesia. During weaning, median peak EMGdi was 0.76 (95% confidence interval: 1.20 to 1.80) μV in the neostigmine group, 1.00 (1.23 to 1.82) μV in the sugammadex group and 0.70 (0.91 to 1.21) μV in the neostigmine-sugammadex group (P < 0.0001 with EMGdi increased after sugammadex vs. neostigmine and neostigmine-sugammadex). The median peak intercostal sEMG for the neostigmine group was 0.39 (0.65 to 0.93) μV vs. 0.77 (1.15 to 1.51) μV in the sugammadex group and 0.82 (1.28 to 2.38) μV in the neostigmine-sugammadex group (P < 0.0001 with sEMG higher after sugammadex and after neostigmine-sugammadex vs. neostigmine). EMGdi and sEMG on the intercostal muscles were increased after sugammadex alone compared with neostigmine. Adding sugammadex after neostigmine reduced the EMGdi compared with sugammadex alone. Unlike the diaphragm, intercostal EMG was preserved with neostigmine followed by sugammadex. EudraCT: 2015-001278-16; ClinicalTrials.gov: NCT02403063.

  1. A new biomechanical hand prosthesis controlled by surface electromyographic signals.

    PubMed

    Andrade, Nei A; Borges, Geovany A; de O Nascimento, Francisco A; Romariz, Alexandre R S; da Rocha, Adson F

    2007-01-01

    This paper describes the development of a low-cost hand prosthesis for use in patients with an amputated hand due to congenital problems or to trauma wound, who possess a part or the forearm endowed with muscular activity. The paper covers the constructive aspects of both mechanical and electronic designs. The prototype is controlled by electromyographic signals measured at the remaining part of the injured limb of the patient. The EMG signals are measured at the surface of the skin, at a point that is close to a working muscle of the amputated arm. The prosthesis allows the patient to hold objects by means of a three finger clamp. The prosthesis presented an excellent performance in preliminary tests with an amputated patient. These tests showed that the prosthesis had a very good performance regarding force and speed.

  2. Separation of electrocardiographic from electromyographic signals using dynamic filtration.

    PubMed

    Christov, Ivaylo; Raikova, Rositsa; Angelova, Silvija

    2018-07-01

    Trunk muscle electromyographic (EMG) signals are often contaminated by the electrical activity of the heart. During low or moderate muscle force, these electrocardiographic (ECG) signals disturb the estimation of muscle activity. Butterworth high-pass filters with cut-off frequency of up to 60 Hz are often used to suppress the ECG signal. Such filters disturb the EMG signal in both frequency and time domain. A new method based on the dynamic application of Savitzky-Golay filter is proposed. EMG signals of three left trunk muscles and pure ECG signal were recorded during different motor tasks. The efficiency of the method was tested and verified both with the experimental EMG signals and with modeled signals obtained by summing the pure ECG signal with EMG signals at different levels of signal-to-noise ratio. The results were compared with those obtained by application of high-pass, 4th order Butterworth filter with cut-off frequency of 30 Hz. The suggested method is separating the EMG signal from the ECG signal without EMG signal distortion across its entire frequency range regardless of amplitudes. Butterworth filter suppresses the signals in the 0-30 Hz range thus preventing the low-frequency analysis of the EMG signal. An additional disadvantage is that it passes high-frequency ECG signal components which is apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. The new method was also successfully verified with abnormal ECG signals. Copyright © 2018. Published by Elsevier Ltd.

  3. Validity of electromyographic fatigue threshold as a noninvasive method for tracking changes in ventilatory threshold in college-aged men.

    PubMed

    Kendall, Kristina L; Smith, Abbie E; Graef, Jennifer L; Walter, Ashley A; Moon, Jordan R; Lockwood, Christopher M; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2010-01-01

    The submaximal electromyographic fatigue threshold test (EMG(FT)) has been shown to be highly correlated to ventilatory threshold (VT) as determined from maximal graded exercise tests (GXTs). Recently, a prediction equation was developed using the EMG(FT) value to predict VT. The aim of this study, therefore, was to determine if this new equation could accurately track changes in VT after high-intensity interval training (HIIT). Eighteen recreationally trained men (mean +/- SD; age 22.4 +/- 3.2 years) performed a GXT to determine maximal oxygen consumption rate (V(O2)peak) and VT using breath-by-breath spirometry. Participants also completed a discontinuous incremental cycle ergometer test to determine their EMGFT value. A total of four 2-minute work bouts were completed to obtain 15-second averages of the electromyographic amplitude. The resulting slopes from each successive work bout were used to calculate EMG(FT). The EMG(FT) value from each participant was used to estimate VT from the recently developed equation. All participants trained 3 days a week for 6 weeks. Training consisted of 5 sets of 2-minute work bouts with 1 minute of rest in between. Repeated-measures analysis of variance indicated no significant difference between actual and predicted VT values after 3 weeks of training. However, there was a significant difference between the actual and predicted VT values after 6 weeks of training. These findings suggest that the EMG(FT) may be useful when tracking changes in VT after 3 weeks of HIIT in recreationally trained individuals. However, the use of EMG(FT) to predict VT does not seem to be valid for tracking changes after 6 weeks of HIIT. At this time, it is not recommended that EMG(FT) be used to predict and track changes in VT.

  4. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    PubMed

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effectiveness of global postural reeducation in the treatment of temporomandibular disorder: case report.

    PubMed

    Monteiro, Wagner; Francisco de Oliveira Dantas da Gama, Thomaz; dos Santos, Robiana Maria; Collange Grecco, Luanda André; Pasini Neto, Hugo; Oliveira, Claudia Santos

    2013-01-01

    The aim of the present study was to evaluate the effectiveness of global postural reeducation in the treatment of temporomandibular disorder through bilateral surface electromyographic (EMG) analysis of the masseter muscle in a 23-year-old volunteer. EMG values for the masseter were collected at rest (baseline) and during a maximal occlusion. There was a change in EMG activity both at rest and during maximal occlusion following the intervention, evidencing neuromuscular rebalancing between both sides after treatment as well as an increase in EMG activity during maximal occlusion, with direct improvement in the recruitment of motor units during contractile activity and a decrease in muscle tension between sides at rest. The improvement in postural patterns of the cervical spine provided an improvement in aspects of the EMG signal of the masseter muscle in this patient. However, a multidisciplinary study is needed in order to determine the effect of different forms of treatment on this condition and compare benefits between interventions. Therefore, this study can provide a direction regarding the application of this technique in patients with temporomandibular disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for class III correction. Part II: electromyographic activity of masticatory muscles.

    PubMed

    Ko, Ellen Wen-Ching; Teng, Terry Te-Yi; Huang, Chiung Shing; Chen, Yu-Ray

    2015-01-01

    The study was conducted to evaluate the effect of early physical rehabilitation by comparing the differences of surface electromyographic (sEMG) activity in the masseter and anterior temporalis muscles after surgical correction of skeletal class III malocclusion. The prospective study included 63 patients; the experimental groups contained 31 patients who received early systematic physical rehabilitation; the control group (32 patients) did not receive physiotherapy. The amplitude of sEMG in the masticatory muscles reached 72.6-121.3% and 37.5-64.6% of pre-surgical values in the experimental and control groups respectively at 6 weeks after orthognathic surgery (OGS). At 6 months after OGS, the sEMG reached 135.1-233.4% and 89.6-122.5% of pre-surgical values in the experimental and control groups respectively. Most variables in the sEMG examination indicated that recovery of the masticatory muscles in the experimental group was better than the control group as estimated in the early phase (T1 to T2) and the total phase (T1 to T3); there were no significant differences between the mean recovery percentages in the later phase (T2 to T3). Early physical rehabilitative therapy is helpful for early recovery of muscle activity in masticatory muscles after OGS. After termination of physical therapy, no significant difference in recovery was indicated in patients with or without early physiotherapy. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.

    PubMed

    Frigerio, Alice; Cavallari, Paolo; Frigeni, Marta; Pedrocchi, Alessandra; Sarasola, Andrea; Ferrante, Simona

    2014-01-01

    Facial paralysis is a life-altering condition that significantly impairs function, appearance, and communication. Facial rehabilitation via closed-loop pacing represents a potential but as yet theoretical approach to reanimation. A first critical step toward closed-loop facial pacing in cases of unilateral paralysis is the detection of healthy movements to use as a trigger to prosthetically elicit automatic artificial movements on the contralateral side of the face. To test and to maximize the performance of an electromyography (EMG)-based blink detection system for applications in closed-loop facial pacing. Blinking was detected across the periocular region by means of multichannel surface EMG at an academic neuroengineering and medical robotics laboratory among 15 healthy volunteers. Real-time blink detection was accomplished by mapping the surface of the orbicularis oculi muscle on one side of the face with a multichannel surface EMG. The biosignal from each channel was independently processed; custom software registered a blink when an amplitude-based or slope-based suprathreshold activity was detected. The experiments were performed when participants were relaxed and during the production of particular orofacial movements. An F1 score metric was used to analyze software performance in detecting blinks. The maximal software performance was achieved when a blink was recorded from the superomedial orbit quadrant. At this recording location, the median F1 scores were 0.89 during spontaneous blinking, 0.82 when chewing gum, 0.80 when raising the eyebrows, and 0.70 when smiling. The overall performance of blink detection was significantly better at the superomedial quadrant (F1 score, 0.75) than at the traditionally used inferolateral quadrant (F1 score, 0.40) (P < .05). Electromyographic recording represents an accurate tool to detect spontaneous blinks as part of closed-loop facial pacing systems. The early detection of blink activity may allow real-time pacing via rapid triggering of contralateral muscles. Moreover, an EMG detection system can be integrated in external devices and in implanted neuroprostheses. A potential downside to this approach involves cross talk from adjacent muscles, which can be notably reduced by recording from the superomedial quadrant of the orbicularis oculi muscle and by applying proper signal processing. NA.

  8. Electromyographic and Joint Kinematic Patterns in Runner's Dystonia.

    PubMed

    Ahmad, Omar F; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin; Alter, Katharine

    2018-04-20

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described.

  9. Electromyographic and Joint Kinematic Patterns in Runner’s Dystonia

    PubMed Central

    Ahmad, Omar F.; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin

    2018-01-01

    Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described. PMID:29677101

  10. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    PubMed

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  11. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    PubMed

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  12. Preconditioning electromyographic data for an upper extremity model using neural networks

    NASA Technical Reports Server (NTRS)

    Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.

    1994-01-01

    A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.

  13. Analysis of electromyographic activity in spastic biceps brachii muscle following neural mobilization.

    PubMed

    Castilho, Jéssica; Ferreira, Luiz Alfredo Braun; Pereira, Wagner Menna; Neto, Hugo Pasini; Morelli, José Geraldo da Silva; Brandalize, Danielle; Kerppers, Ivo Ilvan; Oliveira, Claudia Santos

    2012-07-01

    Hypertonia is prevalent in anti-gravity muscles, such as the biceps brachii. Neural mobilization is one of the techniques currently used to reduce spasticity. The aim of the present study was to assess electromyographic (EMG) activity in spastic biceps brachii muscles before and after neural mobilization of the upper limb contralateral to the hemiplegia. Repeated pre-test and post-test EMG measurements were performed on six stroke victims with grade 1 or 2 spasticity (Modified Ashworth Scale). The Upper Limb Neurodynamic Test (ULNT1) was the mobilization technique employed. After neural mobilization contralateral to the lesion, electromyographic activity in the biceps brachii decreased by 17% and 11% for 90° flexion and complete extension of the elbow, respectively. However, the results were not statistically significant (p gt; 0.05). When performed using contralateral techniques, neural mobilization alters the electrical signal of spastic muscles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Relative Activity of Abdominal Muscles during Commonly Prescribed Strengthening Exercises.

    ERIC Educational Resources Information Center

    Willett, Gilbert M.; Hyde, Jennifer E.; Uhrlaub, Michael B.; Wendel, Cara L.; Karst, Gregory M.

    2001-01-01

    Examined the relative electromyographic (EMG) activity of upper and lower rectus abdominis (LRA) and external oblique (EOA) muscles during five abdominal strengthening exercises. Isometric and dynamic EMG data indicated that abdominal strengthening exercises activated various abdominal muscle groups. For the LRA and EOA muscle groups, there were…

  15. The influence of electromyographic recording methods and the innervation zone on the mean power frequency-torque relationships.

    PubMed

    Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Housh, Terry J

    2015-06-01

    This study examined the effects of electromyographic (EMG) recording methods and innervation zone (IZ) on the mean power frequency (MPF)-torque relationships. Nine subjects performed isometric ramp muscle actions of the leg extensors from 5% to 100% of maximal voluntary contraction with an eight channel linear electrode array over the IZ of the vastus lateralis. The slopes were calculated from the log-transformed monopolar and bipolar EMG MPF-torque relationships for each channel and subject and 95% confidence intervals (CI) were constructed around the slopes for each relationship and the composite of the slopes. Twenty-two to 55% of the subjects exhibited 95% CIs that did not include a slope of zero for the monopolar EMG MPF-torque relationships while 25-75% of the subjects exhibited 95% CIs that did not include a slope of zero for the bipolar EMG MPF-torque relationships. The composite of the slopes from the EMG MPF-torque relationships were not significantly different from zero for any method or channel, however, the method and IZ location slightly influenced the number of significant slopes on a subject-by-subject basis. The log-transform model indicated that EMG MPF-torque patterns were nonlinear regardless of recording method or distance from the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of an Implantable Myoelectric Sensor for Advanced Prosthesis Control

    PubMed Central

    Merrill, Daniel R.; Lockhart, Joseph; Troyk, Phil R.; Weir, Richard F.; Hankin, David L.

    2013-01-01

    Modern hand and wrist prostheses afford a high level of mechanical sophistication, but the ability to control them in an intuitive and repeatable manner lags. Commercially available systems using surface electromyographic (EMG) or myoelectric control can supply at best two degrees of freedom (DOF), most often sequentially controlled. This limitation is partially due to the nature of surface-recorded EMG, for which the signal contains components from multiple muscle sources. We report here on the development of an implantable myoelectric sensor using EMG sensors that can be chronically implanted into an amputee’s residual muscles. Because sensing occurs at the source of muscle contraction, a single principal component of EMG is detected by each sensor, corresponding to intent to move a particular effector. This system can potentially provide independent signal sources for control of individual effectors within a limb prosthesis. The use of implanted devices supports inter-day signal repeatability. We report on efforts in preparation for human clinical trials, including animal testing, and a first-in-human proof of principle demonstration where the subject was able to intuitively and simultaneously control two DOF in a hand and wrist prosthesis. PMID:21371058

  17. Electromyographic indices, orofacial myofunctional status and temporomandibular disorders severity: A correlation study.

    PubMed

    De Felício, Cláudia Maria; Ferreira, Cláudia Lúcia Pimenta; Medeiros, Ana Paula Magalhães; Rodrigues Da Silva, Marco Antonio M; Tartaglia, Gianluca M; Sforza, Chiarella

    2012-04-01

    This study examined whether there is an association between surface electromyography (EMG) of masticatory muscles, orofacial myofunction status and temporomandibular disorder (TMD) severity scores. Forty-two women with TMD (mean 30 years, SD 8) and 18 healthy women (mean 26 years, SD 6) were examined. According to the Research Diagnostic Criteria for TMD (RDC/TMD), all patients had myogenous disorders plus disk displacements with reduction. Surface EMG of masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position. Standardized EMG indices were obtained. Validated protocols were used to determine the perception severity of TMD and to assess orofacial myofunctional status. TMD patients showed more asymmetry between right and left muscle pairs, and more unbalanced contractile activities of contralateral masseter and temporal muscles (p<0.05, t-test), worse orofacial myofunction status and higher TMD severity scores (p<0.05, Mann-Whitney test) than healthy subjects. Spearman coefficient revealed significant correlations between EMG indices, orofacial myofunctional status and TMD severity (p<0.05). In conclusion, these methods will provide useful information for TMD diagnosis and future therapeutic planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings

    PubMed Central

    Okorokova, Elizaveta; Lebedev, Mikhail; Linderman, Michael; Ossadtchi, Alex

    2015-01-01

    In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed. PMID:26578856

  19. Customized Interactive Robotic Treatment for Stroke: EMG-Triggered Therapy

    PubMed Central

    Dipietro, Laura; Ferraro, Mark; Palazzolo, Jerome Joseph; Krebs, Hermano Igo; Volpe, Bruce T.; Hogan, Neville

    2009-01-01

    A system for electromyographic (EMG) triggering of robot-assisted therapy (dubbed the EMG game) for stroke patients is presented. The onset of a patient’s attempt to move is detected by monitoring EMG in selected muscles, whereupon the robot assists her or him to perform point-to-point movements in a horizontal plane. Besides delivering customized robot-assisted therapy, the system can record signals that may be useful to better understand the process of recovery from stroke. Preliminary experiments aimed at testing the proposed system and gaining insight into the potential of EMG-triggered, robot-assisted therapy are reported. PMID:16200756

  20. Electromyographic evaluation of the 'vertical' dimension: the Learreta TMJ decompression test.

    PubMed

    Freire Matos, Marcelo; Durst, Andreas C; Freire Matos, Jane Luzia; Learreta, Jorge Alfonso

    2011-10-01

    The clinical observation of the incisors overbite is the most common form used to evaluate the occlusal vertical dimension (OVD); however, this technique offers poor information about the compression state of the TMJ. In order to obtain such information, it is necessary to evaluate the electrical activity of the elevator muscles using surface electromyography (EMG). In case of a compressive irritation of the joint receptors, the trigeminal nucleus returns an inhibitory motor response of the elevator muscles that can be measured. The Learreta's EMG decompression test is done by measuring the EMG response of the masticatory muscles at maximal occlusion in four different OVD positions in such a way that the reduction of the TMJ pressure, and subsequently, relief of the inhibitory motor response can be studied. The aim of this study is to illustrate this technique, its clinical use and its limitations.

  1. Asymmetric activation of temporalis, masseter, and sternocleidomastoid muscles in temporomandibular disorder patients.

    PubMed

    Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto

    2008-01-01

    The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.

  2. A dominant bursting electromyograph pattern in dystonic conditions predicts an early response to pallidal stimulation.

    PubMed

    Yianni, John; Wang, Shou Yan; Liu, Xuguang; Bain, Peter G; Nandi, Dipankar; Gregory, Ralph; Joint, Carole; Stein, John F; Aziz, Tipu Z

    2006-08-01

    Although chronic pallidal deep brain stimulation (DBS) is effective in the treatment of medically intractable dystonia, there is no way of predicting the variations in clinical outcome, partly due to our limited understanding of the pathophysiological mechanisms underlying this condition. We recorded electromyographic (EMG) activity from the most severely affected muscle groups in seven dystonia patients before and after pallidal DBS. Patient EMG recordings could be classified into two groups: one consisting of patients who at rest demonstrated a dominant low frequency component of activity on power spectral analysis (ranging from 2 to 5 Hz), and one group in which this dominant pattern was absent. Early postoperative improvements (within 2-3 days) were observed in the former group, whereas the latter group benefited more gradually (over several months). Analysis of EMG activity may provide a sensitive means of identifying dystonic patients who are likely to be most responsive to functional neurosurgical intervention.

  3. Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions

    PubMed Central

    Hill, Ethan; Housh, Terry; Smith, Cory; Schmidt, Richard; Johnson, Glen

    2016-01-01

    Background: Electromyographic (EMG) and mechanomyographic (MMG) studies of fatigue have generally utilized maximal isometric or dynamic muscle actions, but sport- and work-related activities involve predominately submaximal movements. Therefore, the purpose of the present investigation was to examine the torque, EMG, and MMG responses as a result of submaximal, concentric, isokinetic, forearm flexion muscle actions. Methods: Twelve men performed concentric peak torque (PT) and isometric PT trials before (pretest) and after (posttest) performing 50 submaximal (65% of concentric PT), concentric, isokinetic (60°·s−1), forearm flexion muscle actions. Surface EMG and MMG signals were simultaneously recorded from the biceps brachii and brachioradialis muscles. Results: The results of the present study indicated similar decreases during both the concentric PT and isometric PT measurements for torque, EMG mean power frequency (MPF), and MMG MPF following the fatiguing workbout, but no changes in EMG amplitude (AMP) or MMG AMP. Conclusions: These findings suggest that decreases in torque as a result of fatiguing, dynamic muscle actions may have been due to the effects of metabolic byproducts on excitation–contraction coupling as indicated by the decreases in EMG MPF and MMG MPF, but lack of changes in EMG AMP and MMG AMP from both the biceps brachii and brachioradialis muscles.

  4. Electromyographic and Neuromuscular Force Patterns Associated with Unexpectedly Loaded Rapid Limb Movements.

    ERIC Educational Resources Information Center

    Richardson, Charles; Simmons, Roger W.

    Bi-articular, unidirectional arm movements were studied to evaluate the electromyographic (EMG) and neuromuscular force patterns that occur when a limb is unexpectedly perturbed. A series of training trials were continued with a control load spring attached to the apparatus until a pre-specified criterion for learning was attained. The limb was…

  5. Differential Effectiveness of Electromyograph Feedback, Verbal Relaxation Instructions, and Medication Placebo with Tension Headaches

    ERIC Educational Resources Information Center

    Cox, Daniel J.; And Others

    1975-01-01

    Adults with chronic tension headaches were assigned to auditory electromyograph (EMG) feedback (N=9), to progressive relaxation (N=9), and to placebo treatment (N=9). Data indicated that biofeedback and verbal relaxation instructions were equally superior to the medicine placebo on all measured variables in the direction of clinical improvement,…

  6. Utility of Electromyographic Biological Feedback in Chronic Stuttering: A Clinical Study with Follow-Up.

    ERIC Educational Resources Information Center

    Manschreck, Theo C.; And Others

    1980-01-01

    Eight chronic adult stutterers underwent an electromyographic (EMG) biological feedback training program to reduce masseter muscle tension in an effort to improve fluency. All subjects mastered the program within 10 30-minute sessions. Measures of muscle tension and fluency indicated improvements that were maintained three to six months later.…

  7. Sex Comparisons for Relative Peak Torque and Electromyographic Mean Frequency during Fatigue

    ERIC Educational Resources Information Center

    Stock, Matt S.; Beck, Travis W.; DeFreitas, Jason M.; Ye, Xin

    2013-01-01

    Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men M[subscript age] ± SD = 22 ± 2 years) and 20 women M[subscript age] ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle…

  8. Lingual Electromyography Related to Tongue Movements in Swedish Vowel Production.

    ERIC Educational Resources Information Center

    Hirose, Hajime; And Others

    1979-01-01

    In order to investigate the articulatory dynamics of the tongue in the production of Swedish vowels, electromyographic (EMG) and X-ray microbeam studies were performed on a native Swedish subject. The EMG signals were used to obtain average indication of the muscle activity of the tongue as a function of time. (NCR)

  9. Control of fast elbow movement: a study of electromyographic patterns during movements against unexpectedly decreased inertial load.

    PubMed

    Latash, M L

    1994-01-01

    Predictions of three models of single-joint motor control were compared with experimental observations of the changes in electromyographic (EMG) patterns during fast voluntary movements against an unexpectedly reduced inertial load. The subjects performed elbow flexions over 40 degrees "as fast as possible" in two series. During the first series, an approximately 40% decrease in inertia, simulated by a torque-motor, might occur unpredictably on half of the trials (unloaded trials). During the second series, all the trials were unloaded. The major findings are: (1) no differences in the antagonist burst latency in unexpectedly unloaded and unperturbed trials; (2) a decrease in the antagonist latency during expected unloadings; (3) a small, statistically non significant decrease in the first agonist burst EMG integral; and (4) a larger, statistically significant increase in the antagonist burst EMG integral in unexpectedly unloaded trials as compared to unperturbed trials. The data are in good correspondence with a version of the equilibrium-point hypothesis that assumes central programming of the beginning of the antagonist burst and incorporates the possibility of reflex-induced changes in EMG amplitudes.

  10. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion - A comparison between healthy subjects and stroke survivors.

    PubMed

    Angelova, Silvija; Ribagin, Simeon; Raikova, Rositsa; Veneva, Ivanka

    2018-02-01

    After a stroke, motor units stop working properly and large, fast-twitch units are more frequently affected. Their impaired functions can be investigated during dynamic tasks using electromyographic (EMG) signal analysis. The aim of this paper is to investigate changes in the parameters of the power/frequency function during elbow flexion between affected, non-affected, and healthy muscles. Fifteen healthy subjects and ten stroke survivors participated in the experiments. Electromyographic data from 6 muscles of the upper limbs during elbow flexion were filtered and normalized to the amplitudes of EMG signals during maximal isometric tasks. The moments when motion started and when the flexion angle reached its maximal value were found. Equal intervals of 0.3407 s were defined between these two moments and one additional interval before the start of the flexion (first one) was supplemented. For each of these intervals the power/frequency function of EMG signals was calculated. The mean (MNF) and median frequencies (MDF), the maximal power (MPw) and the area under the power function (APw) were calculated. MNF was always higher than MDF. A significant decrease in these frequencies was found in only three post-stroke survivors. The frequencies in the first time interval were nearly always the highest among all intervals. The maximal power was nearly zero during first time interval and increased during the next ones. The largest values of MPw and APw were found for the flexor muscles and they increased for the muscles of the affected arm compared to the non-affected one of stroke survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Back extensor muscle fatigue at submaximal workloads assessed using frequency banding of the electromyographic signal.

    PubMed

    Cardozo, Adalgiso Coscrato; Gonçalves, Mauro; Dolan, Patricia

    2011-12-01

    Changes in the mean or median frequency of the electromyographic (EMG) power spectrum are often used to assess skeletal muscle fatigue. A more global analysis of the spectral changes using frequency banding may provide a more sensitive measure of fatigue than changes in mean or median frequency. So, the aim of the present study was to characterize changes in different power spectrum frequency bands and compare these with changes in median frequency. Twenty male subjects performed isometric contractions of the back muscles in an isometric dynamometer at 30%, 40%, 50% and 60% of maximum voluntary contraction. During each contraction, surface EMG signals were recorded from the right and left longissimus thoracis muscles, and endurance time was measured. The EMG power spectra were divided into four frequency bands (20-50 Hz; 50-80 Hz; 80-110 Hz; 110-140 Hz) and changes in power in each band with fatigue were compared with changes in median frequency. The percentage changes in 20-50 Hz band were greater than in all other and the rate of change in power, indicated by the slope, was also greatest in 20-50 Hz band. Also, 20-50 Hz band had a greater change in power than the median frequency. Power in the low frequency part of the EMG power spectrum increases with fatigue in a load-dependent manner. The rate of change in low frequency power may be a useful indicator of fatigue rate or "fatigability" in the back muscles. Also, changes in low frequency power are more evident than changes in the median frequency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Electromyographic Analysis of the Lower Limb Muscles in Low- and High-Handicap Golfers.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João R; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-09-01

    The aim of this study was to compare the electromyographic patterns of the lower limb muscles during a golf swing performed by low- and high-handicap golfers. Ten golfers (5 low- and 5 high-handicap) performed 8 swings using a 7-iron. Surface electromyography (EMG) was recorded for the following lower limb muscles on both sides: biceps femoris, semitendinosus, gluteus maximus, vastus medialis and lateralis, rectus femoris, tibialis anterior, peroneus longus, and gastrocnemius medialis and lateralis. The golf-swing phases were determined by 3-dimensional high-speed video analysis. Compared with the high-handicap golfers, the low-handicap golfers performed the forward swing with a shorter duration of the swing phases, with the exception of the late follow-through, where they exhibited longer duration. Considering the EMG patterns, the low-handicap golfers showed a tendency for the studied muscles to reach an activation peak earlier and presented statistically significant higher muscle activity in some of the lower limb muscles, mainly from the left side. Differences between low- and high-handicap golfers were found in the average duration of swing phases and in the activation level of the lower limbs, with more evidence on muscles from the left side.

  13. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  14. Trial-by-Trial Analysis or Averaging: Implications for Electromyographic Models of Rapid Limb Control

    ERIC Educational Resources Information Center

    Sherwood, David E.; Enebo, Brian A.

    2007-01-01

    The control of human limb movement has been the focus of research for more than a century. A major issue to emerge from this work is the manner in which the central nervous system regulates electromyographic (EMG) activity to produce movements that differ in distance, velocity, and movement time. However, the different methods of analysis often…

  15. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro; Orlando, M F Felix; Behera, Laxmidhar; Saxena, Anupam; Dutta, Ashish

    2013-01-01

    Patients suffering from loss of hand functions caused by stroke and other spinal cord injuries have driven a surge in the development of wearable assistive devices in recent years. In this paper, we present a system made up of a low-profile, optimally designed finger exoskeleton continuously controlled by a user's surface electromyographic (sEMG) signals. The mechanical design is based on an optimal four-bar linkage that can model the finger's irregular trajectory due to the finger's varying lengths and changing instantaneous center. The desired joint angle positions are given by the predictive output of an artificial neural network with an EMG-to-Muscle Activation model that parameterizes electromechanical delay (EMD). After confirming good prediction accuracy of multiple finger joint angles we evaluated an index finger exoskeleton by obtaining a subject's EMG signals from the left forearm and using the signal to actuate a finger on the right hand with the exoskeleton. Our results show that our sEMG-based control strategy worked well in controlling the exoskeleton, obtaining the intended positions of the device, and that the subject felt the appropriate motion support from the device.

  16. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.

    PubMed

    Farina, Dario; Gazzoni, Marco; Merletti, Roberto

    2003-08-01

    This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.

  17. Stress Management and Anxiety Reduction Through EMG Biofeedback/Relaxation Training upon Junior High School Students.

    ERIC Educational Resources Information Center

    Lang, Darrel

    The effectiveness of electromyographic (EMG) biofeedback/relaxation training on the stress management and anxiety levels of 18 eighth-grade students was tested. Chapter I serves as an introduction and presents information on the need for the study, hypotheses, limitations, and definition of terms. Chapter II contains a review of related…

  18. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.

    PubMed

    Wada, Naomi; Akatani, Junko; Miyajima, Noriko; Shimojo, Kengo; Kanda, Kenro

    2006-05-23

    To gain insight into the neural mechanisms controlling vertebral column movement and its role in walking, we performed kinematic and electromyographic (EMG) studies on cats during level and upslope treadmill walking. Kinematic data of the limbs and vertebral column were obtained with a high-speed camera synchronized with EMG recordings from levels T10, L1, and L5 of m. longissimus dorsi (Long). During a single-step cycle at all upslope angles, vertebral movement in the lateral (left-right), cranial-caudal (forward-backward), and dorsal-ventral (upward-downward) directions was observed. Lateral movements were produced by forelimb take-off and hindlimb landing, and forward and upward movements were produced by hindlimb extension. During the single-step cycle, each of the three epaxial muscles, m. multifidus, m. iliocostalis, and Long, showed two bilateral EMG bursts. The onset of the EMG bursts coincided with the left-right movements, suggesting that epaxial muscle activity depresses lateral movement. The termination of the EMG bursts correlated with the forward and downward phase of the step cycle, suggesting that contraction of the epaxial muscles produces forward and downward movements. EMG bursts of the epaxial muscles increase the stiffness and produce inwardly movements to decrease the lateral movements of the vertebral column and the termination of EMG bursts control the movements into cranial and ventral direction of the vertebral column. The results suggest that the rhythmic EMG bursts in the epaxial muscles are produced by pattern generators, and the timing of EMG bursts among the different levels of the epaxial muscles are altered by walking condition input via peripheral afferents and descending pathways.

  19. Motor Unit Interpulse Intervals During High Force Contractions.

    PubMed

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  20. Electroencephalographic and electromyographic changes during the use of detomidine and detomidine-butorphanol combination in standing horses.

    PubMed

    Kruluc, P; Nemec, Alenka

    2006-03-01

    Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.

  1. Electromyographic reflexes evoked in human flexor carpi radialis by tendon vibration.

    PubMed

    Cody, F W; Goodwin, C N; Richardson, H C

    1990-10-01

    The rectified, electromyographic (EMG) reflexes evoked in the voluntarily contracting flexor carpi radialis (FCR) muscle by vibration of its tendon were studied in healthy human subjects. Responses comprised a prominent, transient, short-latency (SL, 20-25 ms) increase in EMG, attributed to Ia mono- and/or oligo-synaptic action, followed by a series of less pronounced troughs and peaks of activity. Evidence of continuing Ia mono- or oligo-synaptic action was indicated by (i) the presence of small subpeaks, at vibration frequency, superimposed upon the excitatory components and (ii) the occurrence of a separate reduction in EMG, of consistent latency (ca. 30 ms), after cessation of stimulation. Progressively shortening the train of vibration from 29 cycles (at 145 Hz) to a single cycle significantly reduced net, excitatory reflex activity. Gradually increasing the level (10-50% maximum) of pre-existing voluntary contraction on top of which reflexes were elicited, by moderately prolonged (29 cycles) trains of vibration, resulted in small increases, in absolute terms, in SL peaks and in later, excitatory EMG activity. Excitatory reflexes, when normalised for pre-stimulus EMG, however, declined in an approximately hyperbolic manner with increasing background activity over this range. Thus, effective "automatic gain compensation" does not operate for vibration reflexes in FCR.

  2. Use of electromyographic and electrocardiographic signals to detect sleep bruxism episodes in a natural environment.

    PubMed

    Castroflorio, Tommaso; Mesin, Luca; Tartaglia, Gianluca Martino; Sforza, Chiarella; Farina, Dario

    2013-11-01

    Diagnosis of bruxism is difficult since not all contractions of masticatory muscles during sleeping are bruxism episodes. In this paper, we propose the use of both EMG and ECG signals for the detection of sleep bruxism. Data have been acquired from 21 healthy volunteers and 21 sleep bruxers. The masseter surface EMGs were detected with bipolar concentric electrodes and the ECG with monopolar electrodes located on the clavicular regions. Recordings were made at the subjects' homes during sleeping. Bruxism episodes were automatically detected as characterized by masseter EMG amplitude greater than 10% of the maximum and heart rate increasing by more than 25% with respect to baseline within 1 s before the increase in EMG amplitude above the 10% threshold. Furthermore, the subjects were classified as bruxers and nonbruxers by a neural network. The number of bruxism episodes per night was 24.6 ± 8.4 for bruxers and 4.3 ± 4.5 for controls ( P < 0.0001). The classification error between bruxers and nonbruxers was 1% which was substantially lower than when using EMG only for the classification. These results show that the proposed system, based on the joint analysis of EMG and ECG, can provide support for the clinical diagnosis of bruxism.

  3. Reinvestigation of the dysfunction in neck and shoulder girdle muscles as the reason of cervicogenic headache among office workers.

    PubMed

    Huber, Juliusz; Lisiński, Przemysław; Polowczyk, Agnieszka

    2013-05-01

    Dysfunction of cervical and shoulder girdle muscles as reason of cervicogenic headache (CEH) was reinvestigated with clinical and neurophysiological studies. Forty office workers were randomized into two groups to verify efficiency of supervised kinesiotherapy (N = 20) aimed with improvement of muscle's activity and headache symptoms releasing. Headache intensity was evaluated with visual analog scale (VAS), range of cervical movement (ROM) with goniometer, trigger points (TrPs) incidence with palpation and muscle's strength with Lovett's scale. Reaction of patients for muscle's elongation was also evaluated. Surface electromyographical recordings were bilaterally analyzed at rest (rEMG) and during maximal contraction (mcEMG). Deficits of cervical flexion and muscles strength were found in all patients. TrPs occurred predominantly in painful trapezius muscle. Incidence of trigger points coexisted with intensity of CEH. Results indicated on muscles dysfunction which improved only after supervised therapy. Positive correlations between increase in rEMG amplitudes and high VAS scores, high-amplitude rEMG recordings incidence and increased number of TrPs were found. Negative correlation was detected between amplitude in mcEMG and amplitude of rEMG recordings. Dysfunction of trapezius muscle was most responsible for CEH etiology. Proposed algorithm of kinesiotherapy was effective as complementary method of the CEH patients treatment.

  4. Surface electromyographic analysis of differential effects in kettlebell carries for the serratus anterior muscles.

    PubMed

    Caravan, Alex; Scheffey, John O; Briend, Sam J; Boddy, Kyle J

    2018-01-01

    The purpose of this study was to examine differences in the Electromyography (EMG) amplitude of the serratus anterior between 45° kettlebell carries and 90° kettlebell carries. Thirty-three men aged roughly between 19 and 23 and who were either college or professional baseball pitchers were chosen and randomly assigned to either perform the 45° kettlebell carry followed by the 90° kettlebell carry ( n = 17) or the 90° kettlebell carry followed by the 45° kettlebell carry ( n = 16). Each pitcher was instructed in the proper usage of the exercise and assigned a short break between the two carries. Changes in EMG amplitude were examined after proper band-pass filtering, normalization, and moving average-smoothing of the raw EMG signal. Differences of the EMG amplitude mean frequencies were examined between each subject's individual carries and the clumped groups of all 45° and 90° carries. Among each individual comparison, eight pitchers had "large" Effect Size differences between the EMG amplitudes of their two carries, with seven of them signaling the 45° carry as the larger value. In addition, when examining the grouped mean differences of the EMG amplitudes, we found the 45° carries to be significantly higher ( p -value of 0.018).

  5. Surface electromyographic analysis of differential effects in kettlebell carries for the serratus anterior muscles

    PubMed Central

    2018-01-01

    The purpose of this study was to examine differences in the Electromyography (EMG) amplitude of the serratus anterior between 45° kettlebell carries and 90° kettlebell carries. Thirty-three men aged roughly between 19 and 23 and who were either college or professional baseball pitchers were chosen and randomly assigned to either perform the 45° kettlebell carry followed by the 90° kettlebell carry (n = 17) or the 90° kettlebell carry followed by the 45° kettlebell carry (n = 16). Each pitcher was instructed in the proper usage of the exercise and assigned a short break between the two carries. Changes in EMG amplitude were examined after proper band-pass filtering, normalization, and moving average-smoothing of the raw EMG signal. Differences of the EMG amplitude mean frequencies were examined between each subject’s individual carries and the clumped groups of all 45° and 90° carries. Among each individual comparison, eight pitchers had “large” Effect Size differences between the EMG amplitudes of their two carries, with seven of them signaling the 45° carry as the larger value. In addition, when examining the grouped mean differences of the EMG amplitudes, we found the 45° carries to be significantly higher (p-value of 0.018). PMID:29910993

  6. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness.

    PubMed

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte

    2016-04-23

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player's performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive.

  7. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness

    PubMed Central

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M. Charlotte

    2016-01-01

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player’s performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive. PMID:27120604

  8. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  9. Improving surface EMG burst detection in infrahyoid muscles during swallowing using digital filters and discrete wavelet analysis.

    PubMed

    Restrepo-Agudelo, Sebastian; Roldan-Vasco, Sebastian; Ramirez-Arbelaez, Lina; Cadavid-Arboleda, Santiago; Perez-Giraldo, Estefania; Orozco-Duque, Andres

    2017-08-01

    The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Repeatability of knee impulsive loading measurements with skin-mounted accelerometers and lower limb surface electromyographic recordings during gait in knee osteoarthritic and asymptomatic individuals

    PubMed Central

    Lyytinen, T.; Bragge, T.; Hakkarainen, M.; Liikavainio, T.; Karjalainen, P.A.; Arokoski, J.P.

    2016-01-01

    Objectives: To determine the repeatability of knee joint impulsive loading measurements with skin-mounted accelerometers (SMAs) and lower limb surface electromyography (EMG) recordings during gait. Methods: Triaxial SMA and EMG from 4 muscles during level and stair walking in nine healthy and nine knee osteoarthritis (OA) subjects were used. The initial peak acceleration (IPA), root mean square (RMS), maximal acceleration transient rate (ATRmax) and mean EMG activity (EMGact) were calculated. The coefficient of variation (CV) and the intraclass correlation coefficient (ICC) were calculated to measure repeatability. Results: The CV and ICC of RMS accelerations ranged from 4.9% to 10.9% and from 0.69 to 0.96 in both study groups during level walking. The CV and ICC of IPA and ATRmax varied from 7.7% to 14.2% and from 0.85 to 0.99 during level and stairs up walking in healthy subjects. The CV and ICC of EMGact ranged from 8.3% to 31.7% and from 0.16 to 0.97 in both study groups. Conclusions: RMS accelerations exhibited good repeatability during walking in healthy and knee OA subjects. The repeatability of EMG measurements was acceptable in healthy subjects depending on the measured muscles. PMID:26944825

  11. Elevated BIS and Entropy values after sugammadex or neostigmine: an electroencephalographic or electromyographic phenomenon?

    PubMed

    Aho, A J; Kamata, K; Yli-Hankala, A; Lyytikäinen, L-P; Kulkas, A; Jäntti, V

    2012-04-01

    Sugammadex is designed to antagonize neuromuscular blockade (NMB) induced by rocuronium or vecuronium. In clinical practice, we have noticed a rise in the numerical values of bispectral index (BIS) and Entropy, two electroencephalogram (EEG) - based depth of anesthesia monitors, during the reversal of the NMB with sugammadex. The aim of this prospective, randomized, double-blind study was to test this impression and to compare the effects of sugammadex and neostigmine on the BIS and Entropy values during the reversal of the NMB. Thirty patients undergoing gynecological operations were studied. Patients were anesthetized with target-controlled infusions of propofol and remifentanil, and rocuronium was used to induce NMB. After operation, during light propofol-remifentanil anesthesia, NMB was antagonized with sugammadex or neostigmine. During the following 5 min, the numerical values of BIS, BIS electromyographic (BIS EMG) and Entropy were recorded on a laptop computer, as well as the biosignal recorded by the Entropy strip. The Entropy biosignal was studied off-line both in time and frequency domain to see if NMB reversal causes changes in EEG. In some patients, administration of sugammadex or neostigmine caused a significant rise in the numerical values of BIS, BIS EMG and Entropy. This phenomenon was most likely caused by increased electromyographic (EMG) activity. The administration of sugammadex or neostigmine appeared to have only minimal effect on EEG. The EMG contamination of EEG causes BIS and Entropy values to rise during reversal of rocuronium-induced NMB in light propofol-remifentanil anesthesia. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  12. Innervation of the human cricopharyngeal muscle by the recurrent laryngeal nerve and external branch of the superior laryngeal nerve.

    PubMed

    Uludag, Mehmet; Aygun, Nurcihan; Isgor, Adnan

    2017-06-01

    The major component of the upper esophageal sphincter is the cricopharyngeal muscle (CPM). We assessed the contribution of the laryngeal nerves to motor innervation of the CPM. We performed an intraoperative electromyographic study of 27 patients. The recurrent laryngeal nerve (RLN), vagus nerve, external branch of the superior laryngeal nerve (EBSLN), and pharyngeal plexus (PP) were stimulated. Responses were evaluated by visual observation of CPM contractions and electromyographic examination via insertion of needle electrodes into the CPM. In total, 46 CPMs (24 right, 22 left) were evaluated. PP stimulation produced both positive visual contractions and electromyographic (EMG) responses in 42 CPMs (2080 ± 1583 μV). EBSLN stimulation produced visual contractions of 28 CPMs and positive EMG responses in 35 CPMs (686 ± 630 μV). Stimulation of 45 RLNs produced visible contractions of 37 CPMs and positive EMG activity in 41 CPMs (337 ± 280 μV). Stimulation of 42 vagal nerves resulted in visible contractions of 36 CPMs and positive EMG responses in 37 CPMs (292 ± 229 μV). Motor activity was noted in 32 CPMs by both RLN and EBSLN stimulation, 9 CPMs by RLN stimulation, and 3 CPMs by EBSLN stimulation; 2 CPMs exhibited no response. This is the first study to show that the EBSLN contributes to motor innervation of the human CPM. The RLN, EBSLN, or both of the nerves innervate the 90, 75, and 70 % of the CPMs ipsilaterally, respectively.

  13. Levodopa-Induced Changes in Electromyographic Patterns in Patients with Advanced Parkinson’s Disease

    PubMed Central

    Ruonala, Verneri; Pekkonen, Eero; Airaksinen, Olavi; Kankaanpää, Markku; Karjalainen, Pasi A; Rissanen, Saara M

    2018-01-01

    Levodopa medication is the most efficient treatment for motor symptoms of Parkinson’s disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients’ eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion–extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion–extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients’ personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson’s disease. PMID:29459845

  14. Electromyographic activity of mystacial pad musculature during whisking behavior in the rat.

    PubMed

    Carvell, G E; Simons, D J; Lichtenstein, S H; Bryant, P

    1991-01-01

    Cinematographic measurements of whisker movements generated by behaving rats were compared with electromyographic (EMG) activity recorded simultaneously from mystacial pad musculature. Muscle activity consisted of repetitive bursts, each of which initiated a "whisking" cycle consisting of a protraction followed by a retraction. Protraction amplitude and velocity were directly proportional to the amount of EMG activity during forward whisker movement. Overtime, the intensity of muscle discharge determined the set point about which the vibrissae moved; higher levels of muscle activity resulted in a greater degree of overall whisker protraction. These findings are consistent with the known anatomy of the facial musculature and underscore the importance of whisker protraction in the acquisition of tactile information by the vibrissae.

  15. Effects of mouth rehabilitation with removable complete dentures on stimulus perception and the electromyographic activity of the orbicularis oris muscle.

    PubMed

    de Caxias, Fernanda P; Dos Santos, Daniela M; Goiato, Marcelo C; Bitencourt, Sandro B; da Silva, Emily V F; Laurindo-Junior, Murilo C B; Turcio, Karina H L

    2018-05-01

    Many elderly individuals are rehabilitated with removable complete dentures, which require an initial adaptation period for both oral perception and the perioral muscles. Studies assessing the changes in stimulus perception and the electromyographic (EMG) activity of the orbicularis oris muscle shortly after conventional complete denture insertion are lacking. The purpose of this clinical study was to evaluate the effect of mouth rehabilitation with removable complete dentures on stimulus perception and the EMG activity of the orbicularis oris muscle. This study was approved by the Human Research Ethics Committee of the Araçatuba Dental School (São Paulo State University). Fifteen participants who had worn their removable complete dentures for at least 5 years and needed rehabilitation with new prostheses were enrolled in the study. A perception questionnaire was applied, and surface EMG examinations of the orbicularis oris muscle during rest, suction of water with a straw, and pronunciation of the syllables /bah/, /mah/, /pah/, and the word 'Mississippi' were performed before (T0) and 30 (T1) and 100 (T2) days after insertion of the new prostheses. The data were analyzed with the Cochran Q test, McNemar test, 2-way repeated measures ANOVA, and honestly significant difference (HSD) Tukey test (α=.05). Significant improvement was reported in the perception questionnaire in terms of the oral discomfort sensation in the T2 period. EMG activity decreased during rest and suction after insertion of the new prostheses. A statistical difference between the upper and lower fascicles of the orbicularis oris muscle was detected, with a decrease of EMG activity between the T0 and T1 periods on the lower fascicle, except for when pronouncing the /pah/ syllable. Mouth rehabilitation with removable complete dentures decreased oral discomfort and, depending on the oral function, decreased or increased EMG activity of the orbicularis oris muscle. In addition, the lower fascicle was more active than the upper fascicle during rest and most functional activities. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Can surface electromyography improve surgery planning? Electromyographic assessment and intraoperative verification of the nerve bundle entry point location of the gracilis muscle.

    PubMed

    Romaniszyn, Michal; Walega, Piotr; Nowakowski, Michal; Nowak, Wojciech

    2016-06-01

    To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle's body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. On average, the IZ was located 65.5mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10±9.7mm, maximal - 30mm, the difference being statistically significant (p=0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5mm (mean difference 2.8mm, p=0.767). Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of larkspur (Delphinium barbeyi) on heart rate and electrically evoked electromyographic response of the external anal sphincter in cattle.

    PubMed

    Green, Benedict T; Pfister, James A; Cook, Daniel; Welch, Kevin D; Stegelmeier, Bryan L; Lee, Stephen T; Gardner, Dale R; Knoppel, Edward L; Panter, Kip E

    2009-04-01

    OBJECTIVE-To determine whether larkspur-derived N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-type alkaloids alter heart rate and electrically evoked electromyographic (eEMG) response of the external anal sphincter (EAS) in cattle and whether these effects can be reversed by acetylcholinesterase inhibitors. ANIMALS-12 beef heifers and 4 cows. PROCEDURES-3 or 4 heifers were used in 1 or 2 of 7 dose-response experiments; heart rate and EAS eEMG response were assessed before and 24 hours after oral treatment with larkspur (doses equivalent to 0.5 to 15 mg of MSAL-type alkaloids/kg). In 3 subsequent experiments, 3 heifers (1 of which was replaced with another heifer in the control experiment) each received 10 mg of MSAL-type alkaloids/kg and were injected IV with physostigmine (0.04 mg/kg), neostigmine (0.04 mg/kg), or saline (0.9% NaCl) solution 24 hours later, prior to assessment. Additionally, EAS eEMG response was measured in 4 cows before and after epidural administration of 2% lidocaine hydrochloride. RESULTS-Larkspur-treated heifers developed dose-related increases in heart rate and decreases in EAS eEMG response. Twenty-four hours after administration of MSAL-type alkaloids, neostigmine decreased heart rate but did not affect eEMG response, whereas physostigmine did not affect heart rate but caused a 2-fold increase in eEMG response. In cows, epidural anesthesia did not alter eEMG response, suggesting that transdermal stimulation of the EAS pudendal innervation did not occur. CONCLUSIONS AND CLINICAL RELEVANCE-In cattle, cardiac effects and muscle weakness or loss of EAS eEMG response induced by larkspur-derived MSAL-type alkaloids were reversed by neostigmine or physostigmine, respectively. Treatment with anticholinesterase inhibitors may alter the clinical effects of larkspur poisoning in cattle.

  18. Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions.

    PubMed

    Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O

    2016-06-01

    The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.

  19. Activation of respiratory muscles during respiratory muscle training.

    PubMed

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Trunk muscle activity increases with unstable squat movements.

    PubMed

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p < 0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  1. The risk of iatrogenic pneumothorax after electromyography.

    PubMed

    Kassardjian, Charles D; O'gorman, Cullen M; Sorenson, Eric J

    2016-04-01

    Pneumothorax is a potentially serious complication of electromyography (EMG). Data on the frequency of pneumothorax after EMG are lacking. The purpose of this study was to determine the frequency, timing, and risk factors for iatrogenic pneumothorax after EMG. Cases of pneumothorax after EMG were reviewed for clinical, electrophysiological, and radiological data. Of 64,490 EMG studies, 7 patients had an association between the EMG and pneumothorax. All patients were symptomatic and presented within 24 hours of EMG. Sampling of serratus anterior and diaphragm was causative in 1 patient each. In 5 patients, multiple high-risk muscles were sampled. The highest frequency of pneumothorax was observed with examination of serratus anterior (0.445%) and diaphragm (0.149%). The frequency of symptomatic iatrogenic pneumothorax after EMG appears to be low, and examinations of serratus anterior and diaphragm carry the highest risk. Electromyographers should be aware of the risk of pneumothorax and should counsel patients accordingly. © 2015 Wiley Periodicals, Inc.

  2. The Effect of Two Maxillary Splint Occlusal Guidance Patterns on the Electromyographic Activity of the Jaw Closing Muscles.

    DTIC Science & Technology

    1986-05-01

    used for paired t-test analysis of mean total muscle performance for the two guidance patterns and for an analysis of variance among the four muscle...45 C. Collection of Data............................ 46 D. Analysis of Data.............................. 53 IV. RESULTS...to recent incorporation of computer analysis of the muscle electromyographic (EMG) activity (Hannam, 1977). But a lack of understanding continues to

  3. The effect of epoch length on time and frequency domain parameters of electromyographic and mechanomyographic signals.

    PubMed

    Keller, Joshua L; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Smith, Cory M; Hill, Ethan C; Schmidt, Richard J; Johnson, Glen O; Zuniga, Jorge M

    2018-06-01

    The selection of epoch lengths affects the time and frequency resolution of electromyographic (EMG) and mechanomyographic (MMG) signals, as well as decisions regarding the signal processing techniques to use for determining the power density spectrum. No previous studies, however, have examined the effects of epoch length on parameters of the MMG signal. The purpose of this study was to examine the differences between epoch lengths for EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, and MMG MPF from the VL and VM muscles during MVIC muscle actions as well as at each 10% of the time to exhaustion (TTE) during a continuous isometric muscle action of the leg extensors at 50% of MVIC. During the MVIC trial, there were no significant (p > 0.05) differences between epoch lengths (0.25, 0.50, 1.00, and 2.00-s) for mean absolute values for any of the EMG or MMG parameters. During the submaximal, sustained muscle action, however, absolute MMG amplitude and MMG MPF were affected by the length of epoch. All epoch related differences were eliminated by normalizing the absolute values to MVIC. These findings supported normalizing EMG and MMG parameter values to MVIC and utilizing epoch lengths that ranged from 0.25 to 2.00-s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Morpho-functional implications of myofascial stretching applied to muscle chains: A case study.

    PubMed

    Raţ, Bogdan Constantin; Raţă, Marinela; Antohe, Bogdan

    2018-03-16

    Most lesions of the soft tissues, especially those at the muscle level, are due to the lack of elasticity of the connective tissue and fascia. Stretching is one of the most commonly used methods of treatment for such musculoskeletal issues. This study tracks the effects of stretching on the electromyographic activity of muscle chains, applied to a 24-year-old athlete diagnosed with the Haglund's disease. For the evaluation, we used visual examination and surface electromyography (maximum volumetric isometric contraction). The therapeutic intervention consisted in the application of the static stretching positions, which intended the elongation of the shortened muscle chains. The treatment program had a duration of 2 months, with a frequency of 2 sessions per week and an average duration of 60 minutes. The posterior muscle chains recorded an increase in the EMG activity, while the anterior muscle chains tended to diminish their EMG activity. As a result of the applied treatment, all the evaluated muscle chains recorded a rebalancing of the electromyographic activity, demonstrating the efficiency of stretching as a method of global treatment of muscle chains. By analysing all the data, we have come to the conclusion that static stretching is an effective treatment method for shortened muscle chains.

  5. Is there any change in pelvic floor electromyography during the first 6 months after radical retropubic prostatectomy?

    PubMed

    Hacad, Claudia R; Glazer, Howard I; Zambon, João Paulo C; Burti, Juliana S; Almeida, Fernando G

    2015-03-01

    The aim of this study is to determine electromyographic pelvic floor muscles activity during the first 6 months post RRP and its relationship to urinary continence. Thirty-eight men (mean age of 63.1 ± 5.7 year) with prostate cancer scheduled for open radical retropubic prostatectomy were evaluated. pelvic radiotherapy, systemic or neurologic diseases, pre-operative International Prostate Symptoms Score (IPSS) >7 and OABq ≥8. Surface electromyography (sEMG) evaluation, IPSS, Urinary Distress Inventory, Incontinence Impact Questionnaire, and Overactive Bladder Questionnaire-short form were applied before and at 1, 3, and 6 months after RRP. Six months after surgery, 18 men (47.4 %) presented urinary leakage. The sEMG evaluations within the first 6 months presented changes in fast contraction amplitude (p = 0.006), rest amplitude after fast contraction (p = 0.04), 10 s sustained contraction mean amplitude (p = 0.024) and final rest amplitude (p = 0.011). We observed that continent and incontinent patients as a group presented electromyographic changes during the first 6 months after radical prostatectomy that could be justified by the denervation/reinnervation of the external urethral sphincter. This finding is consistent with the adaptation of the pelvic floor musculature to the new urethral sphincter condition following surgery.

  6. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation.

    PubMed

    Fong, Shirley S M; Tam, Y T; Macfarlane, Duncan J; Ng, Shamay S M; Bae, Young-Hyeon; Chan, Eleanor W Y; Guo, X

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP.

  7. Influence of fatigue on upper limb muscle activity and performance in tennis.

    PubMed

    Rota, Samuel; Morel, Baptiste; Saboul, Damien; Rogowski, Isabelle; Hautier, Christophe

    2014-02-01

    The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Latent Factors Limiting the Performance of sEMG-Interfaces

    PubMed Central

    Lobov, Sergey; Krilova, Nadia; Kazantsev, Victor

    2018-01-01

    Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces. PMID:29642410

  9. A combined sEMG and accelerometer system for monitoring functional activity in stroke.

    PubMed

    Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J

    2009-12-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  10. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.

    PubMed

    Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C

    2014-04-23

    Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  11. Latent Factors Limiting the Performance of sEMG-Interfaces.

    PubMed

    Lobov, Sergey; Krilova, Nadia; Kastalskiy, Innokentiy; Kazantsev, Victor; Makarov, Valeri A

    2018-04-06

    Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human-machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures' fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying "problematic" gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.

  12. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  13. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain.

    PubMed

    Tsao, Henry; Hodges, Paul W

    2008-08-01

    This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.

  14. Effects of seated posture on erector spinae EMG activity during whole body vibration.

    PubMed

    Zimmermann, C L; Cook, T M; Goel, V K

    1993-06-01

    The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.

  15. Does water-perfused catheter overdiagnose anismus compared to balloon probe?

    PubMed

    Savoye, G; Leroi, A M; Bertot-Sassigneux, P; Touchais, J Y; Devroede, G; Denis, P

    2002-12-01

    The purpose of this study was to compare the manometric assessment of straining effort as if to defecate and rectoanal inhibitory reflex obtained with a rectosphincteric balloon probe and with a water-perfused catheter in the same subject. Twelve healthy volunteers underwent two manometric assessments of anal sphincter function and electromyographic (EMG) surface recordings. one with a rectosphincteric balloon and one with a water-perfused catheter, 7 days apart in random order. Increased EMG activity in the external anal sphincter in the midst of the rectoanal inhibitory reflex (P < 0.001) and during straining for defecation (P < 0.001) was more frequently observed with the perfused system than with the balloon probe. There was a discrepancy between the EMG activity of the external anal sphincter and the anal pressures during straining recorded with the perfused system. Duration of the reflex elicited by rectal distension with 10 and 20 ml of air was significantly greater with the rectosphincteric balloon than with the perfused catheter (P = 0.02 and P = 0.05, respectively). Water instilled in the anal canal by the perfused system induces artifacts in EMG recording and active anal contractions. These artifacts and induced contractions could lead to an erroneous diagnosis of anismus, particularly if pelvic floor EMG is only taken into account for the diagnosis of anismus.

  16. Effects of head and neck inclination on bilateral sternocleidomastoid EMG activity in healthy subjects and in patients with myogenic cranio-cervical-mandibular dysfunction.

    PubMed

    Santander, H; Miralles, R; Pérez, J; Valenzuela, S; Ravera, M J; Ormeño, G; Villegas, R

    2000-07-01

    This study was conducted in order to determine the effect of head and neck position on bilateral electromyographic (EMG) activity of the sternocleidomastoid muscles. The study was performed on 16 patients with myogenic cranio-cervical-mandibular dysfunction (CMD) and 16 healthy subjects. EMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing surface electrodes on the right and left sternocleidomastoid muscles. EMG activity was recorded in the left lateral decubitus position, in a darkened room and with the individual's eyes closed, under the following experimental conditions: 1. Head, neck, and body horizontally aligned; 2. Head and neck upwardly inclined with respect to the body, simulating the effect of a thick pillow, 3. Head and neck downwardly inclined with respect to the body, simulating the effect of a thin pillow. Variation of head and neck positions was determined by measuring the distance from the angle of neck and shoulder and the apex of the shoulder (SND = shoulder-neck distance) of each individual. Then, head and neck were forward or downwardly inclined with respect to the body at one-third of SND. A significantly higher contralateral EMG activity and a more asymmetric EMG activity were observed in the CMD group than in the healthy subjects (Kruskal-Wallis Test). These results suggest a different behavior of bilateral sternocleidomastoid EMG activity in CMD patients than in healthy subjects depending on the positioning of the head and neck.

  17. Electromyographic analysis of the masseter and buccinator muscles with the pro-fono facial exerciser use in bruxers.

    PubMed

    Jardini, Renata S R; Ruiz, Lydia S R; Moysés, Maria A A

    2006-01-01

    The aim of this study was to evaluate the efficiency of the Pró-Fono Facial Exerciser (Pró-Fono Productos Especializados para Fonoaudiologia Ltda., Barueri/SP, Brazil) to decrease bruxism, as well as the correlation between the masseter and the buccinator muscles using electromyography (EMG). In this study, 39 individuals ranging from 23 to 48 years of age were selected from a dental school and then underwent surface EMG at three different periods of time: 0, 10, and 70 days. They were divided into a normal control group, a bruxer control group (without device), and an experimental bruxer group who used the device. The bruxer group showed a greater masseter EMG amplitude when compared to the normal group, while the experimental group had deceased activity with a reduction in symptoms. The buccinator EMG spectral analysis of the experimental bruxist group showed asynchronous contractions of the masseter muscle (during jaw opening) after using the Pró-Fono Facial Exerciser. The normal group also showed asynchronous contractions. Upon correlation of the data between these muscles, the inference is that there is a reduction in bruxism when activating the buccinator muscle.

  18. Spike shape analysis of electromyography for parkinsonian tremor evaluation.

    PubMed

    Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur

    2015-12-01

    Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.

  19. Choosing the best rehabilitation treatment for Bell's palsy.

    PubMed

    Dalla Toffola, E; Tinelli, C; Lozza, A; Bejor, M; Pavese, C; Degli Agosti, I; Petrucci, L

    2012-12-01

    It is useful to perform neurophysiologic electromyography and electroneurography (EMG/ENG) on patients with peripheral facial palsy during the acute phase of paralysis in order to assess the severity of their nerve lesion and thus plan rehabilitation treatment and evaluate its results. To evaluate the motor recovery of patients with Bell's palsy with respect to the severity of their neurological lesion and to compare the results of two different rehabilitation treatments, with electromyographic biofeedback (EMG-BFB) and mirror visual biofeedback (mirror-BFB), in patients with Bell's palsy and neurophysiologic pattern of axonotmesis. Cohort study on retrospective clinical records. 102 patients with Bell's facial palsy were clinically assessed according to the House scale both during the acute phase of paralysis and 12 months after onset. All patients underwent EMG/ENG examination 3-4 weeks after the onset of paralysis; 29 patients had an EMG pattern of neurapraxia and were not given rehabilitation treatment; 73 patients who presented with signs of denervation had an EMG pattern of axonotmesis. The group, which was homogenous in terms of lesion severity, was divided into two parts: 38 patients were treated with electromyographic biofeedback (EMG-BFB) and 35 were treated with mirror visual feedback (mirror-BFB). All 29 patients with neurapraxia made a full spontaneous recovery; Although the 73 patients with axonotmesis received different types of rehabilitation treatment, they obtained similar results regarding quality of recovery, development of synkinesis, rehabilitation timing and resources used. Rehabilitation treatment is not necessary for patients with neurapraxia. The two biofeedback methods used to treat patients with axonotmesis resulted in similar rehabilitation outcomes.

  20. [A Case of Left Vertebral Artery Aneurysm Showing Evoked Potentials on Bilateral Electrode by the Left Vagus Nerve Stimulation to Electromyographic Tracheal Tube].

    PubMed

    Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo

    2016-02-01

    Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.

  1. Effect of mini-implant-supported mandibular overdentures on electromyographic activity of the masseter muscle during chewing of hard and soft food.

    PubMed

    Ashmawy, Tarek Mohy; El Talawy, Dina Bahgat; Shaheen, Nasser Hussein

    2014-09-01

    To objectively evaluate the effect of mini-implant- supported mandibular overdentures on electromyographic activity (EMG) of the masseter muscle during chewing of hard and soft foods. Twelve completely edentulous patients (4 females and 8 males) with maladaptive experience of wearing mandibular dentures received new maxillary and mandibular dentures. After 3 months of adaptation, four mini dental implants (MDIs) were inserted in the interforaminal region of the mandible, and the new mandibular dentures were connected to the implants immediately with O/ring attachments. The activity of masseter muscle (EMG) and the duration of chewing cycle were measured during chewing hard (carrot) and soft (gum) foods. The measurements were made 3 months after wearing each of the following prostheses: the new conventional dentures; and the MDI-retained mandibular overdentures. The EMG of masseter muscle increased and the DC decreased with MDI-retained mandibular overdentures when compared to conventional dentures. Hard food (carrot) was associated with increased EMG and decreased DC when compared to soft food (gum) for both conventional dentures and MDI-retained mandibular overdentures. Mini-implant-supported mandibular overdentures are associated with increased activity of masseter muscle and decreased duration of chewing cycle for both hard and soft foods when compared to conventional dentures.

  2. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  3. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    PubMed

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  4. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    PubMed

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  5. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  6. Muscle Activation During Grasping With and Without Motor Imagery in Healthy Volunteers and Patients After Stroke or With Parkinson's Disease

    PubMed Central

    Kobelt, Manuela; Wirth, Brigitte; Schuster-Amft, Corina

    2018-01-01

    Introduction: The present study assessed whether motor imagery (MI) produces electromyographic activation in specific muscles of the upper limb during a hand grasping and arm-lifting task in healthy volunteers, patients after stroke, or with Parkinson's disease. Electromyographic (EMG) activation was compared under three conditions: MI, physical execution (PE), and rest. The task is clinically relevant unilateral executed movement using open muscle chains. Methods: In a cross-sectional study EMG activation was measured in four muscles: M. deltoideus pars clavicularis, M. biceps brachii, M. extensor digitorum, M. flexor carpi radialis. MI ability was evaluated with mental rotation, mental chronometry and the Kinaesthetic and Visual Imagery Questionnaire. Cognitive performance was screened with the Mini-Mental State Examination. Results: Twenty-two participants (11 females, age 52.6 ±15.8, age range 21 to 72) were included: ten healthy volunteers, seven patients after stroke (time after stroke onset 16.3 ± 24.8 months), and five patients with Parkinson's disease (disease duration 60.4 ± 24.5 months). Overall Mini-Mental State Examination scores ranged between 27 and 30. An increased EMG activation during MI compared to rest condition was observed in M. deltoideus pars clavicularis and M. biceps brachii across all participants (p-value = 0.001, p = 0.007). Seven participants (two healthy volunteers, three patients after stroke and two patients with Parkinson's disease) showed a EMG activation during MI of the hand grasping and arm-lifting task in at least one of the target muscles. No correlation between EMG activation during MI and scores of three MI ability assessments were found. Conclusions: The findings suggest that MI can yield subliminal EMG activation. However, that might vary on individual basis. It remains unclear what parameters contribute to or inhibit an EMG activation during MI. Future investigations should determine factors that influence EMG activation, e.g. MI instructions, tasks to imagine, amount of MI training, and longitudinal changes after an MI training period. PMID:29740377

  7. An electromyographic analysis of selected asana in experienced yogic practitioners.

    PubMed

    Kelley, Kathleen; Slattery, Katherine; Apollo, Kaitlyn

    2018-01-01

    The purpose of this study was to assess electromyographic (EMG) output of the anterior tibialis (TA), medial head of the gastrocnemius (GA), rectus femoris (RF), bicep femoris (BF), and gluteus medius (GM) in experienced yogic practitioners during selected yoga asana. A secondary purpose was to examine the differences in EMG output in unilateral V. bilateral standing yoga asana. The study was a single occasion descriptive design. Thirteen healthy yoga practitioners (1 male, 12 females, average age of 37.5) with more than five years of experience were recruited. EMG activity was recorded during maximum voluntary isometric contractions (MVIC) of the TA, GA, RF, and BF using the Biodex Multijoint System ® , and GM using manual muscle testing position. Subjects then performed the following yoga asana while EMG activity was recorded: downward facing dog, half-moon, tree, chair, and warrior three pose. Each asana was held for fifteen seconds and performed three times. EMG data were band pass filtered and the root mean square was obtained. Asana data were then amplitude normalized with the subjects' MVIC data. Integrated EMG was calculated for TA, GA, RF, BF and GM, in each asana. A multilevel regression analysis was performed, and peak EMG data was compared. Analysis between muscles showed that during CH and DD EMG activity was greatest in the TA muscle compared to the other muscles, while during HM and WR the GA muscle showed the greatest activity. Analysis within muscles showed low GA, BF, and GM activity during chair pose and downward facing dog compared to half moon, tree, and warrior three, and high RF activity during chair compared to the other poses. In conclusion, there were differences in frontal and sagittal plane muscle activation between single limb and double limb poses in experienced yogic practitioners. Copyright © 2017. Published by Elsevier Ltd.

  8. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury

    PubMed Central

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander

    2013-01-01

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals. PMID:24307920

  9. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    PubMed

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  10. Involvement of NMDA receptor mechanisms in jaw electromyographic activity and plasma extravasation induced by inflammatory irritant application to temporomandibular joint region of rats.

    PubMed

    Yu, X M; Sessle, B J; Haas, D A; Izzo, A; Vernon, H; Hu, J W

    1996-11-01

    The aim of this study was to examine the possible role of N-methyl-D-aspartate (NMDA) receptor mechanisms in responses induced by the small-fibre excitant and inflammatory irritant mustard oil injected into the temporomandibular joint (TMJ) region of rats. The effects of the non-competitive NMDA antagonist MK-801 were tested on the mustard oil-evoked increases in electromyographic (EMG) activity of the masseter and digastric muscles and Evans Blue plasma extravasation. Five minutes before the mustard oil injection, MK-801 or its vehicle was administered systemically (i.v.), into the third ventricle (i.c.v.), or locally into the TMJ region. Compared with control animals receiving vehicle, the rats receiving MK-801 at an i.v. dose of 0.5 mg/kg (n = 5) showed a significant reduction in the incidence and magnitude of EMG responses as well as in the plasma extravasation evoked by mustard oil; MK-801 at an i.v. dose of 0.1 mg/kg (n = 5) had no significant effect on plasma extravasation or on the incidence and magnitude of EMG responses but did significantly increase the latency of EMG responses. An i.c.v. dose of 0.1 mg/kg (n = 5) or 0.01 mg/kg (n = 5) had no significant effect on plasma extravasation or incidence of EMG responses but did significantly reduce the magnitudes of the masseter EMG response; the 0.01 mg/kg dose also significantly increased the latency of the digastric EMG response. The magnitudes of both the masseter and digastric EMG responses were also significantly reduced by MK-801 administered into the TMJ region at a dose of 0.1 mg/kg (n = 5) but not by 0.01 mg/kg (n = 5); neither dose significantly affected the incidence of EMG responses or the plasma extravasation. These data suggest that both central and peripheral NMDA receptor mechanisms may play an important role in EMG responses evoked by the small-fibre excitant and inflammatory irritant mustard oil, but that different neurochemical mechanisms may be involved in the plasma extravasation induced by mustard oil.

  11. The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action.

    PubMed

    Beck, T W; Housh, T J; Fry, A C; Cramer, J T; Weir, J P; Schilling, B K; Falvo, M J; Moore, C A

    2007-07-01

    The purpose of this investigation was to examine the influence of muscle fiber type composition on the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) during a fatiguing submaximal isometric muscle action. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 yrs) and five aerobically-trained (mean +/- SD age = 32.6 +/- 5.2 yrs) men volunteered to perform a fatiguing, 30-sec submaximal isometric muscle action of the leg extensors at 50% of the maximum voluntary contraction (MVC). Muscle biopsies from the vastus lateralis revealed that the myosin heavy chain (MHC) composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The patterns of responses and mean values for absolute and normalized EMG amplitude and MPF during the fatiguing muscle action were similar for the resistance-trained and aerobically-trained subjects. The resistance-trained subjects demonstrated relatively stable levels for absolute and normalized MMG amplitude and MPF across time, but the aerobically-trained subjects showed increases in MMG amplitude and decreases in MMG MPE The absolute MMG amplitude and MPF values for the resistance-trained subjects were also greater than those for the aerobi-cally-trained subjects. These findings suggested that unlike surface EMG, MMG may be a useful noninvasive technique for examining fatigue-related differences in muscle fiber type composition.

  12. Spatial EMG potential distribution pattern of vastus lateralis muscle during isometric knee extension in young and elderly men.

    PubMed

    Watanabe, Kohei; Kouzaki, Motoki; Merletti, Roberto; Fujibayashi, Mami; Moritani, Toshio

    2012-02-01

    The aim of the present study was to compare spatial electromyographic (EMG) potential distribution during force production between elderly and young individuals using multi-channel surface EMG (SEMG). Thirteen elderly (72-79years) and 13 young (21-27years) healthy male volunteers performed ramp submaximal contraction during isometric knee extension from 0% to 65% of maximal voluntary contraction. During contraction, multi-channel EMG was recorded from the vastus lateralis muscle. To evaluate alteration in heterogeneity and pattern in spatial EMG potential distribution, coefficient of variation (CoV), modified entropy and correlation coefficients with initial torque level were calculated from multi-channel SEMG at 5% force increment. Increase in CoV and decrease in modified entropy of RMS with increase of exerted torque were significantly smaller in elderly group (p<0.05) and correlation coefficients with initial torque level were significantly higher in elderly group than in young group at moderate torque levels (p<0.05). These data suggest that the increase of heterogeneity and the change in the activation pattern are smaller in elderly individuals than in young individuals. We speculated that multi-channel SEMG pattern in elderly individual reflects neuromuscular activation strategy regulated predominantly by clustering of similar type of muscle fibers in aged muscle. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis.

    PubMed

    Mahaudens, P; Banse, X; Mousny, M; Detrembleur, C

    2009-04-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20 degrees, group 2 between 20 and 40 degrees, and group 3 > 40 degrees). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for any of the kinematic and EMG parameters, meaning that severe scoliosis was not associated with increased differences in gait parameters compared to mild scoliosis. Scoliosis was not associated with any kinematic or EMG left-right asymmetry. In conclusion, scoliosis patients showed significant but slight modifications in gait, even in cases of mild scoliosis. With the naked eye, one could not see any difference from controls, but with powerful gait analysis technology, the pelvic frontal motion (right-left tilting) was reduced, as was the motion in the hips and shoulder. Surprisingly, no asymmetry was noted but the spine seemed dynamically stiffened by the longer contraction time of major spinal and pelvic muscles. Further studies are needed to evaluate the origin and consequences of these observations.

  14. Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.

    PubMed

    Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer

    2018-01-01

    This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.

  15. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    NASA Astrophysics Data System (ADS)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  16. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D

    2012-12-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.

    2013-01-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017

  18. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study

    PubMed Central

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-01-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  19. Comparing trapezius muscle activity in the different planes of shoulder elevation

    PubMed Central

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-01-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles’ activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation. PMID:26157248

  20. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    PubMed

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  1. Electromyographic evaluation in children orthodontically treated for skeletal Class II malocclusion: Comparison of two treatment techniques.

    PubMed

    Ortu, Eleonora; Pietropaoli, Davide; Adib, Fray; Masci, Chiara; Giannoni, Mario; Monaco, Annalisa

    2017-11-16

    Objective To compare the clinical efficacy of two techniques for fabricating a Bimler device by assessing the patient's surface electromyography (sEMG) activity at rest before treatment and six months after treatment. Methods Twenty-four patients undergoing orthodontic treatment were enrolled in the study; 12 formed the test group and wore a Bimler device fabricated with a Myoprint impression using neuromuscular orthodontic technique and 12 formed the control group and were treated by traditional orthodontic technique with a wax bite in protrusion. The "rest" sEMG of each patient was recorded prior to treatment and six months after treatment. Results The neuromuscular-designed Bimler device was more comfortable and provided better treatment results than the traditional Bimler device. Conclusion This study suggests that the patient group subjected to neuromuscular orthodontic treatment had a treatment outcome with more relaxed masticatory muscles and better function versus the traditional orthodontic treatment.

  2. Study on connectivity between coherent central rhythm and electromyographic activities

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Tong, Kai-yu; Chan, Suk-tak; Wong, Wan-wa; Lui, Ka-him; Tang, Kwok-wing; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    Whether afferent feedback contributes to the generation of cortico-muscular coherence (CMCoh) remains an open question. In the present study, a multivariate autoregressive (MVAR) model and partial directed coherence (PDC) were applied to investigate the causal influences between the central rhythm and electromyographic (EMG) signals in the process of CMCoh. The system modeling included activities from the contralateral and ipsilateral primary sensorimotor cortex (M1/S1), supplementary motor area (SMA) and the time series from extensor carpi radialis (ECR) muscles. The results showed that afferent sensory feedback could also play an important role for the generation of CMCoh. Meanwhile, significant coherence between the EMG signals and the activities in the SMA was found in two subjects out of five. Connectivity analysis revealed a significant descending information flow which possibly reflected direct recruitment on the motoneurons from the SMA to facilitate motor control.

  3. Pain-evoked trunk muscle activity changes during fatigue and DOMS.

    PubMed

    Larsen, L H; Hirata, R P; Graven-Nielsen, T

    2017-05-01

    Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.

  4. Monitoring of the posterior cricoarytenoid muscle represents another option for neural monitoring during thyroid surgery: Normative vagal and recurrent laryngeal nerve posterior cricoarytenoid muscle electromyographic data.

    PubMed

    Liddy, Whitney; Barber, Samuel R; Lin, Brian M; Kamani, Dipti; Kyriazidis, Natalia; Lawson, Bradley; Randolph, Gregory W

    2018-01-01

    Intraoperative neural monitoring (IONM) of laryngeal nerves using electromyography (EMG) is routinely performed using endotracheal tube surface electrodes adjacent to the vocalis muscles. Other laryngeal muscles such as the posterior cricoarytenoid muscle (PCA) are indirectly monitored. The PCA may be directly and reliably monitored through an electrode placed in the postcricoid region. Herein, we describe the method and normative data for IONM using PCA EMG. Retrospective review. Data were reviewed retrospectively for thyroid and parathyroid surgery patients with IONM of laryngeal nerves from January to August 2016. Recordings of vocalis and PCA EMG amplitudes and latencies with stimulation of laryngeal nerves were obtained using endotracheal (ET) tube-based and postcricoid surface electrodes. Data comprised EMG responses in vocalis and PCA recording channels with stimulation of the vagus, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve from 20 subjects (11 left, 9 right), as well as PCA EMG threshold data with RLN stimulation from 17 subjects. Mean EMG amplitude was 725.69 ± 108.58 microvolts (µV) for the ipsilateral vocalis and 329.44 ± 34.12 µV for the PCA with vagal stimulation, and 1,059.75 ± 140.40 µV for the ipsilateral vocalis and 563.88 ± 116.08 µV for the PCA with RLN stimulation. There were no statistically significant differences in mean latency. For threshold cutoffs of the PCA with RLN stimulation, mean minimum and maximum threshold intensities were 0.37 milliamperes (mA) and 0.84 mA, respectively. This study shows robust and reliable PCA EMG waveforms with direct nerve stimulation. Further studies will evaluate feasibility and application of the PCA electrode as a complementary quantitative tool in IONM. 4. Laryngoscope, 128:283-289, 2018. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Neuromuscular coordination of masticatory muscles in subjects with two types of implant-supported prostheses.

    PubMed

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Maglione, Michele; Simion, Massimo; Sforza, Chiarella

    2004-04-01

    To compare the electromyographic (EMG) characteristics of masticatory muscles in patients with fixed implant-supported prostheses and implant overdentures. Nineteen subjects aged 45-79 years were examined. Fourteen were edentulous and had been successfully rehabilitated with (a) maxillary and mandibular implant-supported fixed prostheses (seven patients); (b) mandibular implant overdentures and maxillary complete dentures (seven patients). Five control subjects had natural dentition or single/partial (no more than two teeth) tooth or implant fixed dentures. Surface EMG of the masseter and temporal muscles was performed during unilateral gum chewing and during maximum teeth clenching. To reduce biological and instrumental noise, all values were standardized as percentage of a maximum clenching on cotton rolls. During clenching, temporal muscle symmetry was larger in control subjects and fixed implant-supported prosthesis patients than in overdenture patients (analysis of variance, P=0.005). No differences were found in masseter muscle symmetry or in muscular torque. Muscle activities (integrated areas of the EMG potentials over time) were significantly larger in control subjects than in implant-supported prosthesis patients (P=0.014). In both patient groups, a poor neuromuscular coordination during chewing, with altered muscular patterns, and a smaller left-right symmetry than in control subjects were found (P=0.05). No differences in masticatory frequency were found. Surface EMG analysis of clenching and chewing showed that fixed implant-supported prostheses and implant overdentures were functionally equivalent. Neuromuscular coordination during chewing was inferior to that found in subjects with natural dentition.

  6. Spatiotemporal distribution of location and object effects in the electromyographic activity of upper extremity muscles during reach-to-grasp

    PubMed Central

    Rouse, Adam G.

    2016-01-01

    In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156

  7. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat accumulation on signal fidelity. The average number of artifacts contaminating the EMG signals during treadmill running was reduced approximat ely three-fold by the prototype electrode/interface, when compared to methods currently available. Peel adhesion of the interface to the skin was significantly improved for treadmill running. Similarly, the artifacts from controlled impacts on the electrode housing were significantly reduced for both treadmill running and for the repetitive lifting task.

  8. Spatial distribution of surface action potentials generated by individual motor units in the human biceps brachii muscle.

    PubMed

    Rodriguez-Falces, Javier; Negro, Francesco; Gonzalez-Izal, Miriam; Farina, Dario

    2013-08-01

    This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of feedback techniques for lower back pain on gluteus maximus and oblique abdominal muscle activity and angle of pelvic rotation during the clam exercise.

    PubMed

    Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young

    2016-11-01

    This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bayesian aggregation versus majority vote in the characterization of non-specific arm pain based on quantitative needle electromyography

    PubMed Central

    2010-01-01

    Background Methods for the calculation and application of quantitative electromyographic (EMG) statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data. PMID:20156353

  11. Anaerobic threshold determination through ventilatory and electromyographics parameters.

    PubMed

    Gassi, E R; Bankoff, A D P

    2010-01-01

    The aim of present study was to compare the alterations in electromyography signs with Ventilatory Threshold (VT). Had been part of the study eight men, amateur cyclists and triathletes (25.25 +/- 6.96 years), that they had exercised themselves in a mechanical cicloergometer, a cadence of 80 RPM and with the increased intensity being in 25 W/min until the exhaustion. The VT was determined by a non-linear increase in VE/VO2 without any increase in VE/VCO2 and compared with the intensity corresponding to break point of amplitude EMG sign during the incremental exercise. The EMG--Fatigue Threshold (FT) and Ventilatory Threshold (VT) parameters used were the power, the time, absolute and relative VO2, ventilation (VE), the heart hate (HH) and the subjective perception of the effort. The results had not shown to difference in none of the variable selected for the corresponding intensity to VT and FT--EMG of the muscles lateralis vastus and femoris rectus. The parameters used in the comparison between the electromyographic indicators and ventilatory were the load, the time, absolute VO2 and relative to corporal mass, to ventilation (VE), the heart frequency (HH) and the Subjective Perception of the Effort (SPE).

  12. Masticatory muscle activity assessment and reliability of a portable electromyographic instrument.

    PubMed

    Bowley, J F; Marx, D B

    2001-03-01

    Masticatory muscle hyperactivity is thought to produce muscle pain and tension headaches and can cause excessive wear or breakage of restorative dental materials used in the treatment of prosthodontic patients. The quantification and identification of this type of activity is an important consideration in the preoperative diagnosis and treatment planning phase of prosthodontic care. This study investigated the quantification process in complete denture/overdenture patients with natural mandibular tooth abutments and explored the reliability of instrumentation used to assess this parafunctional activity. The nocturnal EMG activity in asymptomatic complete denture/overdenture subjects was assessed with and without prostheses worn during sleep. Because of the large variance within and between subjects, the investigators evaluated the reliability of the 3 instruments used to test nocturnal EMG activity in the sample. Electromyographic activity data of denture/overdenture subjects revealed no differences between prostheses worn versus not worn during sleep but demonstrated a very large variance factor. Further investigation of the instrumentation demonstrated a consistent in vitro as well as in vivo reliability in controlled laboratory studies. The portable EMG instrumentation used in this study revealed a large, uncontrollable variance factor within and between subjects that greatly complicated the diagnosis of parafunctional activity in prosthodontic patients.

  13. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    PubMed

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles.

  14. Comparison of methods for removing electromagnetic noise from electromyographic signals.

    PubMed

    Defreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-02-01

    The purpose of this investigation was to compare three different methods of removing noise from monopolar electromyographic (EMG) signals: (a) electrical shielding with a Faraday cage, (b) denoising with a digital notch-filter and (c) applying a bipolar differentiation with another monopolar EMG signal. Ten men and ten women (mean age = 24.0 years) performed isometric muscle actions of the leg extensors at 10-100% of their maximal voluntary contraction on two separate occasions. One trial was performed inside a Faraday tent (a flexible Faraday cage made from conductive material), and the other was performed outside the Faraday tent. The EMG signals collected outside the Faraday tent were analyzed three separate ways: as a raw signal, as a bipolar signal, and as a signal digitally notch filtered to remove 60 Hz noise and its harmonics. The signal-to-noise ratios were greatest after notch-filtering (range: 3.0-33.8), and lowest for the bipolar arrangement (1.6-10.2). Linear slope coefficients for the EMG amplitude versus force relationship were also used to compare the methods of noise removal. The results showed that a bipolar arrangement had a significantly lower linear slope coefficient when compared to the three other conditions (raw, notch and tent). These results suggested that an appropriately filtered monopolar EMG signal can be useful in situations that require a large pick-up area. Furthermore, although it is helpful, a Faraday tent (or cage) is not required to achieve an appropriate signal-to-noise ratio, as long as the correct filters are applied.

  15. Electromyographic cross-talk within a compartmentalized muscle of the cat.

    PubMed Central

    English, A W; Weeks, O I

    1989-01-01

    1. Experiments were conducted to test the extent to which the electromyographic (EMG) activity generated by the activation of single motor units is conducted from one neuromuscular compartment of the cat lateral gastrocnemius (LG) muscle into adjacent compartments. 2. Potentials produced by stimulation of forty-five single motor units were monitored from bipolar fine-wire EMG electrodes which had been implanted either into the centres of each of the four neuromuscular compartments of LG or into regions of the muscle known to lie on the border of contiguous compartments. 3. In all cases single unit potentials could be recorded from the electrodes in the centre of the compartments which clearly identified the compartment of residence of the muscle unit. Regardless of unit type, the amplitude of the potential recorded from electrodes in one compartment was always greater than that recorded from any other compartment. 4. Smaller potentials could be recorded from electrodes in the centre of compartments adjacent to the compartment of residence of the muscle unit. For those motor units where the amplitude of the EMG potentials recorded from the compartment of residence was large, the amplitude of such 'cross-talk' could be greater than the amplitude of potentials recorded from the compartment of residence of smaller motor units. 5. In the case of electrodes placed at compartment boundaries, no clear compartment selectivity of recording of motor unit potentials was evident. 6. These results indicate that great care must be taken in choosing sites of EMG electrode placement when performing kinesiological studies, especially when the amplitude of the EMG activity recorded is of consideration. PMID:2558175

  16. Loadcell supports for a dynamic force plate. [using piezoelectric tranducers and electromyography to study human gait

    NASA Technical Reports Server (NTRS)

    Keller, C. W.; Musil, L. M.; Hagy, J. L.

    1975-01-01

    An apparatus was developed to accurately measure components of force along three mutually perpendicular axes, torque, and the center of pressure imposed by the foot of a subject walking over its surface. The data obtained were used to supplement high-speed motion picture and electromyographic (EMG) data for in-depth studies of normal or abnormal human gait. Significant features of the design (in particular, the mechanisms used to support the loadcell transducers) are described. Results of the development program and typical data obtained with the device are presented and discussed.

  17. The reliability of a maximal isometric hip strength and simultaneous surface EMG screening protocol in elite, junior rugby league athletes.

    PubMed

    Charlton, Paula C; Mentiplay, Benjamin F; Grimaldi, Alison; Pua, Yong-Hao; Clark, Ross A

    2017-02-01

    Firstly to describe the reliability of assessing maximal isometric strength of the hip abductor and adductor musculature using a hand held dynamometry (HHD) protocol with simultaneous wireless surface electromyographic (sEMG) evaluation of the gluteus medius (GM) and adductor longus (AL). Secondly, to describe the correlation between isometric strength recorded with the HHD protocol and a laboratory standard isokinetic device. Reliability and correlational study. A sample of 24 elite, male, junior, rugby league athletes, age 16-20 years participated in repeated HHD and isometric Kin-Com (KC) strength testing with simultaneous sEMG assessment, on average (range) 6 (5-7) days apart by a single assessor. Strength tests included; unilateral hip abduction (ABD) and adduction (ADD) and bilateral ADD assessed with squeeze (SQ) tests in 0 and 45° of hip flexion. HHD demonstrated good to excellent inter-session reliability for all outcome measures (ICC (2,1) =0.76-0.91) and good to excellent association with the laboratory reference KC (ICC (2,1) =0.80-0.88). Whilst intra-session, inter-trial reliability of EMG activation and co-activation outcome measures ranged from moderate to excellent (ICC (2,1) =0.70-0.94), inter-session reliability was poor (all ICC (2,1) <0.50). Isometric strength testing of the hip ABD and ADD musculature using HHD may be measured reliably in elite, junior rugby league athletes. Due to the poor inter-session reliability of sEMG measures, it is not recommended for athlete screening purposes if using the techniques implemented in this study. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Human muscle fascicle behavior in agonist and antagonist isometric contractions.

    PubMed

    Simoneau, Emilie M; Longo, Stefano; Seynnes, Olivier R; Narici, Marco V

    2012-01-01

    The aim of this study was to compare, at a given level of electromyographic (EMG) activity, the behavior of dorsiflexor and plantarflexor muscles as assessed via their architecture (pennation angle and fiber length) during agonist or antagonist isometric contractions. Real-time ultrasonography and EMG activity of gastrocnemius medialis (GM) and tibialis anterior (TA) muscles were obtained while young males performed ramp isometric contractions in dorsi- and plantarflexion. For both muscles, at a similar level of EMG activity, fiber length was longer, and pennation angle was smaller, during antagonist than during agonist contractions. These results indicate that, at similar levels of EMG activity, GM and TA muscles elicit a higher mechanical output while acting as an antagonist. These findings have important implications for muscle function testing. They show that estimation of antagonistic force using the common method based on the EMG/net torque relationship yields underestimated values. Copyright © 2011 Wiley Periodicals, Inc.

  19. Small Vocabulary Recognition Using Surface Electromyography in an Acoustically Harsh Environment

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Jorgensen, Charles

    2005-01-01

    This paper presents results of electromyographic-based (EMG-based) speech recognition on a small vocabulary of 15 English words. The work was motivated in part by a desire to mitigate the effects of high acoustic noise on speech intelligibility in communication systems used by first responders. Both an off-line and a real-time system were constructed. Data were collected from a single male subject wearing a fireghter's self-contained breathing apparatus. A single channel of EMG data was used, collected via surface sensors at a rate of 104 samples/s. The signal processing core consisted of an activity detector, a feature extractor, and a neural network classifier. In the off-line phase, 150 examples of each word were collected from the subject. Generalization testing, conducted using bootstrapping, produced an overall average correct classification rate on the 15 words of 74%, with a 95% confidence interval of [71%, 77%]. Once the classifier was trained, the subject used the real-time system to communicate and to control a robotic device. The real-time system was tested with the subject exposed to an ambient noise level of approximately 95 decibels.

  20. Electromechanical delay of abdominal muscles is modified by low back pain prevention exercise.

    PubMed

    Szpala, Agnieszka; Rutkowska-Kucharska, Alicja; Drapala, Jaroslaw

    2014-01-01

    The objective of the research was to assess the effect of a 4-week-long training program on selected parameters: electromechanical delay (EMD) and amplitude of electromyographic signal (EMG). Fourteen female students of the University School of Physical Education participated in the study. Torques and surface electromyography were evaluated under static conditions. Surface electrodes were glued to both sides of the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles. The 4-week-long program was aimed at strengthening the abdominal muscles and resulted in increased EMD during maximum torque production by flexors of the trunk, increased amplitudes of the signals of the erector spinae ( p = 0.005), and increased EMG amplitude asymmetry of the lower ( p = 0.013) and upper part ( p = 0.006) of the rectus abdominis muscle. In a training program composed of a large number of repetitions of strength exercises, in which the training person uses their own weight as the load (like in exercises such as curl-ups), the process of recruitment of motor units is similar to that found during fatiguing exercises and plyometric training.

  1. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  2. Real-time processing of EMG signals for bionic arm purposes

    NASA Astrophysics Data System (ADS)

    Olid Dominguez, Ferran; Wawrzyniak, Zbigniew M.

    2016-09-01

    This paper is connected with the problem of prostheses, that have always been a necessity for the human being. Bio-physiological signals from muscles, electromyographic signals have been collected, analyzed and processed in order to implement a real-time algorithm which is capable of differentiation of two different states of a bionic hand: open and closed. An algorithm for real-time electromyographic signal processing with almost no false positives is presented and it is explained that in bio-physiological experiments proper signal processing is of great importance.

  3. Long-term effect of prednisolone on functional blink recovery after transient peripheral facial motor paralysis.

    PubMed

    VanderWerf, Frans; Reits, Dik; Metselaar, Mick; De Zeeuw, Chris I

    2012-03-01

    To determine the functional recovery in patients with severe transient peripheral facial motor paralysis (Bell palsy). Prospective controlled trial. Academic medical center. Blink recovery was studied in 2 groups of severely affected Bell palsy patients during a follow-up period of 84 weeks. The patients in one group received prednisolone within the first week after the onset of symptoms. No medication was given to the other group. A control group of healthy subjects was also included. Simultaneous orbicularis oculi muscle activity and eyelid kinematics were recorded by surface electromyographic (EMG) recording and eyelid search coils, respectively. At the beginning of the paralysis, very little integrated orbicularis oculi muscle activity and eyelid movement was measured at the palsied side of the face. Thirteen weeks later, the integrated orbicularis oculi EMG and functional blink recovery gradually improved until 39 weeks. Beyond, only the integrated orbicularis oculi EMG slightly increased. At 84 weeks, the integrated orbicularis oculi EMG was significantly larger in the prednisolone group compared with the control group. The integrated EMG of the nonmedicated group recovered to normal values. Curiously enough, the functional blink recovery at the palsied side remained reduced to 64% compared with the healthy controls in the prednisolone-treated group and to 36% in the nonmedicated group. The authors demonstrate that prednisolone significantly increased the orbicularis oculi muscle activity and significantly improved functional blink recovery in severely affected Bell palsy patients. However, the increase of muscle activity was insufficient to restore functional blinking to normal values.

  4. The vastus lateralis neuromuscular activity during all-out cycling exercise.

    PubMed

    Bercier, Stephane; Halin, Renaud; Ravier, Philippe; Kahn, Jean-Francois; Jouanin, Jean-Claude; Lecoq, Anne-Marie; Buttelli, Olivier

    2009-10-01

    The objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise. Twelve male cyclists (age 23+/-4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 Nm. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time-frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10-500 Hz. sEMG energy increased (P0.05) between contraction number 1 and 2, decreased (P < or =0.05) between contraction number 2 and 3 then stabilized between contraction number 3 and 7 during the all-out test. MPF increased (P < or =0.05) during the all-out test. This increase was more marked during the first two contractions. The decrease in energy and the increase in the sEMG MPF suggest a large spatial recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.

  5. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  6. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  7. Electromyographic preactivation pattern of the gluteus medius during weight-bearing functional tasks in women with and without anterior knee pain.

    PubMed

    Nakagawa, Theresa H; Muniz, Thiago B; Baldon, Rodrigo M; Maciel, Carlos D; Amorim, César F; Serrão, Fábio V

    2011-01-01

    Proximal factors have been proposed to influence the biomechanics of the patellofemoral joint. A delayed or diminished gluteus medius (GM) activation, before the foot contact on the ground during functional activities could lead to excessive femur adduction and internal rotation and be associated with anterior knee pain (AKP). There are few studies on this topic and the results were inconclusive, therefore, it is necessary to investigate the GM preactivation pattern during functional activities. To compare the GM electromyographic (EMG) preactivation pattern during walking, descending stairs and in single leg jump task in women with and without AKP. Nine women clinically diagnosed with AKP and ten control subjects with no history of knee injury participated in this study. We evaluated GM EMG linear envelope before the foot contact on the ground during walking and GM onset time and EMG linear envelope during descending stairs as well as in a single leg vertical jump. Mann-Whitney U tests were used to determine the between-group differences in GM EMG preactivation pattern. No between-group differences were observed in GM linear envelope during walking (P=0.41), GM onset time and linear envelope during descending stairs (P=0.17 and P=0.15) and single leg jump (P=0.81 and P=0.33). Women with AKP did not demonstrated altered GM preactivation pattern during functional weight bearing activities. Our results did not support the hypothesis that poor GM preactivation pattern could be associated with AKP.

  8. Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue.

    PubMed

    Mäestu, Jarek; Cicchella, Antonio; Purge, Priit; Ruosi, Sergio; Jürimäe, Jaak; Jürimäe, Toivo

    2006-11-01

    The aim of this study was to investigate the concepts of electromyographic (EMG) threshold (EMGT) by integrated EMG (iEMG) signals and neuromuscular fatigue threshold (NMFT) concepts in trained male athletes. Nine competitive national-level male rowers (21.8 +/- 4.4 years; 186.2 +/- 4.6 cm; 79.6 +/- 8.4 kg) took part in this investigation. Subjects were asked to participate in the graded exercise test to volitional exhaustion and 500-, 1,000-, and 2,000-m all-out rowing ergometer tests on a rowing ergometer. During all tests, oxygen consumption parameters, average power, and iEMG of the musculus vastus lateralis were recorded. The second ventilatory threshold (248.9 +/- 26.67 W) and EMGT (258.89 +/- 27.13 W) were not significantly different but were significantly lower than the NMFT (302.25 +/- 45.10 W). During 1,000- and 2,000-m all-out distances, VO(2) increased during the first minute and then leveled on a plateau with a slight decrease at the end of the exercise. Vastus lateralis activity showed a slight increase during all distances that was accompanied by a remarkable increase towards the end of the distance. All measured threshold values were significantly correlated (r > 0.70; p < 0.05) to the rowing ergometer performance characteristics. It was concluded that EMGT is closely related to the aerobic-anaerobic transition phase, because NMFT represents the local fatigue accumulation in the muscle. NMFT indicates the performance capacity of the muscles; therefore, it helps coaches to better predict top athletes' performance.

  9. Effects of warm-up on vertical jump performance and muscle electrical activity using half-squats at low and moderate intensity.

    PubMed

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas P

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key pointsThe inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement.The performance was enhanced regardless of the load used in the warm-up.The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles.

  10. Effects of Warm-Up on Vertical Jump Performance and Muscle Electrical Activity Using Half-Squats at Low and Moderate Intensity

    PubMed Central

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas p.

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key points The inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement. The performance was enhanced regardless of the load used in the warm-up. The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles. PMID:24149703

  11. Eye position modulates the electromyographic responses of neck muscles to electrical stimulation of the superior colliculus in the alert cat.

    PubMed

    Hadjidimitrakis, K; Moschovakis, A K; Dalezios, Y; Grantyn, A

    2007-05-01

    Rapid gaze shifts are often accomplished with coordinated movements of the eyes and head, the relative amplitude of which depends on the starting position of the eyes. The size of gaze shifts is determined by the superior colliculus (SC) but additional processing in the lower brain stem is needed to determine the relative contributions of eye and head components. Models of eye-head coordination often assume that the strength of the command sent to the head controllers is modified by a signal indicative of the eye position. Evidence in favor of this hypothesis has been recently obtained in a study of phasic electromyographic (EMG) responses to stimulation of the SC in head-restrained monkeys (Corneil et al. in J Neurophysiol 88:2000-2018, 2002b). Bearing in mind that the patterns of eye-head coordination are not the same in all species and because the eye position sensitivity of phasic EMG responses has not been systematically investigated in cats, in the present study we used cats to address this issue. We stimulated electrically the intermediate and deep layers of the caudal SC in alert cats and recorded the EMG responses of neck muscles with horizontal and vertical pulling directions. Our data demonstrate that phasic, short latency EMG responses can be modulated by the eye position such that they increase as the eye occupies more and more eccentric positions in the pulling direction of the muscle tested. However, the influence of the eye position is rather modest, typically accounting for only 10-50% of the variance of EMG response amplitude. Responses evoked from several SC sites were not modulated by the eye position.

  12. Use of progesterone and progestin analogs for inhibition of preterm birth and other uterine contractility disorders

    PubMed Central

    Garfield, R.E.; Shi, L.; Shi, S-Q.

    2012-01-01

    In this paper we focus on preterm birth as a uterine contractility disorder caused by hypercontractility of the myometrium. We describe changes in uterine function during term and preterm labor and delivery. We also examine the usefulness of measurement of uterine electromyographic (EMG) activity, noninvasively monitored from the abdominal surface of pregnant patients. The use of progesterone treatment for preterm birth is discussed and we conclude that present therapies with progesterone could be improved by changing the route of administration. Finally we show the results of recent studies that show that progesterone injections completely inhibit uterine EMG activity when given several days to hours before normal delivery. These studies illustrate how progesterone suppresses labor at term or preterm, probably through repression of genes which control excitability and conduction of electrical activity. However, direct profusion of soluble progesterone into the uterine cavity has little immediate inhibitory action and this may demonstrate that progesterone has no direct, nongenomic effects, at least in the rat model used. Further studies are required to determine the effects of progesterone on human uterine EMG activity and whether progesterone treatments will prevent preterm birth. PMID:24753915

  13. Electromyographic analysis of gluteus maximus and hamstring activity during the supine resisted hip extension exercise versus supine unilateral bridge to neutral.

    PubMed

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2017-02-01

    Hip extension strengthening exercises which maximize gluteus maximus contributions and minimize hamstring influences may be beneficial for persons with hip pain. This study's aim was to compare muscle activation of the gluteus maximus and hamstrings from healthy subjects during a supine resisted hip extension exercise versus supine unilateral bridge to neutral. Surface electromyographic (EMG) signals were obtained from the right gluteus maximus and hamstrings in 13 healthy male and 13 healthy female subjects. Maximum voluntary isometric contractions (MVICs) were collected to normalize data and permit meaningful comparisons across muscles. Peak median activation of the gluteus maximus was 33.8% MVIC for the bridge and 34.7% MVIC for the hip extension exercise, whereas peak median recruitment for hamstrings was 28.4% MVIC for the bridge and 51% MVIC for the hip extension exercise. The gluteus maximus to hamstrings ratio was compared between the two exercises using the Wilcoxon signed-ranks test (α = 0.05). The ratio (p = 0.014) was greater in the supine unilateral bridge (median = 111.3%) than supine hip extension exercise (median = 59.2%), suggesting a reduction of hamstring recruitment in the unilateral bridge to neutral compared to the supine resisted hip extension exercise. The supine hip extension exercise demonstrated higher EMG activity of hamstrings in comparison with supine unilateral bridge and, therefore, may be less appropriate in subjects who need to increase gluteus maximus activation.

  14. Intraoperative Mapping and Monitoring for Rootlets of the Lower Cranial Nerves Related to Vocal Cord Movement.

    PubMed

    Wanibuchi, Masahiko; Akiyama, Yukinori; Mikami, Takeshi; Komatsu, Katsuya; Sugino, Toshiya; Suzuki, Kengo; Kanno, Aya; Ohtaki, Shunya; Noshiro, Shouhei; Mikuni, Nobuhiro

    2016-06-01

    Damage to the motor division of the lower cranial nerves that run into the jugular foramen leads to hoarseness, dysphagia, and the risk of aspiration pneumonia; therefore, its functional preservation during surgical procedures is important. Intraoperative mapping and monitoring of the motor rootlets at the cerebellomedullary cistern using endotracheal tube electrodes is a safe and effective procedure to prevent its injury. To study the location of the somatic and autonomic motor fibers of the lower cranial nerves related to vocal cord movement. Twenty-four patients with pathologies at the cerebellopontine lesion were studied. General anesthesia was maintained with fentanyl and propofol. A monopolar stimulator was used at amplitudes of 0.05 to 0.1 mA. Both acoustic and visual signals were displayed as vocalis muscle electromyographic activity using endotracheal tube surface electrodes. The average number of rootlets was 7.4 (range, 5-10); 75% of patients had 7 or 8 rootlets. As many as 6 rootlets (2-4 in most cases) were responsive in each patient. In 23 of the 24 patients, the responding rootlets congregated on the caudal side. The maximum electromyographic response was predominantly in the most caudal or second most caudal rootlet in 79%. The majority of motor fibers of the lower cranial nerves run through the caudal part of the rootlets at the cerebellomedullary cistern, and the maximal electromyographic response was elicited at the most caudal or second most caudal rootlet. EMG, electromyographic.

  15. Electromyographic amplitude variability of chewing cycles in deaf individuals.

    PubMed

    de Oliveira, A Siriani; Vitti, M; Chaves, T C; Bevilaqua-Grossi, D; Zuccolotto, M C C; Regalo, S C H

    2006-09-01

    This study had the goal of determining if the amplitude of the surface electromyograph signals changes in terms of time of analysis and subjects, deaf or normal listeners, when estimated in a 250 ms of length window, visually determined, considering the most stable signal period from the center of the chewing cycle. In order to do this, groups with control subjects, listeners and deaf individuals, who made use of the Brazilian sign language (LIBRAS), were studied. All participants performed continuous 5 s of chewing for the electromyographic recording of the temporalis and masseter muscles. The normalized RMS values of three chewing cycles were compared between and among groups. The results from the Kruskall-Wallis test did not show any statistically significant differences (p > 0.05) between the normalized RMS values obtained in the three individual chewing cycles, for each of the two completed and evaluated cycles, in both groups studied. The Mann-Whitney test showed that the mean normalized RMS values obtained in the first chewing cycle were higher for the control group when compared to the mean amplitude values of the first chewing cycle of the group of deaf volunteers. It can be concluded that, in these experimental conditions, the RMS values obtained from the select windows of 250 ms length duration, in relatively stable periods of the electromyographic signal of chewing cycles did not suffer any changes in terms of EMG register duration, in both studied groups, but does give evidence of the differences among the groups.

  16. Test-retest reliability of muscle fiber conduction velocity and fractal dimension of surface EMG during isometric contractions.

    PubMed

    Beretta-Piccoli, Matteo; D'Antona, Giuseppe; Zampella, Cristian; Barbero, Marco; Clijsen, Ron; Cescon, Corrado

    2017-04-01

    The aim of this study was to determine the test-retest reliability of muscle fiber conduction velocity (CV) and fractal dimension (FD) obtained from multichannel surface electromyographic (sEMG) recordings. Forty healthy recreationally active subjects (20 men and 20 women) performed two elbow flexions on two trials with a 1 week interval. The first was a 20% maximal voluntary contraction (MVC) of 120 s, and the second at 60% MVC held until exhaustion. sEMG signals were detected from the biceps brachii, using bi-dimensional arrays. Initial values and slope of CV and FD were used for the reliability analysis. The intraclass correlation coefficient (ICC) values for the isometric contraction at 20% MVC were (-0.09) and 0.67 for CV and FD respectively; whereas the ICC values at 60% MVC were 0.78 and 0.82 for CV and FD respectively. The Bland Altman plots for the two isometric contractions showed a mean difference close to zero, with no evident outliers between the repeated measurements: at 20% MVC 0.001 53 for FD and  -0.0277 for CV, and at 60% MVC 0.006 66 for FD and 0.009 07 for CV. Overall, our findings suggest that during isometric fatiguing contractions, CV and FD slopes are reliable variables, with potential application in clinical populations.

  17. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  18. Activity of periscapular muscles and its correlation with external oblique during push-up: Does scapular dyskinesis change the electromyographic response?

    PubMed

    de Araújo, Rodrigo Cappatode; Pirauá, André Luiz Torres; Beltrão, Natália Barros; Pitangui, Ana Carolina Rodarti

    2018-03-01

    Scapular dyskinesis is the term used to describe changes in the positioning or movement of the scapula. Such dysfunction is associated with changes in the activation of the scapular muscles. However, the influence of the axial muscles on the scapular muscles activity of subjects with scapular dyskinesis is unknown. This study aimed to compare the electromyography (EMG) activity of periscapular muscles and its correlation with the external oblique muscle during the execution of push-up performed in different surfaces, in volunteers with and without scapular dyskinesis. Thirty-six men, divided in two groups (control and dyskinesis), performed push-up on stable and unstable surface. The EMG activity of serratus anterior (SA_5th and SA_7th fibers), upper (UT) and lower (LT) trapezius, external oblique (EO) was recorded during execution of each task condition. Statistical analyzes were performed using two way ANOVA repeated measures and Pearson correlation. It was observed effect of interaction between factors, being evidenced increased activity of UT, SA_7th and OE for the control group and decreased activity of SA_5th, SA_7th and EO for dyskinesis group during execution of push-up on unstable surface. In both groups positive correlations (r > 0.47) were observed between EMG activity of SA and EO. In the exercises tested, there seems to be an anatomical and functional relationship between the SA and EO muscles. The use of the unstable surface promotes increased neuromuscular demand, but the neuromuscular strategies appear to differ between groups.

  19. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis

    PubMed Central

    Banse, X.; Mousny, M.; Detrembleur, C.

    2009-01-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20°, group 2 between 20 and 40°, and group 3 > 40°). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for any of the kinematic and EMG parameters, meaning that severe scoliosis was not associated with increased differences in gait parameters compared to mild scoliosis. Scoliosis was not associated with any kinematic or EMG left–right asymmetry. In conclusion, scoliosis patients showed significant but slight modifications in gait, even in cases of mild scoliosis. With the naked eye, one could not see any difference from controls, but with powerful gait analysis technology, the pelvic frontal motion (right–left tilting) was reduced, as was the motion in the hips and shoulder. Surprisingly, no asymmetry was noted but the spine seemed dynamically stiffened by the longer contraction time of major spinal and pelvic muscles. Further studies are needed to evaluate the origin and consequences of these observations. PMID:19224255

  20. Use of EMG Biofeedback Procedures with Learning Disabled Children in a Clinical and an Educational Setting.

    ERIC Educational Resources Information Center

    Carter, John L.; Russell, Harold L.

    1985-01-01

    In two studies, 16 learning disabled elementary-aged boys receiving electromyographs for biofeedback muscle relaxation training showed significant improvement over controls on a variety of measures, including reading, spelling, verbal IQ, eye-hand coordination, and handwriting. (CL)

  1. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  2. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    PubMed Central

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445

  3. Tennis Elbow Diagnosis Using Equivalent Uniform Voltage to Fit the Logistic and the Probit Diseased Probability Models

    PubMed Central

    Lin, Wei-Chun; Lin, Shu-Yuan; Wu, Li-Fu; Guo, Shih-Sian; Huang, Hsiang-Jui; Chao, Pei-Ju

    2015-01-01

    To develop the logistic and the probit models to analyse electromyographic (EMG) equivalent uniform voltage- (EUV-) response for the tenderness of tennis elbow. In total, 78 hands from 39 subjects were enrolled. In this study, surface EMG (sEMG) signal is obtained by an innovative device with electrodes over forearm region. The analytical endpoint was defined as Visual Analog Score (VAS) 3+ tenderness of tennis elbow. The logistic and the probit diseased probability (DP) models were established for the VAS score and EMG absolute voltage-time histograms (AVTH). TV50 is the threshold equivalent uniform voltage predicting a 50% risk of disease. Twenty-one out of 78 samples (27%) developed VAS 3+ tenderness of tennis elbow reported by the subject and confirmed by the physician. The fitted DP parameters were TV50 = 153.0 mV (CI: 136.3–169.7 mV), γ 50 = 0.84 (CI: 0.78–0.90) and TV50 = 155.6 mV (CI: 138.9–172.4 mV), m = 0.54 (CI: 0.49–0.59) for logistic and probit models, respectively. When the EUV ≥ 153 mV, the DP of the patient is greater than 50% and vice versa. The logistic and the probit models are valuable tools to predict the DP of VAS 3+ tenderness of tennis elbow. PMID:26380281

  4. Shoulder muscles recruitment during a power backward giant swing on high bar: a wavelet-EMG-analysis.

    PubMed

    Frère, Julien; Göpfert, Beat; Slawinski, Jean; Tourny-Chollet, Claire

    2012-04-01

    This study aimed at determining the upper limb muscles coordination during a power backward giant swing (PBGS) and the recruitment pattern of motor units (MU) of co-activated muscles. The wavelet transformation (WT) was applied to the surface electromyographic (EMG) signal of eight shoulder muscles. Total gymnast's body energy and wavelet synergies extracted from the WT-EMG by using a non-negative matrix factorization were analyzed as a function of the body position angle of the gymnast. A cross-correlation analysis of the EMG patterns allowed determining two main groups of co-activated muscles. Two wavelet synergies representing the main spectral features (82% of the variance accounted for) discriminated the recruitment of MU. Although no task-group of MU was found among the muscles, it appeared that a higher proportion of fast MU was recruited within the muscles of the first group during the upper part of the PBGS. The last increase of total body energy before bar release was induced by the recruitment of the muscles of the second group but did not necessitate the recruitment of a higher proportion of fast MU. Such muscle coordination agreed with previous simulations of elements on high bar as well as the findings related to the recruitment of MU. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. EMG changes in thigh and calf muscles in fin swimming exercise.

    PubMed

    Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F

    2010-08-01

    Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.

  6. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  7. [Electromyographic study of mastication muscles in patients with TMG osteoarthrosis].

    PubMed

    Silin, A V; Satygo, E A; Semeleva, E I; Lila, A M

    2014-01-01

    The aim of this study was to determine the functional activity of cranio-mandibular system in patients with TMG osteoarthrosis. The study included 20 patients with TMG osteoarthrosis and 20 healthy subjects representing control group. The EMG examination was performed according to standard protocol developed in Milan University. The symmetry index values in the group with TMG osteoarthrosis were lower than in the control group (78.76±12.29%), while Torque values were higher (8.53±14.62%). EMG standardized indexes allowed differentiating TMG osteoarthrosis.

  8. Electromyographic studies of motor control in humans.

    PubMed

    Shahani, B T; Wierzbicka, M M

    1987-11-01

    Electromyography and electroneurography have proved to be useful in investigation and understanding of a variety of neurologic disorders. In most laboratories, however, these electrodiagnostic techniques have been used to help in the diagnosis of diseases that affect the peripheral nerves, neuromuscular junctions, or skeletal muscle fibers. Although major advances in electronic and computer technology have made it possible to study, quantitate, and document reflex activity in intact human subjects, most neurologists still rely on gross clinical observations and most electromyographers continue to use conventional techniques of EMG and nerve conduction studies to differentiate "myopathy" from "neuropathy." This article is a review of some of the electromyographic techniques that have been used in the authors' laboratory for the study of normal and abnormal motor control in man and the treatment of patients with disorders of motor control.

  9. Applications for Subvocal Speech

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Betts, Bradley

    2007-01-01

    A research and development effort now underway is directed toward the use of subvocal speech for communication in settings in which (1) acoustic noise could interfere excessively with ordinary vocal communication and/or (2) acoustic silence or secrecy of communication is required. By "subvocal speech" is meant sub-audible electromyographic (EMG) signals, associated with speech, that are acquired from the surface of the larynx and lingual areas of the throat. Topics addressed in this effort include recognition of the sub-vocal EMG signals that represent specific original words or phrases; transformation (including encoding and/or enciphering) of the signals into forms that are less vulnerable to distortion, degradation, and/or interception; and reconstruction of the original words or phrases at the receiving end of a communication link. Potential applications include ordinary verbal communications among hazardous- material-cleanup workers in protective suits, workers in noisy environments, divers, and firefighters, and secret communications among law-enforcement officers and military personnel in combat and other confrontational situations.

  10. Reliability study of tibialis posterior and selected leg muscle EMG and multi-segment foot kinematics in rheumatoid arthritis associated pes planovalgus

    PubMed Central

    Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James

    2012-01-01

    Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819

  11. Electromyographic activity after latissimus dorsi transfer: testing of coactivation as a simple tool to assess latissimus dorsi motor learning.

    PubMed

    Plath, Johannes E; Seiberl, Wolfgang; Beitzel, Knut; Minzlaff, Philipp; Schwirtz, Ansgar; Imhoff, Andreas B; Buchmann, Stefan

    2014-08-01

    The purpose of this study was to investigate coactivation (CoA) testing as a clinical tool to monitor motor learning after latissimus dorsi tendon transfer. We evaluated 20 patients clinically with the American Shoulder and Elbow Surgeons (ASES) and University of California-Los Angeles (UCLA) outcomes scores, visual analog scale, active external rotation (aER), and isometric strength testing in abduction and external rotation. Measurements of aER were performed while the latissimus dorsi was activated in its new function of external rotation with concomitant activation (coactivation) of its native functions (adduction and extension). Bilateral surface electromyographic (EMG) activity was recorded during aER measurements and the strength testing procedure (EMG activity ratio: with/without CoA). Patients were divided into two groups (excellent/good vs fair/poor) according to the results of the ASES and UCLA scores. The mean follow-up was 57.8 ± 25.2 months. Subdivided by clinical scores, the superior outcome group lost aER with CoA, whereas the inferior outcome group gained aER (UCLA score: -2.2° ± 7.4° vs +4.3° ± 4.1°; P = .031). Patients with inferior outcomes in the ASES score showed higher latissimus dorsi EMG activity ratios (P = .027), suggesting an inadequate motor learning process. Isometric strength testing revealed that the latissimus dorsi transfer had significantly greater activity compared with the contralateral side (external rotation, P = .008; abduction, P = .006) but did not have comparable strength (external rotation, P = .017; abduction, P = .009). Patients with inferior clinical results were more likely to be dependent on CoA to gain external rotation. Therefore, CoA testing may be used as a tool to evaluate the status of postoperative motor learning after latissimus dorsi transfer. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  12. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular disorders in healthy young adults.

    PubMed

    Baba, Kazuyoshi; Haketa, Tadasu; Sasaki, Yoshiyuki; Ohyama, Takashi; Clark, Glenn T

    2005-01-01

    To examine whether any signs and symptoms of temporomandibular disorders were significantly associated with masseter muscle activity levels during sleep. One hundred three healthy adult subjects (age range, 22 to 32 years) participated in the study. They were asked to fill out questionnaires, undergo a calibrated clinical examination of their jaws and teeth, and perform 6 consecutive nightly masseter electromyographic (EMG) recordings with a portable EMG recording system in their home. The EMG data were considered dependent variables, while the questionnaire and examination data were considered independent variables. Multiple stepwise linear regression analysis was utilized to assess possible associations between these variables. Both gender and joint sound scores were significantly related to the duration of EMG activity. None of the other independent variables were found to be related to any of the muscle activity variables. The results suggest that both gender and clicking are significantly related to duration of masseter EMG activity during sleep.

  13. Augmenting the decomposition of EMG signals using supervised feature extraction techniques.

    PubMed

    Parsaei, Hossein; Gangeh, Mehrdad J; Stashuk, Daniel W; Kamel, Mohamed S

    2012-01-01

    Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its constituent motor unit potential trains (MUPTs). In this work, the possibility of improving the decomposing results using two supervised feature extraction methods, i.e., Fisher discriminant analysis (FDA) and supervised principal component analysis (SPCA), is explored. Using the MUP labels provided by a decomposition-based quantitative EMG system as a training data for FDA and SPCA, the MUPs are transformed into a new feature space such that the MUPs of a single MU become as close as possible to each other while those created by different MUs become as far as possible. The MUPs are then reclassified using a certainty-based classification algorithm. Evaluation results using 10 simulated EMG signals comprised of 3-11 MUPTs demonstrate that FDA and SPCA on average improve the decomposition accuracy by 6%. The improvement for the most difficult-to-decompose signal is about 12%, which shows the proposed approach is most beneficial in the decomposition of more complex signals.

  14. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.

    PubMed

    Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik

    2018-05-18

    Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

  15. Specific muscle EMG biofeedback for hand dystonia.

    PubMed

    Deepak, K K; Behari, M

    1999-12-01

    Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.

  16. A Subject-Independent Method for Automatically Grading Electromyographic Features During a Fatiguing Contraction

    PubMed Central

    Jesunathadas, Mark; Poston, Brach; Santello, Marco; Ye, Jieping; Panchanathan, Sethuraman

    2014-01-01

    Many studies have attempted to monitor fatigue from electromyogram (EMG) signals. However, fatigue affects EMG in a subject-specific manner. We present here a subject-independent framework for monitoring the changes in EMG features that accompany muscle fatigue based on principal component analysis and factor analysis. The proposed framework is based on several time- and frequency-domain features, unlike most of the existing work, which is based on two to three features. Results show that latent factors obtained from factor analysis on these features provide a robust and unified framework. This framework learns a model from EMG signals of multiple subjects, that form a reference group, and monitors the changes in EMG features during a sustained submaximal contraction on a test subject on a scale from zero to one. The framework was tested on EMG signals collected from 12 muscles of eight healthy subjects. The distribution of factor scores of the test subject, when mapped onto the framework was similar for both the subject-specific and subject-independent cases. PMID:22498666

  17. Electromyographic evaluation of abdominal-muscle function with and without concomitant pelvic-floor-muscle contraction.

    PubMed

    Tahan, Nahid; Arab, Amir Massoud; Vaseghi, Bita; Khademi, Khosro

    2013-05-01

    Coactivation of abdominal and pelvic-floor muscles (PFM) is an issue considered by researchers recently. Electromyography (EMG) studies have shown that the abdominal-muscle activity is a normal response to PFM activity, and increase in EMG activity of the PFM concomitant with abdominal-muscle contraction was also reported. The purpose of this study was to compare the changes in EMG activity of the deep abdominal muscles during abdominal-muscle contraction (abdominal hollowing and bracing) with and without concomitant PFM contraction in healthy and low-back-pain (LBP) subjects. A 2 × 2 repeated-measures design. Laboratory. 30 subjects (15 with LBP, 15 without LBP). Peak rectified EMG of abdominal muscles. No difference in EMG of abdominal muscles with and without concomitant PFM contraction in abdominal hollowing (P = .84) and abdominal bracing (P = .53). No difference in EMG signal of abdominal muscles with and without PFM contraction between LBP and healthy subjects in both abdominal hollowing (P = .88) and abdominal bracing (P = .98) maneuvers. Adding PFM contraction had no significant effect on abdominal-muscle contraction in subjects with and without LBP.

  18. [The adaptive biological control system with electromyographic feedback in the treatment of Bell's palsy].

    PubMed

    Lobzin, V S; Tsatskina, N D

    1989-01-01

    A total of 192 patients with Bell paralysis were studied. In 32 a technique of biofeedback training was applied to accelerate the restoration of mimetic muscles with EMG feedback. Clinical and electrophysiological data confirmed the efficiency of this technique in terms of considerably accelerated rehabilitation.

  19. Ergonomic analyses of downhill skiing.

    PubMed

    Clarys, J P; Publie, J; Zinzen, E

    1994-06-01

    The purpose of this study was to provide electromyographic feedback for (1) pedagogical advice in motor learning, (2) the ergonomics of materials choice and (3) competition. For these purposes: (1) EMG data were collected for the Stem Christie, the Stem Turn and the Parallel Christie (three basic ski initiation drills) and verified for the complexity of patterns; (2) integrated EMG (iEMG) and linear envelopes (LEs) were analysed from standardized positions, motions and slopes using compact, soft and competition skis; (3) in a simulated 'parallel special slalom', the muscular activity pattern and intensity of excavated and flat snow conditions were compared. The EMG data from the three studies were collected on location in the French Alps (Tignes). The analog raw EMG was recorded on the slopes with a portable seven-channel FM recorder (TEAC MR30) and with pre-amplified bipolar surface electrodes supplied with a precision instrumentation amplifier (AD 524, Analog Devices, Norwood, USA). The raw signal was full-wave rectified and enveloped using a moving average principle. This linear envelope was normalized according to the highest peak amplitude procedure per subject and was integrated in order to obtain a reference of muscular intensity. In the three studies and for all subjects (elite skiers: n = 25 in studies 1 and 2, n = 6 in study 3), we found a high level of co-contractions in the lower limb extensors and flexors, especially during the extension phase of the ski movement. The Stem Christie and the Parallel Christie showed higher levels of rhythmic movement (92 and 84%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    PubMed

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  1. Kinematic and electromyographic analysis in patients with patellofemoral pain syndrome during single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2016-09-01

    Possible delays in pre-activation or deficiencies in the activity of the dynamic muscle stabilizers of the knee and hip joints are the most common causes of the patellofemoral pain syndrome (PFPS). The aim of the study was to compare kinematic variables and electromyographic activity of the vastus lateralis, biceps femoris, gluteus maximus and gluteus medius muscles between patients with PFPS and health subjects during the single leg triple hop test (SLTHT). This study included 14 female with PFPS (PFPS group) and 14 female healthy with no history of knee pain (Healthy group). Kinematic and EMG data ware collected through participants performed a single session of the SLTHT. The PFPS group exhibited a significant increase (p<0.05) in the EMG activity of the biceps femoris and vastus lateralis muscles, when compared with the healthy group in pre-activity and during the stance phase. This same result was also found for the vastus lateralis muscle (p<0.05) when analyzing the EMG activity during the eccentric phase of the stance phase. In kinematic analysis, no significant differences were found between the groups. These results indicate that biceps femoris and vastus lateralis muscles mainly during the pre-activation phase and stance phases of the SLTHT are more active in PFPS group among healthy group. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Prediction of maximal surface electromyographically based voluntary contractions of erector spinae muscles from sonographic measurements during isometric contractions.

    PubMed

    Cuesta-Vargas, Antonio I; González-Sánchez, Manuel

    2014-03-01

    Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. The slope for each regression equation was statistically significant (P < .001) with R(2) values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

  3. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  4. Shoulder Muscle Activation of Novice and Resistance Trained Women during Variations of Dumbbell Press Exercises

    PubMed Central

    Luczak, Joshua; Bosak, Andy; Riemann, Bryan L.

    2013-01-01

    Previous research has compared the effects of trunk inclination angle on muscle activation using barbells and Smith machines in men. Whether similar effects occur with the use of dumbbells or in women remains unknown. The purpose was to compare upper extremity surface electromyographical (EMG) activity between dumbbell bench, incline, and shoulder presses. Dominate arm EMG data were recorded for collegiate-aged female resistance trained individuals (n = 12) and novice female resistance trained exercisers (n = 12) from which average EMG amplitude for each repetition phase (concentric, eccentric) was computed. No significant differences were found between experienced and novice resistance trained individuals. For the upper trapezius and anterior deltoid muscles, shoulder press activation was significantly greater than incline press which in turn was significantly greater than bench press across both phases. The bench and incline presses promoted significantly greater pectoralis major sternal activation compared to the shoulder press (both phases). While pectoralis major clavicular activation during the incline press eccentric phase was significantly greater than both the bench and shoulder presses, activation during the bench press concentric phase promoted significantly greater activation than the incline press which in turn was significantly greater than the shoulder press. These results provide evidence for selecting exercises in resistance and rehabilitation programs. PMID:26464884

  5. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.

  6. Influence of vision on masticatory muscles function: surface electromyographic evaluation

    PubMed Central

    Ciavarella, Domenico; Palazzo, Antonio; De Lillo, Alfredo; Lo Russo, Lucio; Paduano, Sergio; Laino, Luigi; Chimenti, Claudio; Frezza, Federica; Lo Muzio, Lorenzo

    2014-01-01

    Summary The role of the ocular disorders (OD) in pathogenesis of MMp is still a controversal issue. Ocular arc reflexes (OAR) may involve changes in head and neck posture and generate modifications of contraction resulting in muscle contraction and finally weakness. sEMG tests were performed on 28 patients (13 with masticatory muscles pain and myopia/15 healthy) in rest position with eyes open and eyes closed. Patients group control (healthy patients) showed no significance difference in sEMG record in open/close test. In non healthy patients there were great differences between the sEMG recordings with eyes closed and open. Temporalis and masseters showed a statistical difference of means activation in two tests (temporalis p = 0.0010; masseters = 0.0006). Great difference there was in means muscles activation between open eyes healthy test and non healthy. No difference in close eyes test was evaluated in temporalis and masseters close test in the two groups. The exact causes of MMp are still unknown. The role how ocular disorders (OD) may play an important role in pathogenesis of MMp is still a controversal issue. Ocular arc reflexes (OAR) may involve changes in head and neck posture and generate modifications of contraction resulting in muscle contraction and finally weakness. PMID:25002919

  7. Identification of the most significant electrode positions in electromyographic evaluation of swallowing-related movements in humans.

    PubMed

    Zaretsky, E; Pluschinski, P; Sader, R; Birkholz, P; Neuschaefer-Rube, C; Hey, Christiane

    2017-02-01

    Surface electromyography (sEMG) is a well-established procedure for recording swallowing-related muscle activities. Because the use of a large number of sEMG channels is time consuming and technically sophisticated, the aim of this study was to identify the most significant electrode positions associated with oropharyngeal swallowing activities. Healthy subjects (N = 16) were tested with a total of 42 channels placed in M. masseter, M. orbicularis oris, submental and paralaryngeal regions. Each test subject swallowed 10 ml of water five times. After having identified 16 optimal electrode positions, that is, positions with the strongest signals quantified by the highest integral values, differences to 26 other ones were determined by a Mann-Whitney U test. Kruskal-Wallis H test was utilized for the analysis of differences between single subjects, subject subgroups, and single electrode positions. Factors associated with sEMG signals were examined in a linear regression. Sixteen electrode positions were chosen by a simple ranking of integral values. These positions delivered significantly higher signals than the other 26 positions. Differences between single electrode positions and between test subjects were also significant. Sixteen most significant positions were identified which represent swallowing-related muscle potentials in healthy subjects.

  8. Characteristics of EMG frequency bands in temporomandibullar disorders patients.

    PubMed

    Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida

    2016-12-01

    The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Occlusal force, electromyographic activity of masticatory muscles and mandibular flexure of subjects with different facial types

    PubMed Central

    CUSTODIO, William; GOMES, Simone Guimarães Farias; FAOT, Fernanda; GARCIA, Renata Cunha Matheus Rodrigues; DEL BEL CURY, Altair Antoninha

    2011-01-01

    Objective The aim of this study was to evaluate whether vertical facial patterns influence maximal occlusal force (MOF), masticatory muscle electromyographic (EMG) activity, and medial mandibular flexure (MMF). Material and Methods Seventy-eight dentate subjects were divided into 3 groups by Ricketts's analysis: brachyfacial, mesofacial and dolychofacial. Maximum occlusal force in the molar region was bilaterally measured with a force transducer. The electromyographic activities of the masseter and anterior temporal muscles were recorded during maximal voluntary clenching. Medial mandibular flexure was calculated by subtracting the intermolar distance of maximum opening or protrusion from the distance in the rest position. The data were analyzed using ANOVA followed by Tukey's HSD test. The significance level was set at 5%. Results Data on maximum occlusal force showed that shorter faces had higher occlusal forces (P<0.0001). Brachyfacial subjects presented higher levels of masseter electromyographic activity and medial mandibular flexure, followed by the mesofacial and dolychofacial groups. Additionally, dolychofacial subjects showed significantly lower electromyographic temporalis activities (P<0.05). Conclusion Within the limitations of the study, it may be concluded that maximum occlusal force, masticatory muscle activity and medial mandibular flexure were influenced by the vertical facial pattern. PMID:21655772

  10. EMG and mechanical changes during sprint starts at different front block obliquities.

    PubMed

    Guissard, N; Duchateau, J; Hainaut, K

    1992-11-01

    The effect of decreased front block obliquity on start velocity was studied during sprint starts. The electromyographic (EMG) activity of the medial gastrocnemius (MG), the soleus (Sol), and the vastus medialis (VM) was recorded and analyzed at a 70 degrees, a 50 degrees, and a 30 degrees angle between the foot plate surface and the horizontal. Integrated EMGs (IEMG) were compared with muscle length changes in the MG and Sol in relation to foot and knee movements. The results indicate that decreasing front block obliquity significantly (P < 0.05) increases the start velocity without any change to the total duration of the pushing phase and the overall EMG activity. This improvement in sprint start performance is associated with the enhanced contribution of the MG during eccentric and concentric phases of calf muscles contraction. In the "set position" the initial length of MG and Sol is increased at 50 degrees and 30 degrees as compared with 70 degrees. The subsequent stretch-shortening cycle is improved and contributes more effectively to the speed of the muscle shortening. Moreover, lengthening these muscles during the eccentric phase stretches the muscle spindles, and the reflex activities that contribute to the observed increase in the MG IEMG, are present when the slope of the block is reduced. The results indicate that decreasing front block obliquity induces neural and mechanical modifications that contribute to increasing the sprint start velocity without any increase in the duration of the pushing phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Influence of age on adaptability of human mastication.

    PubMed

    Peyron, Marie-Agnès; Blanc, Olivier; Lund, James P; Woda, Alain

    2004-08-01

    The objective of this work was to study the influence of age on the ability of subjects to adapt mastication to changes in the hardness of foods. The study was carried out on 67 volunteers aged from 25 to 75 yr (29 males, 38 females) who had complete healthy dentitions. Surface electromyograms of the left and right masseter and temporalis muscles were recorded simultaneously with jaw movements using an electromagnetic transducer. Each volunteer was asked to chew and swallow four visco-elastic model foods of different hardness, each presented three times in random order. The number of masticatory cycles, their frequency, and the sum of all electromyographic (EMG) activity in all four muscles were calculated for each masticatory sequence. Multiple linear regression analyses were used to assess the effects of hardness, age, and gender. Hardness was associated to an increase in the mean number of cycles and mean summed EMG activity per sequence. It also increased mean vertical amplitude. Mean vertical amplitude and mean summed EMG activity per sequence were higher in males. These adaptations were present at all ages. Age was associated with an increase of 0.3 cycles per sequence per year of life and with a progressive increase in mean summed EMG activity per sequence. Cycle and opening duration early in the sequence also fell with age. We concluded that although the number of cycles needed to chew a standard piece of food increases progressively with age, the capacity to adapt to changes in the hardness of food is maintained.

  12. Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations.

    PubMed

    Siegmund, Gunter P; Sanderson, David J; Myers, Barry S; Inglis, J Timothy

    2003-04-01

    To examine whether habituation confounds the study of whiplash injury using human subjects, we quantified changes in the magnitude and temporal development of the neck muscle electromyogram and peak linear and angular head/torso kinematics of subjects exposed to sequential whiplash-like perturbations. Forty-four seated subjects (23F, 21M) underwent 11 consecutive forward horizontal perturbations (peak sled acceleration=1.5 g). Electromyographic (EMG) activity was recorded over the sternocleidomastoid (SCM) and cervical paraspinal (PARA) muscles with surface electrodes, and head and torso kinematics were measured using linear and angular accelerometers and a 3D motion analysis system. EMG onset occurred at reflex latencies (67-75 ms in SCM) and did not vary with repeated perturbations. EMG amplitude was significantly attenuated by the second perturbation in PARA muscles and by the third perturbation in SCM muscles. The mean decrement in EMG amplitude between the first trial and the mean of the last five trials was between 41% and 64%. Related kinematic changes ranged from a 21% increase in head extension angle to a 29% decrease in forward acceleration at the forehead, and were also significantly different by the second exposure in some variables. Although a wider range of perturbation intensities and inter-perturbation intervals need to be studied, the significant changes observed in both muscle and kinematic variables by the second perturbation indicated that habituation was a potential confounder of whiplash injury studies using repeated perturbations of human subjects.

  13. Relaxation Training with Aggressive Mentally Retarded Adults: A Failure to Observe Carry-Over Effects.

    ERIC Educational Resources Information Center

    Frankenberger, William

    The study was designed to determine whether 16 aggressive mentally retarded adults could reduce their resting electromyographic (EMG) levels through relaxation training techniques. Ss were selected from a large state institution. Ss were divided into two groups--the experimental group received six training sessions which included whole body…

  14. Submental sEMG and Hyoid Movement during Mendelsohn Maneuver, Effortful Swallow, and Expiratory Muscle Strength Training

    ERIC Educational Resources Information Center

    Wheeler-Hegland, Karen M.; Rosenbek, John C.; Sapienza, Christine M.

    2008-01-01

    Purpose: This study investigated the concurrent biomechanical and electromyographic properties of 2 swallow-specific tasks (effortful swallow and Mendelsohn maneuver) and 1 swallow-nonspecific (expiratory muscle strength training [EMST]) swallow therapy task in order to examine the differential effects of each on hyoid motion and associated…

  15. Changes in Soleus H-Reflex Modulation after Treadmill Training in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Hodapp, Maike; Vry, Julia; Mall, Volker; Faist, Michael

    2009-01-01

    In healthy children, short latency leg muscle reflexes are profoundly modulated throughout the step cycle in a functionally meaningful way and contribute to the electromyographic (EMG) pattern observed during gait. With maturation of the corticospinal tract, the reflex amplitudes are depressed via supraspinal inhibitory mechanisms. In the soleus…

  16. Value of Free-Run Electromyographic Monitoring of Extraocular Cranial Nerves during Expanded Endonasal Surgery (EES) of the Skull Base.

    PubMed

    Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey

    2013-06-01

    Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG.

  17. Value of Free-Run Electromyographic Monitoring of Extraocular Cranial Nerves during Expanded Endonasal Surgery (EES) of the Skull Base

    PubMed Central

    Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey

    2013-01-01

    Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG. PMID:23943720

  18. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  19. Serratus anterior and trapezius muscle activity during knee push-up plus and knee-plus exercises performed on a stable, an unstable surface and during sling-suspension.

    PubMed

    Horsak, Brian; Kiener, Marion; Pötzelsberger, Andreas; Siragy, Tarique

    2017-01-01

    Push-up plus variations are commonly prescribed to clients during shoulder rehabilitation. The purpose of this study was to compare electromyographic (EMG) activities of the serratus anterior (SA), upper (UT), and lower trapezius (LT) during a knee push-up plus and knee-plus exercise performed on various surfaces. Within-subjects Repeated-Measure Design. 19 healthy, young female participants performed both exercises on a stable and unstable surface and during sling-suspension. Surface EMG activities were recorded and average amplitudes were presented as a percentage of the maximal voluntary contraction. A two-way repeated-measures ANOVA was performed to determine differences in activity for each muscle. SA showed no significant differences between exercises and was independent of the base of support (p > 0.05). Muscle activity of UT (95% CI [1.2, 1.4]) and LT (95% CI [2.4, 3.5]) showed slightly greater values when performing the knee push-up plus compared to the knee-plus exercise. The isolated protraction of the shoulder girdle in a kneeling position is as sufficient as the push-up plus in activating the SA selectively. Therefore, we recommended this exercise for clients who are unable to perform an entire push-up or should avoid detrimental stress on the shoulder joint. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PubMed Central

    Giannantoni, N.M.; Minisci, M.; Brunetti, V.; Scarano, E.; Testani, E.; Vollono, C.; De Corso, E.; Bastanza, G.; D'Alatri, L.

    2016-01-01

    SUMMARY Oro-pharyngeal dysphagia is frequently present during the acute phase of stroke. The aim of the present study was to evaluate whether the recording of surface EMG using a nasopharyngeal (NP) electrode could be applied to evaluation of pharyngeal muscle activity in acute stroke patients and if this neurophysiological measure is related with clinical assessment of swallowing. Patients were examined and clinical severity was assessed with the National Institute of Health Stroke Scale (NIHSS) score; dysphagia was evaluated through bedside screening test using the Gugging Swallowing Scale (GUSS). Extension of the ischaemic lesion was measured by quantitative score, based on CT scan [Alberta Stroke Programme Early CT Score (ASPECTS)]. We analysed 70 patients; 50 were classified as dysphagic (Dys+), and 20 as non-dysphagic (Dys–). Each participant underwent a surface NP EMG recording performed with a NP electrode, made of a Teflon isolated steel catheter, with a length of 16 cm and a tip diameter of 1.5 mm. The electrode was inserted through the nasal cavity, rotated and positioned approximately 3 mm anteroinferior to the salpingo-palatine fold. At least four consecutive swallowing-induced EMG bursts were recorded and analysed for each participant. Swallowing always induced a repetitive, polyphasic burst of activation of the EMG, lasting around 0.25 to 1 sec, with an amplitude of around 100-600mV. Two parameters of the EMG potentials recorded with the NP electrode were analyzed: duration and amplitude. The duration of the EMG burst was increased in Dys+ patients with a statistically significant difference compared to Dys- patients (p < 0.001). The amplitude was slightly reduced in the Dys+ group, but statistically significant differences were not observed (p = 0,775). Nevertheless, the burst amplitude showed a significant inverse correlation with NIHSS [r(48) = –0.31; p < 0.05] and ASPECTS scores [r(48) = –0.27; p < 0.05], meaning that the burst amplitude progressively reduced with an increase of clinical severity (NIHSS) and topographic extension of brain lesions in CT (ASPECTS). These results suggest that NP recordings can give a semi-quantitative measure of swallowing difficulties originating from pharyngeal dysfunction, in fact, electromyographic findings suggest reduced pharyngeal motility. PMID:27734982

  1. Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise

    PubMed Central

    Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.

    2016-01-01

    Context:  The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective:  To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design:  Descriptive laboratory study. Setting:  Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants:  A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s):  Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s):  Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results:  The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions:  Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055

  2. Sleep bruxism in individuals with and without attrition-type tooth wear: An exploratory matched case-control electromyographic study.

    PubMed

    Jonsgar, Christine; Hordvik, Paul-Arne; Berge, Morten E; Johansson, Ann-Katrin; Svensson, Peter; Johansson, Anders

    2015-12-01

    To examine if there is a difference in possible sleep bruxism activity (SB) in subjects with or without attrition-type tooth wear. Sixteen individuals with pronounced attritional-type tooth wear were compared with sex and aged matched controls without tooth wear by means of measurement of electromyographic (EMG) activity during a minimum of four consecutive nights of sleep. Mean age and range for the study- and control- group was 23.7 years (range 19.9-28.5) and 23.6 years (range 20.3-27.9), respectively. There were 11 females and five males in each of the two groups. The attrition group presented incisal/occlusal attrition wear into dentin and matching wear facets between opposing anterior teeth. The controls had negligible signs of incisal/occlusal wear and a minimal number of matching wear facets. The prevalence of both self-reported and partner-reported SB was significantly more common in the attrition group compared to the controls (P=0.04 and P=0.007, respectively). Self-reported morning facial pain was similarly more common in the attrition group (P=0.014). Maximum opening capacity, number of muscles painful to palpation, salivary flow rate and buffering capacity were not significantly different between the groups. Interestingly, none of the measures of jaw muscle EMG activity during sleep, as recorded by the portable EMG equipment, differed significantly between the attrition group and the matched controls (P>0.05). The results from this exploratory study suggest that there is no difference in EMG activity between subjects with and without attrition-type tooth wear. Further research is needed in order to substantiate these preliminary findings. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of the pelvic compression belt on gluteus medius, quadratus lumborum, and lumbar multifidus activities during side-lying hip abduction.

    PubMed

    Park, Kyung-Mi; Kim, Suhn-Yeop; Oh, Duck-Won

    2010-12-01

    The aims of this study were to assess the effect of the pelvic compression belt on the electromyographic (EMG) activities of gluteus medius (GM), quadratus lumborum (QL), and lumbar multifidus (LM) during side-lying hip abduction. Thirty-one volunteers (15 men and 16 women) with no history of pathology volunteered for this study. Subjects were instructed to perform hip abduction in side-lying position with and without applying the pelvic compression belt. The pelvic compression belt was adjusted just below the anterior superior iliac spines with the stabilizing pressure using elastic compression bands. Surface EMG data were collected from the GM, QL, and LM of the dominant limb. Significantly decreased EMG activity in the QL (without the pelvic compression belt, 60.19±23.66% maximal voluntary isometric contraction [MVIC]; with the pelvic compression belt, 51.44±23.00% MVIC) and significantly increased EMG activity in the GM (without the pelvic compression belt, 26.71±12.88% MVIC; with the pelvic compression belt, 35.02±18.28% MVIC) and in the LM (without the pelvic compression belt, 30.28±14.60% MVIC; with the pelvic compression belt, 37.47±18.94% MVIC) were found when the pelvic compression belt was applied (p<0.05). However, there were no significant differences of the EMG activity between male and female subjects. The findings suggest that the pelvic compression belt may be helpful to prevent unwanted substitution movement during side-lying hip abduction, through increasing the GM and LM and decreasing the QL. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Using Gastrocnemius sEMG and Plasma α-Synuclein for the Prediction of Freezing of Gait in Parkinson's Disease Patients

    PubMed Central

    Yang, Qiong; Zhang, Lin-Yuan; Chen, Sheng-Di; Liu, Jun

    2014-01-01

    Freezing of gait (FOG) is a complicated gait disturbance in Parkinson's disease (PD) and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG) and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Freezing of gait questionnaire (FOG-Q). Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG) and without FOG (PD-FOG), based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups. PMID:24586710

  5. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    PubMed

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  6. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  7. Stress Testing Recovery EMG for Evaluation of Biofeedback and Progressive Muscle Relaxation Training Effects.

    ERIC Educational Resources Information Center

    Sime, Wesley E.; DeGood, Douglas E.

    The purpose of this investigation was to assess biofeedback (BF) and progressive muscle relaxation (PMR) and placebo-control training by means of a post-training transfer test. The subjects for the research were 30 women. Initial tests consisted of measuring the electromyographic response of the frontalis muscle of the forehead to stress. After…

  8. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    PubMed

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.

    PubMed

    Mauntel, Timothy C; Cram, Tyler R; Frank, Barnett S; Begalle, Rebecca L; Norcross, Marc F; Blackburn, J Troy; Padua, Darin A

    2018-06-01

    Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (r avg  = 0.41, r range  = 0.10-0.61) and EMG (r avg  = 0.47, r range  = 0.32-0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.

  10. Value of free-run electromyographic monitoring of lower cranial nerves in endoscopic endonasal approach to skull base surgeries.

    PubMed

    Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey

    2012-08-01

    Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG.

  11. Value of Free-Run Electromyographic Monitoring of Lower Cranial Nerves in Endoscopic Endonasal Approach to Skull Base Surgeries

    PubMed Central

    Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey

    2012-01-01

    Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG. PMID:23904999

  12. Recognition of Handwriting from Electromyography

    PubMed Central

    Linderman, Michael; Lebedev, Mikhail A.; Erlichman, Joseph S.

    2009-01-01

    Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear. PMID:19707562

  13. An electromyographic study to assess the minimal time duration for using the splint to raise the vertical dimension in patients with generalized attrition of teeth.

    PubMed

    Nanda, Aditi; Jain, Veena; Srivastava, Achal

    2011-01-01

    To investigate the effect of restoration of lost vertical by centric stabilizing splint on electromyographic (EMG) activity of masseter and anterior temporalis muscles bilaterally in patients with generalized attrition of teeth. EMG activity of anterior temporalis and masseter muscle was recorded bilaterally for 10 patients whose vertical was restored with centric stabilizing splint. The recording was done at postural rest position and in maximum voluntary clenching for each subject before the start of treatment, immediately after placement of splint and at subsequent recall visits, with splint and without the splint. The EMG activity at postural rest position (PRP) and maximum voluntary clench (MVC) decreased till 1 month for both the muscles. In the third month, an increase in muscle activity toward normalization was noted at PRP, both with and without splint. At MVC in the third month, the muscle activity without splint decreased significantly as compared to pretreatment values for anterior temporalis and masseter, while with the splint an increase was seen beyond the pretreatment values. A definite response of anterior temporalis and masseter muscle was observed over a period of 3 months. This is suggestive that the reversible increase in vertical prior to irreversible intervention must be carried out for a minimum of 3 months to achieve neuromuscular deprogramming. This allows the muscle to get adapted to the new postural position and attain stability in occlusion following splint therapy.

  14. Detecting fatigue thresholds from electromyographic signals: A systematic review on approaches and methodologies.

    PubMed

    Ertl, Peter; Kruse, Annika; Tilp, Markus

    2016-10-01

    The aim of the current paper was to systematically review the relevant existing electromyographic threshold concepts within the literature. The electronic databases MEDLINE and SCOPUS were screened for papers published between January 1980 and April 2015 including the keywords: neuromuscular fatigue threshold, anaerobic threshold, electromyographic threshold, muscular fatigue, aerobic-anaerobictransition, ventilatory threshold, exercise testing, and cycle-ergometer. 32 articles were assessed with regard to their electromyographic methodologies, description of results, statistical analysis and test protocols. Only one article was of very good quality. 21 were of good quality and two articles were of very low quality. The review process revealed that: (i) there is consistent evidence of one or two non-linear increases of EMG that might reflect the additional recruitment of motor units (MU) or different fiber types during fatiguing cycle ergometer exercise, (ii) most studies reported no statistically significant difference between electromyographic and metabolic thresholds, (iii) one minute protocols with increments between 10 and 25W appear most appropriate to detect muscular threshold, (iv) threshold detection from the vastus medialis, vastus lateralis, and rectus femoris is recommended, and (v) there is a great variety in study protocols, measurement techniques, and data processing. Therefore, we recommend further research and standardization in the detection of EMGTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Squat-to-reach task in older and young adults: kinematic and electromyographic analyses.

    PubMed

    Kuo, Fang-Chuan; Kao, Wen-Pin; Chen, Hsiu-I; Hong, Chang-Zern

    2011-01-01

    The purpose of this study was to compare the two-dimensional kinematic and electromyographic (EMG) changes during the squat-to-reach task in older and young adults. Twenty-six older adults and thirty-three young adults were studied. A 16-channel telemetry system was used for recording muscular activity and kinematic data during two trials of a squat-to-reach task. Surface EMG data were recorded on select muscles of the trunk and the lower extremity on the dominant side. An electrogoniometer was fixed over the knee joint, and an inclinometer was fastened on the head and thigh to record kinematic data. The task was split into six movement phases based on the angular displacement and velocities of the knee joint. The mean values of the maximal displacements in the sagittal plane of the head, knee, and thigh were significantly (p<0.05) lower, but those in the frontal plane of the head and thigh were significantly (p<0.05) higher in older adults than in young adults. Thigh muscle activities were significantly (p<0.05) higher in older adults than in young adults throughout the movements. The trunk and leg muscles contracted earlier, but the hip adductors contracted later in older adults compared to young adults (p<0.05). The older adults squatted in a shallow and heel-off posture during forward reaching tasks. Therefore, older adults had increased lateral flexion of the head to compensate for insufficient knee flexion during the squat-to-reach movement and required increased activity of the posture muscles to maintain lateral stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The electrophysiology of thyroid surgery: electrophysiologic and muscular responses with stimulation of the vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve.

    PubMed

    Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory

    2017-03-01

    Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4 Laryngoscope, 127:764-771, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Electromyographic analysis of traditional and nontraditional abdominal exercises: implications for rehabilitation and training.

    PubMed

    Escamilla, Rafael F; Babb, Eric; DeWitt, Ryan; Jew, Patrick; Kelleher, Patrick; Burnham, Toni; Busch, Juliann; D'Anna, Kristen; Mowbray, Ryan; Imamura, Rodney T

    2006-05-01

    Performing nontraditional abdominal exercises with devices such as abdominal straps, the Power Wheel, and the Ab Revolutionizer has been suggested as a way to activate abdominal and extraneous (nonabdominal) musculature as effectively as more traditional abdominal exercises, such as the crunch and bent-knee sit-up. The purpose of this study was to test the effectiveness of traditional and nontraditional abdominal exercises in activating abdominal and extraneous musculature. Twenty-one men and women who were healthy and between 23 and 43 years of age were recruited for this study. Surface electromyography (EMG) was used to assess muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus femoris, latissimus dorsi, and lumbar paraspinal muscles while each exercise was performed. The EMG data were normalized to maximum voluntary muscle contractions. Differences in muscle activity were assessed by a 1-way, repeated-measures analysis of variance. Upper and lower rectus abdominis, internal oblique, and latissimus dorsi muscle EMG activity were highest for the Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees. External oblique muscle EMG activity was highest for the Power Wheel (pike, knee-up, and roll-out) and hanging knee-up with straps. Rectus femoris muscle EMG activity was highest for the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up. Lumbar paraspinal muscle EMG activity was low and similar among exercises. The Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees not only were the most effective exercises in activating abdominal musculature but also were the most effective in activating extraneous musculature. The relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some people with low back problems.

  18. Electromyographic and cephalometric correlation with the predominant masticatory movement.

    PubMed

    Coelho-Ferraz, Maria Julia P; Berzin, Fausto; Amorim, Cesar Ferreira; Romano, Fabio Lourenco; de Paula Queluz, Dagmar

    2010-01-01

    This study aimed to evaluate the chewing muscular dynamics and correlate the side of the masticatory movement that is more vertical and/or more horizontal established by the photomeasurement Masticatory Functional Angle (MFA) to the muscular activity behavior, showed in the surface electromyography and in the radiographic images. Seventeen people were selected of both genders, with the average age of 25 years, without signs or apparent symptoms of masticatory muscular disorders. The teleradiographies were done in lateral norm and surface electromyography of the masseter muscles, anterior portion of temporal and supra-hyoids in rest position and maximal bite. The bite force measured with a metallic transducer that was connected to a force sensor (Strain Gauge) to measure the deformation of the material model SF4 (EMG SYSTEM DO BRASIL). A mandibular goniometer of the EMG System of Brazil was used to measure the opening size. The comparison and correlation were established between the groups with MFA>5 degrees and MFA<5 degrees by the test "t" of Student or test of Mann-Whitney conform the distribution was normal or not, respectively. The results showed significant differences between groups, although without sexual dimorphism, to masseter muscle in maximal bite. In conclusion, the anatomic-physiological aspects of temporomandibular disorders are related to the asymmetrical mandible function.

  19. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  1. A novel command signal for motor neuroprosthetic control.

    PubMed

    Moss, Christa W; Kilgore, Kevin L; Peckham, P Hunter

    2011-01-01

    Neuroprostheses can restore functions such as hand grasp or standing to individuals with spinal cord injury (SCI) using electrical stimulation to elicit movements in paralyzed muscles. Implanted neuroprostheses currently use electromyographic (EMG) activity from muscles above the lesion that remain under volitional control as a command input. Systems in development use a networked approach and will allow for restoration of multiple functions but will require additional command signals to control the system, especially in individuals with high-level tetraplegia. The objective of this study was to investigate the feasibility of using muscles innervated below the injury level as command sources for a neuroprosthesis. Recent anatomical and physiological studies have demonstrated the presence of intact axons across the lesion, even in those diagnosed with a clinically complete SCI; hence, EMG activity may be present in muscles with no sign of movement. Twelve participants with motor complete SCI were enrolled and EMG was recorded with surface electrodes from 8 muscles below the knee in each leg. Significant activity was evident in 89% of the 192 muscles studied during attempted movements of the foot and lower limb. At least 2 muscles from each participant were identified as potential command signals for a neuroprosthesis based on 2-state, threshold classification. Results suggest that voluntary activity is present and recordable in below lesion muscles even after clinically complete SCI.

  2. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Verbal, Facial and Autonomic Responses to Empathy-Eliciting Film Clips by Disruptive Male Adolescents with High versus Low Callous-Unemotional Traits

    ERIC Educational Resources Information Center

    de Wied, Minet; van Boxtel, Anton; Matthys, Walter; Meeus, Wim

    2012-01-01

    This study examined empathy-related responding in male adolescents with disruptive behavior disorder (DBD), high or low on callous-unemotional (CU) traits. Facial electromyographic (EMG) and heart rate (HR) responses were monitored during exposure to empathy-inducing film clips portraying sadness, anger or happiness. Self-reports were assessed…

  4. Optimizing Performance Through Sleep-Wake Homeostasis: Integrating Physiological and Neurobehavioral Data via Ambulatory Acquisition in Laboratory and Field Environments

    DTIC Science & Technology

    2009-04-18

    intake and sophisticated signal processing of electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and...electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and electromyographic (EMG) physiological signals . It also has markedly...ambulatory physiological acquisition and quantitative signal processing; (2) Brain Amp MR Plus 32 and BrainVision Recorder Professional Software Package for

  5. The Use of Biofeedback in Treating the Self-Mutilative Behaviors of a Child with Lesch-Nyhan Syndrome: A Pilot Study.

    ERIC Educational Resources Information Center

    Carmen, Jeffrey A.; And Others

    The pilot study focused on the effective design of adaptive biofeedback equipment for use in the control of self-mutilating behaviors in individuals with Lesch-Nyhan syndrome, typically characterized by apasticity, mental retardation, and violent biting of the lips and fingers. Utilizing an electromyographic (EMG) monitor and a custom-designed…

  6. The Effect of Concentric Isokinetic Strength Training of the Quadriceps Femoris on Electromyography and Muscle Strength in the Trained and Untrained Limb.

    ERIC Educational Resources Information Center

    Evetovich, Tammy K.; Housh, Terry J.; Housh, Dona J.; Johnson, Glen O.; Smith, Douglas B.; Ebersole, Kyle T.

    2001-01-01

    Examined the effects of unilateral concentric isokinetic leg extension training on peak torque and electromyographic (EMG) responses in trained and untrained limbs. Adult men participated in training and control groups. Overall, unilateral concentric isokinetic strength training induced strength increases in trained as well as untrained limbs.…

  7. Influence of an infant walker on onset and quality of walking pattern of locomotion:an electromyographic investigation.

    PubMed

    Kauffman, I B; Ridenour, M

    1977-12-01

    Acquisition of bipedal locomotor skill in human infants was studied electromyographically with regard to the deprivation or enrichment behavior resulting from the frequent and regular use of an infant walker. Subjects were six sets of male, fraternal twins. One randomly selected sibling from each set underwent a training program, commencing at the age of 300 days, spending a total of 2 hr. per day in a walker. Siblings not included in this group were subjected to no special training. EMG recordings were taken of all subjects at specified intervals in order to establish a model of the typical motor pattern at various stages of skill development. These data were then contrasted with EMG data similarly obtained from the walker-trained subjects. Use of an infant walker modified the mechanics of the infant's locomotion in a number of important ways. It was shown that use of the walker enables an infant to commit substantial mechanical errors yet succeed in bipedal locomotion. Inasmuch as the mechanics of walker-assisted and non-assisted bipedal locomotion are dissimilar in so many important ways, positive transfer from walker-training appears questionable.

  8. Dynamic Clinical Assessment of Femoral Acetabular Impingement

    PubMed Central

    Maak, Travis; Kraszewski, Andrew; Ranawat, Anil S.; Backus, Sherry I.; Magennis, Erin; Hillstrom, Howard; Kelly, Bryan T.

    2013-01-01

    Objectives: There has been a recent interest in the non-arthritic hip and its associated complex pathologies. Passive range of motion and static specialty tests are the corner stone of diagnosis and assessment of treatment. Little information exists on the use of dynamic functional measurements to assess non-arthritic hip function. The aims of this study were: (1) to measure and identify objective and reliable functional parameters to assess dynamic hip function, and (2) to compare functional kinematic and kinetic parameters among healthy controls and subjects with symptomatic diagnosed femoral acetabular impingement (FAI). Methods: An ongoing cross-sectional study was conducted on male healthy non-arthritic control and symptomatic, diagnosed FAI subjects. Functional kinematic and kinetic data were acquired with dynamic 3D motion analysis during stair ascent, stair descent, and a sit-to-stand maneuver. Joint kinematics were measured in degrees and joint kinetic moments were normalized by body mass (N-m/kg). Surface electromyographic (EMG) activity was measured for hip and trunk musculature. Measurement reliability was quantified with the adjusted coefficient of multiple correlation (CMC), and was calculated for angle, moment and EMG per subject, and averaged across subjects. Control and FAI subjects were compared with differences in kinematic and kinetic waveforms. Results: Data from ten healthy subjects (Age=25±4 years; BMI=24.3±3.6); and six FAI subjects (Age=32±10 years; BMI=25±4) have been recorded. Control and FAI subject CMC values are listed in Table 1. Kinematic and kinetic behavior differed (>1 SD) between control and FAI for multiple joints and planes of motion. Increased internal hip rotation moments were recorded in FAI subjects during both stair ascent and descent tasks, as compared to healthy controls. Increased external rotation moments were recorded in FAI subjects during the sit-to-stand task. Electromyographic data demonstrated notable differences (>1 SD) between healthy and FAI subjects (Figure 1). The stair ascent task elicited increased medial hamstring EMG activity, stair descent produced decreased gluteus medius EMG activity, and early sit-to-stand produced decreased rectus femoris EMG activity in FAI subjects, as compared to healthy controls. Conclusion: Overall the kinematic, kinetic and EMG repeatability was very reliable; these measures are sufficiently reliable to objectively assess dynamic function in healthy and pathologic subjects. Kinematic and kinetic data have shown striking differences between the kinematic and kinetic data of control and FAI subjects, particularly the increased external rotation moments and pelvic flexion during sit to stand for subjects with FAI. We hypothesize that increased pelvic flexion with FAI may be a reason why patients develop impingement and symptoms. Likewise, the decreased medial hamstring and rectus femoris activation in FAI subjects may be an attempt to decrease lumbar lordosis, which may be a compensatory behavior to decrease anterior impingement. In addition, we hypothesize that decreased gluteus medius EMG activity in FAI patients is a sign of abductor fatigue. This study provides a foundation to assess specific gait abnormalities associated with FAI, which will advance the understanding of this pathology and direct future treatment regimens.

  9. The Feasibility of Hypnotic Analgesia in Ameliorating Pain and Anxiety Among Adults Undergoing Needle Electromyography

    PubMed Central

    Slack, David; Nelson, Lonnie; Patterson, David; Burns, Stephen; Hakimi, Kevin; Robinson, Lawrence

    2017-01-01

    Objective Our hypothesis was that hypnotic analgesia reduces pain and anxiety during electromyography [EMG]. Design Prospective randomized controlled clinical trial at outpatient electrodiagnostic clinics in teaching hospitals. Just prior to EMG, 26 subjects were randomized to one of three 20 minute audio programs: (EDU) education about EMG (n=8); (HYP-C) hypnotic induction without analgesic suggestion (n=10) or; (HYP-ANLG) hypnotic induction with analgesic suggestion (n=8). The blinded electromyographer provided a post-hypnotic suggestion at the start of EMG. After EMG, subjects rated worst and average pain, and anxiety using visual analog scales. Results Mean values for the EDU, HYP-C and HYP-ANLG groups were not significantly different (mean ± sd): worst pain 67 ± 25, 42 ± 18, 49 ± 30: average pain 35 ± 26, 27 ± 14, 25 ± 22; anxiety 44 ± 41, 42 ± 23, 22 ± 24. When hypnosis groups were merged [n=18] and compared with the EDU condition [n=8], average and worst pain and anxiety were less for the hypnosis group than EDU, but this was statistically significant only for worst pain [hypnosis - 46 ± 24 vs. EDU - 67 ± 35, p=0.049] with a 31% average reduction. Conclusions A short hypnotic induction appears to reduce worst pain during EMG. PMID:18971768

  10. EMG analysis tuned for determining the timing and level of activation in different motor units

    PubMed Central

    Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2011-01-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317

  11. Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2018-05-01

    The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3-8%; p = 0.0001) and 4% nEMG (95% CI 1-7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0-7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.

  12. EMG analysis tuned for determining the timing and level of activation in different motor units.

    PubMed

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Quantitative assessment of isolated rapid eye movement (REM) sleep without atonia without clinical REM sleep behavior disorder: clinical and research implications.

    PubMed

    Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit

    2014-09-01

    Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Enhanced embodied response following ambiguous emotional processing.

    PubMed

    Beffara, Brice; Ouellet, Marc; Vermeulen, Nicolas; Basu, Anamitra; Morisseau, Tiffany; Mermillod, Martial

    2012-08-01

    It has generally been assumed that high-level cognitive and emotional processes are based on amodal conceptual information. In contrast, however, "embodied simulation" theory states that the perception of an emotional signal can trigger a simulation of the related state in the motor, somatosensory, and affective systems. To study the effect of social context on the mimicry effect predicted by the "embodied simulation" theory, we recorded the electromyographic (EMG) activity of participants when looking at emotional facial expressions. We observed an increase in embodied responses when the participants were exposed to a context involving social valence before seeing the emotional facial expressions. An examination of the dynamic EMG activity induced by two socially relevant emotional expressions (namely joy and anger) revealed enhanced EMG responses of the facial muscles associated with the related social prime (either positive or negative). These results are discussed within the general framework of embodiment theory.

  15. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming.

    PubMed Central

    Liu, D W; Westerfield, M

    1988-01-01

    1. The activity of the two classes of motoneurones, primary and secondary, which innervate myotomal muscle fibres in the zebra fish, was monitored with electromyographic and intracellular techniques. 2. Simultaneous EMG and intracellular recordings from muscle fibres showed that the activity of the two motor systems and of individual primary motoneurones can be distinguished by recording EMG spikes during swimming. 3. Measurements of EMG spikes demonstrated that primary and secondary motoneurones are co-ordinately activated over a wide range of conditions during normal swimming. 4. During swimming the primary motoneurones within a given segment are usually co-activated although they sometimes fire independently. 5. When different primary motoneurones within a given segment are co-activated, they fire nearly synchronously. 6. We conclude that the primary motoneurones are used principally, although not exclusively, during fast swimming, struggling and the startle response, whereas secondary motoneurones function primarily during slower swimming. PMID:3253426

  16. Comparison of upper and lower lip muscle activity between stutterers and fluent speakers.

    PubMed

    de Felício, Cláudia Maria; Freitas, Rosana Luiza Rodrigues Gomes; Vitti, Mathias; Regalo, Simone Cecilio Hallak

    2007-08-01

    There is a widespread clinical view that stuttering is associated with high levels of muscles activity. The proposal of this research was to compare stutterers and fluent speakers with respect to the electromyographic activity of the upper and lower lip muscles. Ten individuals who stutter and 10 fluent speakers (control group) paired by gender and age were studied (mean age: 13.4 years). Groups were defined by the speech sample analysis of the ABFW-Language Test. A K6-I EMG (Myo-tronics Co., Seattle, WA, USA) with double disposable silver electrodes (Duotrodes, Myo-tronics Co., Seattle, WA) being used in order to analyze lip muscle activity. The clinical conditions investigated were movements during speech, orofacial non-speech tasks, and rest. Electromyographic data were normalized by lip pursing activity. The non-parametric Mann-Whitney test was used for the comparison of speech fluency profile, and the Student t-test for independent samples for group comparison regarding electromyographic data. There was a statistically significant difference between groups regarding speech fluency profile and upper lip activity in the following conditions: lip lateralization to the right and to the left and rest before exercises (P<0.05). There was no significant difference between groups regarding lower lip activity (P>0.05). The EMG activity of the upper lip muscle in the group with stuttering was significantly lower than in the control group in some of the clinical conditions analyzed. There was no significant difference between groups regarding the lower lip muscle. The subjects who stutter did not present higher levels of muscle activity in lip muscles than fluent speakers.

  17. Polar-phase indices of perioral muscle reciprocity during syllable production in Parkinson's disease.

    PubMed

    Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan

    2017-12-01

    This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

  18. Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.

    PubMed

    Hight, Darren F; Voss, Logan J; García, Paul S; Sleigh, Jamie W

    2017-08-01

    During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (C e MAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher C e MACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined C e MAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-C e MAC (occurring higher or lower than 0.07 C e MAC). Low-C e MAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-C e MAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher C e MAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low C e MAC, and is closely temporally associated with return of consciousness.

  19. Effect of a jig on EMG activity in different orofacial pain conditions.

    PubMed

    Bodere, Celine; Woda, Alain

    2008-01-01

    The bite stop (jig) is commonly used in clinical practice. It has been recommended as a simple means to routinely record or provide centric relation closure and, more recently, to reduce migraines and tension-type headaches. However, the reason for the jig effect has yet to be explained. This study tested the hypothesis that it works through a decrease in masticatory muscle activity. The effect of a jig placed on the maxillary anterior teeth was investigated by recording the electromyographic (EMG) activity of the superficial masseter and anterior temporal muscles at postural position and when swallowing on the jig. EMG recordings were obtained from 2 groups of pain patients (myofascial and neuropathic) and from 2 groups of pain-free patients (disc derangement and controls) unaware of the role of dental occlusion treatments. EMG activity in postural position was higher in pain groups than in pain-free groups. The jig strongly but temporarily decreased the postural EMG activity for masseter muscles in all groups except for the neuropathic group and for temporal muscles in the myofascial group. The EMG activity when swallowing with the jig was reduced in control, disc derangement, and myofascial groups; however, EMG "hyperactivity" in the neuropathic pain group seemed to be locked. The decrease of postural EMG activity, especially in the myofascial group, was short lasting and cannot be considered as evidence to support the hypothesis of a long-term muscle relaxation jig effect. However, the results may uphold certain short-term clinical approaches.

  20. [Electromyographic differential diagnosis in cases of abducens nerve paresis with nuclear or distal neurogenic sive myogenic origine (author's transl)].

    PubMed

    Heuser, M

    1979-09-01

    Abducens nerve paresis may be of nuclear, of peripheral distal neurogenic origine, or is simulated by a myogenic weakness of abduction. Polygraphic emg analysis of the oculoauricularphenomenon (oap) permits a differentiation. In the emg, the oap proved to be a physiologic and constant automatic and always bilateral interaction between the hemolateral abducens nerve and both Nn. faciales with corresponding and obligatory coinnervation of the Mm. retroauricularis of the external ear. In case of medullary, nuclear or internuclear lesions, the oap is disturbed, instable, diminished or abolished, whereas in distal neurogenic or myogenic paresis, even in complete paralysis the oap is bilaterally well preserved.

  1. A software package for interactive motor unit potential classification using fuzzy k-NN classifier.

    PubMed

    Rasheed, Sarbast; Stashuk, Daniel; Kamel, Mohamed

    2008-01-01

    We present an interactive software package for implementing the supervised classification task during electromyographic (EMG) signal decomposition process using a fuzzy k-NN classifier and utilizing the MATLAB high-level programming language and its interactive environment. The method employs an assertion-based classification that takes into account a combination of motor unit potential (MUP) shapes and two modes of use of motor unit firing pattern information: the passive and the active modes. The developed package consists of several graphical user interfaces used to detect individual MUP waveforms from a raw EMG signal, extract relevant features, and classify the MUPs into motor unit potential trains (MUPTs) using assertion-based classifiers.

  2. Portable Electromyograph

    NASA Technical Reports Server (NTRS)

    De Luca, Gianluca; De Luca, Carlo J.; Bergman, Per

    2004-01-01

    A portable electronic apparatus records electromyographic (EMG) signals in as many as 16 channels at a sampling rate of 1,024 Hz in each channel. The apparatus (see figure) includes 16 differential EMG electrodes (each electrode corresponding to one channel) with cables and attachment hardware, reference electrodes, an input/output-and-power-adapter unit, a 16-bit analog-to-digital converter, and a hand-held computer that contains a removable 256-MB flash memory card. When all 16 EMG electrodes are in use, full-bandwidth data can be recorded in each channel for as long as 8 hours. The apparatus is powered by a battery and is small enough that it can be carried in a waist pouch. The computer is equipped with a small screen that can be used to display the incoming signals on each channel. Amplitude and time adjustments of this display can be made easily by use of touch buttons on the screen. The user can also set up a data-acquisition schedule to conform to experimental protocols or to manage battery energy and memory efficiently. Once the EMG data have been recorded, the flash memory card is removed from the EMG apparatus and placed in a flash-memory- card-reading external drive unit connected to a personal computer (PC). The PC can then read the data recorded in the 16 channels. Preferably, before further analysis, the data should be stored in the hard drive of the PC. The data files are opened and viewed on the PC by use of special- purpose software. The software for operation of the apparatus resides in a random-access memory (RAM), with backup power supplied by a small internal lithium cell. A backup copy of this software resides on the flash memory card. In the event of loss of both main and backup battery power and consequent loss of this software, the backup copy can be used to restore the RAM copy after power has been restored. Accessories for this device are also available. These include goniometers, accelerometers, foot switches, and force gauges.

  3. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    PubMed

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior.

  4. Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements.

    PubMed

    Kishimoto, Yasushi; Yamamoto, Shigeyuki; Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka

    2015-01-01

    Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates.

  5. Effects of coil characteristics for femoral nerve magnetic stimulation.

    PubMed

    Tomazin, Katja; Verges, Samuel; Decorte, Nicolas; Oulerich, Alain; Millet, Guillaume Y

    2010-03-01

    The aim of this study was to compare the efficiency of two coils used for femoral nerve magnetic stimulation and to compare them with electrical stimulation in inducing maximal response of the quadriceps. The mechanical and electromyographic (EMG) responses were dependent on the coil used. The 45-mm double coil showed greater efficiency to elicit a maximal quadriceps response, which was similar to electrical stimulation.

  6. Investigating Facial Electromyography as an Indicator of Cognitive Workload

    DTIC Science & Technology

    2017-02-22

    Investigating Facial Electromyography as an Indicator of Cognitive Workload 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Symposium on Aviation Psychology (ISAP) 9 – 11 May 2017 14. ABSTRACT Facial electromyography (fEMG) is an electromyographic measurement technique... cognitive workload. In the current study, two task-irrelevant facial muscles, corrugator supercilli and lateral frontalis, were monitored in real- time to

  7. Effect of Strength Training on Rate of Force Development in Older Women

    ERIC Educational Resources Information Center

    Gurjao, Andre Luiz Demantova; Gobbi, Lilian Teresa Bucken; Carneiro, Nelson Hilario; Goncalves, Raquel; Ferreira de Moura, Rodrigo; Cyrino, Edilson Serpeloni; Altimari, Leandro Ricardo; Gobbi, Sebastiao

    2012-01-01

    We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n = 7) or training (n = 10) group. A leg-press isometric test was…

  8. Multiple sleep bruxism data collected using a self-contained EMG detector/analyzer system in asymptomatic healthy subjects.

    PubMed

    Minakuchi, Hajime; Sakaguchi, Chiyomi; Hara, Emilio S; Maekawa, Kenji; Matsuka, Yoshizo; Clark, Glenn T; Kuboki, Takuo

    2012-12-01

    Small, self-contained electromyographic (EMG) detector/analyzer (D/A) devices have become available for the detection of jaw muscle activity events above threshold. These devices claim to be less intrusive to the subjects sleep so it is less prone to induce disturbed sleep. The objective of this study was to evaluate for night-to-night variability and examine for a systematic alteration on the first night in EMG levels. Ten asymptomatic healthy volunteers (mean age, 26.8 ± 3.78) were recorded for six sequential nights in their home environment using EMG D/A system. The device yields a nightly EMG level above threshold score on a 0-4 level. Because the data are categorical and nonparametric, the data of the ten subjects across six nights were submitted to a Friedman repeated measures ANOVA. The significant level was set as alpha equal to 0.05. The median and mode values of the subjects were tabulated and analyzed and we did not find a significant difference in EMG D/A level across the six nights (p = 0.287, Kendall's coefficient of concordance = 0.124, Friedman two-way repeated measures ANOVA). The data did show clear and substantial night-to-night variability. Substantial night-to-night variability in masseter EMG activity levels was clearly observed in our subjects. There was no evidence of a suppressed or elevated first-night effect-like variability on masseter muscle EMG level seen in these subjects using a small portable self-contained EMG detector/analyzer. These data suggest that recordings should be at least 5-6-nights duration to establish a reasonable measure of an individual's average nightly masseter EMG level.

  9. EMG analysis of human postural responses during parabolic flight microgravity episodes

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1990-01-01

    Anticipatory postural activity in the trunk and legs precedes rapid shoulder flexion in unit gravity. The hypothesis that anticipatory activity is a component of a single neural command for arm movement was tested by monitoring the surface electromyographic activity of the biceps femoris, paraspinals, and deltoid muscles of three subjects during the microgravity phase of parabolic flight. If part of a single command, anticipatory postural activity would be expected to remain intact despite the absence of the body's center of gravity in a reduced gravity environment. However, in at least 75 percent of the microgravity trials anticipatory biceps femoris activity was absent, indicating a separation of postural and agonist muscle activity. Such a finding suggests that anticipatory postural biceps femoris activity may be initiated independently of agonist (deltoid) activity.

  10. Effects of Push-ups Plus Sling Exercise on Muscle Activation and Cross-sectional Area of the Multifidus Muscle in Patients with Low Back Pain.

    PubMed

    Kim, Gye-Yeop; Kin, Se-Hun

    2013-12-01

    [Purpose] The purpose of this study was to examine the effect of lumbar stability exercises on chronic low back pain by using sling exercise and push-ups. [Subjects] Thirty adult subjects with chronic back pain participated, with 10 adults being assigned to each of 3 exercise groups: general physical therapy (PT), lumbar stability using sling exercises (Sling Ex), and sling exercise plus push-ups (Sling Ex+PU). Each group trained for 30 minutes 3 times a week for 6 weeks. The Oswestry Disability Index (ODI), surface electromyographic (sEMG) activity of the lumbar muscles, and cross-sectional area of the multifidus muscle on computed tomography (CT) were evaluated before and at 2, 4, and 6 weeks of therapy. [Results] A significant decrease in ODI was seen in all therapy groups, and this change was greater in the Sling Ex and Sling Ex+PU groups than in the PT group. No changes in sEMG activity were noted in the PT group, whereas significant increases in the sEMG activities of all lumbar muscles were found in the other 2 groups. The increases in the sEMG activities of the rectus abdominis and internal and external oblique muscles of the abdomen were greater in the Sling Ex+PU group than in the other 2 groups. [Conclusion] These findings demonstrate that Sling Ex+PU, similar to normal lumbar stabilization exercise, is effective in activating and improving the function of the lumbar muscles. These results suggest that Sling Ex+PU has a positive impact on stabilization of the lumbar region.

  11. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.

    PubMed

    Dolan, P; Adams, M A

    1998-08-01

    During manual handling, the back muscles protect the spine from excessive flexion, but in doing so impose a high compressive force on it. Epidemiological links between back pain and repetitive lifting suggest that fatigued muscles may adversely affect the balance between bending and compression. Fifteen volunteers lifted and lowered a 10 kg weight from floor to waist height 100 times. Throughout this task, the bending moment acting on the osteoligamentous lumbar spine was estimated from continuous measurements of lumbar flexion, obtained using the 3-Space Isotrak. Spinal compression was estimated from the electromyographic (EMG) activity of the erector spinae muscles, recorded from skin-surface electrodes at the levels of T10 and L3. EMG signals were calibrated against force when subjects pulled up on a load cell, and correction factors were applied to account for changes in muscle length and contraction velocity. Fatigue in the erector spinae muscles was quantified by comparing the frequency content of their EMG signal during static contractions performed before, and immediately after, the 100 lifts. Results showed that peak lumbar flexion increased during the 100 lifts from 83.3 +/- 14.8% to 90.4 +/- 14.3%, resulting in a 36% increase in estimated peak bending moment acting on the lumbar spine (P = 0.008). Peak spinal compression fell by 11% (p = 0.007). The median frequency of the EMG signal at L3 decreased by 5.5% following the 100 lifts (p = 0.042) confirming that the erector spinae were fatigued, but measures of fatigue showed no significant correlation with increased bending. We conclude that repetitive lifting induces measurable fatigue in the erector spinae muscles, and substantially increases the bending moment acting on the lumbar spine.

  12. Psychophysiological effects of massage-myofascial release after exercise: a randomized sham-control study.

    PubMed

    Arroyo-Morales, Manuel; Olea, Nicolas; Martínez, Marin Manuel; Hidalgo-Lozano, Amparo; Ruiz-Rodríguez, Concepción; Díaz-Rodríguez, Lourdes

    2008-12-01

    The aim of this study was to evaluate the effect of massage on neuromuscular recruitment, mood state, and mechanical nociceptive threshold (MNT) after high-intensity exercise. This was a prospective randomized clinical trial using between-groups design. The study was conducted at a university-based sports medicine clinic. Sixty-two (62) healthy active students age 18-26 participated. Participants, randomized into two groups, performed three 30-second Wingate tests and immediately received whole-body massage-myofascial induction or placebo (sham ultrasound/magnetotherapy) treatment. The duration (40 minutes), position, and therapist were the same for both treatments. Dependent variables were surface electromyography (sEMG) of quadriceps, profile of mood states (POMS) and mechanical nociceptive threshold (MNT) of trapezius and masseter muscles. These data were assessed at baseline and after exercise and recovery periods. Generalized estimating equations models were performed on dependent variables to assess differences between groups. Significant differences were found in effects of treatment on sEMG of Vastus Medialis (VM) (p = 0.02) and vigor subscale (p = 0.04). After the recovery period, there was a significant decrease in electromyographic (EMG) activity of VM (p = 0.02) in the myofascial-release group versus a nonsignificant increase in the placebo group (p = 0.32), and a decrease in vigor (p < 0.01) in the massage group versus no change in the placebo group (p = 0.86). Massage reduces EMG amplitude and vigor when applied as a passive recovery technique after a high-intensity exercise protocol. Massage may induce a transient loss of muscle strength or a change in the muscle fiber tension-length relationship, influenced by alterations of muscle function and a psychological state of relaxation.

  13. Muscle fatigue in fibromyalgia is in the brain, not in the muscles: a case-control study of perceived versus objective muscle fatigue.

    PubMed

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning; Danneskiold-Samsøe, Bente; Henriksen, Marius

    2013-06-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC). Women with FM and HC completed an isometric muscle exhaustion task at 90° shoulder abduction. Surface electromyographic (EMG) activity in the deltoid muscle was recorded together with self-reported level of muscle fatigue. 25 participants with FM and 23 HC were included. Average time to exhaustion was 254 s shorter in participants with FM than in HC. Participants with FM did not exhibit the same level of objective signs of muscle fatigue, seen as fewer changes in the EMG activity, as the HC during the exhaustion task. The task did not provoke pain in the HC, while participants with FM reported a doubling of pain. Women with FM had shorter exhaustion times and showed fewer objective signs of muscle fatigue during an exhausting isometric shoulder abduction compared with younger HC. This indicates that perceived muscle fatigue may be of central origin and supports the notion of central nervous dysfunction as basic pathological changes in FM.

  14. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    PubMed

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  15. Phasic-to-tonic shift in trunk muscle activity relative to walking during low-impact weight bearing exercise

    NASA Astrophysics Data System (ADS)

    Caplan, Nick; Gibbon, Karl; Hibbs, Angela; Evetts, Simon; Debuse, Dorothée

    2014-11-01

    The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, most muscles showed peaks in activity which were not seen during EX. Spinal extensors (LM, ES) were more active in EX. Internal oblique and RA were less active in EX. In EX, LM and ES were active for longer than during OW. Conversely, EO and RA were active for a shorter duration in EX than OW. The exercise device showed a phasic-to-tonic shift in activation of both local and global lumbopelvic muscles and promoted increased activation of spinal extensors in relation to walking. These features could make the exercise device a useful rehabilitative tool for populations with lumbopelvic muscle atrophy and dysfunction, including those recovering from deconditioning due to long-term bed rest and microgravity in astronauts.

  16. Using factor analysis to identify neuromuscular synergies during treadmill walking

    NASA Technical Reports Server (NTRS)

    Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.

    1998-01-01

    Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.

  17. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    PubMed Central

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  18. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain.

    PubMed

    Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank

    2014-05-01

    This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Neuromuscular adjustments of gait associated with unstable conditions

    PubMed Central

    Ivanenko, Y. P.; d'Avella, A.; Serrao, M.; Ranavolo, A.; Draicchio, F.; Cappellini, G.; Casali, C.; Lacquaniti, F.

    2015-01-01

    A compact description of coordinated muscle activity is provided by the factorization of electromyographic (EMG) signals. With the use of this approach, it has consistently been shown that multimuscle activity during human locomotion can be accounted for by four to five modules, each one comprised of a basic pattern timed at a different phase of gait cycle and the weighting coefficients of synergistic muscle activations. These modules are flexible, in so far as the timing of patterns and the amplitude of weightings can change as a function of gait speed and mode. Here we consider the adjustments of the locomotor modules related to unstable walking conditions. We compared three different conditions, i.e., locomotion of healthy subjects on slippery ground (SL) and on narrow beam (NB) and of cerebellar ataxic (CA) patients on normal ground. Motor modules were computed from the EMG signals of 12 muscles of the right lower limb using non-negative matrix factorization. The unstable gait of SL, NB, and CA showed significant changes compared with controls in the stride length, stride width, range of angular motion, and trunk oscillations. In most subjects of all three unstable conditions, >70% of the overall variation of EMG waveforms was accounted for by four modules that were characterized by a widening of muscle activity patterns. This suggests that the nervous system adopts the strategy of prolonging the duration of basic muscle activity patterns to cope with unstable conditions resulting from either slippery ground, reduced support surface, or pathology. PMID:26378199

  20. Myoelectric hand prosthesis force control through servo motor current feedback.

    PubMed

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  1. Muscular activity during dynamic squats in patients with ACL reconstruction.

    PubMed

    Ceaglio, Sebastian; Alberto, Federico; Catalfamo, Paola Andrea; Braidot, Ariel Andres

    2010-01-01

    One of the most frequent injuries in subjects who practice sport is the rupture of the anterior cruciate ligament (ACL). Appropriate reconstruction and rehabilitation are key issues in full recovery of patients and their return to previous activities. This paper presents a new method to estimate muscle strength during a dynamic exercise from kinematic and electromyographic (EMG) data. Recovery of patients with ACL rupture and reconstruction was evaluated 4 and 6 months after surgery by assessing the differences in knee extensor and flexor muscle activity between the unimpaired and injured limbs. The results show that squat EMGs from the extensor muscles of the knee from the injured and unimpaired limb could help assess rehabilitation outputs in patients who had undergone an ACL reconstructive surgery.

  2. Design and evaluation of a chronic EMG multichannel detection system for long-term recordings of hindlimb muscles in behaving mice

    PubMed Central

    Tysseling, Vicki M.; Janes, Lindsay; Imhoff, Rebecca; Quinlan, Katharina A.; Lookabaugh, Brad; Ramalingam, Shyma; Heckman, C.J.; Tresch, Matthew C.

    2013-01-01

    Mouse models are commonly used for identifying the behavioral consequences of genetic modifications, progression or recovery from disease or trauma models, and understanding spinal circuitry. Electromyographic recordings (EMGs) are recognized as providing information not possible from standard behavioral analyses involving gross behavioral or kinematic assessments. We describe here a method for recording from relatively large numbers of muscles in behaving mice. We demonstrate the use of this approach for recording from hindlimb muscles bilaterally in intact animals, following spinal cord injury, and during the progression of ALS. This design can be used in a variety of applications in order to characterize the coordination strategies of mice in health and disease. PMID:23369875

  3. Explaining Entropy responses after a noxious stimulus, with or without neuromuscular blocking agents, by means of the raw electroencephalographic and electromyographic characteristics.

    PubMed

    Aho, A J; Lyytikäinen, L-P; Yli-Hankala, A; Kamata, K; Jäntti, V

    2011-01-01

    Entropy™, an anaesthetic EEG monitoring method, yields two parameters: State Entropy (SE) and Response Entropy (RE). SE reflects the hypnotic level of the patient. RE covers also the EMG-dominant part of the frequency spectrum, reflecting the upper facial EMG response to noxious stimulation. We studied the EEG, EMG, and Entropy values before and after skin incision, and the effect of rocuronium on Entropy and EMG at skin incision during sevoflurane-nitrous oxide (N₂O) anaesthesia. Thirty-eight patients were anaesthetized with sevoflurane-N₂O or sevoflurane-N₂O-rocuronium. The biosignal was stored and analysed off-line to detect EEG patterns, EMG, and artifacts. The signal, its power spectrum, SE, RE, and RE-SE values were analysed before and after skin incision. The EEG arousal was classified as β (increase in over 8 Hz activity and decrease in under 4 Hz activity with a typical β pattern) or δ (increase in under 4 Hz activity with the characteristic rhythmic δ pattern and a decrease in over 8 Hz activity). The EEG arousal appeared in 17 of 19 and 15 of 19 patients (NS), and the EMG arousal in 0 of 19 and 13 of 19 patients (P<0.01) with and without rocuronium, respectively. Both β (n=30) and EMG arousals increased SE and RE. The δ arousal (n=2) decreased both SE and RE. A significant increase in RE-SE values was only seen in patients without rocuronium. During sevoflurane-N₂O anaesthesia, both EEG and EMG arousals were seen. β and δ arousals had opposite effects on the Entropy values. The EMG arousal was abolished by rocuronium at the train of four level 0/4.

  4. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  5. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low

  6. Masticatory muscle sleep background electromyographic activity is elevated in myofascial temporomandibular disorder patients.

    PubMed

    Raphael, K G; Janal, M N; Sirois, D A; Dubrovsky, B; Wigren, P E; Klausner, J J; Krieger, A C; Lavigne, G J

    2013-12-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n = 124) with a demographically matched control group without TMD (n = 46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artefacts were removed. Results indicated that median background EMG during these non-SB event periods was significantly higher (P < 0·01) for women with myofascial TMD (median = 3·31 μV and mean = 4·98 μV) than for control women (median = 2·83 μV and mean = 3·88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0-10 numerical scale) on post-sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. © 2013 John Wiley & Sons Ltd.

  7. Electromyographic analysis of superior orbicularis oris muscle function in children surgically treated for unilateral complete cleft lip and palate.

    PubMed

    Szyszka-Sommerfeld, Liliana; Woźniak, Krzysztof; Matthews-Brzozowska, Teresa; Kawala, Beata; Mikulewicz, Marcin

    2017-09-01

    The aim of this study was to assess the electrical activity of the superior orbicularis oris muscle in children surgically treated for unilateral complete cleft lip and palate (UCCLP). The sample comprised 45 patients 6.38-12.68 years of age with UCCLP and 40 subjects 6.61-11.71 years of age with no clefts. Electromyographical (EMG) recordings were taken with a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany) in the rest position and during saliva swallowing, lip protrusion and reciprocal compression of the lips, as well as while producing the phonemes /p/, /b/, and /m/ combined with the vowel /a/. The electrical activity of the upper lip during saliva swallowing and lip compression was significantly greater in the cleft group. Similar resting level activity was observed in both groups. During the production of the /p/, /b/, and /m/ phonemes combined with the vowel /a/ the results showed no significant differences in the EMG activity between children with UCCLP and noncleft subjects. Patients with UCCLP have abnormal upper lip function characterized by increased activity of the superior orbicularis oris muscle during saliva swallowing and lip compression, and this may affect facial morphology. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments.

    PubMed

    Pasternak, Braulio; Sousa Neto, Manoel Damião de; Dionísio, Valdeci Carlos; Pécora, Jesus Djalma; Silva, Ricardo Gariba

    2012-02-01

    This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.

  9. Influence of shoes increasing dorsiflexion and decreasing metatarsus flexion on lower limb muscular activity during fitness exercises, walking, and running.

    PubMed

    Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg

    2008-05-01

    The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.

  10. Kinematic and Electromyographic Activity Changes during Back Squat with Submaximal and Maximal Loading

    PubMed Central

    Erdag, Deniz

    2017-01-01

    The aim of this study was to investigate the possible kinematic and muscular activity changes with maximal loading during squat maneuver. Fourteen healthy male individuals, who were experienced at performing squats, participated in this study. Each subject performed squats with 80%, 90%, and 100% of the previously established 1 repetition maximum (1RM). Electromyographic (EMG) activities were measured for the vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, gluteus maximus, and erector spinae by using an 8-channel dual-mode portable EMG and physiological signal data acquisition system (Myomonitor IV, Delsys Inc., Boston, MA, USA). Kinematical data were analyzed by using saSuite 2D kinematical analysis program. Data were analyzed with repeated measures analysis of variance (p < 0.05). Overall muscle activities increased with increasing loads, but significant increases were seen only for vastus medialis and gluteus maximus during 90% and 100% of 1RM compared to 80% while there was no significant difference between 90% and 100% for any muscle. The movement pattern in the hip joint changed with an increase in forward lean during maximal loading. Results may suggest that maximal loading during squat may not be necessary for focusing on knee extensor improvement and may increase the lumbar injury risk. PMID:28546738

  11. A comparison of free weight squat to Smith machine squat using electromyography.

    PubMed

    Schwanbeck, Shane; Chilibeck, Philip D; Binsted, Gordon

    2009-12-01

    The purpose of this experiment was to determine whether free weight or Smith machine squats were optimal for activating the prime movers of the legs and the stabilizers of the legs and the trunk. Six healthy participants performed 1 set of 8 repetitions (using a weight they could lift 8 times, i.e., 8RM, or 8 repetition maximum) for each of the free weight squat and Smith machine squat in a randomized order with a minimum of 3 days between sessions, while electromyographic (EMG) activity of the tibialis anterior, gastrocnemius, vastus medialis, vastus lateralis, biceps femoris, lumbar erector spinae, and rectus abdominus were simultaneously measured. Electromyographic activity was significantly higher by 34, 26, and 49 in the gastrocnemius, biceps femoris, and vastus medialis, respectively, during the free weight squat compared to the Smith machine squat (p < 0.05). There were no significant differences between free weight and Smith machine squat for any of the other muscles; however, the EMG averaged over all muscles during the free weight squat was 43% higher when compared to the Smith machine squat (p < 0.05). The free weight squat may be more beneficial than the Smith machine squat for individuals who are looking to strengthen plantar flexors, knee flexors, and knee extensors.

  12. Analysis of kinematic, kinetic and electromyographic patterns during root canal preparation with rotary and manual instruments

    PubMed Central

    PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba

    2012-01-01

    Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679

  13. Electromyographic analysis of rotator cuff muscles in patients with rotator cuff tendinopathy: A systematic review.

    PubMed

    de Oliveira, Fábio Carlos Lucas; Bouyer, Laurent Julien; Ager, Amanda L; Roy, Jean-Sébastien

    2017-08-01

    The shoulder is inherently an unstable joint which heavily relies on the neuromuscular activation of the rotator cuff (RC) complex for stability during movement. Currently, there is no consensus regarding how the activity of RC muscles is affected among individuals with a RC tendinopathy (RCTe). This study reviewed the evidence of studies comparing the electromyographic (EMG) activity of any RC muscle of shoulders with a symptomatic RCTe to asymptomatic shoulders. Eight databases were searched. Data from 343 participants (201 symptomatic and 209 asymptomatic shoulders) were analyzed from 10 out of 402 included studies. Strong evidence for the infraspinatus and supraspinatus during isometric contractions and limited evidence for the supraspinatus and infraspinatus during isokinetic contractions suggest that the muscular activity is not altered among individuals with a RCTe during these types of contraction. Very limited evidence indicates reduced muscle activity for the infraspinatus and subscapularis in the presence of a RCTe during isotonic contractions, and no alterations for the supraspinatus or teres minor were identified. Lastly, conflicting to moderate evidence suggests alterations in RC muscle activity during unrestrained movements and swimming. These findings indicate that EMG deficits associated with a RCTe can best be appreciated during unrestrained movements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    PubMed

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P < 0.05) were used. The EMG response values decreased for the lateral gastrocnemius, tibialis anterior, fibular longus and rectus femoris of both athletes and non-athletes (P < 0.05). The comparison between the groups showed that the EMG response was lower for the athletes. Lower jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  15. Task variation during simulated, repetitive, low-intensity work--influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures.

    PubMed

    Luger, Tessy; Bosch, Tim; Hoozemans, Marco; de Looze, Michiel; Veeger, Dirkjan

    2015-01-01

    Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulder muscle fatigue and discomfort; second, noticeable postural shoulder changes over time; third, if the association between task variation and EMG might be biased by postural changes. Outcome parameters were recorded using multichannel EMG, Optotrak and the Borg scale. Fourteen participants performed a one-hour repetitive Pegboard task in one continuous and two interrupted conditions with rest and a pick-and-place task, respectively. Manifestations of shoulder muscle fatigue and discomfort feelings were observed throughout the conditions but these were not significantly influenced by task variation. After correction for joint angles, the relation between task variation and EMG was significantly biased but significant effects of task variation remained absent. Comparing a one-hour continuous, repetitive Pegboard task with two interrupted conditions revealed no significant influences of task variation. We did observe that the relation between task variation and EMG was biased by posture and therefore advise taking account for posture when investigating manifestations of muscle fatigue in assembly tasks.

  16. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of early life adversity on EMG stress reactivity of the trapezius muscle.

    PubMed

    Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel

    2016-09-01

    Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies.

  18. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  19. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  20. Objectivity and validity of EMG method in estimating anaerobic threshold.

    PubMed

    Kang, S-K; Kim, J; Kwon, M; Eom, H

    2014-08-01

    The purposes of this study were to verify and compare the performances of anaerobic threshold (AT) point estimates among different filtering intervals (9, 15, 20, 25, 30 s) and to investigate the interrelationships of AT point estimates obtained by ventilatory threshold (VT) and muscle fatigue thresholds using electromyographic (EMG) activity during incremental exercise on a cycle ergometer. 69 untrained male university students, yet pursuing regular exercise voluntarily participated in this study. The incremental exercise protocol was applied with a consistent stepwise increase in power output of 20 watts per minute until exhaustion. AT point was also estimated in the same manner using V-slope program with gas exchange parameters. In general, the estimated values of AT point-time computed by EMG method were more consistent across 5 filtering intervals and demonstrated higher correlations among themselves when compared with those values obtained by VT method. The results found in the present study suggest that the EMG signals could be used as an alternative or a new option in estimating AT point. Also the proposed computing procedure implemented in Matlab for the analysis of EMG signals appeared to be valid and reliable as it produced nearly identical values and high correlations with VT estimates. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  2. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  3. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.

    PubMed

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  4. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088

  5. Game-Based Rehabilitation for Myoelectric Prosthesis Control

    PubMed Central

    Vujaklija, Ivan; Kayali, Fares; Purgathofer, Peter; Aszmann, Oskar C

    2017-01-01

    Background A high number of upper extremity myoelectric prosthesis users abandon their devices due to difficulties in prosthesis control and lack of motivation to train in absence of a physiotherapist. Virtual training systems, in the form of video games, provide patients with an entertaining and intuitive method for improved muscle coordination and improved overall control. Complementary to established rehabilitation protocols, it is highly beneficial for this virtual training process to start even before receiving the final prosthesis, and to be continued at home for as long as needed. Objective The aim of this study is to evaluate (1) the short-term effects of a commercially available electromyographic (EMG) system on controllability after a simple video game-based rehabilitation protocol, and (2) different input methods, control mechanisms, and games. Methods Eleven able-bodied participants with no prior experience in EMG control took part in this study. Participants were asked to perform a surface EMG test evaluating their provisional maximum muscle contraction, fine accuracy and isolation of electrode activation, and endurance control over at least 300 seconds. These assessments were carried out (1) in a Pregaming session before interacting with three EMG-controlled computer games, (2) in a Postgaming session after playing the games, and (3) in a Follow-Up session two days after the gaming protocol to evaluate short-term retention rate. After each game, participants were given a user evaluation survey for the assessment of the games and their input mechanisms. Participants also received a questionnaire regarding their intrinsic motivation (Intrinsic Motivation Inventory) at the end of the last game. Results Results showed a significant improvement in fine accuracy electrode activation (P<.01), electrode separation (P=.02), and endurance control (P<.01) from Pregaming EMG assessments to the Follow-Up measurement. The deviation around the EMG goal value diminished and the opposing electrode was activated less frequently. Participants had the most fun playing the games when collecting items and facing challenging game play. Conclusions Most upper limb amputees use a 2-channel myoelectric prosthesis control. This study demonstrates that this control can be effectively trained by employing a video game-based rehabilitation protocol. PMID:28183689

  6. A Rodent Model of Dynamic Facial Reanimation Using Functional Electrical Stimulation

    PubMed Central

    Attiah, Mark A.; de Vries, Julius; Richardson, Andrew G.; Lucas, Timothy H.

    2017-01-01

    Facial paralysis can be a devastating condition, causing disfiguring facial droop, slurred speech, eye dryness, scarring and blindness. This study investigated the utility of closed-loop functional electric stimulation (FES) for reanimating paralyzed facial muscles in a quantitative rodent model. The right buccal and marginal mandibular branches of the rat facial nerve were transected for selective, unilateral paralysis of whisker muscles. Microwire electrodes were implanted bilaterally into the facial musculature for FES and electromyographic (EMG) recording. With the rats awake and head-fixed, whisker trajectories were tracked bilaterally with optical micrometers. First, the relationship between EMG and volitional whisker movement was quantified on the intact side of the face. Second, the effect of FES on whisker trajectories was quantified on the paralyzed side. Third, closed-loop experiments were performed in which the EMG signal on the intact side triggered FES on the paralyzed side to restore symmetric whisking. The results demonstrate a novel in vivo platform for developing control strategies for neuromuscular facial prostheses. PMID:28424583

  7. A multimodal spectral approach to characterize rhythm in natural speech.

    PubMed

    Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta

    2016-01-01

    Human utterances demonstrate temporal patterning, also referred to as rhythm. While simple oromotor behaviors (e.g., chewing) feature a salient periodical structure, conversational speech displays a time-varying quasi-rhythmic pattern. Quantification of periodicity in speech is challenging. Unimodal spectral approaches have highlighted rhythmic aspects of speech. However, speech is a complex multimodal phenomenon that arises from the interplay of articulatory, respiratory, and vocal systems. The present study addressed the question of whether a multimodal spectral approach, in the form of coherence analysis between electromyographic (EMG) and acoustic signals, would allow one to characterize rhythm in natural speech more efficiently than a unimodal analysis. The main experimental task consisted of speech production at three speaking rates; a simple oromotor task served as control. The EMG-acoustic coherence emerged as a sensitive means of tracking speech rhythm, whereas spectral analysis of either EMG or acoustic amplitude envelope alone was less informative. Coherence metrics seem to distinguish and highlight rhythmic structure in natural speech.

  8. Muscle coordination changes during intermittent cycling sprints.

    PubMed

    Billaut, François; Basset, Fabien A; Falgairette, Guy

    2005-06-03

    Maximal muscle power is reported to decrease during explosive cyclical exercises owing to metabolic disturbances, muscle damage, and adjustments in the efferent neural command. The aim of the present study was to analyze the influence of inter-muscle coordination in fatigue occurrence during 10 intermittent 6-s cycling sprints, with 30-s recovery through electromyographic activity (EMG). Results showed a decrease in peak power output with sprint repetitions (sprint 1 versus sprint 10: -11%, P<0.01) without any significant modifications in the integrated EMG. The timing between the knee extensor and the flexor EMG activation onsets was reduced in sprint 10 (sprint 1 versus sprint 10: -90.2 ms, P<0.05), owing to an earlier antagonist activation with fatigue occurrence. In conclusion, the maximal power output, developed during intermittent cycling sprints of short duration, decreased possibly due to the inability of muscles to maintain maximal force. This reduction in maximal power output occurred in parallel to changes in the muscle coordination pattern after fatigue.

  9. The electromyographic activity of the external and internal urethral sphincters and urinary bladder on vaginal distension and its role in preventing vaginal soiling with urine during sexual intercourse.

    PubMed

    Shafik, Ahmed; Shafik, Ali A; Shafik, Ismail A; El Sibai, Olfat

    2008-03-01

    We investigated the hypothesis that external (EUS) and internal (IUS) urethral sphincters and urinary bladder (UB) respond to penile thrusting (PT) of vagina in a way that prevents urinary leakage during coitus. Vaginal condom was inflated with air in increments of 50-300 ml and EMG of EUS and IUS and vaginal pressure were recorded; test was repeated after anesthetization of vagina, UB, EUS, and IUS. Vaginal distension effected reduction of vesical pressure but increase of IUS EMG until the 150 ml distension was reached, beyond which more vaginal distension caused no further effect; EUS EMG showed no response. Vaginal distension while vagina, UB, EUS, and IUS had been separately anesthetized, produced no change. Vaginal balloon distension appears to effect vesical relaxation and increased IUS tone. This seems to provide a mechanism to avoid urine leakage during coitus and to occur through a reflex we term 'vagino-urethrovesical reflex'.

  10. Distal Predominance of Electrodiagnostic Abnormalities in Early Stage Amyotrophic Lateral Sclerosis.

    PubMed

    Shayya, Luay; Babu, Suma; Pioro, Erik P; Li, Jianbo; Li, Yuebing

    2018-05-09

    We compare the electrodiagnostic (EDX) yield of limb muscles in revealing lower motor neuron (LMN) dysfunction by electromyography (EMG) in early stage amyotrophic lateral sclerosis (ALS). Single-site retrospective review Results: This study includes 122 consecutive patients with possible ALS as defined by revised El Escorial Criteria. Distal limb muscles show more frequent EMG abnormalities than proximal muscles. EDX yield is higher in the limb where weakness begins and when clinical signs of LMN dysfunction are evident. Adoption of Awaji criteria increases the yield of EMG positive segments significantly in the cervical (p<0.0005) and lumbosacral regions (P<0.0001), and upgrades 19 patients into probable and 1 patient into definite categories. Electromyographic abnormalities are distal limb-predominant in early stage ALS. A redefinition of an EDX-positive cervical or lumbosacral segment, with an emphasis on distal limb muscles, may result in an earlier ALS diagnosis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Generating Control Commands From Gestures Sensed by EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements of electrodes needed to acquire sufficient data; refinements in the acquisition, filtering, and digitization of EMG signals; and methods of training the pattern- recognition software. The joystick and keyboard simulations were chosen for the initial experiments because they are familiar to many computer users. It is anticipated that, ultimately, interfaces would utilize EMG signals associated with movements more nearly natural than those associated with joysticks or keyboards. Future versions of the pattern-recognition software are planned to be capable of adapting to the preferences and day-today variations in EMG outputs of individual users; this capability for adaptation would also make it possible to select gestures that, to a given user, feel the most nearly natural for generating control signals for a given task (provided that there are enough properly positioned electrodes to acquire the EMG signals from the muscles involved in the gestures).

  12. Activity of the external urethral sphincter evoked by genital stimulation in male rats.

    PubMed

    Juárez, Raúl; Zempoalteca, René; Pacheco, Pablo; Lucio, Rosa Angélica; Medel, Alfonso; Cruz, Yolanda

    2016-11-01

    To determine whether the external urethral sphincter (EUS) fasciculi of male rats respond to the mechanical stimulation of genital structures and to characterize the pattern of the electromyographic (EMG) activity of the three regions of the EUS: the cranial (CrEUS), the medial (MeEUS) and the caudal (CaEUS). Electromyographic signals were recorded from the CrEUS, MeEUS and CaEUS regions of the male rat's EUS, before, during and after the mechanical stimulation of the urogenital structures. The CrEUS, MeEUS and CaEUS regions responded when brushing and squeezing the foreskin and glans as well as to penile and prostatic urethral distension. The CaEUS EMG amplitude (P < 0.01) and frequency (P < 0.05) were lower in comparison to the CrEUS and MeEUS responses to the mechanical stimulation. In addition, the CaEUS was characterized by a short or no afterdischarge. In contrast, the CrEUS and MeEUS responded by presenting a long discharge after the penile or prostatic urethral distension. The activity of the EUS is modulated by both, cutaneous and visceral genitourinary stimuli, with motor units being activated by mechanoreceptors located in the foreskin, glans, bladder, and urethra. The CrEUS, MeEUS and CaEUS have differential EMG patterns, indicating that the EUS consists of three anatomically and functionally different regions. Precise coordination in the muscular activity of these regions may be crucial for the control of male expulsive urethral functions, i.e., during voiding and ejaculation. Neurourol. Urodynam. 35:914-919, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. The champagne toast position isolates the supraspinatus better than the Jobe test: an electromyographic study of shoulder physical examination tests.

    PubMed

    Chalmers, Peter N; Cvetanovich, Gregory L; Kupfer, Noam; Wimmer, Markus A; Verma, Nikhil N; Cole, Brian J; Romeo, Anthony A; Nicholson, Gregory P

    2016-02-01

    While Jobe's test is widely used, it does not isolate supraspinatus activity. Our purpose was to examine the electromyographic (EMG) activity within the supraspinatus and deltoid with resisted abduction to determine the shoulder position that best isolates the activity of the supraspinatus. We performed EMG analysis of the supraspinatus, anterior head of the deltoid, and middle head of the deltoid in 10 normal volunteers. We measured EMG activity during resisted shoulder abduction in the scapular plane to both manual resistance and a standardized load in varying degrees of abduction and rotation. To determine which position best isolates supraspinatus activity, the ratio of supraspinatus to deltoid activity (S:D) was calculated for each position. Results were analyzed with a repeated-measures analysis of variance with Bonferroni correction. The posterior deltoid was excluded as it serves mostly to extend and externally rotate. Our study confirmed Jobe's findings of maximal supraspinatus activity at 90° of abduction. However, decreasing abduction significantly increased S:D for both resisted manual testing and testing against a standardized load (P = .002 and .001, respectively). The greatest S:D ratio (4.6 ± 3.4 for standardized load testing) was seen at the "champagne toast" position, i.e., 30° of abduction, mild external rotation, 30° of flexion, and 90° of elbow flexion. The smallest ratio (0.8 ± 0.6) was seen at Jobe's position. Testing of abduction strength in the champagne toast position, i.e., 30° of abduction, mild external rotation, and 30° of flexion, better isolates the activity of the supraspinatus from the deltoid than Jobe's "empty can" position. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  15. [EMG activities of the head, neck and upper trunk muscles with mandibular movements in healthy adults and mandibular asymmetry patients].

    PubMed

    Jiang, Ting; Zhang, Zhenkang; Yang, Zhaohui; Yi, Biao; Feng, Hailan; Wang, Xing

    2002-03-25

    To study the activities of head, neck and upper trunk muscles during mandibular movements in healthy adults and mandibular asymmetry patients. Electromyographic integrogram was used to record and analyze the electromyographic activities of the anterior temporal (Ta), posterior temporal (Tp), sternocleidomastoid (SCM), and trapezius (TRAP) muscles in rest position and during mandibular movement among 10 normal adults and 10 mandibular asymmetry patients. All the four muscles showed constant electromyographic activities when the mandible was in the rest position. The activities of Ta, Tp, and SCM muscles increased with protrusion of mandible, mouth opening, tapping, maximum clenching, and chewing. The activities of Ta and Tp muscles of the patients were 1.7 times greater than that of the normal adults during mandibular movement without occlusion, and were weaker by 50% during mandibular movement with occlusion. The difference between electromyographic activities during mandibular movement and in rest position was less among patients than among normal adults. The TRAP muscle of the patients showed constant electromyographic activities with the activity volume nearly 1.8 times that of the normal adults. The difference between the muscle and its namesake at the opposite side was greater among the patients (21%) than among the normal adults (8%). All the four muscles participate in the maintenance of rest position of mandible and the realization of mandibular movements. The coordination of muscular activities among mandibular asymmetry patients is poorer than that among normal adults.

  16. Electromyographic analysis of a modified maneuver for quadriceps femoris muscle setting with co-contraction of the hamstrings.

    PubMed

    Nakajima, Masaaki; Kawamura, Kenji; Takeda, Isao

    2003-05-01

    A "quadriceps femoris muscle setting" is isometric quadriceps femoris exercise which can be widely used in early knee rehabilitation. However this exercise cannot obtain enough co-contraction of the hamstrings. Isolated quadriceps femoris contraction in knee extension imposes severe strain to anterior cruciate ligament. We succeeded in developing a simple training maneuver that is effective in obtaining co-contraction of the hamstrings--a modified maneuver for the quadriceps femoris muscle setting with the contralateral lower limb raised (MQS). In this study, we analyzed the effect of this maneuver by EMG quantification. Twenty-eight healthy young adult men performed sequential trials consisting of normal quadriceps femoris muscle setting (NQS) and MQS. Electromyographic activity was recorded from surface electrodes on the gluteus maximus, vastus medialis, rectus femoris, vastus lateralis, semitendinosus and biceps femoris (long head), and normalized to values derived from maximal isometric trials. The % maximal voluntary isometric contraction (%MVIC) of the vastus medialis, vastus lateralis and rectus femoris did not vary in the each maneuver. However, the %MVIC of the hamstrings varied significantly in the MQS. This study suggests that effective co-contraction of the hamstrings can be obtained in MQS by adjusting the load to the raised lower limb.

  17. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region.

    PubMed

    Palmer, Phyllis M; McCulloch, Timothy M; Jaffe, Debra; Neel, Amy T

    2005-01-01

    A sour bolus has been used as a modality in the treatment of oropharyngeal dysphagia based on the hypothesis that this stimulus provides an effective preswallow sensory input that lowers the threshold required to trigger a pharyngeal swallow. The result is a more immediate swallow onset time. Additionally, the sour bolus may invigorate the oral muscles resulting in stronger contractions during the swallow. The purpose of this investigation was to compare the intramuscular electromyographic activity of the mylohyoid, geniohyoid, and anterior belly of the digastric muscles during sour and water boluses with regard to duration, strength, and timing of muscle activation. Muscle duration, swallow onset time, and pattern of muscle activation did not differ for the two bolus types. Muscle activation time was more tightly approximated across the onsets of the three muscles when a sour bolus was used. A sour bolus also resulted in a stronger muscle contraction as evidenced by greater electromyographic activity. These data support the use of a sour bolus as part of a treatment paradigm.

  18. Lumbar spinal loads and muscle activity during a golf swing.

    PubMed

    Lim, Young-Tae; Chow, John W; Chae, Woen-Sik

    2012-06-01

    This study estimated the lumbar spinal loads at the L4-L5 level and evaluated electromyographic (EMG) activity of right and left rectus abdominis, external and internal obliques, erector spinae, and latissimus dorsi muscles during a golf swing. Four super VHS camcorders and two force plates were used to obtain three-dimensional (3D) kinematics and kinetics of golf swings performed by five male collegiate golfers. Average EMG levels for different phases of golf swing were determined. An EMG-assisted optimization model was applied to compute the contact forces acting on the L4-L5. The results revealed a mean peak compressive load of over six times the body weight (BW) during the downswing and mean peak anterior and medial shear loads approaching 1.6 and 0.6 BW during the follow-through phases. The peak compressive load estimated in this study was high, but less than the corresponding value (over 8 BW) reported by a previous study. Average EMG levels of different muscles were the highest in the acceleration and follow-through phases, suggesting a likely link between co-contractions of paraspinal muscles and lumbar spinal loads.

  19. Electromyography variables during the golf swing: a literature review.

    PubMed

    Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan

    2012-12-01

    The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Cross Time-Frequency Analysis of Gastrocnemius Electromyographic Signals in Hypertensive and Nonhypertensive Subjects

    NASA Astrophysics Data System (ADS)

    Mitchell, Patrick; Krotish, Debra; Shin, Yong-June; Hirth, Victor

    2010-12-01

    The effects of hypertension are chronic and continuous; it affects gait, balance, and fall risk. Therefore, it is desirable to assess gait health across hypertensive and nonhypertensive subjects in order to prevent or reduce the risk of falls. Analysis of electromyography (EMG) signals can identify age related changes of neuromuscular activation due to various neuropathies and myopathies, but it is difficult to translate these medical changes to clinical diagnosis. To examine and compare geriatrics patients with these gait-altering diseases, we acquire EMG muscle activation signals, and by use of a timesynchronized mat capable of recording pressure information, we localize the EMG data to the gait cycle, ensuring identical comparison across subjects. Using time-frequency analysis on the EMG signal, in conjunction with several parameters obtained from the time-frequency analyses, we can determine the statistical discrepancy between diseases. We base these parameters on physiological manifestations caused by hypertension, as well as other comorbities that affect the geriatrics community. Using these metrics in a small population, we identify a statistical discrepancy between a control group and subjects with hypertension, neuropathy, diabetes, osteoporosis, arthritis, and several other common diseases which severely affect the geriatrics community.

  1. Changes in head and cervical-spine postures and EMG activities of masticatory muscles following treatment with complete upper and partial lower denture.

    PubMed

    Salonen, M A; Raustia, A M; Huggare, J A

    1994-10-01

    A clinical stomatognathic, cephalometric and electromyographic (EMG) study was performed in relation to 14 subjects (10 women, 4 men), each with an edentulous maxilla and residual mandibular dentition before and six months after treatment with complete upper and partial lower dentures. The mean age of the subjects was 54.4 years (range 43-64 years). The mean period of edentulousness and age of dentures were 22.5 years (range 15-33 years) and 14.1 (range 1.5-30 years), respectively. Natural head position was recorded (using a fluid-level method) and measured from cephalograms. EMG activity was measured in relation to masseter and temporal muscles. A decrease in clinical dysfunction index was noted in 12 of 14 subjects (86%). There was no change in cervical inclination, but a slight extension of the head was noted after treatment. Rapid recovery of the masticatory muscles was reflected in increased EMG activity, especially when biting in the maximal intercuspal position. In cases of edentulous maxilla and residual mandibular anterior dentition, treatment with a complete upper and lower partial denture had a favorable effect on craniomandibular disorders and masticatory-muscle function.

  2. Operator State Estimation for Adaptive Aiding in Uninhabited Combat Air Vehicles

    DTIC Science & Technology

    2005-09-01

    1992). Van Boxtel, A., W. Waterink, and I.J.T. Veldhuizen . “Tonic Facial EMG Activity As An Index of Mental Effort: Effects of Work Rate, Time-On...the ‘normal’ functioning of brain activity (Beaumont, Burov, Carter, Cheuvront, Sawka, Wilson, Van Orden, Hockey, Balkin and Gundel, 2004). For...by the sympathetic nervous system. Electromyographic activity has been shown to predict arousal accurately ( Veldhuizen , Gaillard, and de Vries, 2003

  3. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    PubMed

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  4. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    PubMed

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  5. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

    2015-12-01

    Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

  6. Comparison of ambulatory and polysomnographic recording of jaw muscle activity during sleep in normal subjects.

    PubMed

    Yamaguchi, T; Abe, S; Rompré, P H; Manzini, C; Lavigne, G J

    2012-01-01

    Clinicians and investigators need a simple and reliable recording device to diagnose or monitor sleep bruxism (SB). The aim of this study was to compare recordings made with an ambulatory electromyographic telemetry recorder (TEL-EMG) with those made with standard sleep laboratory polysomnography with synchronised audio-visual recording (PSG-AV). Eight volunteer subjects without current history of tooth grinding spent one night in a sleep laboratory. Simultaneous bilateral masseter EMG recordings were made with a TEL-EMG and standard PSG. All types of oromotor activity and rhythmic masseter muscle activity (RMMA), typical of SB, were independently scored by two individuals. Correlation and intra-class coefficient (ICC) were estimated for scores on each system. The TEL-EMG was highly sensitive to detect RMMA (0·988), but with low positive predictive value (0·231) because of a high rate of oromotor activity detection (e.g. swallowing and scratching). Almost 72% of false-positive oromotor activity scored with the TEL-EMG occurred during the transient wake period of sleep. A non-significant correlation between recording systems was found (r = 0·49). Because of the high frequency of wake periods during sleep, ICC was low (0·47), and the removal of the influence of wake periods improved the detection reliability of the TEL-EMG (ICC = 0·88). The TEL-EMG is sensitive to detect RMMA in normal subjects. However, it obtained a high rate of false-positive detections because of the presence of frequent oromotor activities and transient wake periods of sleep. New algorithms are needed to improve the validity of TEL-EMG recordings. © 2011 Blackwell Publishing Ltd.

  7. Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis.

    PubMed

    Hasan, Z; Enoka, R M

    1985-01-01

    Since the moment arms for the elbow-flexor muscles are longest at intermediate positions of the elbow and shorter at the extremes of the range of motion, it was expected that the elbow torque would also show a peak at an intermediate angle provided the activity of the flexor muscles remained constant. We measured the isometric elbow torque at different elbow angles while the subject attempted to keep constant the electromyographic activity (EMG) of the brachioradialis muscle. The torque-angle relationship thus obtained exhibited a peak, as expected, but the shape of the relationship varied widely among subjects. This was due in part to differences in the variation of the biceps brachii EMG with elbow angle among the different subjects. The implications of these observations for the equilibrium-point hypothesis of movement were investigated as follows. The subject performed elbow movements in the presence of an external torque (which tended to extend the elbow joint) provided by a weight-and-pulley arrangement. We found in the case of flexion movements that invariably there was a transient increase in flexor EMG, as would seem necessary for initiating the movement. However, the steady-state EMG after the movement could be greater or less than the pre-movement EMG. Specifically, the least flexor EMG was required for equilibrium in the intermediate range of elbow angles, compared to the extremes of the range of motion. The EMG-angle relationship, however, varied with the muscle and the subject. The observation that the directions of change in the transient and the steady-state EMG are independent of each other militates against the generality of the equilibrium-point hypothesis. However, a form of the hypothesis which includes the effects of the stretch reflex is not contradicted by this observation.

  8. Electromyographic assessment of apple bucket intervention designed to reduce back strain.

    PubMed

    Earle-Richardson, Giulia; Jenkins, Paul L; Strogatz, David; Bell, Erin M; Freivalds, Andris; Sorensen, Julie A; May, John J

    2008-06-01

    The authors previously developed an apple bucket that was modified by use of a hip belt to reduce muscle fatigue. The intervention of belt use was accepted by workers and shown not to interfere with productivity. However, use of this intervention did not appear to reduce muscle fatigue when measured by tests of voluntary muscle strength. The purpose of the present study was to evaluate the intervention's effect on muscle fatigue employing surface electromyographic (EMG) amplitude. Amplitude measurements on 15 muscles were taken from 10 laboratory volunteers who were carrying a full bucket of apples, once while wearing the intervention belt and once without the intervention. These measurements were taken for seven different postures (four angles of trunk flexion (0 degrees , 20 degrees , 45 degrees , 90 degrees ) and three raised-arm positions (both up, dominant up, non-dominant up)) common to apple harvest work. Participants were measured in these conditions both with the bucket carried in front and with the bucket carried to the side. Significant reductions in amplitude favouring the intervention were seen for 11 of the 15 muscles in models considering the four body flexion angles. Ten of these were of the middle and lower back. These control/intervention differences were seen with both bucket-carrying positions (front vs. side) and tended to increase with increasing flexion angle. In contrast, no significant intervention effects were observed in models considering treatment by arm-raised position. One significant main effect (upper trapezius, side bucket) showed an amplitude reduction in the treatment condition. Another main effect showing increased amplitude in the intervention condition use was observed in the dominant levator scapulae (side bucket). Thus, the use of the intervention belt reduces EMG amplitude among a number of mid- and lower-back muscles. This is suggestive of a protective effect against back strain.

  9. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    PubMed

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  10. Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation

    PubMed Central

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method. PMID:18288259

  11. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation.

    PubMed

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method.

  12. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery.

    PubMed

    Uribe, Juan S; Vale, Fernando L; Dakwar, Elias

    2010-12-15

    Literature review. The objective of this article is to examine current intraoperative electromyography (EMG) neurophysiologic monitoring methods and their application in minimally invasive techniques. We will also discuss the recent application of EMG and its anatomic implications to the minimally invasive lateral transpsoas approach to the spine. Minimally invasive techniques require that the same goals of surgery be achieved, with the hope of decreased morbidity to the patient. Unlike standard open procedures, direct visualization of the anatomy is decreased. To increase the safety of minimally invasive spine surgery, neurophysiological monitoring techniques have been developed. Review of the literature was performed using the National Center for Biotechnology Information databases using PUBMED/MEDLINE. All articles in the English language discussing the use of intraoperative EMG monitoring and minimally invasive spine surgery were reviewed. The role of EMG monitoring in special reference to the minimally invasive lateral transpsoas approach is also described. In total, 76 articles were identified that discussed the role of neuromonitoring in spine surgery. The majority of articles on EMG and spine surgery discuss the use of intraoperative neurophysiological monitoring (IOM) for safe and accurate pedicle screw placement. In general, there is a paucity of literature that pertains to intraoperative EMG neuromonitoring and minimally invasive spine surgery. Recently, EMG has been used during minimally invasive lateral transpsoas approach to the lumbar spine for interbody fusion. The addition of EMG to the lateral approach has contributed to decrease the complication rate from 30% to less than 1%. In minimally invasive approaches to the spine, the use of EMG IOM might provide additional safety, such as percutaneous pedicle screw placement, where visualization is limited compared with conventional open procedures. In addition to knowledge of the anatomy and image guidance, directional EMG IOM is crucial for safe passage through the psoas muscle during the minimally invasive lateral retroperitoneal approach.

  13. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907

  14. Controlled randomised trial of visual biofeedback versus muscle training without a visual display for intractable constipation.

    PubMed Central

    Koutsomanis, D; Lennard-Jones, J E; Roy, A J; Kamm, M A

    1995-01-01

    Training to contract the abdominal muscles effectively and to relax the pelvic floor during defecation straining helps some patients with severe constipation. Hitherto all such training has used a visible or audible signal of sphincter muscle activity as a biofeedback method to assist in relaxation. A randomised controlled trial comparing the outcome of muscular training without any biofeedback device with the same training supplemented by an electromyographic (EMG) record visible to the patient is reported. Significant symptomatic improvement was noted and electromyographic measurements confirmed a decrease in pelvic floor muscle activity during defecation straining after treatment in both groups. The outcome was similar in the two treatment groups. Muscular coordination training using personal instruction and encouragement without a visual display is thus a potentially successful treatment suitable for outpatient use by paramedical personnel. PMID:7672690

  15. Both anticipatory and compensatory postural adjustments are adapted while catching a ball in unstable standing posture.

    PubMed

    Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; Dos Santos, Eloá C; Angulski, Hanna B B; Dos Santos, Marcio J

    2016-01-01

    The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces. Published by Elsevier Ltd.

  16. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis

    PubMed Central

    Tang, Weidi; Zhang, Xu; Tang, Xiao; Cao, Shuai; Gao, Xiaoping; Chen, Xiang

    2018-01-01

    Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols. PMID:29379465

  17. Electromyographic decoding of response to command in disorders of consciousness.

    PubMed

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Schnakers, Caroline; Laureys, Steven; Noirhomme, Quentin

    2016-11-15

    To propose a new methodology based on single-trial analysis for detecting residual response to command with EMG in patients with disorders of consciousness (DOC), overcoming the issue of trial dependency and decreasing the influence of a patient's fluctuation of vigilance or arousal over time on diagnostic accuracy. Forty-five patients with DOC (18 with vegetative/unresponsive wakefulness syndrome [VS/UWS], 22 in a minimally conscious state [MCS], 3 who emerged from MCS [EMCS], and 2 with locked-in syndrome [LIS]) and 20 healthy controls were included in the study. Patients were randomly instructed to either move their left or right hand or listen to a control command ("It is a sunny day") while EMG activity was recorded on both arms. Differential EMG activity was detected in all MCS cases displaying reproducible response to command at bedside on multiple assessments, even though only 6 of the 14 individuals presented a behavioral response to command on the day of the EMG assessment. An EMG response was also detected in all EMCS and LIS patients, and 2 MCS patients showing nonreflexive movements without command following at the bedside. None of the VS/UWS presented a response to command with this method. This method allowed us to reliably distinguish between different levels of consciousness and could potentially help decrease diagnostic errors in patients with motor impairment but presenting residual motor activity. © 2016 American Academy of Neurology.

  18. Impact of early life adversity on EMG stress reactivity of the trapezius muscle

    PubMed Central

    Luijcks, Rosan; Vossen, Catherine J.; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J.; Lousberg, Richel

    2016-01-01

    Abstract Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0–11 years) and adolescence (12–17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability. Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  19. Sex differences in kinetic and neuromuscular control during jumping and landing

    PubMed Central

    Márquez, G.; Alegre, L.M.; Jaén, D.; Martin-Casado, L.; Aguado, X.

    2017-01-01

    In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (Fpeak), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing. PMID:28250245

  20. Sex differences in kinetic and neuromuscular control during jumping and landing.

    PubMed

    Márquez, G; Alegre, L M; Jaén, D; Martin-Casado, L; Aguado, X

    2017-03-01

    In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (F peak ), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing.

  1. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia.

    PubMed

    Burri, Emanuel; Barba, Elizabeth; Huaman, Jose Walter; Cisternas, Daniel; Accarino, Anna; Soldevilla, Alfredo; Malagelada, Juan-R; Azpiroz, Fernando

    2014-03-01

    Patients with irritable bowel syndrome and abdominal bloating exhibit abnormal responses of the abdominal wall to colonic gas loads. We hypothesised that in patients with postprandial bloating, ingestion of a meal triggers comparable abdominal wall dyssynergia. Our aim was to characterise abdominal accommodation to a meal in patients with postprandial bloating. A test meal (0.8 kcal/ml nutrients plus 27 g/litre polyethylenglycol 4000) was administered at 50 ml/min as long as tolerated in 10 patients with postprandial bloating (fulfilling Rome III criteria for postprandial distress syndrome) and 12 healthy subjects, while electromyographic (EMG) responses of the anterior wall (upper and lower rectus, external and internal oblique via bipolar surface electrodes) and the diaphragm (via six ring electrodes over an oesophageal tube in the hiatus) were measured. Means +/- SD were calculated. Healthy subjects tolerated a meal volume of 913±308 ml; normal abdominal wall accommodation to the meal consisted of diaphragmatic relaxation (EMG activity decreased by 15±6%) and a compensatory contraction (25±9% increase) of the upper abdominal wall muscles (upper rectus and external oblique), with no changes in the lower anterior muscles (lower rectus and internal oblique). Patients tolerated lower volume loads (604±310 ml; p=0.030 vs healthy subjects) and developed a paradoxical response, that is, diaphragmatic contraction (14±3% EMG increment; p<0.01 vs healthy subjects) and upper anterior wall relaxation (9±4% inhibition; p<0.01 vs healthy subjects). In functional dyspepsia, postprandial abdominal distension is produced by an abnormal viscerosomatic response to meal ingestion that alters normal abdominal accommodation.

  2. Music performance anxiety in skilled pianists: effects of social-evaluative performance situation on subjective, autonomic, and electromyographic reactions.

    PubMed

    Yoshie, Michiko; Kudo, Kazutoshi; Murakoshi, Takayuki; Ohtsuki, Tatsuyuki

    2009-11-01

    Music performance anxiety (MPA), or stage fright in music performance, is a serious problem for many musicians, because performance impairment accompanied by MPA can threaten their career. The present study sought to clarify on how a social-evaluative performance situation affects subjective, autonomic, and motor stress responses in pianists. Measurements of subjective state anxiety, heart rate (HR), sweat rate (SR), and electromyographic (EMG) activity of upper extremity muscles were obtained while 18 skilled pianists performed a solo piano piece(s) of their choice under stressful (competition) and non-stressful (rehearsal) conditions. Participants reported greater anxiety in the competition condition, which confirmed the effectiveness of stress manipulation. The HR and SR considerably increased from the rehearsal to competition condition reflecting the activation of sympathetic division of the autonomic nervous system. Furthermore, participants showed higher levels of the EMG magnitude of proximal muscles (biceps brachii and upper trapezius) and the co-contraction of antagonistic muscles in the forearm (extensor digitorum communis and flexor digitorum superficialis) in the competition condition. Although these responses can be interpreted as integral components of an adaptive biological system that creates a state of motor readiness in an unstable or unpredictable environment, they can adversely influence pianists by disrupting their fine motor control on stage and by increasing the risk of playing-related musculoskeletal disorders.

  3. Electromyogram and perceived fatigue changes in the trapezius muscle during typewriting and recovery.

    PubMed

    Kimura, Mitsutoshi; Sato, Hirotaka; Ochi, Mamoru; Hosoya, Satoshi; Sadoyama, Tsugutake

    2007-05-01

    The purpose of the present study was to investigate the development and recovery of muscle fatigue in the upper trapezius muscle by analyzing electromyographic signals. Six male subjects performed a simulated typewriting task for four 25-min sessions. During fatigue and the following rest periods, subjective fatigue and surface electromyography (EMG) from the trapezius muscle during isometric contraction at 30% maximum voluntary contraction (MVC) were periodically measured in the interval. We detected a significant decrease in muscle fiber conduction velocity (MFCV) (P = 0.008) and median frequency (MDF) (P = 0.026) as well as an increase in root mean square (RMS) (P = 0.039) and subjective fatigue (P = 0.0004) during the fatigue period. During the recovery period, subjective fatigue decreased drastically and significantly (P = 0.0004), however, the EMG parameters did not recover completely. Thus, physiological muscle fatigue in the trapezius developed in accordance with subjective muscle fatigue during typewriting. On the other hand, differences between the physiological and subjective parameters were found during recovery. Further studies should be necessary to reveal the discrepancy could be a major factor of a transition from temporal phenomena to serious chronic muscle fatigue and to identify the necessity of some guidelines to prevent VDT work-related chronic muscle fatigue in the trapezius.

  4. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test.

    PubMed

    Stewart, David; Farina, Dario; Shen, Chao; Macaluso, Andrea

    2011-06-01

    Ten male volunteers (age 29.2 ± 5.2 years, mean ± SD) were recruited to test the hypothesis that muscle fibre conduction velocity (MFCV) would decrease with power output during a 30-s Wingate test on a mechanically-braked cycle ergometer. Prior to the main test, the optimal pre-fixed load corresponding to the highest power output was selected following a random series of six 10-s sprints. Surface electromyographic (EMG) signals were detected from the right vastus lateralis with linear adhesive arrays of eight electrodes. Power output decreased significantly from 6-s until the end of the test (860.9 ± 207.8 vs. 360.9 ± 11.4 W, respectively) and was correlated with MFCV (R=0.543, P<0.01), which also declined significantly by 26.8 ± 11% (P<0.05). There was a tendency for the mean frequency of the EMG power spectrum (MNF) to decrease, but average rectified values (ARV) remained unchanged throughout the test. The parallel decline of MFCV with power output suggests changes in fibre membrane properties. The unaltered ARV, together with the declined MFCV, would indicate either a decrease in discharge rate, de-recruitment of fatigued motor units or elongation of still present motor unit action potentials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The relationship of motor unit size, firing rate and force.

    PubMed

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  6. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  7. Recruitment of discrete regions of the psoas major and quadratus lumborum muscles is changed in specific sitting postures in individuals with recurrent low back pain.

    PubMed

    Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W

    2013-11-01

    Cross-sectional controlled laboratory study. To investigate potential changes in the function of discrete regions of the psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvatures and hip positions in sitting, in people with recurrent low back pain (LBP). Although the PM and QL contribute to control of spinal curvature in sitting, whether activity of these muscles is changed in individuals with LBP is unknown. Ten volunteers with recurrent LBP (pain free at the time of testing) and 9 pain-free individuals in a comparison group participated. Participants with LBP were grouped into those with high and low erector spinae (ES) electromyographic (EMG) signal amplitude, recorded when sitting with a lumbar lordosis. Data were recorded as participants assumed 3 sitting postures. Fine-wire electrodes were inserted with ultrasound guidance into fascicles of the PM arising from the transverse process and vertebral body, and the anterior and posterior layers of the QL. When data from those with recurrent LBP were analyzed as 1 group, PM and QL EMG signal amplitudes did not differ between groups in any of the sitting postures. However, when subgrouped, those with low ES EMG had greater EMG signal amplitude of the PM vertebral body and QL posterior layer in flat posture and greater EMG signal amplitude of the QL posterior layer in short lordotic posture, compared to those in the pain-free group. For the group with high ES EMG, the PM transverse process and PM vertebral body EMG was less than that of the other LBP group in short lordotic posture. The findings suggest a redistribution of activity between muscles that have a potential extensor moment in individuals with LBP. The modification of EMG of discrete fascicles of the PM and QL was related to changes in ES EMG signal amplitude recorded in sitting.

  8. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain

    PubMed Central

    RUKHADZE, I.; KAMANI, H.; KUBIN, L.

    2017-01-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596

  9. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  10. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. V - Postural responses following exposure to weightlessness

    NASA Technical Reports Server (NTRS)

    Kenyon, R. V.; Young, L. R.

    1986-01-01

    The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.

  11. Tremor in multiple sclerosis: The intriguing role of the cerebellum.

    PubMed

    Ayache, Samar S; Chalah, Moussa A; Al-Ani, Tarik; Farhat, Wassim H; Zouari, Hela G; Créange, Alain; Lefaucheur, Jean-Pascal

    2015-11-15

    Tremor is frequently encountered in multiple sclerosis (MS) patients. However, its underlying pathophysiological mechanisms remain poorly understood. Our aim was to assess the potential role of the cerebellum and brain stem structures in the generation of MS tremor.We performed accelerometric (ACC) and electromyographic(EMG) assessment of tremor in 32MS patients with manual clumsiness. In addition to clinical examination, patients underwent a neurophysiological exploration of the brainstem and cerebellar functions,which consisted of blink and masseter inhibitory reflexes, cerebello-thalamo-cortical inhibition (CTCi), and somatosensory evoked potentials. Tremor was clinically visible in 18 patients and absent in 14. Patients with visible tremor had more severe score of ataxia and clinical signs of cerebellar dysfunction, as well as a more reduced CTCi on neurophysiological investigation. However, ACC and EMG recordings confirmed the presence of a real rhythmic activity in only one patient. In most MS patients, the clinically visible tremor corresponded to a pseudorhythmic activity without coupling between ACC and EMG recordings. Cerebellar dysfunction may contribute to the occurrence of this pseudorhythmic activity mimicking tremor during posture and movement execution.

  12. Efficacy of Biofeedback Therapy in the Treatment of Dyssynergic Defecation in Community-Dwelling Elderly Women.

    PubMed

    Simón, Miguel A; Bueno, Ana M

    The aim of this study was to evaluate the efficacy of biofeedback therapy in the treatment of dyssynergic defecation in chronically constipated community-dwelling elderly women. After an initial assessment phase carried out during 1 month, 20 chronically constipated women with dyssynergic defecation were randomly assigned to either electromyographic biofeedback (EMG-BF) group (n=10) or control group (n=10). Outcome measures used to evaluate the efficacy of treatment were weekly stool frequency, sensation of incomplete evacuation, difficulty evacuation level, mean EMG-activity (μV) of the external anal sphincter during straining to defecate and Anismus index. The results obtained in this randomized controlled trial showed significant differences between the groups in all the dependent variables after 1 month of treatment. Moreover, there was no difference between the groups neither in age nor in the duration of chronic constipation symptoms. At the follow-up, 3 months later, clinical gains were maintained. This study demonstrates that the EMG-BF is an effective behavioral therapy for the treatment of dyssynergic defecation in community-dwelling elderly women.

  13. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.

    PubMed

    Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2014-01-29

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.

  14. EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex

    PubMed Central

    Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348

  15. Effect of lidocaine patches on upper trapezius EMG activity and pain intensity in patients with myofascial trigger points: A randomized clinical study.

    PubMed

    Firmani, Mónica; Miralles, Rodolfo; Casassus, Rodrigo

    2015-04-01

    To compare the effects of 5% lidocaine patches and placebo patches on pain intensity and electromyographic (EMG) activity of an active myofascial trigger point (MTrP) of the upper trapezius muscle. Thirty-six patients with a MTrP in the upper trapezius muscle were randomly divided into two groups: 20 patients received lidocaine patches (lidocaine group) and 16 patients received placebo patches (placebo group). They used the patches for 12 h each day, for 2 weeks. The patch was applied to the skin over the upper trapezius MTrP. Spontaneous pain, pressure pain thresholds, pain provoked by a 4-kg pressure applied to the MTrP and trapezius EMG activity were measured before and after treatment. Baseline spontaneous pain values were similar in both groups and significantly lower in the lidocaine group than the placebo group after treatment. The baseline pressure pain threshold was significantly lower in the lidocaine group, but after treatment it was significantly higher in this group. Baseline and final values of the pain provoked by a 4-kg pressure showed no significant difference between the groups. Baseline EMG activity at rest and during swallowing of saliva was significantly higher in the lidocaine group, but no significant difference was observed after treatment. Baseline EMG activity during maximum voluntary clenching was similar in both groups, but significantly higher in the lidocaine group after treatment. These clinical and EMG results support the use of 5% lidocaine patches for treating patients with MTrP of the upper trapezius muscle.

  16. Activity of masticatory muscles in subjects with different orofacial pain conditions.

    PubMed

    Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain

    2005-07-01

    The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.

  17. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities.

    PubMed

    Hamlyn, Nicolle; Behm, David G; Young, Warren B

    2007-11-01

    The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.

  18. The course of lung inflation alters the central pattern of tracheobronchial cough in cat-The evidence for volume feedback during cough.

    PubMed

    Poliacek, Ivan; Simera, Michal; Veternik, Marcel; Kotmanova, Zuzana; Pitts, Teresa; Hanacek, Jan; Plevkova, Jana; Machac, Peter; Visnovcova, Nadezda; Misek, Jakub; Jakus, Jan

    2016-07-15

    The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing. Copyright © 2016. Published by Elsevier B.V.

  19. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    PubMed Central

    Kuiken, Todd A; Hargrove, Levi J

    2014-01-01

    Objective Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main Results Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. PMID:25394366

  20. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  1. Elbow flexor fatigue modulates central excitability of the knee extensors.

    PubMed

    Aboodarda, Saied Jalal; Copithorne, David B; Power, Kevin E; Drinkwater, Eric; Behm, David G

    2015-09-01

    The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax(-1) ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

  2. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.

    PubMed

    Pau, James W L; Xie, Shane S Q; Pullan, Andrew J

    2012-09-01

    Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.

  3. EMG biofeedback: the effects of CRF, FR, VR, FI, and VI schedules of reinforcement on the acquisition and extinction of increases in forearm muscle tension.

    PubMed

    Cohen, S L; Richardson, J; Klebez, J; Febbo, S; Tucker, D

    2001-09-01

    Biofeedback was used to increase forearm-muscle tension. Feedback was delivered under continuous reinforcement (CRF), variable interval (VI), fixed interval (FI), variable ratio (VR), and fixed ratio (FR) schedules of reinforcement when college students increased their muscle tension (electromyograph, EMG) above a high threshold. There were three daily sessions of feedback, and Session 3 was immediately followed by a session without feedback (extinction). The CRF schedule resulted in the highest EMG, closely followed by the FR and VR schedules, and the lowest EMG scores were produced by the FI and VI schedules. Similarly, the CRF schedule resulted in the greatest amount of time-above-threshold and the VI and FI schedules produced the lowest time-above-threshold. The highest response rates were generated by the FR schedule, followed by the VR schedule. The CRF schedule produced relatively low response rates, comparable to the rates under the VI and FI schedules. Some of the data are consistent with the partial-reinforcement-extinction effect. The present data suggest that different schedules of feedback should be considered in muscle-strengthening-contexts such as during the rehabilitation of muscles following brain damage or peripheral nervous-system injury.

  4. The Impact of Experience on Affective Responses during Action Observation.

    PubMed

    Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation.

  5. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  6. The clinical and EMG assessment of the effects of stabilization exercise on nonspecific chronic neck pain: A randomized controlled trial.

    PubMed

    Ghaderi, Fariba; Jafarabadi, Mohammad Asghari; Javanshir, Khodabakhsh

    2017-01-01

    Neck pain is an important cause of disability. In spite of its high prevalence rate, treatment of the disorder is a challenging topic. Stabilization exercise has been the topic of many studies. To compare the effects of stabilization and routine exercises on chronic neck pain. Forty patients were randomly assigned into either stabilization or routine exercise groups and undertook a 10-week training program. Electromyographic (EMG) activity was recorded from Sternocleidomastoid (SCM), Anterior Scalene (AS) and Splenius Capitis (SC) muscles bilaterally. Endurance time of deep flexor muscles was measured by chronometer.Pain and disability were measured using Visual Analogue Scale (VAS) and neck disability index (NDI) questionnaire, respectively before and after training period. Findings revealed significant decreased pain and disability in both groups after intervention (P< 0/001). Flexor muscles endurance of stabilization group was significantly increased compared with that of routine (P< 0/001). Also EMG activity of SCM, AS and SC muscles were significantly decreased in stabilization group compared with routine (P< 0/001). Increased deep flexor endurance and decreased EMG activity of SCM, AS and SC muscles suggest an important role for stabilizing exercises on reducing the activity of superficial muscles in chronic neck pain.

  7. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    PubMed

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Effects of Knee Joint Effusion on Quadriceps Electromyography During Jogging

    PubMed Central

    Torry, Michael R.; Decker, Michael J.; Millett, Peter J.; Steadman, J. Richard; Sterett, William I.

    2005-01-01

    To investigate and describe the influence of intra-articular effusion on knee joint kinematics and electromyographic (EMG) profiles during jogging. Thirteen individuals underwent a 20 cc 0.9% saline insufflation of the knee joint capsule and completed 8 jogging trials. Stance phase, sagittal plane knee joint kinematics and thigh muscular EMG profiles were compared pre- and post-insufflation utilizing a paired t-test ( = 0.05). Mild knee effusion caused a reduction in vastus medialis (p = 0.005) and lateralis (p = 0.006) EMG activity. The rectus femoris, biceps femoris and medial hamstring muscles did not exhibit changes due to this protocol. There were no changes in the sagittal plane knee joint kinematic pattern. Twenty cc effusion can cause quadriceps inhibition in the vastus medialis and the vastus lateralis in otherwise healthy individuals during jogging. This study provides baseline data for the effects of mild knee joint effusion on thigh musculature during jogging. Key Points 20 cc of knee effusion can cause vastus medialis and lateralis inhibition as noted by decreases in EMG amplitude. This effusion does not appear to alter sagittal plane knee joint kinematics during jogging. This finding if different from previous work investigating knee joint kinematic changes during a less dynamic activity (gait) with 20 cc of effusion. PMID:24431955

  9. Maximal voluntary isometric contraction tests for normalizing electromyographic data from different regions of supraspinatus and infraspinatus muscles: Identifying reliable combinations.

    PubMed

    Alenabi, Talia; Whittaker, Rachel; Kim, Soo Y; Dickerson, Clark R

    2018-04-25

    This study aimed to identify optimal sets of maximal voluntary isometric contractions (MVICs) for normalizing EMG data from anterior and posterior regions of the supraspinatus, and superior, middle and inferior regions of the infraspinatus. 31 right-handed young healthy individuals (15 males, 16 females) participated. EMG activity was obtained from two regions of supraspinatus and three regions of infraspinatus muscles via fine wire electrodes. Participants performed 15 MVIC tests against manual resistance. The EMG data were normalized to the maximum values. Optimal sets of MVIC combinations, defined as those which elicited >90% MVIC activation in the muscles of interest in >80% and >90% of the population, were obtained. EMG data from the inferior region of infraspinatus were removed from analysis due to technical problem. No single test achieved maximal activation of both regions of either the supraspinatus or infraspinatus. Instead, a combination of 6-8 MVICs were required to reach >90% MVIC activation in both parts of those muscles. In all regions of the rotator cuff muscles, the optimal combination was obtained with 8-10 MVICs. The proposed combinations can reduce inter-participant variability in generating maximal activation from different regions of the supraspinatus and infraspinatus muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of occlusal interference on habitual activity of human masseter.

    PubMed

    Michelotti, A; Farella, M; Gallo, L M; Veltri, A; Palla, S; Martina, R

    2005-07-01

    It has been suggested that occlusal interference may increase habitual activity in the jaw muscles and may lead to temporomandibular disorders (TMD). We tested these hypotheses by means of a double-blind randomized crossover experiment carried out on 11 young healthy females. Strips of gold foil were glued either on a selected occlusal contact area (active interference) or on the vestibular surface of the same tooth (dummy interference) and left for 8 days each. Electromyographic masseter activity was recorded in the natural environment by portable recorders under interference-free, dummy-interference, and active-interference conditions. The active occlusal interference caused a significant reduction in the number of activity periods per hour and in their mean amplitude. The EMG activity did not change significantly during the dummy-interference condition. None of the subjects developed signs and/or symptoms of TMD throughout the whole study, and most of them adapted fairly well to the occlusal disturbance.

  11. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.

    PubMed

    Scheuermann, B W; Hoelting, B D; Noble, M L; Barstow, T J

    2001-02-15

    1. We hypothesized that either the recruitment of additional muscle motor units and/or the progressive recruitment of less efficient fast-twitch muscle fibres was the predominant contributor to the additional oxygen uptake (VO2) observed during heavy exercise. Using surface electromyographic (EMG) techniques, we compared the VO2 response with the integrated EMG (iEMG) and mean power frequency (MPF) response of the vastus lateralis with the VO2 response during repeated bouts of moderate (below the lactate threshold, < LT) and heavy (above the lactate threshold, > LT) intensity cycle ergometer exercise. 2. Seven male subjects (age 29 +/- 7 years, mean +/- S.D.) performed three transitions to a work rate (WR) corresponding to 90 % LT and two transitions to a work rate that would elicit a VO2 corresponding to 50 % of the difference between peak VO2 and the LT (i.e. Delta50 %, > LT1 and > LT2). 3. The VO2 slow component was significantly reduced by prior heavy intensity exercise (> LT1, 410 +/- 196 ml min(-1); > LT2, 230 +/- 191 ml min-1). The time constant (tau), amplitude (A) and gain (DeltaVO2/DeltaWR) of the primary VO2 response (phase II) were not affected by prior heavy exercise when a three-component, exponential model was used to describe the V2 response. 4. Integrated EMG and MPF remained relatively constant and at the same level throughout both > LT1 and > LT2 exercise and therefore were not associated with the VO2 slow component. 5. These data are consistent with the view that the increased O2 cost (i.e. VO2 slow component) associated with performing heavy exercise is coupled with a progressive increase in ATP requirements of the already recruited motor units rather than to changes in the recruitment pattern of slow versus fast-twitch motor units. Further, the lack of speeding of the kinetics of the primary VO2 component with prior heavy exercise, thought to represent the initial muscle VO2 response, are inconsistent with O2 delivery being the limiting factor in V > O2 kinetics during heavy exercise.

  12. The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration.

    PubMed

    Farina, Dario; Leclerc, Frédéric; Arendt-Nielsen, Lars; Buttelli, Olivier; Madeleine, Pascal

    2008-02-01

    The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static contractions with shoulders 90 degrees abducted until endurance. The entropy (degree of uniformity) and center of gravity of the EMG root mean square map were computed to assess spatial inhomogeneity in muscle activation and changes over time in EMG amplitude spatial distribution. At the endurance time, entropy decreased (mean+/-SD, percent change 2.0+/-1.6%; P<0.0001) and the center of gravity moved in the cranial direction (shift 11.2+/-6.1mm; P<0.0001) with respect to the beginning of the contraction. The shift in the center of gravity was positively correlated with endurance time (R(2)=0.46, P<0.05), thus subjects with larger shift in the activity map showed longer endurance time. The percent variation in average (over the grid) root mean square was positively correlated with the shift in the center of gravity (R(2)=0.51, P<0.05). Moreover, the shift in the center of gravity was negatively correlated to both initial and final (at the endurance) entropy (R(2)=0.54 and R(2)=0.56, respectively; P<0.01 in both cases), indicating that subjects with less uniform root mean square maps had larger shift of the center of gravity over time. The spatial changes in root mean square EMG were likely due to spatially-dependent changes in motor unit activation during the sustained contraction. It was concluded that the changes in spatial muscle activity distribution play a role in the ability to maintain a static contraction.

  13. Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles.

    PubMed

    Altenburg, T M; de Haan, A; Verdijk, P W L; van Mechelen, W; de Ruiter, C J

    2009-07-01

    Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20 degrees range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50 degrees ). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 +/- 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher (P < 0.05) at knee angles 10 degrees more extended (43.7 +/- 22.2 N.m) and not different (P > 0.05) at knee angles 10 degrees more flexed (35.2 +/- 17.9 N.m) compared with recruitment threshold at AngleTmax (41.8 +/- 21.4 N.m). Also, unexpectedly the discharge rates were similar (P > 0.05) at the three angles: 11.6 +/- 2.2, 11.6 +/- 2.1, and 12.3 +/- 2.1 Hz. Similar angle independent discharge rates were also found for 12 units (n = 5; 7.4 +/- 5.4 %MVC) studied over the wider (50 degrees ) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.

  14. Surface electromyographic evaluation of jaw muscles in children with unilateral crossbite and lateral shift in the early mixed dentition. Sexual dimorphism

    PubMed Central

    Lenguas, Leticia; Alarcón, José-Antonio; Venancio, Filipa; Kassem, Marta

    2012-01-01

    Objectives: To examine the activity of jaw muscles at rest and during maximal voluntary clenching (MVC) in children with unilateral posterior crossbite (UPXB) and functional lateral shift in the early mixed dentition and to evaluate sex differences. Material and Methods: The sample included 30 children (15 males, 15 females) aged 6 to 10 years old, with UPXB and functional mandibular lateral shift (≥1.5 mm) in the early mixed dentition. sEMG activity coming from the muscle areas (anterior temporalis [AT], posterior temporalis [PT], masseter [MA] and suprahyoid [SH]) were obtained from both the crossbite (XB) and noncrossbite (NONXB) sides at mandibular rest position. sEMG acti-vity of the bilateral AT and MA muscles sides was obtained during MVC. Asymmetry and activity indexes were calculated for each muscle area at rest and during MVC; the MA/TA ratio during MVC was also determined. Results: At rest, no differences were found between sexes for any muscle areas or asymmetry and activity indexes. No differences were found between XB and NONXB sides. During MVC, however, significant sex differences were found in AT and MA activity, with higher sEMG values in males than in females, on both XB and NONXB sides. Asymmetry indexes, activity indexes and MA/AT ratios did not show significant differences between the sexes. Activity was symmetric both in males and in females. Conclusions: At rest, no sex differences were found, but during MVC males showed higher activity than did females in both XB and NONXB AT and MA muscle areas. Muscular activity was symmetrical at rest and during MVC in both sexes. Sexual dimorphism should be considered in the diagnosis and treatment of UPXB and lateral shift in the early mixed dentition. Key words:Unilateral crossbite, mandibular shift, jaw muscles, sEMG, early mixed dentition. PMID:22926468

  15. An ergonomic study of the optimum operating table height for laparoscopic surgery.

    PubMed

    Berquer, R; Smith, W D; Davis, S

    2002-03-01

    Laparoscopic surgery requires the use of longer instruments than open surgery, thus changing the relation between the height of the surgeon's hands and the desirable height of the operating room table. The optimum height of the operating room table for laparoscopic surgery is investigated in this study. Twenty-one surgeons performed a two-handed, one-fourth circle cutting task using a laparoscopic video system and laparoscopic instruments positioned at five instrument handle heights relative to subjects' elbow height (-20, -10, 0, +10, and +20 cm) by adjusting the height of the trainer box. Subjects rated the difficulty and discomfort experienced during each task on a visual analog scale. Skin conductance (SC) was measured in Micromhos via paired surface electrodes placed near the ulnar edge of the palm of the right (cutting) hand. The mean electromyographic (EMG) signal from the right deltoid and trapezius muscles was measured. Arm orientation was measured in three dimensions using a magnetometer/accelerometer. Signals were acquired using analog circuitry and digitally sampled using a National Instruments DAQCard 700 connected to a Macintosh PowerBook 5300c running LabVIEW software. Statistical analysis was carried out by analysis of variance and post hoc testing. Statistically significant changes were found in the subjective rating of discomfort (p <0.002), deltoid EMG (p <0.0006), trapezius EMG (p <0.0001), and arm elevation (p <0.0001) between instrument handle heights. SC values and task times did not change significantly. Discomfort and difficulty ratings were lowest when instrument handles were positioned at elbow height. EMG values and arm elevation all decreased with lower instrument height. This study suggests that the optimum table height for laparoscopic surgery should position the laparoscopic instrument handles close to surgeons' elbow level to minimize discomfort and upper arm and shoulder muscle work. This corresponds to an approximate table height of 64 to 77 cm above floor level. A redesign of current operating room tables may be required to meet these ergonomic guidelines.

  16. BALANCE, BODY MOTION AND MUSCLE ACTIVITY AFTER HIGH VOLUME SHORT TERM DANCE-BASED REHABILITATION IN INDIVIDUALS WITH PARKINSON’S DISEASE: A PILOT STUDY

    PubMed Central

    McKay, J. Lucas; Ting, Lena H.; Hackney, Madeleine E.

    2016-01-01

    BACKGROUND AND PURPOSE The objectives of this pilot study were to 1) evaluate the feasibility and investigate the efficacy of a 3-week, high volume (450 minutes/week) Adapted Tango intervention for community dwelling individuals with mild-moderate PD, and to 2) investigate the potential efficacy of Adapted Tango in modifying electromyographic (EMG) activity and center of body mass (CoM) displacement during automatic postural responses to support surface perturbations. METHODS Individuals with PD (n=26) were recruited for high volume Adapted Tango (15 lessons, 1.5 hour each over 3 weeks). Twenty participants were assessed with clinical balance and gait measures before and after the intervention. Nine participants were also assessed with support-surface translation perturbations. RESULTS Overall adherence to the intervention was 77%. At posttest, peak forward CoM displacement was reduced (4.0±0.9 cm, pretest, vs. 3.7±1.1 cm, posttest; P=0.03; Cohen’s d=0.30) and correlated to improvements on Berg Balance Scale (BBS; rho=−0.68; P=0.04) and Dynamic Gait Index (rho=−0.75; P=0.03). Overall antagonist onset time was delayed (27 ms; P=0.02; d=0.90) and duration was reduced (56 ms, ≈39%, P=0.02; d=0.45). Reductions in EMG magnitude were also observed (P<0.05). DISCUSSION AND CONCLUSIONS Adherence was acceptable and improvements on clinical measures of balance and gait were comparable to that obtained with lower volume, 12-week programs. Following participation in Adapted Tango, changes in kinematic and some EMG measures of perturbation responses were observed in addition to improvements in clinical measures. We conclude that 3-week, high volume Adapted Tango is feasible and represents a viable alternative to longer duration adapted dance programs. Video Abstract available for more insights from the authors (see Supplemental Digital Content 1) PMID:27576092

  17. Training through gametherapy promotes coactivation of the pelvic floor and abdominal muscles in young women, nulliparous and continents

    PubMed Central

    Silva, Valeria Regina; Riccetto, Cássio; Martinho, Natalia Miguel; Marques, Joseane; Carvalho, Leonardo Cesar; Botelho, Simone

    2016-01-01

    ABSTRACT Introduction and objectives: Several studies have been investigated co-activation can enhance the effectveness of PFM training protocols allowing preventive and therapeutic goals in pelvic floor dysfunctions. The objective of the present study was to investigate if an abdominal-pelvic protocol of training (APT) using gametherapy would allow co-activation of PFM and transversus abdominis/oblique internal (TrA/OI) muscles. Patients and methods: Twenty-five nulliparous, continent, young females, with median age 24.76 (±3.76) years were evaluated using digital palpation (DP) of PFM and surface electromyography of PFM and TrA/OI simultaneously, during maximal voluntary contraction (MVC), alternating PFM and TrA/OI contraction requests. All women participated on a supervised program of APT using gametherapy, that included exercises of pelvic mobilization associated to contraction of TrA/OI muscles oriented by virtual games, for 30 minutes, three times a week, in a total of 10 sessions. Electromyographic data were processed and analyzed by ANOVA - analysis of variance. Results: When MVC of TrA/OI was solicited, it was observed simultaneous increase of electromyographic activity of PFM (p=0.001) following ATP. However, EMG activity did not change significantly during MVC of PFM. Conclusion: Training using gametherapy allowed better co-activation of pelvic floor muscles in response to contraction of TrA, in young nulliparous and continent women. PMID:27564290

  18. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  19. Game-Based Rehabilitation for Myoelectric Prosthesis Control.

    PubMed

    Prahm, Cosima; Vujaklija, Ivan; Kayali, Fares; Purgathofer, Peter; Aszmann, Oskar C

    2017-02-09

    A high number of upper extremity myoelectric prosthesis users abandon their devices due to difficulties in prosthesis control and lack of motivation to train in absence of a physiotherapist. Virtual training systems, in the form of video games, provide patients with an entertaining and intuitive method for improved muscle coordination and improved overall control. Complementary to established rehabilitation protocols, it is highly beneficial for this virtual training process to start even before receiving the final prosthesis, and to be continued at home for as long as needed. The aim of this study is to evaluate (1) the short-term effects of a commercially available electromyographic (EMG) system on controllability after a simple video game-based rehabilitation protocol, and (2) different input methods, control mechanisms, and games. Eleven able-bodied participants with no prior experience in EMG control took part in this study. Participants were asked to perform a surface EMG test evaluating their provisional maximum muscle contraction, fine accuracy and isolation of electrode activation, and endurance control over at least 300 seconds. These assessments were carried out (1) in a Pregaming session before interacting with three EMG-controlled computer games, (2) in a Postgaming session after playing the games, and (3) in a Follow-Up session two days after the gaming protocol to evaluate short-term retention rate. After each game, participants were given a user evaluation survey for the assessment of the games and their input mechanisms. Participants also received a questionnaire regarding their intrinsic motivation (Intrinsic Motivation Inventory) at the end of the last game. Results showed a significant improvement in fine accuracy electrode activation (P<.01), electrode separation (P=.02), and endurance control (P<.01) from Pregaming EMG assessments to the Follow-Up measurement. The deviation around the EMG goal value diminished and the opposing electrode was activated less frequently. Participants had the most fun playing the games when collecting items and facing challenging game play. Most upper limb amputees use a 2-channel myoelectric prosthesis control. This study demonstrates that this control can be effectively trained by employing a video game-based rehabilitation protocol. ©Cosima Prahm, Ivan Vujaklija, Fares Kayali, Peter Purgathofer, Oskar C Aszmann. Originally published in JMIR Serious Games (http://games.jmir.org), 09.02.2017.

  20. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects.

    PubMed

    Kafri, Michal; Zaltsberg, Nir; Dickstein, Ruth

    2015-01-01

    Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.

  1. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity.

    PubMed

    Duhig, Steven J; Williams, Morgan D; Minett, Geoffrey M; Opar, David; Shield, Anthony J

    2017-06-01

    To examine the effect of 100 drop punt kicks on isokinetic knee flexor strength and surface electromyographic activity of bicep femoris and medial hamstrings. Randomized control study. Thirty-six recreational footballers were randomly assigned to kicking or control groups. Dynamometry was conducted immediately before and after the kicking or 10min of sitting (control). Eccentric strength declined more in the kicking than the control group (p<0.001; d=1.60), with greater reductions in eccentric than concentric strength after kicking (p=0.001; d=0.92). No significant between group differences in concentric strength change were observed (p=0.089; d=0.60). The decline in normalized eccentric hamstring surface electromyographic activity (bicep femoris and medial hamstrings combined) was greater in the kicking than the control group (p<0.001; d=1.78), while changes in concentric hamstring surface electromyographic activity did not differ between groups (p=0.863; d=0.04). Post-kicking reductions in surface electromyographic activity were greater in eccentric than concentric actions for both bicep femoris (p=0.008; d=0.77) and medial hamstrings (p<0.001; d=1.11). In contrast, the control group exhibited smaller reductions in eccentric than concentric hamstring surface electromyographic activity for bicep femoris (p=0.026; d=0.64) and medial hamstrings (p=0.032; d=0.53). Reductions in bicep femoris surface electromyographic activity were correlated with eccentric strength decline (R=0.645; p=0.007). Reductions in knee flexor strength and hamstring surface electromyographic activity are largely limited to eccentric contractions and this should be considered when planning training loads in Australian Football. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  3. Comparison of shock transmission and forearm electromyography between experienced and recreational tennis players during backhand strokes.

    PubMed

    Wei, Shun-Hwa; Chiang, Jinn-Yen; Shiang, Tzyy-Yuang; Chang, Hsiao-Yun

    2006-03-01

    To test the hypothesis that recreational tennis players transmit more shock impact from the racket to the elbow joint than experienced tennis players during the backhand stroke. Also, to test whether recreational tennis players used higher electromyographic (EMG) activities in common wrist extensor and flexor around epicondylar region at follow-through phase. A repeated-measure, cross-sectional study. National College of Physical Education and Sports at Taipei, Taiwan. Twenty-four male tennis players with no abnormal forearm musculoskeletal injury participated in the study. According to performance level, subjects were categorized into 2 groups: experienced and recreational. Impact transmission and wrist extensor-flexor EMG for backhand acceleration, impact, and follow-through phases were recorded for each player. An independent t test with a significance level of 0.05 was used to examine mean differences of shock impact and EMG between the 2 test groups. One-way ANOVA associated with Tukey multiple comparisons was used to identify differences among different impact locations and EMG phases. Experienced athletes reduced the racket impact to the elbow joint by 89.2%, but recreational players reduced it by only 61.8%. The largest EMG differences were found in the follow-through phase (P<0.05). Experienced athletes showed that their extensor and flexor EMGs were at submaximal level for follow-through phase, whereas recreational players maintained their flexor and extensor EMGs at either supramaximal or maximal level. Our results support the hypothesis that recreational players transmit more shock impact from the racket to the elbow joint and use larger wrist flexor and extensor EMG activities at follow-through phase of the backhand stroke. Follow-through control is proposed as a critical factor for reduction of shock transmission. Clinicians or trainers should instruct beginners to quickly release their grip tightness after ball-to-racket impact to reduce shock impact transmission to the wrist and elbow.

  4. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.

    PubMed

    Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

    2014-10-01

    This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Trunk and Shoulder Kinematic and Kinetic and Electromyographic Adaptations to Slope Increase during Motorized Treadmill Propulsion among Manual Wheelchair Users with a Spinal Cord Injury

    PubMed Central

    Champagne, Audrey

    2015-01-01

    The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and 7.1°). Trunk and upper limb movements were recorded with a motion analysis system. Net shoulder joint moments were computed with the forces applied to the handrims measured with an instrumented wheel. To quantify muscular demand, the electromyographic activity (EMG) of the pectoralis major (clavicular and sternal portions) and deltoid (anterior and posterior fibers) was recorded during the experimental tasks and normalized against maximum EMG values obtained during static contractions. Overall, forward trunk flexion and shoulder flexion increased as the slope became steeper, whereas shoulder flexion, adduction, and internal rotation moments along with the muscular demand also increased as the slope became steeper. The results confirm that forward trunk flexion and shoulder flexion movement amplitudes, along with shoulder mechanical and muscular demands, generally increase when the slope of the treadmill increases despite some similarities between the 2.7° to 3.6° and 3.6° to 4.8° slope increments. PMID:25793200

  6. Trunk and shoulder kinematic and kinetic and electromyographic adaptations to slope increase during motorized treadmill propulsion among manual wheelchair users with a spinal cord injury.

    PubMed

    Gagnon, Dany; Babineau, Annie-Claude; Champagne, Audrey; Desroches, Guillaume; Aissaoui, Rachid

    2015-01-01

    The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and 7.1°). Trunk and upper limb movements were recorded with a motion analysis system. Net shoulder joint moments were computed with the forces applied to the handrims measured with an instrumented wheel. To quantify muscular demand, the electromyographic activity (EMG) of the pectoralis major (clavicular and sternal portions) and deltoid (anterior and posterior fibers) was recorded during the experimental tasks and normalized against maximum EMG values obtained during static contractions. Overall, forward trunk flexion and shoulder flexion increased as the slope became steeper, whereas shoulder flexion, adduction, and internal rotation moments along with the muscular demand also increased as the slope became steeper. The results confirm that forward trunk flexion and shoulder flexion movement amplitudes, along with shoulder mechanical and muscular demands, generally increase when the slope of the treadmill increases despite some similarities between the 2.7° to 3.6° and 3.6° to 4.8° slope increments.

  7. Do moderate aerobic exercise and strength training influence electromyographic biofeedback of the pelvic floor muscles in female non-athletes?

    PubMed Central

    Gonçalves, Maria Lucia Campos; Fernandes, Samantha; Batista de Sousa, João

    2018-01-01

    [Purpose] To assess the influence of moderate physical exercise on pelvic floor muscle electromyographic (EMG) biofeedback signal in female non-athletes. [Subjects and Methods] A prospective, non-randomized study of 90 adult females (age ≥18 years) divided into three groups: Intervention (I), which began physical exercise upon study enrollment; Moderate Exercise (ME), comprising those who already engaged in physical activity; and Sedentary (S), comprising those who had a sedentary lifestyle. All participants underwent EMG biofeedback of the pelvic floor muscles upon study enrollment (T1) and at the end of the third subsequent month (T2). [Results] Mean age was 35.7 (SD: 7.5) years, with no significant difference between groups. T1 values in groups I and S were significantly lower than in group ME. There was no statistically significant difference between groups S and I. On comparison between groups at T2, values were highest in group I (18.5 µV vs. 15.3 µV in group S, vs. 16.1 µV in group ME). There was no significant difference between groups S and ME. On age-adjusted analysis, group I exhibited the greatest change between T1 and T2 (I, 4.7 µV; ME, 2.1 µV; S, 1.5 µV). [Conclusion] Females who exercise exhibit better pelvic floor muscle function than those who do not engage in physical activity. PMID:29545703

  8. The Elbow-EpiTrainer: a method of delivering graded resistance to the extensor carpi radialis brevis. Effectiveness of a prototype device in a healthy population.

    PubMed

    Navsaria, Rishi; Ryder, Dionne M; Lewis, Jeremy S; Alexander, Caroline M

    2015-03-01

    Tennis elbow or lateral epicondylopathy (LE) is experienced as the lateral elbow has a reported prevalence of 1.3%, with symptoms lasting up to 18 months. LE is most commonly attributed to tendinopathy involving the extensor carpi radialis brevis (ECRB) tendon. The aim of tendinopathy management is to alleviate symptoms and restore function that initially involves relative rest followed by progressive therapeutic exercise. To assess the effectiveness of two prototype exercises using commonly available clinical equipment to progressively increase resistance and activity of the ECRB. Eighteen healthy participants undertook two exercise progressions. Surface electromyography was used to record ECRB activity during the two progressions, involving eccentric exercises of the wrist extensors and elbow pronation exercises using a prototype device. The two progressions were assessed for their linearity of progression using repeated ANOVA and linear regression analysis. Five participants repeated the study to assess reliability. The exercise progressions led to an increase in ECRB electromyographic (EMG) activity (p<0.001). A select progression of exercises combining the two protocols increased EMG activity in a linear fashion (p<0.001). The ICC values indicated good reliability (ICC>0.7) between the first and second tests for five participants. Manipulation of resistance and leverage with the prototype exercises was effective in creating significant increases of ECRB normalised EMG activity in a linear manner that may, with future research, become useful to clinicians treating LE. In addition, between trial reliability for the device to generate a consistent load was acceptable. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises.

    PubMed

    Bazzucchi, Ilenia; Riccio, Maria Elena; Felici, Francesco

    2008-10-01

    Previous studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions. Ten young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15 degrees , 30 degrees , 60 degrees , 120 degrees , 180 degrees and 240 degrees /s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude. Antagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0+/-7.9% at MVC to 16.3+/-8.9% at 240 degrees /s) with respect to non-players (from 27.7+/-19.7% at MVC to 38.7+/-17.6% at 240 degrees /s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles. Tennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.

  10. Muscular Activation During Plyometric Exercises in 90° of Glenohumeral Joint Abduction

    PubMed Central

    Ellenbecker, Todd S.; Sueyoshi, Tetsuro; Bailie, David S.

    2015-01-01

    Background: Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Hypothesis: Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Study Design: Descriptive laboratory study. Methods: Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Results: Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Conclusion: Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°. PMID:25553216

  11. Muscular activation during plyometric exercises in 90° of glenohumeral joint abduction.

    PubMed

    Ellenbecker, Todd S; Sueyoshi, Tetsuro; Bailie, David S

    2015-01-01

    Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Descriptive laboratory study. Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°.

  12. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.

    PubMed

    Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M

    2008-07-01

    Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.

  13. Validation of Regression-Based Myogenic Correction Techniques for Scalp and Source-Localized EEG

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.

    2008-01-01

    EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect - even in low frequencies, such as alpha (8–13Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development. PMID:19298626

  14. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  15. Handedness-related asymmetry in transmission in a system of human cervical premotoneurones.

    PubMed

    Marchand-Pauvert, V; Mazevet, D; Pierrot-Deseilligny, E; Pol, S; Pradat-Diehl, P

    1999-04-01

    The possibility was investigated that human handedness is associated with an asymmetrical cortical and/or peripheral control of the cervical premotoneurones (PreMNs) that have been shown to mediate part of the descending command to motoneurones of forearm muscles. Heteronymous facilitation evoked in the ongoing voluntary extensor carpi radialis (ECR) electromyographic activity (EMG) by weak (0.8 times motor threshold) stimulation of the musculo-cutaneous (MC) nerve was assessed during tonic co-contraction of biceps and ECR. Suppression evoked by stimulation of a cutaneous nerve (superficial radial, SR) at 4 times perception threshold in both the voluntary EMG and in the motor evoked potential (MEP) elicited in ECR by transcranial magnetic stimulation (TMS) was investigated during isolated ECR contraction. Measurements were performed within time windows or at interstimulus intervals where peripheral and cortical inputs may interact at the level of PreMNs. Results obtained on both sides were compared in consistent right- and left-handers. MC-induced facilitation of the voluntary ECR EMG was significantly larger on the preferred side, whereas there was no asymmetry in the SR-evoked depression of the ongoing ECR EMG. In addition, the suppression of the ECR MEP by the same SR stimulation was more pronounced on the dominant side during unilateral, but not during bilateral, ECR contraction. It is argued that (1) asymmetry in MC-induced facilitation of the voluntary EMG reflects a greater efficiency of the peripheral heteronymous volley in facilitating PreMNs on the dominant side; (2) asymmetry in SR-induced suppression of the MEP during unilateral ECR contraction, which is not paralleled by a similar asymmetry of voluntary EMG suppression, reflects a higher excitability of cortical neurones controlling inhibitory spinal pathways to cervical PreMNs on the preferred side.

  16. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Using Contingent Reinforcement to Augment Muscle Activation After Perinatal Brachial Plexus Injury: A Pilot Study.

    PubMed

    Duff, S V; Sargent, B; Kutch, J J; Berggren, J; Leiby, B E; Fetters, L

    2017-10-20

    Examine the feasibility of increasing muscle activation with electromyographically (EMG)-triggered musical-video as reinforcement for children with perinatal brachial plexus injury (PBPI). Six children with PBPI (9.3 ± 6.3 months; 5 female, 1 male) and 13 typically developing (TD) controls (7.8 ± 3.5 months; 4 female, 9 males) participated. The left arm was affected in 5/6 children with PBPI. We recorded the integral (Vs) of biceps activation with surface EMG during two conditions per arm in one session: (1) 100 second (s) baseline without reinforcement and (2) 300 s reinforcement (musical-video triggered to play with biceps activation above threshold [V]). We examined the relation between the mean integral with reinforcement and hand preference. Mean biceps activation significantly increased from baseline in the affected arm of the group with PBPI by the 2nd (p < .008) and 3rd (p < .0004) 100 s intervals of reinforcement. Six of 6 children with PBPI and 12/13 TD controls increased activation in at least one arm. A lower integral was linked with hand preference for the unaffected right side in the PBPI group. This study supports contingent reinforcement as a feasible method to increase muscle activation. Future work will examine training dose and intensity to increase arm function.

  18. Effectiveness of roundhouse kick in elite Taekwondo athletes.

    PubMed

    Thibordee, Sutima; Prasartwuth, Orawan

    2014-06-01

    The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P<0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P<0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Neuromuscular performance of Bandal Chagui: Comparison of subelite and elite taekwondo athletes.

    PubMed

    Moreira, Pedro Vieira Sarmet; Goethel, Márcio Fagundes; Gonçalves, Mauro

    2016-10-01

    With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electromyographic analyses of the erector spinae muscles during golf swings using four different clubs.

    PubMed

    Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C

    2018-04-01

    The purpose of this study was to compare the electromyography (EMG) patterns of the thoracic and lumbar regions of the erector spinae (ES) muscle during the golf swing whilst using four different golf clubs. Fifteen right-handed male golfers performed a total of twenty swings in random order using the driver, 4-iron, 7-iron and pitching-wedge. Surface EMG was recorded from the lead and trail sides of the thoracic and lumbar regions of the ES muscle (T8, L1 and L5 lateral to the spinous-process). Three-dimensional high-speed video analysis was used to identify the backswing, forward swing, acceleration, early and late follow-through phases of the golf swing. No significant differences in muscle-activation levels from the lead and trail sides of the thoracic and lumbar regions of the ES muscle were displayed between the driver, 4-iron, 7-iron and pitching-wedge (P > 0.05). The highest mean thoracic and lumbar ES muscle-activation levels were displayed in the forward swing (67-99% MVC) and acceleration (83-106% MVC) phases of the swing for all clubs tested. The findings from this study show that there were no significant statistical differences between the driver, 4-iron, 7-iron and pitching-wedge when examining muscle activity from the thoracic and lumbar regions of the ES muscle.

  1. Use of the Teager-Kaiser Energy Operator for Muscle Activity Detection in Children

    PubMed Central

    Lauer, Richard T.; Prosser, Laura A.

    2009-01-01

    The purpose of this study was to demonstrate the usefulness of the Teager-Kaiser Energy (TKE) operator to assess surface electromyographic (sEMG) activity from the hip and trunk muscles during pediatric gait in children with and without cerebral palsy (CP). Muscle activity was recorded from the trapezius, erector spinae, rectus abdominus, external oblique, gluteus maximus and medius, rectus femoris, and semitendinosus bilaterally in ten children with typical development (TD) and five children with CP ages 44.4 ± 18.6 months. Duration of muscle activity was calculated as a percentage of the gait cycle, and compared to two common onset detection methods, a standard deviation (SD) amplitude threshold method, and the visual inspection from two raters (R1, R2). Relative and absolute agreement was determined using intraclass correlation coefficients (ICCs) and Bland-Altman plots. Of the two automated methods, the TKE method demonstrated better agreement with visual inspection (0.45–0.89) than the SD (0.11–0.76) method. The Bland-Altman plots indicated a smaller bias and 95% confidence interval for the TKE method in comparison to the raters (TKE to R1: −5, 113%; TKE to R2: 4, 95%; SD to R1: −24, 170%; SD to R2: −15, 151%). The use of the TKE operator may better detect sEMG activity in children than the standard amplitude method. PMID:19484385

  2. Influence of mental practice on development of voluntary control of a novel motor acquisition task.

    PubMed

    Creelman, Jim

    2003-08-01

    The purpose of this investigation was to assess whether mental practice facilitates the development of voluntary control over the recruitment of the abductor hallucis muscle to produce isolated big toe abduction. A sample of convenience of 15 women and 20 men with a mean age of 28.8 yr. (SD=5.7) and healthy feet, who were unable voluntarily to abduct the big toe, were randomly assigned to one of three groups, a mental practice group, a physical practice group, and a group who performed a control movement during practice. Each subject received neuromuscular electrical stimulation to introduce the desired movement prior to each of five practice bouts over a single session lasting 2 hr. Big toe abduction active range of motion and surface electromyographic (EMG) output of the abductor hallucis and extensor digitorum brevis muscles were measured prior to the first practice bout and following each practice bout, yielding seven acquisition trials. Acquisition is defined as an improvement in both active range of motion and in the difference between the integrated EMG of the abductor hallucis and extensor digitorum brevis muscles during successive acquisition trials. Seven members of both the mental and physical practice groups and one member of the control group met the acquisition criteria. Chi-square analysis indicated the group difference was statistically significant, suggesting mental practice was effective for this task.

  3. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    PubMed

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; P<0.001) and between EMG activity and submaximal isometric torque (r ⩾ 0.99; P<0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects.

    PubMed

    Silva, Mariana Felipe; Dias, Josilainne Marcelino; Pereira, Ligia Maxwell; Mazuquin, Bruno Fles; Lindley, Steven; Richards, Jim; Cardoso, Jefferson Rosa

    2017-01-01

    The aims of this study were to determine the motor unit behavior of the erector spinae muscles and to assess whether differences exist between the dominant/nondominant sides of the back muscles. Nine healthy women, aged 21.7 years (SD = 0.7), performed a back extension test. Surface electromyographic decomposition data were collected from both sides of the erector spinae and decomposed into individual motor unit action potential trains. The mean firing rate for each motor unit was calculated, and a regression analysis was performed against the corresponding recruitment thresholds. The mean firing rate ranged from 15.9 to 23.9 pps and 15.8 to 20.6 pps on the dominant and nondominant sides, respectively. However, the early motor unit potentials of the nondominant lumbar erector spinae muscles were recruited at a lower firing rate. This technique may further our understanding of individuals with back pain and other underlying neuromuscular diseases. Muscle Nerve 55: 28-34, 2017. © 2016 Wiley Periodicals, Inc.

  5. Analysis of surface EMG spike shape across different levels of isometric force.

    PubMed

    Gabriel, David A; Lester, Steven M; Lenhardt, Sean A; Cambridge, Edward D J

    2007-01-15

    This research evaluated changes in surface electromyographic (SEMG) spike shape across different levels of isometric force. Ninety-six subjects generated three 5-s isometric step contractions of the elbow flexors at 40, 60, 80, and 100% of maximal voluntary contraction (MVC). Force and bipolar SEMG activity were monitored concurrently. The mean spike amplitude (MSA) exhibited a linear increase across the four levels of force. The mean spike frequency (MSF) remained stable from 40 to 80% of MVC; it then decreased from 80 to 100% of MVC. There was a concomitant increase in mean spike slope (MSS) that indicates that the biceps brachii (BB) relied on the recruitment of higher threshold motor units (MUs) from 40 to 80% of MVC. However, there progressive decrease in the mean number of peaks per spike (MNPPS) that suggests that MU synchronization was additionally required to increase force from 80 to 100% of MVC. The spike shape measures, taken together, indicate that the decrease in frequency content of the signal was due to synchronization, not an increased probability of temporal overlap due an increase in rate-coding.

  6. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    PubMed

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  7. Trunk muscle recruitment patterns in simulated precrash events.

    PubMed

    Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P

    2018-02-28

    To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.

  8. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    PubMed

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at p<.05. The study results showed that static WBV stimuli given at different frequencies and amplitudes resulted in a significant increase (p<.05) in compared, the LFR group showed significantly (1) higher rates of quadriceps femoris and hamstring muscle fatigue (p<.05), (2) higher levels of knee extensor and flexor torque (p<.05) and (3) higher percentage increases in EMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    PubMed

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  10. Stereotypic Laryngeal and Respiratory Motor Patterns Generate Different Call Types in Rat Ultrasound Vocalization

    PubMed Central

    RIEDE, TOBIAS

    2014-01-01

    Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862

  11. A second mechanism of increase of cerebellar hypermetria in humans

    PubMed Central

    Manto, Mario-Ubaldo; Bosse, Pierre

    2003-01-01

    So far, there is only one procedure known to increase hypermetria in cerebellar patients. Facing an increased inertia of the moving limb, patients presenting a lesion of the lateral cerebellum are able to increase appropriately the intensity of the agonist electromyographic (EMG) activity (the launching force), but are unable to adapt the intensity of the antagonist activity (the braking force). As a result, hypermetria is larger when the inertial load is artificially increased. Recent studies have demonstrated that hyperventilation increases hypermetria in patients presenting a spinocerebellar ataxia type 6 (SCA 6), a disorder associated with polyglutamine expansions in the α1A-voltage-dependent calcium channel. The mechanism of this increase of hypermetria has not been identified so far. In the present work, we combined kinematic, EMG and transcranial Doppler studies to understand the effects of hyperventilation on fast goal-directed movements in patients presenting a SCA 6. Both in the normal mechanical state and after increasing the inertial load of the moving hand, hyperventilation induced an increase of hypermetria. Hyperventilation increased the delay of the onset latency of the antagonist EMG activity and decreased the rate of rise of both the agonist and the antagonist EMG activities. Hyperventilation induced a marked decrease in cerebral blood flow velocities. The mechanism of this provocative test is original and is distinct from the mechanism of the load-induced increase of hypermetria. PMID:12588903

  12. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  13. Neuroelectric Virtual Devices

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Jorgensen, Charles

    2000-01-01

    This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.

  14. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects.

    PubMed

    Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare

    2016-01-01

    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characteristics of Lower Leg Muscle Activity in Patients with Cerebral Palsy during Cycling on an Ergometer.

    PubMed

    Roy, Susmita; Alves-Pinto, Ana; Lampe, Renée

    2018-01-01

    Cycling on ergometer is often part of rehabilitation programs for patients with cerebral palsy (CP). The present study analyzed activity patterns of individual lower leg muscle during active cycling on ergometer in patients with CP and compared them to similar recordings in healthy participants. Electromyographic (EMG) recordings of lower leg muscle activity were collected from 14 adult patients and 10 adult healthy participants. Activity of the following muscles was recorded: Musculus tibialis anterior, Musculus gastrocnemius, Musculus rectus femoris, and Musculus biceps femoris. Besides qualitative analysis also quantitative analysis of individual muscle activity was performed by computing the coefficient of variation of EMG signal amplitude. More irregular EMG patterns were observed in patients in comparison to healthy participants: agonist-antagonist cocontractions were more frequent, muscle activity measured at specific points of the cycle path was more variable, and dynamic range of muscle activity along the cycle path was narrower in patients. Hypertonicity was also more frequent in patients. Muscle activity patterns during cycling differed substantially across patients. It showed irregular nature and occasional sharp high peaks. Dynamic range was also narrower than in controls. Observations underline the need for individualized cycling training to optimize rehabilitation effects.

  16. Abstract and proportional myoelectric control for multi-fingered hand prostheses.

    PubMed

    Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush

    2013-12-01

    Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications.

  17. Muscle performance, body fat, pain and function in the elderly with arthritis.

    PubMed

    Dos Santos, Wagner Teixeira; Rodrigues, Erika de Carvalho; Mainenti, Míriam Raquel Meira

    2014-01-01

    To correlate muscule performance, body composition, pain and joint function in elderly people with gonarthrosis. 21 elderly patients were submitted to bioelectrical impedance analysis, dynamometry associated with electromyographic (EMG) evaluation of isometric knee extension, in addition to pain assessment by the Numeric Pain Intensity Scale and function assessment, by the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis (OA) questionnaire. Correlations were checked by the Pearson's correlation coefficient. The sample characteristics were mean age 67.36 ± 4.21 years old, body fat percentage 40.57±6.15%, total WOMAC score 43.27 ± 16.32%, and maximum strength 19.95 ± 6.99 kgF. Pain during movement showed a statistical association with WOMAC physical activity domain (r = 0.47) and its general score (r = 0.51); pain intensity at night presented association with WOMAC stiffness domain (r = 0.55), in addition to the negative correlation with the slope values of the Medium Frequency of the EMG signal (r = - 0.57). pain intensity is correlated to functional incapacity in elderly people with knee OA and to a greater expression of fatigue in EMG signal. Levels of Evidence III, Study of non consecutive patients.

  18. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  19. Improved Methods for Electroacupuncture and Electromyographic Recordings in Normal and Parkinsonian Rhesus Monkeys

    PubMed Central

    Zhao, Feng; Fan, Xiaotong; Grondin, Richard; Edwards, Ramsey; Forman, Eric; Moorehead, Jennifer; Gerhardt, Greg; Wang, Xiaomin; Zhang, Zhiming

    2010-01-01

    Although acupuncture has been widely and routinely used in healthcare in the USA, its use has been based more on empirical observation than on scientific knowledge. Therefore, there is a great need for better understanding the underlying mechanism(s) of action. A great body of evidence supports that nonhuman primates are a candidate for studying human diseases. However, the use of nonhuman primates in neurophysiological, neuroimaging and neurochemical studies is extremely challenging, especially under fully conscious, alert conditions. In the present study, we developed a protocol for safely performing acupuncture, electro-acupuncture (EA) and electromyography (EMG) in both normal nonhuman primates and animals with parkinsonian-like symptoms. Four normal and four hemiparkinsonian middle-aged rhesus monkeys were extensively trained, behaviorally monitored, and received both EA and EMG for several months. The results demonstrated that (1) all rhesus monkeys used in the study could be trained for procedures including EA and EMG; (2) all animals tolerated the procedures involving needle/electrode insertion; (3) EA procedures used in the study did not adversely alter the animal’s locomotor activities; rather, MPTP-treated animals showed a significant improvement in movement speed; and (4) EMG detected significant differences in muscle activity between the arms with and without MPTP-induced rigidity. Our results support that rhesus monkeys can be used as an experimental animal model to study EA and that EMG has the potential to be used to objectively assess the effects of antiparkinsonian therapies. The results also indicate that animals, especially those with parkinsonian-like symptoms, could benefit from long-term EA stimulations. PMID:20654649

  20. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle.

    PubMed

    Lindström, Björn R; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful.

  1. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle

    PubMed Central

    Lindström, Björn R.; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful. PMID:23840356

  2. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  3. Evaluating Inhibition of Motoneuron Firing From Electromyogram Data to Assess Vestibular Output Using Vestibular Evoked Myogenic Potentials.

    PubMed

    Prakash, S R; Herrmann, Barbara S; Milojcic, Rupprecht; Rauch, Steven D; Guinan, John J

    2015-01-01

    Vestibular evoked myogenic potentials (VEMPs) are due to vestibular responses producing brief inhibitions of muscle contractions that are detectable in electromyographic (EMG) responses. VEMP amplitudes are traditionally measured by the peak to peak amplitude of the averaged EMG response (VEMPpp) or by a normalized VEMPpp (nVEMPpp). However, a brief EMG inhibition does not satisfy the statistical assumptions for the average to be the optimal processing strategy. Here, it is postulated that the inhibition depth of motoneuron firing is the desired metric for showing the influence of the vestibular system on the muscle system. The authors present a metric called "VEMPid" that estimates this inhibition depth from the EMG data obtained in a usual VEMP data acquisition. The goal of this article was to compare how well VEMPid, VEMPpp, and nVEMPpp track inhibition depth. To find a robust method to compare VEMPid, VEMPpp, and nVEMPpp, realistic physiological models for the inhibition of VEMP EMG signals were made using VEMP data from four measurement sessions on each of the five normal subjects. Each of the resulting 20 EMG-production models was adjusted to match the EMG autocorrelation of an individual subject and session. Simulated VEMP traces produced by these models were used to compare how well VEMPid, VEMPpp, and nVEMPpp tracked model inhibition depth. Applied to simulated and real VEMP data, VEMPid showed good test-retest consistency and greater sensitivity at low stimulus levels than VEMPpp or nVEMPpp. For large-amplitude responses, nVEMPpp and VEMPid were equivalent in their consistency across subjects and sessions, but for low-amplitude responses, VEMPid was superior. Unnormalized VEMPpp was always worse than nVEMPpp or VEMPid. VEMPid provides a more reliable measurement of vestibular function at low sound levels than the traditional nVEMPpp, without requiring a change in how VEMP tests are performed. The calculation method for VEMPid should be applicable whenever an ongoing muscle contraction is briefly inhibited by an external stimulus.

  4. FastICA peel-off for ECG interference removal from surface EMG.

    PubMed

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  5. Effects of Different Footwear Properties and Surface Instability on Neuromuscular Activity and Kinematics During Jumping.

    PubMed

    Lesinski, Melanie; Prieske, Olaf; Borde, Ron; Beurskens, Rainer; Granacher, Urs

    2018-04-13

    Lesinski, M, Prieske, O, Borde, R, Beurskens, R, and Granacher, U. Effects of different footwear properties and surface instability on neuromuscular activity and kinematics during jumping. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to examine sex-specific effects of different footwear properties vs. barefoot condition during the performance of drop jumps (DJs) on stable and unstable surfaces on measures of jump performance, electromyographic (EMG) activity, and knee joint kinematics. Drop jump performance, EMG activity of lower-extremity muscles, as well as sagittal and frontal knee joint kinematics were tested in 28 healthy male (n = 14) and female (n = 14) physically active sports science students (23 ± 2 years) during the performance of DJs on stable and unstable surfaces using different footwear properties (elastic vs. minimal shoes) vs. barefoot condition. Analysis revealed a significantly lower jump height and performance index (Δ7-12%; p < 0.001; 2.22 ≤ d = 2.90) during DJs on unstable compared with stable surfaces. This was accompanied by lower thigh/shank muscle activities (Δ11-28%; p < 0.05; 0.99 ≤ d = 2.16) and knee flexion angles (Δ5-8%; p < 0.05; 1.02 ≤ d = 2.09). Furthermore, knee valgus angles during DJs were significantly lower when wearing shoes compared with barefoot condition (Δ22-32%; p < 0.01; 1.38 ≤ d = 3.31). Sex-specific analyses indicated higher knee flexion angles in females compared with males during DJs, irrespective of the examined surface and footwear conditions (Δ29%; p < 0.05; d = 0.92). Finally, hardly any significant footwear-surface interactions were detected. Our findings revealed that surface instability had an impact on DJ performance, thigh/shank muscle activity, and knee joint kinematics. In addition, the single factors "footwear" and "sex" modulated knee joint kinematics during DJs. However, hardly any significant interaction effects were found. Thus, additional footwear-related effects can be neglected when performing DJs during training on different surfaces.

  6. Electromyographic Activity of Hand Muscles in a Motor Coordination Game: Effect of Incentive Scheme and Its Relation with Social Capital

    PubMed Central

    Censolo, Roberto; Craighero, Laila; Ponti, Giovanni; Rizzo, Leonzio; Canto, Rosario; Fadiga, Luciano

    2011-01-01

    Background A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. Methodology/Principal Findings Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI), the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. Conclusions/Significance Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory. PMID:21464986

  7. Plyometric Training Favors Optimizing Muscle–Tendon Behavior during Depth Jumping

    PubMed Central

    Hirayama, Kuniaki; Iwanuma, Soichiro; Ikeda, Naoki; Yoshikawa, Ayumi; Ema, Ryoichi; Kawakami, Yasuo

    2017-01-01

    The purpose of the present study was to elucidate how plyometric training improves stretch–shortening cycle (SSC) exercise performance in terms of muscle strength, tendon stiffness, and muscle–tendon behavior during SSC exercise. Eleven men were assigned to a training group and ten to a control group. Subjects in the training group performed depth jumps (DJ) using only the ankle joint for 12 weeks. Before and after the period, we observed reaction forces at foot, muscle–tendon behavior of the gastrocnemius, and electromyographic activities of the triceps surae and tibialis anterior during DJ. Maximal static plantar flexion strength and Achilles tendon stiffness were also determined. In the training group, maximal strength remained unchanged while tendon stiffness increased. The force impulse of DJ increased, with a shorter contact time and larger reaction force over the latter half of braking and initial half of propulsion phases. In the latter half of braking phase, the average electromyographic activity (mEMG) increased in the triceps surae and decreased in tibialis anterior, while fascicle behavior of the gastrocnemius remained unchanged. In the initial half of propulsion, mEMG of triceps surae and shortening velocity of gastrocnemius fascicle decreased, while shortening velocity of the tendon increased. These results suggest that the following mechanisms play an important role in improving SSC exercise performance through plyometric training: (1) optimization of muscle–tendon behavior of the agonists, associated with alteration in the neuromuscular activity during SSC exercise and increase in tendon stiffness and (2) decrease in the neuromuscular activity of antagonists during a counter movement. PMID:28179885

  8. Comparison of immediate complete denture, tooth and implant-supported overdenture on vertical dimension and muscle activity

    PubMed Central

    Shah, Farhan Khalid; Gebreel, Ashraf; Elshokouki, Ali hamed; Habib, Ahmed Ali

    2012-01-01

    PURPOSE To compare the changes in the occlusal vertical dimension, activity of masseter muscles and biting force after insertion of immediate denture constructed with conventional, tooth-supported and Implant-supported immediate mandibular complete denture. MATERIALS AND METHODS Patients were selected and treatment was carried out with all the three different concepts i.e, immediate denture constructed with conventional (Group A), tooth-supported (Group B) and Implant-supported (Group C) immediate mandibular complete dentures. Parameters of evaluation and comparison were occlusal vertical dimension measured by radiograph (at three different time intervals), Masseter muscle electromyographic (EMG) measurement by EMG analysis (at three different positions of jaws) and bite force measured by force transducer (at two different time intervals). The obtained data were statistically analyzed by using ANOVA-F test at 5% level of significance. If the F test was significant, Least Significant Difference test was performed to test further significant differences between variables. RESULTS Comparison between mean differences in occlusal vertical dimension for tested groups showed that it was only statistically significant at 1 year after immediate dentures insertion. Comparison between mean differences in wavelet packet coefficients of the electromyographic signals of masseter muscles for tested groups was not significant at rest position, but significant at initial contact position and maximum voluntary clench position. Comparison between mean differences in maximum biting force for tested groups was not statistically significant at 5% level of significance. CONCLUSION Immediate complete overdentures whether tooth or implant supported prosthesis is recommended than totally mucosal supported prosthesis. PMID:22737309

  9. The Impact of Ergometer Design on Hip and Trunk Muscle Activity Patterns in Elite Rowers: An Electromyographic Assessment

    PubMed Central

    Nowicky, Alex V.; Horne, Sara; Burdett, Richard

    2005-01-01

    This study used surface electromyography (sEMG) to examine whether there were differences in hip and trunk muscle activation during the rowing cycle on two of the most widely used air braked ergometers: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min-1 and 1:47.500 m-1 split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key Points The effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls. Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation. As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise. PMID:24431957

  10. Muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction.

    PubMed

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian; Szyszka-Sommerfeld, Liliana

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  11. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    PubMed Central

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction. PMID:25883949

  12. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    PubMed

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may enable surgeons to test the functional results of wedge excisions for lip cancer in a virtual environment and to weigh surgery versus organ-sparing radiotherapy or photodynamic therapy.

  13. Glenohumeral Function of the Long Head of the Biceps Muscle

    PubMed Central

    Chalmers, Peter N.; Cip, Johannes; Trombley, Robert; Cole, Brian J.; Wimmer, Markus A.; Romeo, Anthony A.; Verma, Nikhil N.

    2014-01-01

    Background: Optimal treatment of superior labral anterior-posterior (SLAP) tears is controversial, in part because the dynamic role of the long head of the biceps muscle (LHBM) in the glenohumeral joint is unclear. The aim of this study was to determine dynamic LHBM behavior during shoulder activity by studying (1) the electromyographic activity of the LHBM during shoulder motion, (2) the effect of elbow immobilization on this activity, and (3) the effect of a load applied to the distal humerus on this activity. Hypothesis: The LHBM would not play a significant role in active glenohumeral range of motion. Study Design: Controlled laboratory study. Methods: Thirteen normal volunteers underwent surface electromyography (EMG) measurement of the LHBM, short head biceps muscle (SHBM), deltoid, infraspinatus, and brachioradialis during shoulder motion from the neutral position (0° of rotation, flexion, and abduction) to 45° of flexion, 90° of flexion, 45° of abduction, and 90° of abduction. These motions were repeated both with and without splint immobilization of the forearm and elbow at 100° of flexion and neutral rotation and with and without a 1-kg weight placed on the lateral distal humerus. Results: Mean EMG activity within the LHBM and the SHBM was low (≤11.6% ± 9.1%). LHBM activity was significant increased by flexion and abduction (P < .049 in all cases), while SHBM activity was not. EMG activity from the middle head of the deltoid was significantly increased by loading with the shoulder positioned away from the body (ie, in abduction or flexion). When compared with the unloaded state, the addition of a distal humeral load significantly increased LHBM activity in 45° of abduction (P = .028) and 90° of flexion (P = .033) despite forearm and elbow immobilization. The SHBM showed similar trends. Conclusion: In normal volunteers with forearm and elbow immobilization and application of a load to the distal humerus, LHBM EMG activity is increased by both glenohumeral flexion and abduction, suggesting that this muscle plays a dynamic role in glenohumeral motion with higher demand activities. Clinical Relevance: Biceps tenodesis may result in dynamic change within the glenohumeral joint with higher demand activities. PMID:26535304

  14. Randomised controlled trial of biofeedback training in persistent encopresis with anismus.

    PubMed

    Nolan, T; Catto-Smith, T; Coffey, C; Wells, J

    1998-08-01

    Paradoxical external anal sphincter contraction during attempted defecation (anismus) is thought to be an important contributor to chronic faecal retention and encopresis in children. Biofeedback training can be used to teach children to abolish this abnormal contraction. A randomised controlled trial in medical treatment resistant and/or treatment dependent children with anismus using surface electromyographic (EMG) biofeedback training to determine whether such training produces sustained faecal continence. Up to four sessions of biofeedback training were conducted at weekly intervals for each patient. Anorectal manometry was performed before randomisation and six months later. Parents of patients completed the "child behaviour checklist" (CBCL) before randomisation and at follow up. Sixty eight children underwent anorectal manometry and EMG. Of these, 29 had anismus (ages 4-14 years) and were randomised to either EMG biofeedback training and conventional medical treatment (BFT) (n = 14) or to conventional medical treatment alone (n = 15). All but one child were able to learn relaxation of the external anal sphincter on attempted defecation. At six months' follow up, laxative free remission had been sustained in two of 14 patients in the BFT group and in two of 15 controls (95% confidence interval (CI) on difference, -24% to 26%). Remission or improvement occurred in four of 14 patients in the BFT group and six of 15 controls (95% CI on difference, -46% to 23%). Of subjects available for repeat anorectal manometry and EMG at six months, six of 13 in the BFT group still demonstrated anismus v 11 of 13 controls (95% CI on difference, -75% to -1%). Of the four patients in full remission at six months, only one (in the BFT group) did not exhibit anismus. Rectal hyposensitivity was not associated with remission or improvement in either of the groups. Mean CBCL total behaviour problem scores were not significantly different between the BFT and control groups, but there was a significant improvement in CBCL school scale scores in the BFT group, and this improvement was significantly greater than that seen in the control group. The result of this study, together with those reported in other controlled trials, argues against using biofeedback training in children with encopresis.

  15. Lower trunk kinematics and muscle activity during different types of tennis serves

    PubMed Central

    Chow, John W; Park, Soo-An; Tillman, Mark D

    2009-01-01

    Background To better understand the underlying mechanisms involved in trunk motion during a tennis serve, this study aimed to examine the (1) relative motion of the middle and lower trunk and (2) lower trunk muscle activity during three different types of tennis serves - flat, topspin, and slice. Methods Tennis serves performed by 11 advanced (AV) and 8 advanced intermediate (AI) male tennis players were videorecorded with markers placed on the back of the subject used to estimate the anatomical joint (AJ) angles between the middle and lower trunk for four trunk motions (extension, left lateral flexion, and left and right twisting). Surface electromyographic (EMG) techniques were used to monitor the left and right rectus abdominis (LRA and RRA), external oblique (LEO and REO), internal oblique (LIO and RIO), and erector spinae (LES and RES). The maximal AJ angles for different trunk motions during a serve and the average EMG levels for different muscles during different phases (ascending and descending windup, acceleration, and follow-through) of a tennis serve were evaluated. Results The repeated measures Skill × Serve Type × Trunk Motion ANOVA for maximal AJ angle indicated no significant main effects for serve type or skill level. However, the AV group had significantly smaller extension (p = 0.018) and greater left lateral flexion (p = 0.038) angles than the AI group. The repeated measures Skill × Serve Type × Phase MANOVA revealed significant phase main effects in all muscles (p < 0.001) and the average EMG of the AV group for LRA was significantly higher than that of the AI group (p = 0.008). All muscles showed their highest EMG values during the acceleration phase. LRA and LEO muscles also exhibited high activations during the descending windup phase, and RES muscle was very active during the follow-through phase. Conclusion Subjects in the AI group may be more susceptible to back injury than the AV group because of the significantly greater trunk hyperextension, and relatively large lumbar spinal loads are expected during the acceleration phase because of the hyperextension posture and profound front-back and bilateral co-activations in lower trunk muscles. PMID:19825184

  16. Postoperative vocal fold palsy in patients undergoing thyroid surgery with continuous or intermittent nerve monitoring.

    PubMed

    Schneider, R; Sekulla, C; Machens, A; Lorenz, K; Nguyen Thanh, P; Dralle, H

    2015-10-01

    Continuous monitoring of electromyographic (EMG) amplitudes of the vocal muscles detects impending injury of the recurrent laryngeal nerve (RLN) during thyroid operations earlier than intermittent EMG monitoring. This may alert the surgeon to stop a manoeuvre causing stretching or pressure on the RLN, with better recovery of nerve function. Patients with intact preoperative RLN function who underwent thyroid surgery for benign disease between January 2011 and September 2014 under continuous intraoperative nerve monitoring (CIONM) or intermittent intraoperative nerve monitoring (IIONM) were included in this observational study conducted at a tertiary surgical centre. For CIONM, combined EMG events indicative of imminent nerve injury were defined as an EMG amplitude decrease of 50 per cent or more and a latency increase of 10 per cent relative to baseline values. The rates of early and permanent palsy for the two groups of patients were compared. There were 1526 patients, 788 of whom (1314 nerves at risk) underwent thyroid surgery using CIONM and 738 (965 nerves at risk) had IIONM. With the use of CIONM, 63 (82 per cent) of 77 combined events were reversible during the operation. No permanent vocal fold palsy occurred with CIONM, whereas four unilateral permanent vocal fold palsies (0·4 per cent) were diagnosed after IIONM (P = 0·019). Operation with CIONM resulted in fewer permanent vocal fold palsies compared with IIONM after thyroid surgery in patients with benign disease. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  17. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    PubMed Central

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05). The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  18. Impairment of Postural Control in Rabbits With Extensive Spinal Lesions

    PubMed Central

    Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.

    2009-01-01

    Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112

  19. An Implanted Upper-Extremity Neuroprosthesis Using Myoelectric Control

    PubMed Central

    Kilgore, Kevin L.; Hoyen, Harry A.; Bryden, Anne M.; Hart, Ronald L.; Keith, Michael W.; Peckham, P. Hunter

    2009-01-01

    Purpose The purpose of this study was evaluate the potential of a second-generation implantable neuroprosthesis that provides improved control of hand grasp and elbow extension for individuals with cervical level spinal cord injury. The key feature of this system is that users control their stimulated function through electromyographic (EMG) signals. Methods The second-generation neuroprosthesis consists of 12 stimulating electrodes, 2 EMG signal recording electrodes, an implanted stimulator-telemeter device, an external control unit, and a transmit/receive coil. The system was implanted in a single surgical procedure. Functional outcomes for each subject were evaluated in the domains of body functions and structures, activity performance, and societal participation. Results Three individuals with C5/C6 spinal cord injury received system implantation with subsequent prospective evaluation for a minimum of 2 years. All 3 subjects demonstrated that EMG signals can be recorded from voluntary muscles in the presence of electrical stimulation of nearby muscles. Significantly increased pinch force and grasp function was achieved for each subject. Functional evaluation demonstrated improvement in at least 5 activities of daily living using the Activities of Daily Living Abilities Test. Each subject was able to use the device at home. There were no system failures. Two of 6 EMG electrodes required surgical revision because of suboptimal location of the recording electrodes. Conclusions These results indicate that a neuroprosthesis with implanted myoelectric control is an effective method for restoring hand function in midcervical level spinal cord injury. Type of study/level of evidence Therapeutic IV. PMID:18406958

  20. Lower Extremity Muscle Activity during Cycling in Adolescents with and without Cerebral Palsy

    PubMed Central

    Lauer, Richard T.; Johnston, Therese E.; Smith, Brian T.; Lee, Samuel C.K.

    2008-01-01

    Background In individuals with cerebral palsy (CP), adaptation and plasticity in the neuromuscular system can lead to detrimental changes affecting gait. Cycling may be an effective method to improve mobility. The biomechanics of cycling in adolescents with CP have been studied, but further analysis of the frequency and amplitude characteristics of the electromyographic (EMG) signals can assist with interpretation of the cycling kinematics. Methods Data were analyzed from ten adolescents with typical development (TD) (mean = 14.9 SD = 1.4 years) and ten adolescents with CP (mean = 15.6 SD = 1.8 years) as they cycled at two different cadences. Analyses of the lower extremity EMG signals involved frequency and amplitude analysis across the cycling revolution. Findings Examination of cycling cadence revealed that adolescents with CP had altered EMG characteristics in comparison to adolescents with typical development across the entire crank revolution for all muscles. Analyses of individual muscles indicated both inappropriate muscle activation and weakness. Interpretation A more comprehensive analysis of EMG activity has the potential to provide insight into how a task is accomplished. In this study, the control of the several muscles, especially the rectus femoris, was significantly different in adolescents with cerebral palsy. This, combined with muscle weakness, may have contributed to the observed deviations in joint kinematics. Interventions that increase muscle strength with feedback to the nervous system about appropriate activation timing may be beneficial to allow individuals with CP to cycle more efficiently. PMID:18082920

  1. The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension.

    PubMed

    Shafton, Anthony D; Furness, John B; Ferens, Dorota; Bogeski, Goce; Koh, Shir Lin; Lean, Nicholas P; Kitchener, Peter D

    2006-07-01

    Noxious stimuli that are applied to different somatic sites interact; often one stimulus diminishes the sensation elicited from another site. By contrast, inhibitory interactions between visceral stimuli are not well documented. We investigated the interaction between the effects of noxious distension of the colorectum and noxious stimuli applied to the jejunum, in the rat. Colorectal distension elicited a visceromotor reflex, which was quantified using electromyographic (EMG) recordings from the external oblique muscle of the upper abdomen. The same motor units were activated when a strong pinch was applied to the flank skin. Distension of the jejunum did not provoke an EMG response at this site, but when it was applied during colorectal distension it blocked the EMG response. Jejunal distension also inhibited the response to noxious skin pinch. The inhibition of the visceromotor response to colorectal distension was prevented by local application of tetrodotoxin to the jejunum, and was markedly reduced when nicardipine was infused into the local jejunal circulation. Chronic sub-diaphragmatic vagotomy had no effect on the colorectal distension-induced EMG activity or its inhibition by jejunal distension. The nicotinic antagonist hexamethonium suppressed phasic contractile activity in the jejunum, had only a small effect on the inhibition of visceromotor response by jejunal distension. It is concluded that signals that arise from skin pinch and colorectal distension converge in the central nervous system with pathways that are activated by jejunal spinal afferents; the jejunal signals strongly inhibit the abdominal motor activity evoked by noxious stimuli.

  2. Alterations in Masticatory Muscle Activation in People with Persistent Neck Pain Despite the Absence of Orofacial Pain or Temporomandibular Disorders.

    PubMed

    Testa, Marco; Geri, Tommaso; Gizzi, Leonardo; Petzke, Frank; Falla, Deborah

    2015-01-01

    To assess whether patients with persistent neck pain display evidence of altered masticatory muscle behavior during a jaw-clenching task, despite the absence of orofacial pain or temporomandibular disorders. Ten subjects with persistent, nonspecific neck pain and 10 age- and sex-matched healthy controls participated. Maximal voluntary contractions (MVCs) of unilateral jaw clenching followed by 5-second submaximal contractions at 10%, 30%, 50%, and 70% MVC were recorded by two flexible force transducers positioned between the first molar teeth. Task performance was quantified by mean distance and offset error from the reference target force as error indices, and standard deviation of force was used as an index of force steadiness. Electromyographic (EMG) activity was recorded bilaterally from the masseter muscle with 13 X 5 grids of electrodes and from the anterior temporalis with bipolar electrodes. Normalized EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution, and the average normalized RMS was determined for the bipolar acquisition. Between-group differences were analyzed with the Kruskal Wallis analysis of variance. Task performance was similar in patients and controls. However, patients displayed greater masseter EMG activity bilaterally at higher force levels (P<.05). This study has provided novel evidence of altered motor control of the jaw in people with neck pain despite the absence of orofacial pain or temporomandibular disorders.

  3. Validation of an integrated software for the detection of rapid eye movement sleep behavior disorder.

    PubMed

    Frauscher, Birgit; Gabelia, David; Biermayr, Marlene; Stefani, Ambra; Hackner, Heinz; Mitterling, Thomas; Poewe, Werner; Högl, Birgit

    2014-10-01

    Rapid eye movement sleep without atonia (RWA) is the polysomnographic hallmark of REM sleep behavior disorder (RBD). To partially overcome the disadvantages of manual RWA scoring, which is time consuming but essential for the accurate diagnosis of RBD, we aimed to validate software specifically developed and integrated with polysomnography for RWA detection against the gold standard of manual RWA quantification. Academic referral center sleep laboratory. Polysomnographic recordings of 20 patients with RBD and 60 healthy volunteers were analyzed. N/A. Motor activity during REM sleep was quantified manually and computer assisted (with and without artifact detection) according to Sleep Innsbruck Barcelona (SINBAR) criteria for the mentalis ("any," phasic, tonic electromyographic [EMG] activity) and the flexor digitorum superficialis (FDS) muscle (phasic EMG activity). Computer-derived indices (with and without artifact correction) for "any," phasic, tonic mentalis EMG activity, phasic FDS EMG activity, and the SINBAR index ("any" mentalis + phasic FDS) correlated well with the manually derived indices (all Spearman rhos 0.66-0.98). In contrast with computerized scoring alone, computerized scoring plus manual artifact correction (median duration 5.4 min) led to a significant reduction of false positives for "any" mentalis (40%), phasic mentalis (40.6%), and the SINBAR index (41.2%). Quantification of tonic mentalis and phasic FDS EMG activity was not influenced by artifact correction. The computer algorithm used here appears to be a promising tool for REM sleep behavior disorder detection in both research and clinical routine. A short check for plausibility of automatic detection should be a basic prerequisite for this and all other available computer algorithms. © 2014 Associated Professional Sleep Societies, LLC.

  4. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    PubMed

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both p<0.05) but only for the constant force condition. Furthermore, EMG modulation resulted from uniform scaling of EMG amplitude across all muscles. We conclude that the CNS controlled both extrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Electrodiagnostic Evaluation of Individuals Implanted With Extracellular Matrix for the Treatment of Volumetric Muscle Injury: Case Series

    PubMed Central

    Han, Nami; Yabroudi, Mohammad A.; Stearns-Reider, Kristen; Helkowski, Wendy; Sicari, Brian M.; Rubin, J. Peter; Badylak, Stephen F.; Boninger, Michael L.

    2016-01-01

    Background Electrodiagnosis can reveal the nerve and muscle changes following surgical placement of an extracellular matrix (ECM) bioscaffold for treatment of volumetric muscle loss (VML). Objective The purpose of this study was to characterize nerve conduction study (NCS) and electromyography (EMG) changes following ECM bioscaffold placement in individuals with VML. The ability of presurgical NCS and EMG to be used as a tool to help identify candidates who are likely to display improvements postsurgically also was explored. Design A longitudinal case series design was used. Methods The study was conducted at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. Eight individuals with a history of chronic VML participated. The intervention was surgical placement of an ECM bioscaffold at the site of VML. The strength of the affected region was measured using a handheld dynamometer, and electrophysiologic evaluation was conducted on the affected limb with standard method of NCS and EMG. All measurements were obtained the day before surgery and repeated 6 months after surgery. Results Seven of the 8 participants had a preoperative electrodiagnosis of incomplete mononeuropathy within the site of VML. After ECM treatment, 5 of the 8 participants showed improvements in NCS amplitude or needle EMG parameters. The presence of electrical activity within the scaffold remodeling site was concomitant with clinical improvement in muscle strength. Limitations This study had a small sample size, and participants served as their own controls. The electromyographers and physical therapists performing the evaluation were not blinded. Conclusions Electrodiagnostic data provide objective evidence of physiological improvements in muscle function following ECM placement at sites of VML. Future studies are warranted to further investigate the potential of needle EMG as a predictor of successful outcomes following ECM treatment for VML. PMID:26564252

  6. Trunk muscle activation during moderate- and high-intensity running.

    PubMed

    Behm, David G; Cappa, Dario; Power, Geoffrey A

    2009-12-01

    Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.

  7. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease.

    PubMed

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul

    2016-06-15

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning ((123)I-FP-CIT SPECT), neurological examination, and polysomnography. iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. (123)I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to (123)I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. © 2016 American Academy of Sleep Medicine.

  8. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.

    PubMed

    Smirmaul, B P C; Dantas, J L; Fontes, E B; Altimari, L R; Okano, A H; Moraes, A C

    2010-01-01

    The purpose of this study was to identify and compare the Electromyographic Fatigue Threshold (EMG(FT)) determined in the Vastus Lateralis (VL), Rectus Femoris (RF), Biceps Femoris (BF), Semitendinosus (ST) and Tibialis Anterior (TA) during stationary cycling in trained cyclists and non-cyclists. Using a cycle ergometer, 13 cyclists (28.4 +/- 6.9 years; 70.3 +/- 13 kg; 176.1 +/- 8.5 cm) and 11 non-cyclists (25.8 +/- 4 years; 73 +/- 9.1 kg; 175 +/- 6.4 cm), performed a maximum incremental test (ITmax) (90 rpm) to determine the (EMG(FT)). Maximal power output (W(PEAK)) reached by cyclists was higher than for non-cyclists (372.6 W and 248.9 W respectively) (P < 0.01). For the five muscles analyzed in cyclists, EMG(FT) occurred at 85.7% of cases in the VL, 92.9% in RE 78.6% in BE 78.6% in ST and 50% in TA, while in the non-cyclists group, this occurrence was 100% to muscle VL, 100% to RF, 92.6% to BF, 78.6% to ST, and 78.6% to TA. Analyzing the percentage corresponding to the power at EMG(FT) in relation to W(PEAK) reached, no differences between groups were observed for RF, BF and ST, however VL and TA, as well as the mean from all muscles were lower for cyclists than non-cyclists (P < 0.05). The present results showed that EMG(FT) is more easily identified in RF and VL muscles for both groups, and it may be an interesting method to evaluate the adaptive responses from aerobic and anaerobic metabolisms during cycling training programs.

  9. Response of cricopharyngeus muscle to esophageal stimulation by mechanical distension and acid and bile perfusion.

    PubMed

    Chernichenko, Natalya; Woo, Jeong-Soo; Hundal, Jagdeep S; Sasaki, Clarence T

    2011-02-01

    The aim of this study was to identify the response of the cricopharyngeus muscle (CPM) to esophageal stimulation by intraluminal mechanical distension and intraluminal acid and bile perfusion. In 3 adult pigs, electromyographic (EMG) activity of the CPM was recorded at baseline and after esophageal stimulation at 3 levels: proximal, middle, and distal. The esophagus was stimulated with 20-mL balloon distension and intraluminal perfusion of 40 mL 0.1N hydrochloric acid, taurocholic acid (pH 1.5), and chenodeoxycholic acid (pH 7.4) at the rate of 40 mL/min. The EMG spike density was defined as peak-to-peak spikes greater than 10 microV averaged over 10-ms intervals. In all 3 animals, the spike density at baseline was 0. The spike densities increased after proximal and middle distensions to 15.2 +/- 1.5 and 5.1 +/- 1.2 spikes per 10 ms, respectively. No change in CPM EMG activity occurred after distal distension. The spike density following intraluminal perfusion with hydrochloric acid at the distal level was 10.1 +/- 1.1 spikes per 10 ms. No significant change in CPM EMG activity occurred after acid perfusion at the middle and proximal levels. No change in CPM EMG activity occurred after intraluminal esophageal perfusion with either taurocholic acid or chenodeoxycholic acid. Proximal esophageal distension, as well as distal intraluminal acid perfusion, appeared to be important mechanisms in generation of CPM activity. Bile acids, on the other hand, failed to evoke such CPM activity. The data suggest that transpyloric refluxate may not be significant enough to evoke the CPM protective sphincteric function, thereby placing supraesophageal structures at risk of bile injury.

  10. Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development.

    PubMed

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-11-01

    On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.

  11. Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury.

    PubMed

    Hornby, T George; Kinnaird, Catherine R; Holleran, Carey L; Rafferty, Miriam R; Rodriguez, Kelly S; Cain, Julie B

    2012-10-01

    Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices.

  12. The effects of changes in response-independent pay upon human masseter EMG. M.A. Thesis

    NASA Technical Reports Server (NTRS)

    Proni, T. J.

    1973-01-01

    Electromyographic activity of the masseter muscle was recorded in five human subjects who were presented with systematically varied rates of non-contingent pay. Rates of pay were varied between sessions in either a descending or an ascending series. The number of masseter contractions was found to be greater during the descending series than during the ascending series, especially when a descending series of pay changes followed an ascending series. Verbal physical displays of anger and aggression were noted during descending series. These data indicated a possible relation between masseter contractions and aggression.

  13. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  14. Gender variability in electromyographic activity, in vivo behaviour of the human gastrocnemius and mechanical capacity during the take-off phase of a countermovement jump.

    PubMed

    Rubio-Arias, Jacobo Ángel; Ramos-Campo, Domingo Jesús; Peña Amaro, José; Esteban, Paula; Mendizábal, Susana; Jiménez, José Fernando

    2017-11-01

    The purpose of this study was to analyse gender differences in neuromuscular behaviour of the gastrocnemius and vastus lateralis during the take-off phase of a countermovement jump (CMJ), using direct measures (ground reaction forces, muscle activity and dynamic ultrasound). Sixty-four young adults (aged 18-25 years) participated voluntarily in this study, 35 men and 29 women. The firing of the trigger allowed obtainment of data collection vertical ground reaction forces (GRF), surface electromyography activity (sEMG) and dynamic ultrasound gastrocnemius of both legs. Statistically significant gender differences were observed in the jump performance, which appear to be based on differences in muscle architecture and the electrical activation of the gastrocnemius muscles and vastus lateralis. So while men developed greater peak power, velocity take-offs and jump heights, jump kinetics compared to women, women also required a higher electrical activity to develop lower power values. Additionally, the men had higher values pennation angles and muscle thickness than women. Men show higher performance of the jump test than women, due to significant statistical differences in the values of muscle architecture (pennation angle and thickness muscle), lower Neural Efficiency Index and a higher amount of sEMG activity per second during the take-off phase of a CMJ. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Development and application of reflexodent in the quantitative functional evaluation of chewing control in patients with temporomandibular joint dysfunction and a control group.

    PubMed

    Angeles-Medina, F; Nuño-Licona, A; Alfaro-Moctezuma, P; Osorno-Escareño, C

    2000-01-01

    There has been controversy with respect to the diagnostic value of the inhibitory masseteric reflex in temporomandibular joint dysfunction (TMJD) because the whole reflex response was not considered. The purpose of this study was to characterize the reflex changes that occur in patients with different levels of TMJD and in a control group. Eighty-nine patients (ages 31.14 +/- 12.74 years) divided into three groups were studied and compared. The control group was without TMJD (n = 30), with moderate symptoms (n = 30), and with severe symptoms (n = 29). Using an instrument and a software program developed by our group (Reflexodent), the masseteric inhibitory reflex was studied. The electromyography record (EMG) was captured with surface electrodes and the inhibitory reflex was produced by tapping the chin. The EMG signal was processed, filtered, and averaged with the Reflexodent. Twenty series of records were applied to each patient. The faulty inhibitory area, the area's relation (potentiation/inhibition) regarding the values of healthy subjects previously characterized, and the bilateral symmetry were measured. Discriminate analysis showed a statistically significant correlation between clinical groups and electromyographic findings. Statistical function explained 91.8% of the discrimination among groups (canonical correlation = 0.918, chi(2) = 164.435, p <0.001). The study of whole inhibitory masseteric reflex and the Reflexodent technique are useful as a diagnostic tool to evaluate TMJ illness in the dental clinic.

  16. Electromyographic response of global abdominal stabilizers in response to stable- and unstable-base isometric exercise.

    PubMed

    Atkins, Stephen J; Bentley, Ian; Brooks, Darrell; Burrows, Mark P; Hurst, Howard T; Sinclair, Jonathan K

    2015-06-01

    Core stability training traditionally uses stable-base techniques. Less is known as to the use of unstable-base techniques, such as suspension training, to activate core musculature. This study sought to assess the neuromuscular activation of global core stabilizers when using suspension training techniques, compared with more traditional forms of isometric exercise. Eighteen elite level, male youth swimmers (age, 15.5 ± 2.3 years; stature, 163.3 ± 12.7 cm; body mass, 62.2 ± 11.9 kg) participated in this study. Surface electromyography (sEMG) was used to determine the rate of muscle contraction in postural musculature, associated with core stability and torso bracing (rectus abdominus [RA], external obliques [EO], erector spinae [ES]). A maximal voluntary contraction test was used to determine peak amplitude for all muscles. Static bracing of the core was achieved using a modified "plank" position, with and without a Swiss ball, and held for 30 seconds. A mechanically similar "plank" was then held using suspension straps. Analysis of sEMG revealed that suspension produced higher peak amplitude in the RA than using a prone or Swiss ball "plank" (p = 0.04). This difference was not replicated in either the EO or ES musculature. We conclude that suspension training noticeably improves engagement of anterior core musculature when compared with both lateral and posterior muscles. Further research is required to determine how best to activate both posterior and lateral musculature when using all forms of core stability training.

  17. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.

  18. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. III - Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.

  19. Wiener Filtering of Surface EMG with a priori SNR Estimation Toward Myoelectric Control for Neurological Injury Patients

    PubMed Central

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-01-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  20. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

Top